Domain Decomposition with PETSc

William Gropp and David Keyes

Argonne National Laboratory

and

Columbia University
Introduction

- What and why is PETSc?
 - PETSc is a portable library for solving linear and nonlinear systems of equations in parallel
 - PETSc was originally designed to provide a library for experimentation in domain decomposition algorithms

- What is Domain Decomposition?
 - DD is a algorithmic technique for dividing problems into subproblems and combining the results to solve (or approximate) the solution
 - DD is a natural method for effective parallel algorithms for distributed memory computers
PETSc Team

Satish Balay Bill Gropp
Kris Buschelman Dinesh Kaushik
Victor Eijkhout Matt Knepley

Lois Curfman McInnes Barry Smith
Hong Zhang

Plus many users and contributors
- FUN3d, a legacy Fortran application, was parallelized using PETSc
 - 3D incompressible Euler
 - Tetrahedral grid
 - Up to 11 million unknowns
 - Based on a legacy NASA code, FUN3d, developed by W. K. Anderson
 - Fully implicit steady-state
 - Primary PETSc tools: nonlinear solvers (SNES) and vector scatters (VecScatter)
Dimension = 11,047,096

Aggregate Gflop/s

Asci Red

T3E

Asci Blue
Tutorial Overview

- Introduction to PETSc—Hello World
- Building a Poisson Solver in PETSc
 - Using distributed arrays to describe data parallelism
 - Using domain decomposition methods in PETSc
- Solving Nonlinear problems
 - Algorithms for nonlinear problems
 - Bratu example
 - More on distributed arrays in PETSc
- Time dependent problems
- Applications
 - Driven cavity example
- Wrapup
A Few Comments Before We Start

- PETSc is a very large library
 - This tutorial is designed to introduce PETSc without overwhelming you with information
 - Many features will not be covered. PETSc comes with extensive examples and documentation
- PETSc is a freely available and supported research code
 - Free for everyone, including industrial users
 - Hyperlinked documentation and manual pages for all routines
 - Many tutorial-style examples
 - Support via email: petsc-maint@mcs.anl.gov
 - Usable from Fortran 77/90, C, and C++
● Portable to any parallel system supporting MPI, including
 – Tightly coupled systems
 Cray T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise
 – Loosely coupled systems, e.g., networks of workstations
 HP (including Compaq/DEC), IBM, SGI, Sun and PCs running
 Linux or Windows
● What is not in PETSc
 – Discretizations
 – Unstructured mesh generation or refinement
 – Load balancing tools
 – Sophisticated visualization support
 – (But PETSc provides ways to interface to other tools)
Prerequisites

This tutorial assumes that you have at least a basic background in

- Finite difference methods for PDEs
- Iterative methods for solving linear systems

In addition

- Familiarity with MPI (the Message Passing Interface) is helpful but not required.
A First PETSc Program

- What do PETSc programs look like?
- What do PETSc parallel programs look like?
- How to compile, link, and run PETSc programs?
#include "petsc.h"

int main(int argc, char *argv[])
{
 PetscInitialize(&argc, &argv, 0, 0);

 PetscPrintf(PETSC_COMM_WORLD, "Hello World\n");
 PetscFinalize();
 return 0;
}
PetscInitialize Initialize PETSc. The arguments allow PETSc to initialize MPI if necessary.

PetscFinalize Finalize PETSc. Causes PETSc to call `MPI_Finalize` if necessary and also to generate summary reports.

PetscPrintf Ensures that only one process prints the data (Try it!)
integer ierr, rank
#include "include/finclude/petsc.h"
call PetscInitialize(PETSC_NULL_CHARACTER, ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr)
if (rank .eq. 0) then
 print *, 'Hello World'
endif
call PetscFinalize(ierr)
end
• Like the C code, except
 – PetscInitialize has fewer arguments because Fortran has no argc or argv
 – Must use MPI_Comm_rank and print because Fortran I/O uses a interface unavailable to libraries

• PETSc 2.1.6 adds a routine that can be used with a single character string (Fortran can’t implement its own I/O operations, so PETSc can’t provide parallel replacements)
PETSc make use of three environment variables. Two specify the location of PETSc and the particular machine architecture:

