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Abstract. Implicit solution methods are important in applications modeled by PDEs with dis-
parate temporal and spatial scales. Because such applications require high resolution with reason-
able turnaround, parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz
(ΨNKS) algorithmic framework is presented as a widely applicable answer. This article shows that,
for the classical problem of three-dimensional transonic Euler flow about an M6 wing, ΨNKS can
simultaneously deliver

• globalized, asymptotically rapid convergence through adaptive pseudo-transient continuation
and Newton’s method;

• reasonable parallelizability for an implicit method through deferred synchronization and favor-
able communication-to-computation scaling in the Krylov linear solver; and

• high per-processor performance through attention to distributed memory and cache locality,
especially through the Schwarz preconditioner.

Two discouraging features of ΨNKS methods are their sensitivity to the coding of the underlying PDE
discretization and the large number of parameters that must be selected to govern convergence. We
therefore distill several recommendations from our experience and from our reading of the literature
on various algorithmic components of ΨNKS, and we describe a freely available, MPI-based portable
parallel software implementation of the solver employed here.

1. Introduction. Disparate temporal and spatial scales arise in CFD applications such as tran-
sonic or high Reynolds number flows in which the flow velocity goes to zero at a stagnation point or
no-slip surface, flows containing shocks or combustion fronts, and multidisciplinary phenomena such as
aeroelasticity. Local equilibration of wavespeeds (as in the “preconditioning” of [80]) and temporal sub-
cycling (as in the “three-field” method of [27]) are two strategies that permit explicit integration of the
flowfields of some such problems; nevertheless, implicit solution methods are playing increasingly impor-
tant roles in CFD. Whereas explicit methods based on localized stencil updates with nearest-neighbor
communication lend themselves straightforwardly to scalable parallelization, implicit methods based on
the global recurrences of forward and backward triangular solves (exact or approximate) and/or the
global inner products of optimal descent or Krylov iterative methods appear to be intrinsically less scal-
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able. At the same time, the demand for high resolution with reasonable turnaround requires scalable
parallelism and in particular — for cost effectiveness — latency-tolerant parallelism for applicability to
networked clusters. For the common situation in which the discretization is applied in a uniform way
over a grid that is adapted only infrequently (and may therefore be cost-effectively load balanced to high
precision), the pseudo-transient matrix-free Newton-Krylov-Schwarz (ΨNKS) algorithmic framework is
presented as one answer to the conflicting demands of implicitness and parallelism.

In the final section, we discuss the role of ΨNKS methods in more dynamic simulation environments.
For problems in which convergence to a low-residual steady state is required, as is often the case when
CFD analyses are finite-differenced for sensitivities in computational design and optimization, a Newton
method is asymptotically cost effective. Alternatively, the ability to solve implicit linear systems with
the Jacobian, a by-product of Newton’s method, can be exploited in deriving sensitivities. Motivated by
the requirements of NASA, DOE, industry, and others to employ CFD in the design process, we regard
the ability to apply the inverse action of the Jacobian as ultimately necessary to the optimization
process, and therefore to be exploited during the analysis process as well. While Newton methods
sometimes converge from simply specified initial iterates even in challenging CFD problems (e.g., [14]),
they must usually be “robustified” through a continuation scheme, such as pseudo-transience (e.g.,
[41, 78]). Newton methods for PDEs require the solution of large, sparse nonsymmetric linear systems,
to which we apply Krylov methods, such as GMRES [67]. In order to control the number of Krylov
iterations, while obtaining concurrency proportional to the number of processors, we precondition them
with domain-decomposed additive Schwarz methods [71].

Effective use of ΨNKS in CFD codes requires attention to several details. We describe, in particular,
the sensitivity of the methodology to the implicitness of the boundary conditions, the presence of limiters
in the discretization, the scaling of the differencing parameter in the matrix-free application of the
Jacobian, the convergence of the inner Krylov iterations, and the aggressiveness of the pseudo-transient
continuation. Some of these considerations are generic to any system modeled by PDEs.

Various aspects of the ΨNKS framework have been pioneered by others over the past two decades.
While this paper (and its unstructured-grid companions [3, 39, 45]) contributes some new, architec-
turally oriented advances, our principal goal is to integrate collective algorithmic progress and to
reconcile trade-offs between interrelated algorithmic components so as to promote robustness, rapid
convergence, and parallel scalability in the context of an important family of applications.

The use of pseudo-transience as a means of approaching steady states (typically in the form of time-
parabolization of an elliptic boundary value problem) has been independently reinvented in contexts far
too numerous to mention. We have been particularly influenced by two forms: the “successive evolution-
relaxation” strategy of Mulder and Van Leer [57] and the temporal truncation error strategy described
in [46], both of which smoothly adapt the aggressiveness of the timestepping to the progress of the
iterations toward steady state, ultimately leading to Newton-like asymptotic superlinear or quadratic
convergence rates [78]. Some sufficient conditions for globalized convergence for such strategies are
given in [41].

An exact Newton method is rarely optimal in terms of memory and CPU resources for large-
scale problems, such as finely resolved multidimensional PDE simulations. The pioneering work of
Dembo, Eisenstat, & Steihaug [21] showed that properly tuned inexact Newton methods can save
enormous amounts of work (through approximating the Newton corrections, which can in turn permit
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approximation of the Jacobian matrix) over a sequence of Newton iterations, while still converging
quadratically. This theory was revisited to provide inexpensive, constructive formulae for the sequence
of inexact tolerances by Eisenstat & Walker [25]. Smooke [72] and Schreiber & Keller [69] devised
Newton-chord methods with models for cost-effective frequency of Jacobian reevaluation. The use
of various approximate Newton methods in CFD emerged independently in various regimes. Vanka
[82] implemented Newton solvers in primitive-variable Navier-Stokes problems. Venkatakrishnan [83],
Orkwis [62], and Whitfield & Taylor [89] established Newton-like methods in transonic problems. These
works employed various direct or stationary iterative methods for the linear Newton correction equation,
and were based on explicit matrix representations of the Jacobian operator.

The advent of Krylov iterative methods (see, e.g., [65] for a survey) inside of inexact Newton
iterations in a matrix-free context can be traced to the ODE-oriented papers of Gear & Saad [30], Chan &
Jackson [18], and Brown & Hindmarsh [9] and the PDE-oriented work of Brown & Saad [10]. (The term
“Newton-Krylov” seems first to have been applied to such problems in [10].) The GMRES [67] method
was firmly established in CFD following the work of Wigton, Yu, & Young [91] and Johann, Hughes, &
Shakib [38, 70]. Venkatakrishnan & Mavriplis showed in [86] that NK methods (preconditioned with a
global incomplete factorization) are competitive with multigrid methods for large-scale CFD problems;
a similar comparison for the matrix-free form of such methods was given by Keyes in [43]. A study
of the performance of the preconditioned NK matrix-free methods is given by Tidriri in [76] and [78].
Various practical aspects of NK methods in CFD were explored in [1, 7, 37, 53, 52, 60, 64, 76].

The application of domain decomposition-based preconditioners to nonlinearly implicit CFD algo-
rithms has been our focus for the past decade [44]. Cai’s doctoral dissertation [11] extended overlapping
Schwarz theory to the nonselfadjoint operators of convection-diffusion problems and first articulated
their optimality — even without the benefit of a coarse grid component — in the parabolic case. The
term “Newton-Krylov-Schwarz” was coined in [15]. NKS methods have been taken up by Cai and col-
laborators [14, 16, 12, 13], Knoll and collaborators [47, 49, 48, 53, 50], Pernice and collaborators [63],
and Tidriri [75, 77, 79], among many others.

One of the main contemporary motivations for domain decomposition methods is divide-and-
conquer concurrency. Scalability studies based on dimensionless ratios of communication and com-
putation parameters for message-passing aspects of domain-decomposed iterative methods appeared
in [31, 32]. Recently, the cache-based motivation for domain decomposition has become apparent [87].
Parallel implementations of NKS methods are also beginning to appear. We mention the shared-memory
implementation of [54] and the distributed-memory implementations of [3], [14], and [16].

The most important capabilities of ΨNKS algorithms have been brought together in freely available,
widely portable, and widely distributed parallel software in the form of the Portable, Extensible Toolkit
for Scientific Computation (PETSc) package [4], through which the illustrative results of this paper
have been obtained. We justify the broad scope of the presentation by the need to appreciate the
framework as a whole. If any aspect of the ΨNKS algorithmic framework is missing or “mis-tuned” (in
various senses to be illustrated in Section 6), significant performance will be “left on the table”. On the
other hand, this is by no means a comprehensive paper. It considers only one application in depth, and
omits important strategies such as multi-level iteration and solution-adaptive partitioning. It should
be regarded as one installment of a “metapaper” that PETSc has been created to help us continue to
write.
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We begin by detailing the pseudo-transient continuation strategy and the NKS algorithmic frame-
work in Section 2. We review the compressible Euler equations in Section 3, followed by additional
algorithmic details (specifically, CFL advancements and matrix-free issues) in Section 4. Section 5
discusses the parallel implementation of NKS in a legacy CFD code (the JULIANNE code of Whitfield
and Taylor [89]) using PETSc to replace the solver while preserving the discretization, and Section 6
presents numerical experiments. We summarize and extrapolate in Section 7.

2. Algorithmic Framework. ΨNKS methods are designed to solve steady-state systems of non-
linear boundary value problems discretized as

f(u) = 0,(2.1)

where u is a vector of unknowns representing the state of the system (typically nodal values of multiple
fields defined at the same set of grid locations, though other interpretations in terms of expansion
coefficients for the fields, or staggered grid layouts of nodal values are included), with solution u∗,
and where f(u) is a vector-valued function of residuals of the governing equations. We are primarily
interested in three-dimensional settings in which the number of gridpoints is in the millions and the
number of components of u is correspondingly larger by a factor of about five (more with turbulence or
reaction models, fewer for various special incompressible or irrotational models). For problems of this
size, typical of full airplane external aerodynamics or of complex ASCI-scale systems, the ordering of
unknowns can be crucial to performance on a hierarchical memory computer system, and we remark
on this issue later. In this paper, we consider a problem on a mapped, structured grid. For related
implementations on unstructured grids, see [39].

