
How Scalable is Domain Decomposition in

Practice?

D. E. Keyes�

1 Introduction

The convergence rates and, therefore, the overall parallel e�ciencies of additive
Schwarz methods are often dependent on subdomain granularity. Except when
e�ective coarse-grid operators and intergrid transfer operators are known, so
that optimal multilevel preconditioners can be constructed, the number of itera-
tions to convergence tends to increase with granularity for elliptically-controlled
problems, for either �xed or memory-scaled problem sizes. The communication
overhead per iteration also grows with granularity when global operations, such
as inner products, are required as part of the acceleration scheme. The growth
is sublinear on reasonable networks, but not a priori dismissable as processor
counts enter the thousands.

In practical large-scale applications, however, the convergence rate degrada-
tion of single-level additive Schwarz is sometimes not as serious as the scalar,
linear elliptic theory would suggest. Its e�ects are mitigated by several factors,
including pseudo-transient nonlinear continuation and dominant intercompo-
nent coupling that can be captured fully in a point-block ILU preconditioner.
Furthermore, complex models may be so dominated by fully concurrent work at
each gridpoint that global communication constitutes a small, albeit growing,
tax. We illustrate these favorable claims for the practicality of domain decom-
position with encouraging scalabilities for a legacy unstructured-grid Euler 
ow
application code, parallelized with the pseudo-transient Newton-Krylov-Schwarz
(	NKS) algorithm using the freely available PETSc library on contemporary
high-end platforms. We note some impacts on performance of the horizontal
(distributed) and vertical (hierarchical) aspects of the memory system and con-
sider architecturally motivated algorithmic variations for their amelioration.

�Computer Science Department, Old Dominion University, Norfolk, VA 23529-0162 and

ICASE, NASA Langley Res. Ctr., Hampton, VA 23681-2199, keyes@icase.edu. Supported

in part by the National Science Foundation under grant ECS-9527169, by NASA under con-

tracts NAS1-19480 and NAS1-97046, and by Argonne National Laboratory under contract

982232402.

1



2 Scalability

Domain decomposition has been continually reinvented for several reasons: it is
natural for task-based divide-and-conquer algorithms on problems with multi-
physics and/or multi-discretizations, it provides a framework for combination
and reuse of legacy software, and it organizes \out of core"-style access to mas-
sive amounts of memory. However, the main motivation for the focus on domain
decomposition methods in the past two decades is scalable performance through
data parallelism. Few other algorithms for PDEs possess the same combination
of arbitrary concurrency degree with modest convergence degradation.

2.1 De�nitions of scalability

Several types of scalability are formally de�ned in the parallel computing litera-
ture, and numerous other operational de�nitions of scalability exist in di�erent
scienti�c subcommunities, making semantic digression a necessity before any
consideration of the scalability of domain decomposition methods. Given a per-
formance metric that is a function of parameters f�1; �2; : : :g, we study the
variation of the metric as the �i are varied, independently or on some con-
strained manifold. If the metric exhibits acceptable behavior over some region
of parameter space, performance is said to \scale" over that region. Scalability
of interesting numerical algorithms is rarely uniform over the entire parameter
space, so claims of scalability should ordinarily be accompanied by a statement
of applicable domain.

Consider parameters N , the discrete problem dimension, and P , the num-
ber of processors employed, and performance metric �, the parallel e�ciency.
The variation of �(N;P ) as P varies with �xed N is the \�xed-problem-size"
scaling. The variation of �(N;P ) as N and P vary with N=P �xed is the \�xed-
storage-per-processor" scaling. If computational work is not linear in N , then
a �xed-work-per-processor scaling may be useful to consider, in addition. The
expression of scalability may be inverted, e.g., the isoe�ciency function, N(P ),
of an algorithm may be sought such that �(N(P ); P ) = constant, as P varies.