- **PETSC_DIR** The location of PETSc
- **PETSC_ARCH** The name of the machine architecture. In some cases, the script

 \$PETSC_DIR/bin/petscarch can be used to get the value that should be used for this environment variable

- The third specifies the level of optimization to use.
 - **BOPT** One of g, O, or Op; these indicate the level of optimization and debugging support within the PETSc library. Usually set on make line:

  ```
  make BOPT=g hello
  ```

- Use PETSc makefiles to ensure that all of the necessary libraries and compiler options are used. The makefiles in the various example directories are good starting points
 - Alternately, just include the PETSc variables and write your own Makefile
SHELL = /bin/bash
PETSC_DIR = c:/programs/petsc-2.1.5
PETSC_ARCH = win32_gnu
BOPT ?= g
NP ?= 4
PGM ?= hello
include $(PETSC_DIR)/bmake/common/base
EXECS = hello
all-redirect: $(EXECS) $(OBJS)

hello: hello.o chkopts
 $(CLINKER) -o hello hello.o $(PETSC_LIB)

run:
 $(MPIRUN) -np $(NP) $(PGM) $(ARGS)

clean-local:
 -rm -f $(EXECS) *.o
Use

\texttt{PETSC_DIR} = /usr/bin/petsc
\texttt{PETSC_ARCH} = linux

To run programs, make sure that your \texttt{PATH} includes \texttt{mpirun}.

Use \texttt{mpirun} to run programs:

```
mpirun -np 4 ./hello
```

Single process runs do not need \texttt{mpirun}:

```
./hello
```
PETSc uses the distributed memory, shared-nothing model.

Parallel PETSc programs consist of separate communicating processes.

PETSc uses MPI for parallelism:

- You can always access MPI routines.
- You will rarely need to use MPI while using PETSc.
- Many PETSc routines are *collective* in the MPI sense (all processes must call); others are local.
- Common uses of MPI in PETSc are the routines for communicator size and rank and for processor name.
- This is illustrated in a revised (and obviously parallel) hello world program.
#include "petsc.h"

int main(int argc, char *argv[])
{
 int rank;
 PetscInitialize(&argc, &argv, 0, 0);

 MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
 PetscSynchronizedPrintf(PETSC_COMM_WORLD,
 "Hello World from rank %d\n", rank);
 PetscSynchronizedFlush(PETSC_COMM_WORLD);
 PetscFinalize();
 return 0;
}
PetscSynchronizedPrintf Like `PetscPrintf`, except output comes from all processes in rank order.

PetscSynchronizedFlush Indicates that the calling process is done printing.

- Allows the use of multiple `PetscSynchronizedPrintf` calls

PETSC_COMM_WORLD The PETSc version of `MPI_COMM_WORLD`, they are usually the same set of processes. `PetscSetCommWorld`, used *before* `PetscInitialize`, may be used to give PETSc a subset of processes
PETSc and PDEs

- PETSc is designed around the mathematics of the problem
 - Specify the data in terms of vectors
 - Specify the problem as linear (using matrices) or nonlinear (using vector-valued functions) equations to be solved
 - Support parallel computing by automatically distributing these objects across all processes
- We’ll see a sequence of increasingly sophisticated PDE examples...
Poisson Problem

Let's solve a simple linear elliptic PDE

$$\nabla^2 u = f \text{ in } [0, 1] \times [0, 1]$$

$$u = 0 \text{ on the boundary}$$

using a simple discretization ($u_{i,j} = u(x_i, y_j), x_i = ih$)

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} = f(x_i, y_j).$$

(We use finite differences for simplicity; finite elements can be used as well.) For simplicity, consider $f = \sin(\pi x) \sin(\pi y)$.