2.1. Pseudo-transient Continuation. Pseudo-transient continuation solves the steady-state
problem (2.1), for which a solution is presumed to exist, through a series of problems

g`(u) ≡ u − u`−1

τ `
+ f(u) = 0, ` = 1, 2, . . . ,(2.2)

which are derived from a method-of-lines model

∂u

∂t
= −f(u),

each of which is solved (approximately) for u`. The physical transient is followed when the timestep τ `

is sufficiently small, leading the iterations through a physically feasible sequence of states. Furthermore,
the Jacobians associated with g`(u) = 0 are well conditioned when τ ` is small. τ ` is advanced from
τ0 � 1 to τ ` → ∞ as ` → ∞, so that u` approaches the root of f(u) = 0. We emphasize that pseudo-
transient continuation does not require reduction in ||f(u`)|| at each step, as do typical linesearch or
trust region globalization strategies [22]; it can climb hills.

Strict Newton iteration at timestep ` applied to (2.2) yields

u`,k = u`−1 − (I + τ `f ′(u`,k))−1(u`,k + τ `f(u`,k) − u`−1),(2.3)

for Newton index k = 0, 1, . . .. If we take u`,0 = u`−1 (the simplest initial iterate), then the first
correction step is

u`,1 = u`−1 − (
1
τ `

I + f ′(u`−1))−1f(u`−1).(2.4)
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In some problems, it may be required to iterate the Newton corrector (2.3) more than once [37] or until
it converges (limk→∞ u`,k ≡ u`), thus leading in the limit to following the transient implicitly. In this
paper, however, we prefer to advance in pseudo-time after just one Newton step (2.4).

A timestep scheme is required to complete the algorithm. One choice is successive evolution-
relaxation (SER) [57], which lets the timestep grow in inverse proportion to residual norm progress:

τ ` = τ `−1 · ||f(u`−2)||
||f(u`−1)|| .(2.5)

Alternatively, a temporal truncation error strategy bounds the maximum temporal truncation error in
each individual component, based on a local estimate for the leading term of the the error. (The idea
is not to control the error, per se, but to control the stepsize through its relationship to the error.)
Another approach sets target maximum magnitudes for change in each component of the state vector
and adjusts the timestep so as to bring the last measured change to the target. All such devices are
“clipped” into a range about the current timestep in practice. Typically, the timestep is not allowed to
more than double in a favorably converging situation, or to be reduced by more than a factor of ten in
an unfavorable one, unless feasibility is at stake, in which case the timestep may be drastically cut [41].

The globalization theory of [41] employs a three-phase approach, whose phases in practice may or
may not be cleanly demarcated in residual norm convergence plots. Initially, ||u0−u∗|| � 1 and τ0 � 1.
During an “induction phase” the solution is marched in a method-of-lines sense with relatively small
timestep until ||u − u∗||/||u0 − u∗|| � 1. Success of this phase is governed by stability and accuracy
of the integration scheme (we simply use the backward Euler method) and by the choice of initial
iterate. For problems in which a complex feature, such as a shock or a flamefront, must arise from a
structure-free initial condition, the induction phase is typically by far the longest. (We are reminded
of an observation attributed to Samarskii: “The slower you start, the sooner you finish.”) In a grid-
sequenced problem, in which the initial iterate on a given fine grid is interpolated from a converged
solution on a coarser grid, and in which solution features are correctly located (if not fully resolved), the
induction phase on the finest grid can be relatively brief [73]. During a second “transition phase” the
timestep is built up in the neighborhood of the solution. The critical assumption is existence of a β such
that ‖(I + τf ′(u))−1‖ ≤ (1 + βτ)−1 for all τ ≥ 0 if ‖u − u∗‖ ≤ ε. Finally comes a “polishing phase,”
during which the the timesteps approach infinity (or some user-imposed upper bound) and iterates
approach the root with asymptotic Newton-like convergence. This phase is treated by a conventional
local analysis, as in [40].

The main result of the theory is that there is either convergence from u0 to u∗ or an easily detectable
contraction of τ ` toward 0, allowing recovery actions. The main hypotheses of the theory, including
smooth differentiability of f(u), are difficult to verify in practice. They are also rarely respected
in practice, since instantaneous analytical approximations of f ′(u) are too expensive in memory and
execution time.

2.2. Inexact Newton Methods. We use the term “inexact Newton method” to denote any
nonlinear iterative method for solving f(u) = 0 through a sequence u` = u`−1 + λ`δu`, where δu`

approximately satisfies the true Newton correction equation

f ′(u`−1)δu` = −f(u`−1),(2.6)
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in the sense that the linear residual norm ||f ′(u`−1)δu` + f(u`−1)|| is sufficiently small. Typically the
right-hand side of the linear Newton correction equation, which is the nonlinear residual f(u`−1), is
evaluated to full precision, so the inexactness arises from an incomplete convergence employing the
true Jacobian, freshly evaluated at u`−1, or from the employment of an inexact Jacobian for f ′(u`−1).
Typical choices would be

• a matrix whose action on a vector is constructed from finite differences of f , rather than analytic
formulae;

• a matrix that is lagged (or some of whose assembly elements are lagged) from the evaluation
at some previous state um, m < l − 1;

• a matrix derived from a discretization related to, but not the same as, that used for f , itself;
or

• a matrix that has been simplified by omission of elements that are inconvenient to a particular
storage scheme or approximate parallelizable inversion process.

In this paper, we consider the first possibility. The latter three possibilities for economizing on the
Jacobian are also employed in this paper, but not in the matrix used in the Newton correction equation
— only in the construction of its preconditioner. In other contexts, the second possibility is referred to
as a “modified Newton method” [72]. The latter two we regard as so inexact that they are demoted to
“defect correction methods” [43]. Additional details about the construction of a preconditioner based
on an explicit matrix in the context of matrix-free Newton-Krylov techniques are given in [78].

The first choice above is divided into two categories of finite-difference approximations:

• one in which the approximate Jacobian is explicitly constructed, element-by-element, from
a sequence of finite differences (usually chosen with the aid of graph coloring on the discrete
stencil), each of which supplies one or more columns of f ′(u), for example, [f ′(u`)]ij = ∂fi

∂uj
(u`) ≈

1
h [fi(u` + hej) − fi(u`)], where h is a differencing parameter and ej is the jth unit vector; and

• one in which the Jacobian-vector action is approximated in one or two function evaluations
(besides that of f(u`−1), itself) in a discrete analog of Fréchet derivatives of smooth functions,
for example, f ′(u`)v ≈ 1

h [f(u` + hv) − f(u`)].

We compare both methods in this paper. We note that the first method permits the differencing
parameter to be chosen with respect to individual state vector components, in order to maximize the
signal-to-noise ratio in the numerical differentiation, whereas the second method requires a differencing
parameter that is the same for all state vector perturbations. In this sense, the first method can be
made more robust than the second in finite precision, but it does require the explicit construction of
the Jacobian. It is proved in [22] that the first method permits the discrete Newton method to inherit
the quadratic asymptotic convergence of the true Newton method.

Inexact Newton methods require a strategy for terminating the inner linear iterations, in effect
choosing η`, in

||f(u`−1) + f ′(u`−1)(u − u`−1)|| ≤ η`||f(u`−1)|| .(2.7)

One of the Eisenstat-Walker [25] criteria is

η` =

∣∣ ||f(u`−1)|| − ||f(u`−1) + f ′(u`−1)(u − u`−1)|| ∣∣
||f(ul−1)|| .(2.8)
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Ajmani et al. [1] adopt: η` = (log τ `)−1. Venkatakrishnan & Mavriplis [86] adaptively choose η` so
that work and storage per Newton step are bounded at some fixed expenditure. Other strategies are
possible as well (see, e.g., [76, 78]).

When the strategy of Venkatakrishnan & Mavriplis is combined with the fixed single Newton
correction per pseudo-timestep, a constant linear work per timestep results.

The Eisenstat-Walker strategy is theoretically elegant and appears to assure the minimum linear
work consistent with a guaranteed asymptotically superlinear convergence. However, the resulting
stringent linear convergence requirements may be difficult to meet in large, ill-conditioned problems.
Moreover, superlinear nonlinear convergence may be too expensive a goal in practice, where the objective
is to minimize execution time rather than number of inexact Newton steps.

The strategy of bounding work and storage per Newton step seems common in compressible external
aerodynamics codes, particularly with problems whose memory requirements approach the maximum
available. Often in such large ill-conditioned problems relatively little progress is made in a given inner
linear iteration, with the consequence that the Newton correction is effectively underdamped and the
steady-state residual norm improves only slightly. This provides direct feedback limiting the increase
of the timestep (and possibly decreasing it), which maintains or improves the linear conditioning of the
next step, rather than letting the conditioning deteriorate with increasing pseudo-timestep. (See [26]
for a polyalgorithmic method that exploits the effect of the pseudo-timestep on the linear conditioning.)

We have experimented a good deal with these strategies, and we find that a hybrid approach is
the most cost-effective in large transonic flow problems. Such an approach involves an initially loose
convergence criterion (to avoid “oversolving,” in the sense of [25]) evolving to a tighter criterion, but
subject to a linear-work-per-step bound (in the sense of [86]).

For problems sufficiently small and well conditioned (linearly) to apply (2.8), overall cost is not as
important.

2.3. Newton-Krylov Methods. A Newton-Krylov method uses a Krylov method, such as GM-
RES [67], to solve (2.6) for δu`. From a computational point of view, one of the most important
characteristics of a Krylov method for the linear system Ax = b is that information about the matrix A

needs to be accessed only in the form of matrix-vector products in a relatively small number of carefully
chosen directions. When the matrix A represents the Jacobian of a discretized system of PDEs, each of
these matrix-vector products is similar in computational and communication cost to a stencil update
phase (or “global flux balance”) of an explicit method applied to the same set of discrete conservation
equations or to a single finest-grid “work unit” in a multigrid method. NK methods are suited for
nonlinear problems in which it is unreasonable to compute or store a true full Jacobian, where the
action of A can be approximated by discrete directional derivatives.