Fixed-storage-per-processor is arguably the most interesting limit from an
architectural point of view, for three reasons. First, the proportion of memory
to processors is typically �xed (at purchase). Second, work and communication
are designed to scale as di�erent powers of N=P in domain decomposition meth-
ods. If N=P varies, the ratio of communication to work varies, becoming more
parasitic as N=P becomes smaller. Third, the performance of a single processor-
memory unit may vary considerably with local problem size, due to cache e�ects.
There are often thresholds of workingset size, across which performance jumps
(see, e.g., [5]). Careful attention to data locality smooths out these thresholds,
providing a range of problem size over which performance is nearly level, but if
such thresholds are not controlled for, they may obscure parallel performance
evaluation. Keeping N=P constant avoids the possibility of threshold e�ects.
Despite the aesthetic superiority of �xed-storage-per-processor scaling, �xed-
size scaling is often performed in practice because, for instance, grid generation

2



is more responsive to discretization demands than parallelization opportunities.
Since �xed-size scalability is more di�cult to achieve (because of the second
point above), we measure it, rather than �xed-storage-per-processor scalability,
in all but one of the examples in Section 4.

Absolute e�ciency on P processors is de�ned as the speedup divided by P ,

�(N;P ) =
1

P
�
T (N; 1)

T (N;P )
; (1)

where T (N;P ) is the execution time. The execution time on one processor of
a �xed-size problem large enough to be worthy of the combined memories of
P � 1 is often in
ated by memory system thrashing, leading to superunitary
e�ciencies. Over smaller ranges of variation of processor number, it is useful to
de�ne the relative e�ciency, in going from Q to P processors (P > Q),

�(N;P jQ) =
Q � T (N;Q)

P � T (N;P )
: (2)

In iterative methods, time T can be factored into a total number of iterations, I ,
and an average cost per iteration, C. Domain decomposition methods are typi-
cally implemented in an SPMD style that assigns one subdomain per processor,
which has the e�ect of changing the algorithm, mathematically, when P changes,
by inducing �ner diagonal blocks in the underlying global preconditioner. Thus,
domain decomposition has an algorithmic e�ciency:

�alg(N;P jQ) =
I(N;Q)

I(N;P )
: (3)

The remaining factor in the overall e�ciency, is the implementation e�ciency:

�impl(N;P jQ) � �=�alg =
Q � C(N;Q)

P � C(N;P )
: (4)

Whereas T and I (and hence � and �alg) are measured, C (and hence �impl) is
inferred.

2.2 Problems with scalability metrics

Viewing the parallel performance of domain decomposition (or any other) meth-
ods for PDEs through such a simple metric as e�ciency is fraught with pitfalls.
As is well known [1], e�ciency can be improved while absolute performance de-
teriorates at all granularities by employing methods that perform wasteful local
arithmetic, and thus drive up the fraction of the overall work that is concurrent.
Hence, e�ciency should be measured only after tuning subdomain solver arith-
metic complexity to a practical minimum. Fixed-storage-per-processor metrics
require varying the discrete problem size, N , along with P . However, increasing
the resolution of the problem often degrades linear conditioning and increases
nonlinear sti�ness, e.g., by giving better de�nition to near-singularities, increas-
ing the di�culty of the discrete problem. From the point of view of solving

3



the continuous problem, this is highly desirable, and constitutes a main moti-
vation for doing parallel computing in the �rst place. However, it means that
a simple metric like �xed-storage-per-processor scalability is meaningful only
for rare problems with self-similarity in the �ne scales. Finally, as mentioned
above, �xed-problem-size e�ciencies can be greater than 100% for hierarchical
memory computers when, as P grows, workingsets suddenly drop into cache.
They should be measured only over a range of N=P where single-processor per-
formance is fairly 
at.

3 Theoretical scalability of DD

In this section, we build an extremely simple model of the scalability of domain
decomposition methods, while illustrating a methodology that is extensible to
more comprehensive models. Re
ecting the factorization of e�ciency into algo-
rithmic and implementation terms, we separate convergence and implementation
issues. We restrict attention to a scalar, linear, elliptically dominated PDE.