Some Krylov methods for nonsymmetric problems require matrix-vector products with AT as well
as A [29]. It does not seem possible to approximate the action of AT from finite differences of the
original function evaluation. Other nonsymmetric Krylov solvers, such as CGS [74], BiCGSTAB [81],
and TFQMR [29], could be substituted for GMRES and converge about as well in terms of the total
number of matrix-vector products. In our experience with model problems (see, e.g., [42]), most such
methods employ two matrix-vector products per step and converge in about half as many steps. It
should be borne in mind, however, that their behaviors can differ wildly, and in nonuniformly rankable
ways, for specially chosen problems [58]. Our experience with such solvers in the matrix-free ΨNKS
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context is less favorable than with GMRES. They have the advantage of requiring less memory, and the
potential of requiring fewer global reductions (for inner products), but the disadvantage of nonmonotonic
and, in some cases, wildly oscillating residual norm histories, leading to decreased numerical stability.
Another advantage of GMRES is its use of matrix-vector products with unit-norm vectors v, which
tend to be well suited for finite-difference approximations involving scale-sensitive perturbations, for
example, f(u`−1 + hv) [53]. Other choices are given by Tidriri in [78].

2.4. Newton-Krylov-Schwarz Methods. A Newton-Krylov-Schwarz method combines a Newton-
Krylov (NK) method, such as nonlinear GMRES [91], with a Krylov-Schwarz (KS) method, such as
restricted additive Schwarz [17]. If the Jacobian A is ill-conditioned, the Krylov method will require
an unacceptably large number of iterations. The system can be transformed into the equivalent form
B−1Ax = B−1b through the action of a preconditioner, B, whose inverse action approximates that of
A, but at smaller cost. It is in the choice of preconditioning that the battle for low computational cost
and scalable parallelism is usually won or lost. In KS methods, the preconditioning is introduced on
a subdomain-by-subdomain basis through a conveniently computable approximation to a local Jaco-
bian. Such Schwarz-type preconditioning provides good data locality for parallel implementations over
a range of parallel granularities, allowing significant architectural adaptability.

Domain-based parallelism is recognized as the form of data parallelism that most effectively ex-
ploits contemporary microprocessors with multi-level memory hierarchy [19, 87]. Schwarz-type domain
decomposition methods have been extensively developed for finite difference/element/volume PDE dis-
cretizations over the past decade, as reported in the annual proceedings of the international conferences
on domain decomposition methods, of which the two most recent volumes (containing about 150 con-
tributions) are [8] and [51].

We use the restricted additive Schwarz Method (RASM), which eliminates interprocess communica-
tion during the interpolation phase of the additive Schwarz technique [17]. In particular, if we decompose
a problem into a set of possibly overlapping subdomains Ωi, the conventional additive Schwarz method
can be expressed as

M−1
ASM =

∑
i

Ri
T A−1

i Ri,(2.9)

where the three-phase solution process consists of first collecting data from neighboring subdomains via
global-to-local restriction operators Ri, then performing a local linear solve on each subdomain A−1

i ,
and finally sending partial solutions to neighboring subdomains via the local-to-global prolongation
operators Ri

T . The RASM preconditioner is expressed in operator notation as

M−1
RASM =

∑
i

R′
i
T
A−1

i Ri.(2.10)

It performs a complete restriction operation but does not use any communication during the interpola-
tion phase, R′

i
T . This provides the obvious benefit of a 50% reduction in nearest-neighbor communica-

tion overhead. In addition, experimentally, it preconditions better than the original additive Schwarz
method over a broad class of problems [17], for reasons that are beginning to be understood in terms
of the H1 “energy” of the global interpolant.

As originally introduced [24], additive Schwarz preconditioning includes a coarse grid term in the
sum (2.9). Indeed, the coarse grid is essential for optimal conditioning in the scalar elliptic case.
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Success with coarse grids in Schwarz methods in the Euler and Navier-Stokes contexts has been modest,
reflecting the comparable situation for multigrid methods for difficult flow problems. In this paper, we
do not further consider coarse grids. We mention the Newton-based work of Venkatakrishnan [84] on
Euler problems and the defect correction-based work of Jenssen & Weinerfelt on Euler [35] and Navier-
Stokes [36]. In the former context, the convergence rate enhancement of the coarse grid is nearly wiped
out by the cost per iteration of its parallel implementation. In the latter cases, coarse grid corrections
encouragingly pay for themselves.

2.5. Contrast with Defect Correction. A typical Euler (or Navier-Stokes) code employs a
defect correction solver. To solve the sequence of nonlinear problems created upon implicitly temporally
differencing (2.2), a left-hand-side matrix (related to a Jacobian) is created in whose construction
computational short-cuts are employed and which may be stabilized by a degree of first-order upwinding
that would not be acceptable in the discretization of the residual itself. We denote this generic distinction
in the update equation (2.11) by subscripting the residual “high” and the left-hand-side matrix “low”:

Jlowδu = −fhigh.(2.11)

Often, Jlow is based on a low-accuracy residual for f :

Jlow =
D

τ
+

∂flow

∂u
,(2.12)

where D is a scaling matrix (which could be the identity or could be a diagonal matrix of cell volumes,
for instance). The inconsistency of the left- and right-hand sides prevents the use of large timesteps, τ .
Using Jlow (or, more typically, some inexpensive approximation thereto, denoted ˜Jlow) as a precondi-
tioner, we replace (2.11) with

( ˜Jlow)−1Jhighδu = −( ˜Jlow)−1fhigh,(2.13)

in which the action of Jhigh on a vector is obtained through directional differencing, namely,

Jhigh(ul)v ≈ 1
h

[
fhigh(ul + hv) − fhigh(ul)

]
+

D

τ
v,(2.14)

where h is a small parameter. Note that the operators on both sides of (2.13) are based on consistent
high-order discretizations; hence, timesteps can be advanced to arbitrarily large values, recovering a
true Newton method in the limit.

From the viewpoint of linear convergence rate, it would seem ideal to use a preconditioner based on
Jhigh in (2.13), but such a preconditioner can be much more expensive and memory-consumptive than
one based on Jlow. In (2.13), we have merely shifted the inconsistency from the nonlinear to the linear
iteration. From the point of overall execution time, it is not obvious which is better: many inexpensive
nonlinear iterations in which the inner linear problem (2.11) is preconditioned by Jlow, or fewer more
expensive nonlinear iterations containing the inner problem (2.13). The answer is strongly affected by
the sequence of timesteps employed in (2.12). When the parameter τ is small, Jlow and Jhigh are both
dominated by the same diagonal matrix, and the extra costs of working with Jhigh in the preconditioner
may be unjustified.

The potential for (2.13) to outperform (2.11) is demonstrated in the CFD context in [16, 43, 75,
77, 78]. In [33], the deterioration with advancing CFL number of a solver based on approximate
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factorization of the operator in (2.12) is contrasted with an advancing CFL approach based on (2.13).
Dimensionally split approximate factorization schemes also require low CFL number. In spite of this
disadvantage in their rate of convergence to steady states, dimensionally split schemes continue to enjoy
memory advantages over more implicit schemes, the fully matrix-free work of Qin, Ludlow, & Shaw [64]
being a recent example.

The range of options for Jlow and Jhigh are explored in the context of CFD in [37]. The combination
of choice for obtaining low-residual steady-state solutions (designated “ALLMUS” therein) corresponds
to the use of Jhigh on the left-hand side, as well as the right, as in (2.13).

It should be borne in mind that the margin of superiority of (2.13) over less nonlinearly implicit
schemes is very sensitive to the frequency of reevaluation (and refactorization) of Jlow and to the
intimate coupling of the optimal reevaluation frequency with CFL advancement strategy and Krylov
subspace size. Evaluation and refactorization of Jlow are still expensive, comparable in arithmetic cost
to the evaluation of fhigh and typically more expensive in terms of communication. The frequency of
Jlow evaluation is a relatively neglected topic in the literature, since it is so problem dependent. An
empirical sequential cost model is outlined in [47].

Other tuning parameters with a strong influence on the performance of (2.13) are those that define
the difference between Jlow and ˜Jlow. These include parameters defining incomplete factorization fill
(whether position-based or threshold-based); relaxation or multilevel method parameters if the precon-
ditioning is implemented by a number of sweeps of an iterative method; and, in the parallel context,
the number of subdomains, subdomain overlap, the use of a coarse grid in the Schwarz method, and
so forth. These algorithmic tuning choices are, in principle, amenable to systematic optimization with
direct search methods [23] and should be explored before undertaking a series of “production” runs.

3. Compressible Euler Equations. To illustrate the ΨNKS algorithm in the parallel context, we
solve the three-dimensional compressible Euler equations on mapped, structured grids using a second-
order finite volume discretization. The basis for our implementation is the sequential Fortran77 code
(JULIANNE) by Whitfield & Taylor [89]. Thus, we demonstrate the use of parallel ΨNKS algorithms
implemented via PETSc in the “legacy” context. This section presents a brief overview of the governing
equations and boundary conditions; additional details can be found in [88, 89]. Sections 3.1 and 3.2 are
standard; the material in Sections 3.3 and 3.4 describes modifications of general importance to implicit
solvers.

The original JULIANNE code has a discrete Newton-relaxation pseudo-transient continuation solver
with explicit enforcement of boundary conditions. We retained the discretization as embodied in flux
balance routines for steady-state residual construction and finite-difference Jacobian construction. The
function evaluations are undertaken to second-order in the upwinding scheme, and the Jacobian matrix
(used mainly as a preconditioner, but also tested as an explicit Jacobian) is evaluated to first order. We
replaced the explicit boundary conditions with a fully implicit variant [76] and added the Van Albada
limiter [2] option to three limiter options provided.

3.1. Governing Equations. The governing system of PDEs for inviscid steady-state flow can be
expressed in coordinate-invariant form by

∇ · (ρu) = 0,(3.1)

∇ · (ρuu + pI) = 0,(3.2)
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∇ · ((ρe + p)u) = 0,(3.3)

where ρ, u, and e represent the density, three-dimensional velocity, and energy density fields, respec-
tively, and the pressure field p is determined by an algebraic equation of state,

e =
p

γ − 1
+

1
2
ρ(u2 + v2 + w2),

where γ is the ratio of specific heats.
In the computational example of this paper, we work on a mapped structured grid of “C-H” type,

in which the Cartesian coordinates (x, y, z) are functions of (ξ, η, ζ), discretely indexed by (i, j, k). The
Jacobian of the coordinate transformation,

J = xξ(yηzζ − zηyζ) − yξ(xηzζ − zηxζ) + zξ(xηyζ − yηxζ),

appears briefly in this section only and is not to be confused with the Jacobian matrix of Newton’s
method. In addition to the Cartesian velocities (u, v, w), it is convenient to consider the velocities in
the mapped coordinate system, (U, V, W ), the so-called contra-variant velocities, defined by

U = ξxu + ξyv + ξzw,

V = ηxu + ηyv + ηzw,

W = ζxu + ζyv + ζzw.

In the standard notation (see, e.g., [34]), the transient form of the Euler equations (3.1) is given by

∂Q
∂t

+
∂F
∂ξ

+
∂G
∂η

+
∂H
∂ζ

= 0,(3.4)

where

Q = J




ρ

ρu

ρv

ρw

e




,

and the flux vectors take the form

F = J




ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

(e + p)U




,G = J




ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

(e + p)V




, and H = J




ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

(e + p)W




.

The conservation form of (3.4) can also be written in the quasilinear form

∂Q
∂t

+ A
∂Q
∂ξ

+ B
∂Q
∂η

+ C
∂Q
∂ζ

= 0,

which defines the pointwise flux Jacobians A ≡ ∂F
∂Q , B ≡ ∂G

∂Q , and C ≡ ∂H
∂Q .
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3.2. Finite Volume Scheme. The system (3.4) is discretized via a finite volume scheme in which
simplicial control volumes are centered on the vertices [89]. Using first-order backward differencing in
time, one can express the resulting discrete nonlinear system as

Qn+1
i,j,k − Qn

i,j,k

∆t
+ δiF(Qn+1) + δjG(Qn+1) + δkH(Qn+1) = 0,(3.5)

where

δiF(Qn+1) = Fi+1/2(Qn+1) − Fi−1/2(Qn+1),

and Fi+1/2(Qn+1) denotes the numerical flux at cell face i + 1/2; analogous definitions hold for the
remaining terms of (3.5). The numerical flux is computed by augmenting the first-order term that
results from Roe’s approximate Riemann solver [34, 66] with a second-order component. Details of
the formulation, which now can be considered standard, are beyond the scope of this paper but are
presented in [89].

3.3. Flux Limiters. Flux limiters are typically used when upwind discretization techniques are
applied to flows with supercritical phenonema or material interfaces in order to produce steady-state
solutions that avoid unrealistic oscillations (that would be properly damped by the model if the scales
on which molecular viscosity acts could affordably be represented). Differentiability of the limiter is
required when using derivative information in the numerical scheme. Unfortunately, many popular
limiters were designed for solution algorithms of defect correction type, in which the true Jacobian
never appears on the left-hand side, and are nondifferentiable (e.g., Van Leer, Superbee, Minmod) and
are therefore inappropriate for direct use in Newton methods [85].

As we show in Section 6.3, this problem is not just of theoretical concern but is a weakness of
such limiters in the matrix-free context, since they can cause stagnation or breakdown of the numerical
scheme. Thus, for all experiments in this paper, we use the Van Albada limiter [2].

3.4. Boundary Conditions. Ghost (or “phantom” or “halo”) cells are used so that the interior
Euler equations, discretized on a seven-point star stencil for each conservation law, may be employed
on vertices up to and including the physical boundaries. Artificial values (generally depending upon
adjacent interior state variable values) are specified at the ghost vertices to complete these stencils.
The values at the ghost vertices are included in the unknown state vector, and the partial derivatives of
the ghost-vertex boundary conditions with respect to the ghost unknowns are included in the implicitly
defined Jacobian; however, these additional values do not represent any additional resolution of the
physical problem. (For this reason, we regard the coarse, medium, and fine grids in Section 6 as having
recursively “doubled” dimensions of the form (2pnx + 2) × (2pny + 2) × (2pnz + 2), for p = 0, 1, 2,
respectively, even though the number of algebraic unknowns, including ghostpoints, does not precisely
double.)

In the C-H mapped coordinate system used in our simulation (see Fig. 3.1), four types of bounding
surfaces at extremal values of the three indices are used to enumerate the gridfunction values: k indexes
the transverse direction, from low k at the root of the wing, to ktip in the plane of the wingtip, to high
k in the transverse freestream; j indexes the normal direction from low j on the wing itself to high
j in the freestream; and i wraps longitudinally around the wing and along the C-cut, from low i on
the lower side in the rear of the wake, forward through ilower,te at the trailing edge, through ile at the
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Fig. 3.1. Constant-coordinate cuts of the “medium” grid: (a) a clipped cross-section of the constant-k surface

five cells away from the wing root; (b) a clipped perspective of the constant-j surface on the upper side of the

wing, looking in from the outboard front of the wing. (Index i wraps around the wing streamwise.)

leading edge, rearward across the upper surface of the wing through iupper,te, and finally to high i on
the upper side in the rear of the wake region.

The root of the wing (low k) is considered to be a symmetry plane, with the k = 1 values set equal
to their k = 2 counterparts. For points in the wake region and beyond ktip of the wing, where for low j

and for each k, a range of i indices maps gridpoints on either side of the C-cut back on themselves, the
values at ghost vertices are set equal to the corresponding interior values on the other side of the cut.

For the freestream and impermeable wing surfaces, we use locally one-dimensional characteristic
variable boundary conditions, which are briefly summarized below; see, for example, [88] for details. At
each constant-coordinate surface on which a boundary condition must be derived, the nonconservative
form of the Euler equations is locally linearized. Characteristic values (eigenvalues) and variables (right
eigenvectors) are determined for the 5 × 5-block of the flux Jacobian matrix (A, B, or C) that premul-
tiplies the derivatives of the primitive variables in the direction normal to the bounding surface. Terms
involving derivatives in the plane of the bounding surface are set to zero. The sign of the each charac-
teristic value determines whether the corresponding characteristic variable propagates information into,
or out of, the computational domain.

In our test cases, we need consider only subsonic inflow and outflow boundaries and impermeable
boundaries. The cases of supersonic inflow and outflow are considered in, for example, [88]. At subsonic
inflow, four characteristics enter the domain and may be fixed at Dirichlet values from the freestream.
One characteristic exits the domain and is set by extrapolation from adjacent interior values. Five
algebraic relationships are thereby derived for the five values at each ghost vertex. At subsonic outflow,
the opposite situation prevails: one characteristic variable is set from freestream conditions, and four
are extrapolated. On impermeable surfaces, one characteristic enters the domain and is set by the
condition of no-flow across the surface. This, in effect, provides the pressure. The remaining values are
set by extrapolation so as to satisfy the no-flow constraint on the physical boundary. As illustrated in
one of the experiments to follow, and as discussed by Whitfield & Taylor [89] and for similar problems
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by Tidriri [76, 77], the implicit form of these boundary conditions is needed to maintain stability as
timesteps adaptively increase.

All of the boundary conditions for the ghost vertex unknowns are local (involving, at most, values
at immediately interior vertices), with the exception of the C-cut ghost-to-interior identity mappings.
For traditional lexicographic orderings of the gridpoints, the entries of the Jacobian matrix that tie
together these spatially identical but logically remote degrees of freedom lie outside of the normal band
structure, and would, if used, generate extensive fill in a full factorization. We thus choose to include
these nonzeros in the matrix-free action of the Jacobian only, not in the Jacobian preconditioner.

4. ΨNKS Algorithmic Details. Careful attention to details of CFL advancement strategies
and matrix-free Jacobian-vector product approximations is crucial for the successful implementation of
ΨNKS methodology for large-scale problems. This section discusses these issues in some detail.

4.1. CFL Advancement. We use a locally adapted pseudo-timestep of the form τijk = αijkNCFL,
where αijk is a ratio of signal transit time (based on local convective and acoustic velocities in each
coordinate direction) to cell volume and NCFL is a global dimensionless scaling factor, which would
have to be kept of order unity to satisfy explicit stability bounds on the timestep and which should
approach ∞ for a steady-state Newton method. The constraints on CFL advancement in our implicit
context are the robustness of the nonlinear iterative process and the cost of the iterative linear solver.
We employ an advancement strategy based on the SER technique [57],

N `
CFL = N `−1

CFL

‖f(u`−2)‖
‖f(u`−1)‖ ,

with clipping about the current timestep so that CFL increases by a maximum of two and decreases
by no more than ten at each step. Experiments show that when the linearized Newton systems are
solved sufficiently well at each step the CFL may often advance according to this strategy without further
restrictions. Jiang & Forsyth [37] discuss conditions under which more stringent measures are needed to
limit CFL advancement. Experiments on compressible flows with this strategy alone in [41] occasionally
led to NaNs, which were attributed to negative densities. Whereas in a conventional Newton-like method
an infeasible Newton update δu` can be caught before evaluation of f(u`−1 + λ`δu`), and λ` cut back
accordingly for robustness, a matrix-free Newton code may “probe” f(·) at an infeasible point while
building up the Krylov subspace. Thus, the input to every call to the subroutine that evaluates f(·)
must be checked. In the pseudo-transient context an infeasible state vector may be handled the same
way convergence stagnation is handled [41], namely, by restoring the state at the previous timestep and
recommencing the current timestep with a drastically reduced NCFL.