3.1 Convergence of Schwarz methods

For a general exposition of Schwarz methods for linear problems, see [12]. As-
sume a d-dimensional isotropic problem. Consider a unit aspect ratio domain
with quasi-uniform mesh parameter h and quasi-uniform subdomain diameter
H . Then N = h�d and, under the one subdomain per processor assumption,
P = H�d. Consider four preconditioners: point Jacobi, subdomain Jacobi, 1-
level additive Schwarz (subdomain Jacobi with overlapped subdomains), and
2-level additive Schwarz (overlapped subdomains with a global coarse problem
with approximately one degree of freedom per subdomain). The �rst two can
be thought of as degenerate Schwarz methods (with zero overlap, and possibly
point-sized subdomains). Consider acceleration of the Schwarz method by a
Krylov method such as conjugate gradients or one of its many generalizations
to nonsymmetric problems, e.g., GMRES. Krylov-Schwarz iterative methods
typically converge in a number of iterations that scales as the square-root of
the condition number of the Schwarz-preconditioned system. Table 1 lists the
expected number of iterations to achieve a given reduction ratio in the resid-
ual norm. (Here we gloss over unresolved issues in 2-norm and operator-norm
convergence de�nitions, but see [4].) The �rst line of this table pertains to
diagonally-scaled CG, a very common default parallel implicit method, but one
which is not very algorithmically scalable, since increasing the problem resolu-
tion N degrades the iteration count. The results in this table were �rst derived
for symmetric de�nite operators with exact solves on each subdomain, but they
have been extended to operators with nonsymmetric and inde�nite components
and inexact solves on each subdomain. The intuition behind this table is the
following. Errors propagate from the interior to the boundary in steps that are
proportional to the largest implicit aggregate in the preconditioner, pointwise
or subdomainwise. The use of overlap avoids the introduction of high-energy

4



Table 1: Iteration count scaling of Schwarz-preconditioned Krylov methods
Iteration Count

Preconditioning in 2D in 3D

Point Jacobi O(N1=2) O(N1=3)

Subdomain Jacobi O((NP )1=4) O((NP )1=6)

1-level Additive Schwarz O(P 1=2) O(P 1=3)
2-level Additive Schwarz O(1) O(1)

�eld discontinuities at subdomain boundaries. The 2-level method projects out
low-wavenumber errors at the price of solving a global problem.

Only the 2-level method scales perfectly in convergence rate (constant, in-
dependent of N and P ), like a traditional multilevel iterative method. How-
ever, the 2-level method shares with multilevel methods a nonscalable cost-per-
iteration from the necessity of solving a coarse-grid system of size O(P ).

3.2 Per-iteration parallel complexity of Schwarz methods

Krylov-Schwarz methods �t perfectly into the bulk synchronous model of par-
allel complexity, consisting of balanced concurrent computations on each sub-
domain, with costs that may be taken as proportional to the volume, N=P . As-
sume a distributed-memory architecture with a toroidal mesh interconnect and
a global reduction time of CP 1=d. Assume no coarse-grid solve. For simplicity,
we neglect the cost of neighbor-only communication relative to arithmetic and
global reductions.

The �rst line of Table 2 shows the estimated execution time per iteration
in the left column and the overall execution time (factoring in the number of
iterations for 1-level additive Schwarz from Table 1) in the right column. All
of the work terms (matrix-vector multiplies, subdomain preconditioner sweeps
or incomplete factorizations, DAXPYs, and local summations of inner product
computations) are contained in A, and, since it is given in units of time, A
also re
ects per-processor 
oating-point performance, including local memory
system e�ects. C includes the cost of synchronization, including algorithmic
synchronization frequency relative to the work term and the actual cost of each
synchronization. If the network architecture changes, the functional form in P
of the synchronization term changes. A fuller model would contain a term of
the form B(N=P )2=3.