4.2. Matrix-Free Methods. Matrix-free Jacobian-vector products are defined by directional
differencing of the form

f ′(u)v ≈ f(u + hv) − f(u)
h

,

where the differencing parameter h is chosen in an attempt to balance the relative error in function
evaluation with the magnitudes of the vectors u and v. Selection of an appropriate parameter is
nontrivial, as values either too small or too large will introduce rounding errors or truncation errors,
respectively, that can lead to breakdowns. Investigators with relatively small, well-scaled discrete
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problems (guided by a wise nondimensionalization) sometimes report satisfaction with a simple choice of
h, approximately the square root of the “machine epsilon” or “unit roundoff” for their machine’s floating-
point system. A typical double-precision machine epsilon is approximately 10−16, with a corresponding
appropriate h of approximately 10−8. More generally, adaptivity to the vectors u and v is desirable.

We choose the differencing parameter dynamically using the technique proposed by Brown and
Saad [10], namely,

h =
erel

||v||2 max
[|uT v|, typuT |v|] sign(uT v),

where |v| = [|v1|, ..., |vn|]T , typu = [|typu1|, ..., |typun|]T for typuj > 0 being a user-supplied typical size
of uj and erel ≈ square root of relative error in function evaluations.

Determining an appropriate estimation of the relative noise or error in function evaluations is
crucial for robust performance of matrix-free Newton-Krylov methods. Assuming double-precision
accuracy (or erel ≈ 10−8) is inappropriate for many large-scale applications. A more appropriate
relative error estimate for the compressible flow problems considered in this work is erel = 10−6,
as determined by noise analysis techniques currently under investigation by McInnes and Moré [55].
When evaluating gradients too close to the noise level in a given problem, we have found that otherwise
identical executions may converge on one system with a given floating-point convention for rounding
and fail to converge in a reasonable time on another with a different rounding convention. Backing off
to larger values of h generally resolves such discrepencies.

Taking h too large is one of many ways of damping the nonlinear iteration in NKS methods, in
that it replaces a tangent hyperplane estimate with a chordal plane estimate. However, we do not
recommend using h to control the nonlinear convergence in this manner. It should generally be taken
as close to the noise level as robustness requirements permit, and damping should be applied more
consciously at a higher level in the code.

In addition to evaluating the Jacobian-vector products with directional differencing within GMRES,
the preconditioner is constructed in a blackbox manner, without recourse to analytical formulae for the
Jacobian elements, by directional differencing as described in [89] and as provided in the JULIANNE

code.
Another approximate Jacobian-vector product derived from the same multivariate Taylor expan-

sion that underlies the finite-difference approximations above, which is, however, free of subtractive
cancellation error, has recently been rediscovered by Whitfield & Taylor [90]. It features an imaginary
perturbation,

f(u + ihv) = f(u) + ihf ′(u)v + c2O(h2) + ic3O(h3),

about any point u, where f , interpreted as a complex function of a complex-valued argument, is analytic.
Here, u and v are real vectors. When f is real for real argument, as is true for the Euler equations, all
quantities except for i in the expansion above are also real; therefore, by extracting real and imaginary
parts, we can identify f(u) = Re[f(u + ih)] + O(h2) and f ′(u)v = Im[f(u + ihv)]/h + O(h2). Special
care is needed for Roe-type flux functions and any other nondifferentiable features of f(u), but with
minor code alterations, both f(u) and f ′(u)v are available without subtraction from a single complex
evaluation of f(u). Implications for evaluation of sensitivity derivatives by this technique are explored
in [59].
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5. Parallel Implementation Using PETSc. This section discusses some issues that arise in the
transition of a legacy code originally developed for uniprocessor vector architectures to a distributed-
memory variant. After providing an overview of our conversion strategy, we discuss some performance
optimizations for memory management, message passing, and cache utilization.

The parallelization paradigm we recommend in approaching a legacy code is a compromise be-
tween the “compiler does all” approach, for which some in the scientific and engineering communities
have been waiting many years now, and the “hand-coded by expert” approach, which some others
insist is still the only means of obtaining good parallel efficiency. We employ PETSc [4, 6], a library
that attempts to handle in a highly efficient way, through a uniform interface, the low-level details
of the distributed-memory hierarchy. Examples of such details include striking the right balance be-
tween buffering messages and minimizing buffer copies, overlapping communication and computation,
organizing node code for strong cache locality, preallocating memory in sizable chunks rather than in-
crementally, and separating tasks into one-time and every-time subtasks using the inspector/executor
paradigm. The benefits to be gained from these and from other numerically neutral but architecturally
important techniques are so significant that it is efficient in both programmer time and execution time
to express them in general-purpose code.

PETSc is a versatile package integrating distributed vectors, distributed matrices in several sparse
storage formats, Krylov subspace methods, preconditioners, and Newton-like nonlinear methods with
built-in trust region or line search strategies and continuation for robustness. It has been designed to
provide the numerical infrastructure for application codes involving the implicit numerical solution of
PDEs, and it sits atop MPI for portability to most parallel machines. The PETSc library is written
in C, but may be accessed from user codes written in C, Fortran, and C++. PETSc has features
relevant to computational fluid dynamics, including matrix-free Krylov methods, blocked forms of
parallel preconditioners, and various types of timestepping.

5.1. Converting Legacy Codes. Converting a legacy code to a production parallel version in-
volves two types of tasks: parallelization and performance optimization. Abstractly, parallelization
includes the discovery or creation of concurrency, orchestration of data exchange between the concur-
rent processes, and mapping of the processes onto processors.

For converting structured-grid legacy codes, the major reprogramming steps are essentially: con-
verting global data structures in the legacy code to distributed data structures provided by the domain
decomposition library; replacing domain-wide loop bounds with subdomain-wide loop bounds in the
routines that evaluate the governing equation residuals and Jacobian elements; and parameterizing the
solution algorithm supplied by the library, which ordinarily replaces the solution algorithm in the legacy
code.

A coarse diagram of the calling tree of a typical ΨNKS application appears in Fig. 5.1. The
top-level user routine performs I/O related to initialization, restart, and post-processing; it also calls
PETSc subroutines to create data structures for vectors and matrices and to initiate the nonlinear solver.
Subroutines with the PETSc library call user routines for function evaluations f(u) and (approximate)
Jacobian evaluations J(u) at given state vectors. Auxiliary information required for the evaluation of f

and J that is not carried as part of u is communicated through PETSc via a user-defined “context” that
encapsulates application-specific data. (Such information would typically include dimensioning data,
grid geometry data, physical parameters, and quantities that could be derived from the state u but are
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Fig. 5.1. Coarsened calling tree of the JULIANNE-PETSc code, showing a user-provided main program and user-

provided callback routines for supplying the initial nonlinear iterate, evaluating the nonlinear residual vector at a PETSc-

requested state, and evaluating the Jacobian (preconditioner) matrix.

most conveniently stored instead of recalculated, such as constitutive quantities.)

We emphasize that the readiness of legacy codes for high-performance parallel ports of any kind
varies considerably. Codes making heavy use of COMMON blocks should first be transformed to
passed-argument form and made to execute at high computation rates on a cache-based uniprocessor.
This process will often involve combining component fields of u found in separate arrays into a single
interleaved structure, with contiguous locations in memory corresponding to unknowns associated with
the same gridpoint, rather than with the same component field at an adjacent gridpoint. Codes in which
solver, function evaluation, and Jacobian evaluation logic are interwoven should be modularized so that
function and Jacobian evaluation routines can be cleanly and independently extracted. (Some codes
use common gradient and flux evaluation logic in the subassembly of function and Jacobian evaluation,
a practice we applaud. However, such common code should normally be isolated for separate calls from
each major routine.)

For memory economization and high performance, we have found it advantageous to transfer ele-
ments of f and J into the distributed PETSc data structures in dense blocks of intermediate size, rather
than to form an entire copy of f or J in some other user data structure and then transfer it.

5.2. Memory Management-Oriented Optimizations. Many code developers have observed
that dynamic memory management within PDE-based simulations, particularly through the C library
malloc and free routines, can consume significant amounts of time. In addition, even when im-
plemented efficiently, such allocation can lead to memory fragmentation that is not well suited to
cache-based memory hierarchies. Further, reallocation of memory space to enlarge a memory array
often requires that data be copied from an old area to a new area. This memory copy does no useful
work and can lead to a loss in performance. Since parallel sparse matrix memory management can be
particularly challenging, we discuss some techniques to aid its efficiency; many of these ideas also apply
to management of vectors, grids, and so forth.

5.2.1. Memory Preallocation. PETSc provides a number of ways to preallocate sparse matrix
memory based on knowledge of the anticipated nonzero structure (corresponding to mesh connectivity).
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However, PETSc does not require preallocation; this approach avoids having programs fail simply
because sufficient memory was not preallocated. PETSc also keeps track of memory use; this profiling
information can be very valuable in tracking usage patterns and identifying memory problems.

5.2.2. Aggregation in Assembly. A related issue is that of the granularity of operations, par-
ticularly for matrix assembly. It is common to define operations in terms of their most general, single-
element form, such as “set matrix element to value” or “add value to matrix element.” This approach
is inefficient, however, because each operation requires a number of steps to find the appropriate entry
in a data structure (particularly for sparse matrix formats). Thus, PETSc includes a variety of opera-
tions for handling larger numbers of elements, including logically regular dense blocks. Such aggregate
optimizations significantly improve performance during operations such as matrix assembly.

Within the subject parallel compressible flow code, we specify in advance the sparsity pattern for
the first-order approximation of the Jacobian that serves as the preconditioner. Thus, all matrix storage
space is preallocated once and is then continually reused as the nonlinear simulation progresses. Matrix
elements are assembled in aggregates of five, as they are naturally computed for this problem.

5.3. Message Passing-Oriented Optimizations. Any kind of communication of data between
parallel processes involves two steps: the transfer of data and the notification that the transfer has
completed. Message passing combines these two operations: for each message sent, there is a “synchro-
nization” that indicates when the data is available for use. (In the case of shared-memory programming,
this synchronization is implemented through locks, flags, or barriers.) Such synchronizations can be a
source of performance problems; efficient code tries to defer any synchronization until the last possible
moment. The PETSc approach to communication aims to balance ease of use and efficiency of im-
plementation; it does not attempt to completely conceal parallelism from the application programmer.
Rather, the user initiates combinations of high-level calls, but the library handles the detailed (data
structure-dependent) message passing. For a detailed philosophy of PETSc implementation, see [5].