The second line of Table 2 shows the optimal number of processors to employ
on a problem of size N , based on the parallel complexity in the �rst line. The
work term falls in P and the communication term rises; setting the P -derivative
of their sum to zero yields the P that minimizes overall execution time. The
marginal value of the Popt

th processor may be small, but O(Nd=d+1) processors
may be employed without encountering the phenomenon of \speeddown."

Isoe�ciency scaling, under these algorithmic and architectural assumptions,

is P / N
d

d+1 , or N / P
d+1

d . Observe that this requires more memory per

5



Table 2: Execution time scaling of Schwarz-preconditioned Krylov methods
Time per iter. Time overall

T (N;P ) A
�
N
P

�
+ CP 1=d [A

�
N
P

�
+ CP 1=d] � P 1=d

Popt (dA=C)
d

d+1 �N
d

d+1 ((d� 1)A=C)
d

d+1 �N
d

d+1

T (N;Popt)jd=2 / A1=3C2=3 �N1=3 / A2=3C1=3 �N2=3

T (N;Popt)jd=3 / A1=4C3=4 �N1=4 / A1=2C1=2 �N1=2

processor as processors increase. If, on the other hand, as is architecturally
customary, N / P and we solve the largest possible problem as we scale, then
in 3D, as C dominates,

�impl(P j1) =
AN + C

AN + CP 1+(1=d)
� P�1=d; (5)

�overall(P j1) =
AN + C

[AN + CP 1+(1=d)] � P 1=d
� P�2=d: (6)

Execution time increases in inverse proportion to e�ciency in the �xed-storage-
per-processor scaling.

4 Practical scalability of DD

In practical applications of domain decomposition to large-scale nonlinear prob-
lems, the preceding linear scaling estimates for elliptically dominated systems
are baselines, at best. Nonlinear problems are approached through a sequence
of linear problems, each with its own Jacobian matrix. Nonlinear problems typ-
ically employ parameter continuation, such as pseudo-transience, which adds di-
agonal dominance to these Jacobians, making the linear convergence estimates
above pessimistic. Nonlinear problems often become \sti�er" as they are better
resolved, dragging out the continuation process, requiring more linear systems
to be solved, and making the overall estimates above optimistic for the overall
scaling, inasmuch as they were predicated on a single linear system. Because
of these complications that lie outside of any convenient theory, the value of
domain decomposition in practical problems is ultimately problem-speci�c.

4.1 Background on a legacy CFD code

FUN3D is a tetrahedral vertex-centered unstructured grid code developed by
W. K. Anderson (LaRC) for compressible and incompressible Euler and Navier-
Stokes equations and described elsewhere in these proceedings [8]. It employs
pseudo-timestepping for nonlinear continuation towards steady state. One of
the solvers in the legacy vector-oriented code is Newton-Krylov with global
point-block-ILU preconditioning, which is competitive with FAS multigrid in 2D
sequential contexts. When rewritten in the 	NKS framework (see, e.g., [10] for
the continuation theory, [6] for software engineering aspects, [9] for architectural

6



aspects, and [3] for an aerodynamic application of the 2-level method) using
PETSc [2], its 
ow of control can be represented by the following four-deep nest
of loops, the innermost of which is a concurrent doall:

do l = 1, n_time

SELECT TIME-STEP

do k = 1, n_Newton

compute nonlinear residual and Jacobian

do j = 1, n_Krylov

doall i = 1, n_Precon

solve subdomain problems concurrently

enddoall

perform Jacobian-vector product

ENFORCE KRYLOV BASIS CONDITIONS

update optimal coefficients

CHECK LINEAR CONVERGENCE

enddo

perform DAXPY update with robustness conditions

CHECK NONLINEAR CONVERGENCE

enddo

enddo

The code is applied to the M6 wing, a coarse surface triangulation of which
appears in Fig. 1. Sample convergence histories for a �xed-size incompressible