5.3.1. Multiphase Exchanges. A common way to avoid problems due to early synchronization
is to divide an operation into two parts: an initiation and a completion (or ending) phase. For ex-
ample, asynchronous I/O uses this approach. The MPI message-passing standard [56, 28] provides
asynchronous operations; send and receive operations are divided into starting (e.g., MPI Isend or
MPI Irecv) and completion (e.g., MPI Wait) phases. PETSc takes the same multiphased approach with
other operations that would otherwise suffer from severe performance problems, including matrix assem-
bly of nonlocal data and generalized vector scatter/gathers. For example, the starting version of these
operations issues the appropriate MPI nonblocking communication calls (e.g., MPI Isend). The ending
version then concludes by using the appropriate completion routine (e.g., MPI Waitall). Because the
PETSc operations explicitly defer their completion, it is easy to change the underlying implementa-
tion to take advantage of different optimization approaches, including alternate MPI operations (e.g.,
persistent (MPI Rsend init)) or even non-MPI code (e.g., one-sided or remote memory operations).

5.3.2. Algorithmic Reduction in Synchronization Frequency. Pseudo-transient Newton-
Krylov methods make extensive use of inner products and norms, which are examples of global reduc-
tions or commutatives and impose global synchronization on the parallel processes. The inner products
are associated primarily with the conjugation process in the Krylov method. The norms are associated
with the Krylov method, with convergence monitoring, and with various stability and robustness fea-
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tures in the selection of the timestep, the linesearch parameter, and the Fréchet differencing parameter.
To reduce the penalty of these synchronizations, PETSc offers options such as an unmodified Gram-
Schmidt operation in GMRES [67], and lagged parameter selection. In severe circumstances it would
be unwise to back off from the robust practices of modified Gram-Schmidt and frequent refreshing of
the Fréchet parameter or the CFL number. All of the cases described herein, however, use deferred
synchronization via unmodified Gram-Schmidt and reevaluate other parameters less frequently than
dictated by conventional sequential practice.

5.4. Cache-Oriented Optimizations. Cache-oriented optimizations are crucial, since good over-
all parallel performance requires fast per processor computation as well as effective parallel algorithms
and communication. Scalability studies often omit attention to single-node performance optimization
and thereby demonstrate high scalability on code that nonetheless makes inefficient user of the hard-
ware, overall. Here we discuss three optimization strategies: exploitation of dense block operations,
field component interleaving, and grid reordering.

5.4.1. Exploitation of Dense Block Operations. The standard approach to improving the
utilization of memory bandwidth is to employ “blocking”. That is, rather than working with individual
elements in a preconditioning matrix data structure, one employs blocks of elements. Since the use of
implicit methods in CFD simulations leads to Jacobian matrices with a naturally blocked structure (with
a block size equal to the number of degrees of freedom per cell), blocking is extremely advantageous.
The PETSc sparse matrix representations use a variety of techniques for blocking, including

• a generic sparse matrix format (no blocking);
• a generic sparse matrix format, with additional information about adjacent rows with identical

nonzero structure (so called I-nodes); this I-node information is used in the key computational
routines to improve performance; and

• storing the matrices using a fixed (problem-dependent) block size.

The advantage of the I-node approach is that it is a minimal change from a standard sparse matrix
format and brings a relatively large percentage of the improvement one obtains via blocking. Using a
fixed block size delivers the absolute best performance, since inner loops can be hardwired to a particular
size, removing their overhead entirely.

Table 5.1 presents the floating-point performance for a basic matrix-vector product and a triangular
solve obtained from an ILU(0) factorization using these three approaches: a basic compressed row
storage format, the same compressed row format using the I-nodes option, and a fixed block size code
(with a block size of five). These rates were attained on one node of an IBM SP2 for a coarse grid
Euler problem of dimension 25,000 (described in Section 6.1). The speeds of the I-node and fixed-block
operations are several times those of the basic sparse implementations. These examples demonstrate
that careful implementations of the basic sequential kernels in PETSc can dramatically improve overall
floating-point performance relative to casually coded legacy kernels.

Much of the approximate Jacobian matrix has block-band structure corresponding to the three-
dimensional, seven-point stencil, with five degrees of freedom per node (three-dimensional momentum,
internal energy, and density). We use the PETSc matrix format for block, compressed, sparse rows
(block CSR) to exploit this structure.
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Table 5.1

Basic kernel flop rates (Mflop/s).

Kernel Basic I-Node Version Fixed Block Size

Matrix-Vector Product 28 58 90
Triangular Solves from ILU(0) 22 39 65

5.4.2. Field Component Interleaving. For consistency with the matrix storage scheme and to
exploit better cache locality within the application portion of code, we modified the original nonlinear
function evaluation code to use the same interleaved ordering employed for matrix storage for the Q-
vector instead of the original field-oriented ordering. Table 5.2 compares the performance of these two
orderings for local function evaluations (excluding the global-to-local scatters needed to assemble ghost
point data). The timings within this table for a single function evaluation were computed from overall
execution times and iteration counts collected during a complete nonlinear simulation for a problem of
matrix dimension 158,600 (see Section 6.1). These performance studies indicate a savings for the local
function evaluation component of between four and twenty percent on the SP2, depending on the ratio
of cache size to problem size. Similar results are reported in [20].

Table 5.2

Comparison of multicomponent orderings for local function evaluations with five degrees of freedom per node.

Number of Time for a Single Function Evaluation (sec) Percentage
Processors Noninterlaced Interlaced Improvement

1 .983 .779 21
2 .477 .375 21
4 .237 .191 20
8 .115 .103 10
16 .061 .056 7

5.4.3. Grid Reordering. Another technique that can improve cache utilization is the reordering
of grid entities. This is discussed in [45] for unstructured grids but not employed in the structured-
grid computational examples of this paper, where its use would destroy one of the main advantages of
structured grids, namely, the ability to employ direct addressing to locate data at neighboring vertices
(or cells, in cell-centered codes). The idea behind grid reordering for enhanced cache residency in an
edge-based CFD code is simple: vertices that share an edge need to have their data co-resident in the
cache to compute the flux along the edge. If edges common to a vertex are ordered near each other,
the data at that vertex may suffer as little as one (compulsory) cache miss during a flux-computation
cycle. If edges are ordered in a greedy way, away from the initial set of edges, there may be low data
miss rates on average throughout the entire domain for the entire cycle. It remains to be seen whether,
in processors with deep memory hierarchies, the data locality enhancements possible with unstructured
problems can overcome the overheads (in time and space) of indirect addressing.

5.5. Importance of Profiling. Profiling a code’s overall performance for realistically sized prob-
lems, including timings, floating-point operations, computational rates, and message-passing activity
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(such as the number and size of messages sent and collective operations), is crucial for gaining an
understanding of sections that can benefit most from performance enhancements and parameter tun-
ing. We have employed the automatic profiling capabilities within PETSc [6] to target performance
enhancements for the parallel ΨNKS methods of this work.

Such profiling indicates that throughout a complete matrix-free nonlinear simulation using block
sparse matrix data structures, the solution time (for various problem sizes and processor configurations,
including all associated communication overheads) is roughly divided as follows:

• 1% for initialization (including parallel mesh partitioning and setup of vector scatter/gathers
for handling ghost point data),

• 16% for formation of the linearized Newton systems (including right-hand-side vectors and
lagged first-order preconditioner matrices),

• 82% for linear system solution, and
• 1% for other nonlinear solver operations.

Further breakdown of the linear solve phase indicates roughly 2% of overall time devoted precondi-
tioner setup (including determination of additive Schwarz overlap and incomplete factorization of each
processor’s local submatrix), 17% for preconditioner application, 59% for matrix-free Jacobian-vector
products, and the remainder for other vector operations. The efficiency of the sparse numerical linear
algebra has resulted from tuned data structures and message-passing activity, as discussed above. The
dominance of function evaluation time within the total solution process has led us to focus on the tuning
of various numerical parameters to aim for the fewest possible overall fine grid function evaluations (or
flux balances) needed to achieve steady state.

6. Numerical Experiments. We illustrate in this section the importance of some of the design
decisions above in the context of a legacy CFD application that has been parallelized and accelerated
through ΨNKS. We briefly describe the test problems and then discuss issues of boundary conditions,
limiters, preconditioner quality, convergence tuning, and scalability.

6.1. Test Problems. The ONERA M6 wing is a standard three-dimensional test case, for which
extensive experimental data is given in [68]. A frequently studied parameter combination combines
a freestream Mach number of 0.84 with an angle of attack of 3.06o. This transonic case gives rise
to a characteristic λ-shock, as depicted within Fig. 6.1. As discussed in Section 3, the basis for our
implementation is a legacy sequential Fortran77 code (JULIANNE) by Whitfield & Taylor [89].

Tests on three different successively doubled grid resolutions, the sizes of which are given in Ta-
ble 6.1, provide a demonstration of the grid independence of the solution, as evidenced by the agreement
of the overall values of CL (lift) and CD (drag) on the intermediate and finest grids in Fig. 6.2. Com-
parisons of the aerodynamic coefficients with the data in [68] replotted in Fig. 6.3 show reasonable
agreement for an inviscid model.

Thus far, we have employed only the simplest decomposition strategies in inducing locality in the
Schwarz preconditioner: recursive bisection cuts along the i, j, and k coordinate directions to create
subdomains. The order of the cuts is determined so as to produce subdomains that are as close to
unit aspect ratio as possible in logical space, a strategy that minimizes communication volume. Given
the 6:1 logical aspect ratio of the full domain, the first three cuts are made in the i direction. Beyond
eight processors, the j and then the k directions are also partitioned. On the basis of investigations
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Fig. 6.1. Mach number contours (the local tangential velocity magnitude divided by the local sound speed) of the

converged flowfield on the upper wing surface for the finest grid.

Table 6.1

Test problem dimensions (system size includes boundary ghost nodes).

Grid Dimensions System Size Nonzeros in Jacobian Approx.