Figure 1: Surface visualization of M6 wing

case of approximately 2.8 million vertices (approximately 11 million degrees of
freedom) on 128 and on 512 processors of a T3E-900 are shown in Fig. 2. To
translate the history of the 2-norm of the nonlinear steady-state residual back to
the domain decomposition theory, it is necessary to note that the linear Newton
correction GMRES iterations are truncated to a �xed (timestep-independent)
Krylov dimension. Thus, a weaker preconditioner leads to a poorer Newton
correction for a given amount of work, which ultimately increases the number of

7



Figure 2: M6 wing convergence history on T3E

Pseudo-time Iterations

Re
sid

ua
lN

or
m

0 10 20 30 40 50
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

512 procs
128 procs

pseudo-timesteps to convergence. Contrary to the P 1=3 scalar elliptic theoretical
scaling a four-fold increase in P leads to only a 10% increase in overall iterations.
(The results in Fig. 2 represent a signi�cant improvement over earlier results
on the same problem in [9]. More aggressive CFL advancement and less linear
work per Newton correction make the di�erence.)

A fuller set of performance pro�les for this problem on 128, 256, and 512
processors of a T3E appears in Fig. 3.

Though our limited catalog of M6 grids does not permit a perfect �xed-
storage-per-processor scaling, Table 3 comes close. In the �nal column may be
seen a good demonstration of scalable implementation e�ciency, and in the �rst
two columns to the right of the double bar may be seen a good illustration of
the non-self-similarity of nonlinear problems.

Table 3: Parallel scalability of M6 Euler 
ow with �xed storage per processor
Vertices, N P N=P Steps Time Time/Step

357,900 80 4,474 78 559.93s 7.18s
53,961 12 4,497 36 265.72s 7.38s
9,428 2 4,714 19 131.07s 6.89s

5 Algorithmic issues in improving scalability

Though the results of Section 4 (and in the companion paper [8]) are encour-
aging, there is reason to hope for signi�cant improvements in computational
performance on problems of contemporary scale (106 vertices on 102 proces-

8



Figure 3: (upper left) Vertices per processor, inverse in P ; (upper right) M
op/s
per processor, nearly 
at over this range; (lower left) Aggregate G
op/s, linear
in P ; (lower right) Overall execution time, nearly inverse in P

128 256 512
0

0.5

1

1.5

2

2.5x 10
4

Vertices per Processor

128 256 512
0

20

40

60

80
Mflop/s per Processor

128 256 512
0

10

20

30

40
Aggregate Gflop/s

128 256 512
0

500

1000

1500

2000

2500

3000
Execution Time

sors) and there is reason to strive earnestly for further improvements at the
next scale, typical of the ASCI vision, namely 108 vertices on 104 processors.
Improvements will have to come largely from more complex algorithms since
systems software is advancing very slowly at the high-performance end, and
most architectural advances drive the percentage of peak available to PDE ap-
plications lower, while raising the \theoretical" peak performance. We brie
y
describe three such improvements algorithmic under investigation; for additional
detail, see [11].

5.1 Improvement in algorithmic e�ciency

A region of strong nonlinearity embedded in a region of nearly linear behavior
is characteristic of many important PDE problems (e.g., noise, 
ame, and crack
propagation). Such problems may be said to be \nonlinearly sti�"; progress of
Newton's method is held hostage to a low-dimensional feature and the expensive-
to-obtain Newton correction is small over most of the domain. For an illustration
involving shocked transonic 
ow, see [3].

For such problems, we propose cyclicly permuting Newton-Krylov-Schwarz
methodology into Schwarz-Newton-Krylov. Also known as \nonlinear Schwarz,"
its two-domain description is as follows:

Given: u 2 Rn, coming from a discretization on 
, and f : Rn !
Rn, with f(u) = 0 a governing system (including implicitly posed
BCs) on 
. Given: an overlapping partition of 
 into 
1 and 
2,

9



with induced partionings on u into u1 and u2 and f into f1 and

f2. Given: initial iterates u
(0)
1 and u

(0)
2 . Iterate k = 0; 1; : : :, until

convergence:

Solve f1(u1; u
(k)
2 ) = 0 for u

(k+1)
1 ;

Solve f2(u
(k+1)
1 ; u2) = 0 for u

(k+1)
2 .

This is the multiplicative version; the additive companion has u
(k)
1 instead

of u
(k+1)
1 in the second equation. Each subdomain solve (partitioned based on

isolation of strongly and weakly nonlinear regions) can be further partitioned for
parallel solution by NKS. The overlap region can coincide with an entire inner
subdomain. There is a nonoverlapping analog known as Schur-Newton-Krylov,
in which the iteration is reduced to a lower-dimensional interface. Automatic
detection of the small regions responsible for the nonlinear sti�ness may be
possible through an indicator such as tensoricity [11].

5.2 Improvement in parallel implementation e�ciency

Pro�ling the runs of Fig. 3, we observe that the e�ciency of the 512-processor
case relative to the 128-processor case is 84%, and the percentage of execu-
tion time devoted to global inner products increases to 9%, from 6% in the
128-processor case. The growing percentage of execution time consumed by
the global reduction step of inner products is the dominant e�ect on overall
e�ciency. Independent measurements with barriers indicate that only about
1% of the 9% penalty is attributable to \time on the wire"; the rest is slight
load imbalance in subdomain surface work, ampli�ed by a granularity of 512.
Extrapolation to 104 processors without amelioration of this problem is unac-
ceptable.

We look, in part, to multiobjective load balancing [7], and, in part, to mul-
tithreading for synchronization relief. The typical critical path in a nonlinear
implicit method is ..., solve, bound step, update, solve, bound step,

update, solve, ... There are other useful operations to perform, o� the
critical path, such as refreshing the Jacobian, testing convergence, adapting
continuation and algorithmic parameters, performing interprocessor communi-
cation and disk I/O, visualization, �ltering, compression, feature extraction,
etc. Some of these \o� the path" tasks share considerable data locality with
critical path tasks, and can be performed during otherwise wasted cycles when
a single-threaded code is data-starved. Thus, the scalability of \naked" sparse
linear problems with limited arithmetic work between synchronizations, may
be unrealistically pessimistic, relative to the richer \marketbasket" of work and
synchronization in full simulations.

Other ways of reducing ine�ciency attributable to synchronization include:
reducing the penalty of each synchronization step by load balancing surface work
phase simultaneously with dominant volume work phase; reducing the frequency
of synchronizations by employing more speculative control using fewer norms,
and/or less stable numerics in projection steps using fewer inner products; and

10



reducing the globality of most synchronization steps by means of the nonlinear
Schwarz algorithm of the previous subsection.

5.3 Improvement in uniprocessor implementation e�ciency

As alluded to above, the high-end superscalar pipelined RISC processors of con-
temporary parallel machines are typically utilized at a small fraction (e.g., 10%)
of their theoretical peak performance by sparse PDE algorithms. Blocking of
all of the data de�ned at each gridpoint improves considerably over other stor-
age schemes, in part by reducing the memory tra�c of integers describing the
sparsity and in part by permitting unrolling of inner loops over components.
This e�ect is illustrated in [6]. Additional illustrations of major improvements
(ranging from a factor of 2.5 on the Intel Pentium II to a factor of 7.5 on the
IBM Power2 SuperChip) in memory locality are presented in [8]. Beyond the
intuitive data structure transformations described therein to enhance memory
locality, we look to semi-automated data structure reorderings, by applying
genetic optimization techniques to the problem of memory layout. Such op-
timization techniques require an objective function, which should be faster to
evaluate than executing a large-scale program and measuring its execution time.
The concept of \memtropy" is proposed in [11] as a surrogate objective, and a
domain decomposition-like blocking for a sequential relaxation algorithm on a
structure grid is shown to be an improvement on memtropy, relative to natural
ordering. As mentioned in Section 2, improving local memory locality renders
parallel computations less sensitive to workingset threshold e�ects, and thus
makes �xed-problem-size scaling more meaningful.