50 × 10 × 10 25,000 622,120
98 × 18 × 18 158,760 4,636,200
194 × 34 × 34 1,121,320 35,742,760

of domain decomposition preconditioners on other flow problems [12, 33], it is well known that there
can be a strong interaction between flow direction and cutting planes. Our study of this phenomenon
in the present problem and a collection of others will appear elsewhere. The main implication of the
partitioning strategy in interpreting the scalability results of this section is that the linear conditioning
is affected by the number and orientation of the cuts and that performance results for different ways of
obtaining p-fold concurrency will generally differ from the samples included. Furthermore, for tunings
of ΨNKS in which the linear systems are only very incompletely converged, such as ours, the nonlinear
trajectory of convergence can be affected by the cut.

6.2. Implicit Boundary Conditions and Matrix-free Jacobian Action. Figure 6.4 com-
pares the convergence in terms of both nonlinear iterations and total time of the various approaches
under consideration: explicit boundary conditions (limiting CFL to 7.5), implicit boundary conditions
with the same CFL, implicit boundary conditions with advancing CFL, and implicit boundary condi-
tions with advancing CFL and matrix-free application of the Jacobian. This figure presents performance
data for the medium mesh problem run on two processors of the SP2; the relative convergence rates
and timings are analogous for the other test problems under consideration for various machines and
processor configurations. Whenever required, the explicit Jacobian is computed to first-order accu-
racy in space via finite differences, stored with the block sparse scheme discussed in Section 5.4, and
refreshed once every ten pseudo-timesteps. This Jacobian served as the left-hand-side matrix of the
Newton systems (corresponding to (2.11)) or as the preconditioner for the matrix-free method. This
frequency of Jacobian recomputation provides a reasonable trade-off in terms of convergence rate and
the computational cost of matrix evaluation.
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at 45% of wingspan, and comparison with experiment.

For the cases in Fig. 6.4, we solved the linearized Newton systems approximately with a relative
linear convergence tolerance of 10−2 using preconditioned GMRES. For the matrix-free variant we
employed the additive Schwarz preconditioner with an overlap of 1 cell, and for the other cases we
used the cheaper but sufficiently powerful block Jacobi method (equivalent to additive Schwarz with
no overlap); both versions used one subdomain block per processor, solved with ILU(0) (the issue of
preconditioner quality is discussed in Section 6.4). When retaining a fixed CFL of 7.5, only 3–4 linear
iterations were required for each step to reach the 10−2 tolerance for both explicit and implicit boundary
condition variants. Experiments indicate that because of the mismatch of first-order and second-order
schemes in the left- and right-hand sides of these defect correction methods, more accurate linear solves
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Fig. 6.4. Comparison of four globalized solution algorithms, showing the cumulative advantages of implicit BCs,

advancing CFL, and matrix-free representation of the Jacobian, in terms of both iteration count (number of pseudo-

timesteps) and overall execution time on an IBM SP2.

and more frequent Jacobian refreshment do not appreciably accelerate convergence. For the cases with
increasing CFL, the linear systems become more challenging to solve as they transition toward true
Newton systems, requiring up to 30 iterations to reach the specified 10−2 tolerance when CFL reaches
its maximum value of 105. The quality of linear solves is further discussed in Section 6.5.

The key observation from this data is that the combination of implicit boundary conditions coupled
with the higher-order discretization enabled by the matrix-free technique solves the nonlinear problem
to machine precision several times faster than does the defect correction method. Neither the use of
implicit boundary conditions alone nor the use of increasing CFL with a low-order Jacobian allows the
approach of quadratic convergence. We also note, on the basis of analogous experiments with the other
problem sizes considered in the paper, that the impact of using this combination increases with problem
size.

In addition to pseudo-time continuation, the original JULIANNE code employs a subtle form of con-
tinuation in boundary conditions. The boundary conditions for mass density and energy density at the
impermeable wing surface are initially of simple Neumann type, and are switched to full characteristic
boundary conditions only after the tenth pseudo-timestep. (This accounts for the spikes seen in the
steady-state residual norm histories in Figs. 6.4–6.8.) We have found this device to be important for
robustness in a fully implicit approach in which the steady-state residuals are evaluated to second order
from the outset. Alternatively, we have employed full characteristic boundary conditions for all vari-
ables from the outset in a first-order discretization, and then switched to a second-order discretization
after approximately 10−2 reduction in the steady-state residual norm.

6.3. Differentiable Limiters. As discussed in Section 3.3, differentiability of limiters is essential
when using derivative information in the numerical scheme. When using matrix-free differencing ap-
proximations of Jacobian-vector products, differentiable limiters are required to avoid breakdown (as
manifested by the introduction of NaNs in the iterate update) or stagnation. Fig. 6.5 shows convergence
stagnation when the coarse mesh is run with the nondifferentiable Van Leer limiter and the penetration
of this stagnation with the Van Albada limiter.
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critical flow.

6.4. Preconditioner Quality. Preconditioner quality dramatically impacts the overall efficiency
of the parallel ΨNKS methodology, as demonstrated in the closely related Figs. 6.6 and 6.7 for several
variants of additive Schwarz techniques. The graphs within these figures compare convergence rate (in
terms of relative residual norm) versus both nonlinear iteration number (left-hand graphs) and time
(right-hand graphs) for the medium mesh on 16 processors of an IBM SP2; analogous results were
achieved for other problem sizes and processor configurations. All plotted runs use preconditioned
restarted GMRES with a Krylov subspace of maximum dimension 30 and a fixed relative convergence
tolerance of 10−2 (this issue is discussed in the following section); each processor hosts a single precon-
ditioner block, which is solved via point-block ILU(0).

We contrast in Fig. 6.6 a zero-overlap (subdomain-)block Jacobi preconditioner with a two-cell-
overlap additive Schwarz method (ASM) and a two-cell-overlap restricted additive Schwarz method
(RASM), which were presented in Section 2.4. We observe that modest overlap is crucial in providing a
high-quality preconditioner that allows the overall numerical scheme to progress rapidly in the nonlinear
sense. Further, we see that the RASM method, which eliminates communication during the interpolation
phase, not only saves time in terms of communication overhead, but also provides more powerful
preconditioning, as evidenced by faster convergence in terms of the nonlinear iteration count.

Figure 6.7 contrasts various degrees of overlap for RASM. In particular, we see that two-cell overlap
provides a good balance in terms of power and cost. Less overlap trades off cheaper cost per iteration for
a preconditioner that does not allow the nonlinear iterations to converge proceed as rapidly, while more
overlap is costly to apply and does not sufficiently contribute to faster nonlinear convergence. Similar
behavior was observed for structured-grid problems at other problem sizes and processor configurations,
even when using other criteria to determine linear inner iteration convergence.

In the context of unstructured tetrahedral grids, where each successive level of subdomain overlap
is defined by following edges incident on vertices belonging to the subdomain at the previous level, our
experience with overlap for RASM has led to a more extreme trade-off. Cost per iteration rises rapidly
with overlap, since a vertex may be a member of 15 or more tetrahedra, and iteration reduction does
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Fig. 6.6. Comparison of three domain-decomposed preconditioners: subdomain-block Jacobi, standard additive

Schwarz with overlap of 2 cells, and restricted additive Schwarz with overlap of 2 cells. All methods solve point-block

ILU(0) on 16 subdomains on an IBM SP2.

not significantly counterbalance this cost, for the weak levels of linear convergence required. We often
use no overlap in such cases.

Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Nonlinear Iteration Number

Lo
g(

10
) 

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Overlap 0

Overlap 1

Overlap 2

Overlap 3

0 100 200 300 400 500 600
−14

−12

−10

−8

−6

−4

−2

0

2

Time (sec)

Lo
g(

10
) 

of
 R

es
id

ua
l N

or
m

Comparison of Overlap for RASM Preconditioner (16 Processors, Medium Mesh)

Fig. 6.7. Comparison of four domain-decomposed preconditioners: subdomain-block Jacobi and restricted additive

Schwarz with overlap of 1, 2, and 3 cells. All methods solve point-block ILU(0) on 16 subdomains on an IBM SP2.

6.5. Convergence Tuning. Convergence tuning for terminating the inner Krylov iterations in
the Newton correction is tightly coupled with preconditioner quality, and the two must be considered
in concert. Figure 6.8 contrasts various convergence criteria using the restricted additive Schwarz
preconditioner with an overlap of two cells, which was shown in Section 6.4 to be an effective choice
for the problems considered in this work. This figure presents convergence data in terms of solution
times and work per linear iteration for three methods: fixed Krylov subspace dimension, fixed relative
tolerance for residual norm reduction, and a hybrid strategy that terminates upon the earlier of satisfying
a relative residual norm reduction or exceeding a Krylov subspace dimension. These graphs focus on
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ance, and a loose hybrid.

the 16-processor case with the fine mesh, although they are representative of experiments on various
numbers of processors for different problem sizes. The left-hand graph within Fig. 6.8, which plots the
log of the residual norm versus solution time, indicates that using a loose fixed relative tolerance of
10−2 is preferable over the other choices when a sufficiently robust preconditioner is employed.

The corresponding right-hand graph better illustrates where within the total simulation process
the bulk of computational work occurs within the linear solves. In particular, we see that the common
practice of specifying a fixed amount of work per nonlinear iteration does not fare as well as alternatives
that focus linear solver work where it is truly needed during the second and third phases of the ΨNKS
process (recall Section 2.1). The fixed-work case for this problem employed thirty iterations of GMRES;
experiments with fewer GMRES iterations and more frequent restarts encountered stagnation before
converging to steady state. In contrast, the approaches that use a fixed relative tolerance or hybrid
scheme fared much better.

Strategies that dynamically adjust the linear tolerances to achieve greater relative residual reduction
during steps of the final ΨNKS phase and thereby aim for quadratic convergence (e.g., [25]), have been
of limited benefit when a sufficiently robust linear solver is employed. We note that others with strong
incentives to watch the “bottom line” of execution time in production line design use have converged
on fairly loose tolerances for inner linear iterations [92]. However, further investigation of tuning such
strategies should prove valuable.