6 Summary

Schwarz-style domain decomposition is not a truly scalable algorithm in the
theoretical sense, in that its parallel e�ciency degrades due to both algorith-
mic and implementation e�ects as P ! 1 for elliptic problems. However, in
practical large-scale nonlinear applications, Schwarz methods are often much
better behaved than the theory for model problems predicts. Besides concur-
rency features, the memory locality of domain decomposition methods makes
them highly suitable for advanced architectures, and many avenues remain open
for conquering practical di�culties arising from complex applications and ar-
chitecture, with correspondingly complex algorithmic adaptations.

It is di�cult to de�ne scalability metrics that are both practically useful
and \fair" for nonlinear PDE-based problems, whether the candidate algorithm
is domain decomposition, or anything else. Therefore, a multicriteria evalua-
tion of any parallel PDE code is recommended, including �xed-size and �xed-
storage-per-processor scaling, sustained per-processor computational rate as a
percentage of peak, and optimality of tuning of the single subdomain code.

11



Acknowledgements

The author thanks W. Kyle Anderson of the NASA Langley Research Center for

providing FUN3D, Dinesh Kaushik of Old Dominion University for his work in porting

FUN3D to the parallel environment, and Satish Balay, Bill Gropp, Lois McInnes, and

Barry Smith of Argonne National Laboratory who developed the PETSc software

employed in obtaining the results of this paper. Computer time was supplied by DOE

(through Argonne and NERSC).

References

[1] D. Bailey. How to fool the masses when reporting results on parallel computers.
Supercomputing Review, pages 54{55, August 1991.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. The
Portable, Extensible Toolkit for Scienti�c Computing, version 2.0.22.
http://www.mcs.anl.gov/petsc, 1998.

[3] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young. Paral-
lel Newton-Krylov-Schwarz algorithms for the transonic full potential equation.
SIAM J. Sci. Comput., 19:246{265, 1998.

[4] X.-C. Cai and J. Zou. Some observations on the l2 convergence of the additive
Schwarz preconditioned GMRES method. Tech Report CU-CS-865-98, Univ. of
Colorado at Boulder, 1998.

[5] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan-Kaufmann, 1998.

[6] W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri. Globalized Newton-
Krylov-Schwarz algorithms and software for parallel implicit CFD. ICASE TR
98-24, 1998.

[7] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph par-
titioning. Univ. of Minn. CS Dept. TR 98-019, 1998.

[8] D. K. Kaushik, D. E. Keyes, and B. F. Smith. Newton-Krylov-Schwarz methods
for aerodynamics problems: Compressible and incompressible 
ows on unstruc-
tured grids. Submitted to the Proceedings of the 11th Int. Conf. on Domain
Decomposition Methods, 1998.

[9] D. K. Kaushik, D. E. Keyes, and B. F. Smith. On the interaction of architec-
ture and algorithm in the domain-based parallelization of an unstructured grid
incompressible 
ow code. In Proceedings of the Tenth Int. Conf. on Domain
Decomposition Methods, pages 311{319. AMS, 1998.

[10] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient contin-
uation. SIAM J. Num. Anal., 35:508{523, 1998.

[11] D. E. Keyes. Trends in algorithms for nonuniform applications on hierarchical
distributed architectures. To appear in the Proceedings of a Workshop on Com-
putational Aerosciences in the 21st Century (Salas, ed.), Kluwer, 1999.

[12] B. F. Smith, P. E. Bj�rstad, and W. D. Gropp. Domain Decomposition: Parallel
Multilevel Algorithms for Elliptic Partial Di�erential Equations. Cambridge Univ.
Press, 1996.

12