Figure 6.9 illustrates the evolution of the shock structure (characterized by the number of supersonic
mesh points) as a function of time for the medium and fine meshes. Notice that the number of supersonic
points scales approximately with the number of gridpoints (factor of 8 between the two curves), reflecting
the convergence to a grid-independent feature in physical space. We also observe that each run from a
uniform flow initial iterate passes through the same intermediate condition during which the supersonic
region is larger than its asymptotic value. The duration of this period is inversely proportional to the
resolution, suggesting that the shock advances in units of gridpoints per iteration, based on a cell-size-
dependent CFL, not with physical temporal accuracy. Properly applied grid sequencing would suffer
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this period of settling of shock location on the coarsest grid only.
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Fig. 6.9. Illustration of the evolution of the shock structure as reflected in the number of gridpoints contained in the

supersonic “bubble” on the upper surface of the airfoil, as a function of pseudo-timestep number, for the medium and

fine grids.

6.6. Scalability. There are many aspects to parallel scalability in a nonlinear PDE problem. We
may usefully distinguish between the numerical scalability of the algorithm (reflecting how the number
of iterations depends upon the partitioning — which makes the “best preconditioner” at each granularity
algebraically different) and the implementation scalability (reflecting how well a given “market basket”
of operations within a single iteration at some level executes at different granularities). We also report
fixed-problem-size scalability and fixed-memory-per-node or “Gustafson” scalability.

In Table 6.2 we present computation rates on an IBM SP2 for the matrix-vector product and an
entire linear solve using an explicitly stored Jacobian with implicit boundary conditions averaged over
a fixed number of Newton corrections of a particular pseudo-timestep. The linear Newton systems are
solved using restarted GMRES with a Krylov subspace of maximum dimension 30 and block Jacobi
preconditioning, where each processor has one block that is solved with ILU(0). The speedup over
two processors (the smallest number on which the entire problem fits, when both the explicit Jacobian
and its preconditioner must be stored) is given in parentheses in the tables. To put in perspective
the average single-node performance of 73.5 Mflop/s (parallel overheads included) for the block-sparse
linear solution of the 2-processor case, we note that the peak performance of one processor of the quad-
issue IBM SP2 is 266 Mflop/s, the dense LINPACK-100 benchmark produces 130 Mflop/s, and a sparse
matrix-vector product that uses the standard compressed sparse row format (CSR) attains 27 Mflop/s.

We next present in Table 6.3 similar runs for the same problem on the fine mesh, which produces a
system that is roughly eight times as large as the previous one. For this problem of 1,121,320 unknowns,
the computation rate on sixteen processors for the matrix-vector product was 1.28 Gflop/s, while the
complete linear solve achieves 1.01 Gflop/s. On sixty-four processors the matrix-vector product runs at
4.22 Gflop/s, while the complete linear solve achieves 3.74 Gflop/s. The data presented here is based
on flop counters embedded in the PETSc library routines and pertains to the solvers only. The function
evaluation and Jacobian evaluation application routines are not yet instrumented for floating-point
operation counting; therefore, self-contained linear solutions (with explicitly stored matrix operations,
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Table 6.2

Performance on medium grid problem (computation rate in Mflop/s).

Number of Matrix-Vector Products Linear Solves
Processors Mflop/s Speedup Mflop/s Speedup

2 179 − 147 −
4 337 (1.9) 286 (2.0)
8 620 (3.5) 540 (3.7)
16 1137 (6.4) 994 (6.8)
32 2038 (11.4) 1785 (12.1)
64 3003 (16.8) 2546 (17.3)

Table 6.3

Performance on fine grid problem (computation rate in Mflop/s).

Number of Matrix-Vector Products Linear Solves
Processors Mflop/s Speedup Mflop/s Speedup

16 1281 − 1011 −
32 2483 (1.9) 2154 (2.1)
64 4217 (3.3) 3744 (3.7)

not matrix-free approximations) were employed for these computational rate tests. Scalability analysis
in terms of time for the matrix-free variants is presented in Fig. 6.10 and Table 6.6.

Table 6.4 presents timing data for a single NKS iteration, including evaluation of the right-hand-side
vector as well as the linear solve, on the SP2 for 8 and 64 processor cases. We partition the 8-processor
case as 8× 1× 1 for the medium mesh and the 64-processor case as 16× 2× 2 for the fine mesh. These
particular cases have identical local mesh configurations, so that the problems require the same amount
of memory per processor and therefore have similar caching profiles (which controls for one of the main
effects that renders parallel performance studies difficult).

Table 6.4

Time (s) for one nonlinear iteration on an SP2.

Solution Medium Mesh Fine Mesh Percent
Technique 8 Procs (8x1x1) 64 Procs (16x2x2) Difference

Matrix-explicit .39 .46 15
Matrix-free 1.20 1.60 25

It is encouraging that the parallel matrix-free version of the code also has good parallel efficiency
in the Gustafson (memory-constrained) sense. For example, given two versions of the same problem,
one eight times larger than the other (a factor of two mesh refinement in each of three dimensions), and
given eight times as many processors to run the larger case, the two problems have per-iteration costs
within 5–15% of being identical for the matrix-explicit case, and within 12–25% for the matrix-free
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case. The slightly lower efficiency for the matrix-free case arises because of the dominance of time for
function evaluations for this method.

Despite the slightly poorer scalability of the matrix-free method in the memory-constrained sense,
the faster convergence of the matrix-free method relative to the matrix-explicit method becomes in-
creasingly important as problem size increases. Table 6.5 presents the time for total nonlinear solution
using both matrix-explicit and matrix-free approaches for the coarse, medium, and fine meshes on 1, 8,
and 64, processors, respectively. We see that in each case the matrix-free method performs more than
twice as fast as its matrix-explicit counterpart for a given problem size and processor configuration.

Table 6.5

Time (s) for total nonlinear solution on an SP2.

Processor Matrix Matrix Ratio
Grid Configuation Free Explicit (ME/MF)

Coarse 1 64.4 142.6 2.2
Medium 8 (8 × 1 × 1) 217.5 499.2 2.3

Fine 64 (16 × 2 × 2) 1019.3 2353.5 2.3

The plots in Fig. 6.10 show the scaling of the complete nonlinear simulation for the fine mesh on
16, 32, and 64 processors of an IBM SP with 120 MHz P2SC nodes with two 128 MB memory cards
each and a TB3 switch; analogous performance trends are seen also on the SP2. The data indicate a
modest decrease in nonlinear convergence rate as the number of processors grows; overall solution times
scale reasonably well.
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Fig. 6.10. Scalability of nonlinear solver (fine mesh).

Finally, Table 6.6 compares the scalability on two contemporary high-performance parallel comput-
ers, the IBM SP2 and the Cray T3E. Timings are given for a single matrix-free NKS iteration on the
fine mesh, including evaluation of the right-hand-side vector as well as the linear solve. We consider 16,
32, and 64-processor configurations and present speedup over the 16-processor case.
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Table 6.6

Scalability on the SP2, T3E: Timings for one nonlinear iteration on fine mesh.

Machine Number of Processors Time (s) Speedup over 16 Procs.

16 4.39 –
IBM SP2 32 2.46 1.8

64 1.60 2.7

16 5.15 –
Cray T3E 32 2.71 1.9

64 1.71 3.0

7. Conclusion. We have shown that the pseudo-transient matrix-free Newton-Krylov-Schwarz
(ΨNKS) methodology is robust and reasonably efficient for the parallel solution of large-scale CFD
problems, as demonstrated here for the three-dimensional compressible Euler equations. For a given
problem class, the various parameters that affect algorithmic performance can be systematically studied
and tuned. We have also shown how any one of several missing or mis-tuned functionalities can cause
convergence to slow or to hang at a level far from the best attainable. An integrated approach to
investigating innovative numerical methods and developing software is crucial to designing efficient,
reusable tools.

In our experience, conversion of a legacy code to the matrix-free NKS framework is a “filtering”
process. During the conversion to a Newton method, initially unrecognized explicit updates may be
discovered and unrecognized nondifferentiability or destabilizing sensitivity of local gradient information
about a function may be stumbled upon.

Additional work in progress includes the following:
• Investigation of techniques for evaluating relative function noise. As indicated in Section 4.2,

the robustness of matrix-free methods is potentially sensitive to the finite differencing parameter
for the Fréchet derivative. Its selection should be automatically adaptive.

• Incorporation of multilevel methods. Coarse-to-fine grid sequencing is a continuation tool as
powerful as pseudo-transient continuation. Linear multilevel methods that revisit the coarse
levels are also arithmetically optimal solvers for the Newton correction equations. Although
such methods may be very difficult for non-experts to tune in anisotropic, non-monotone-inverse
problems, they can be used effectively as preconditioners, as in [49]. Nonlinear multilevel
methods can also be directly accelerated by nonlinear Krylov methods, as in [61].

• Problem-adaptive domain partitioning. The deterioration of convergence rate of Schwarz meth-
ods with increasing subdomain granularity can be minimized when the cuts introduced to
create the partitions are along edges in the Jacobian matrix with minimal coefficient weight
(in some norm to be made more precise with further research). Obviously, load balance and
communication-to-computation ratio criteria may conflict with coefficient weight criteria in
partitioning, but there is often significant latitude (particularly in unstructured problems) in
choosing partitions, which could be exploited by such problem-specific knowledge.

• Nonlinear Schwarz methods. The global Newton method advocated in this paper is an asymp-
totically attractive implicit strategy, but many important problems have the property of being
strongly nonlinear in limited subregions and weakly nonlinear (or even linear) elsewhere. When
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such problems are solved with global Newton methods, work is often wasted on the well-behaved
regions while the solution slowly evolves in the strongly nonlinear regions (see, e.g., [14]). Non-
linear Schwarz methods, including asynchronous varieties, can adapt the work to the degree of
nonlinearity in the way that adaptive mesh refinement methods can adapt the work to solution
activity. We expect that NKS will fit into an overall solution strategy as a closing strategy, after
nonlinear Schwarz (employing NK as a subdomain solver) is adaptively applied as an opening
strategy.
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