We will discretize the interior of the mesh only for this example.
In PETSc, your main program remains in control:

```plaintext
main program
    PetscInitialize()
    A = create the matrix
    b = create a vector
    Use SLES to solve A x = b
    print solution
    PetscFinalize()
```

SLES is the “simplified linear equation solver” component of PETSc
Creating the Matrix

```c
#include "petscsles.h"

/* Form the matrix for the 5-point finite difference 2d Laplacian
   on the unit square. n is the number of interior points along a side */
Mat FormLaplacian2d( int n )
{
    Mat   A;
    int   r, rowStart, rowEnd, i, j;
    double h, oneByh2;

    h = 1.0 / (n + 1); oneByh2 = 1.0 / (h * h);
    MatCreate( PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE,
               n*n, n*n, &A);
    MatSetFromOptions( A );
    MatGetOwnershipRange( A, &rowStart, &rowEnd );
```
/* This is a simple but inefficient way to set the matrix */
for (r=rowStart; r<rowEnd; r++) {
 i = r % n; j = r / n;
 if (j - 1 > 0) {
 MatSetValue(A, r, r - n, oneByh2, INSERT_VALUES); }
 if (i - 1 > 0) {
 MatSetValue(A, r, r - 1, oneByh2, INSERT_VALUES); }
 MatSetValue(A, r, r, -4*oneByh2, INSERT_VALUES);
 if (i + 1 < n - 1) {
 MatSetValue(A, r, r + 1, oneByh2, INSERT_VALUES); }
 if (j + 1 < n - 1) {
 MatSetValue(A, r, r + n, oneByh2, INSERT_VALUES); }
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
return A;
MatCreate Create a matrix object.

- n^2 equations, so matrix is of size $n \times n \times n$
- PETSC_DECIDE tells PETSc to choose the distribution of the matrix across the processes

MatSetFromOptions Set basic matrix properties (such as data structure) from command line

MatGetOwnershipRange Get the rows of the matrix that PETSc assigned to this process

- PETSc uses a simple assignment of consecutive rows to a process. This simplifies much of the internal structure of PETSc, and, as we shall see, does not reduce the generality
- It is not necessary to set values on the “owning” process
- Returns first row to one + last row on process.
 - Matches common C idiom (for (i=start; i<end; i++))
 - Number of rows is end-start
MatSetValue Insert (or optionally add with ADD_VALUES) a value to a matrix (*Warning*: This is a macro and needs braces)

MatAssemblyBegin and MatAssemblyEnd Complete the creation of matrix. The matrix may not be used for any operation (other than MatSetValue) until after MatAssemblyEnd.

The approach of separating setting values from assembly has several benefits

- Any process may set a value to *any* element of the matrix, even ones not “owned” by the calling process.
- PETSc manages all data communication between processes
- PETSc can optimize the insertion of matrix elements
PETSc matrices are objects for storing linear operators. They allow many types of data structures:

- Default sparse format MATMPIAIJ and MATSEQAIJ
- Block sparse MATMPIBAIJ and MATSEQBAIJ
- Symmetric block sparse MATMPISBAIJ and MATSEQSBAIJ
- Block diagonal MATMPIBDIAG and MATSEQBDIAG
- Dense MATMPIDENSE and MATSEQDENSE
- Many others (see `$PETSC_DIR/include/petscmat.h`)

Choice of format is made from command line (with `MatSetFromOptions`) or program (with `MatSetType`). The same routines are used for all choices of data structure. User-defined data-structures supported with “Shell” objects.
Data Decomposition in PETSc

- How are objects distributed among processes in PETSc?
 - Contiguous rows of a vector or matrix are assigned to processes, starting from the process with rank zero
- The matrix and vector for a 3×3 mesh, with two processes, has the following decomposition

\[
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x_8 \\
\end{pmatrix} =
\begin{pmatrix}
4 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
\end{pmatrix}
\]
Why Are PETSc Matrices The Way They Are?

- No one data structure is appropriate for all problems
 - Blocked and diagonal formats provide significant performance benefits
 - PETSc provides a large selection of formats and makes it (relatively) easy to extend PETSc by adding new data structures

- Matrix assembly is difficult enough without being forced to worry about data partitioning
 - PETSc provide parallel assembly routines
 - Achieving high performance still requires making most operations local to a process, but this approach allows incremental development of programs

- Matrix decomposition by consecutive rows across processes is simple and makes it easier to work with other codes
 - For applications with other ordering needs, PETSc provides “Application Orderings” (AO)
In order to support the distributed memory “shared nothing” model, as well as single processors and shared memory systems, a PETSc vector is a “handle” to the real vector

- Allows the vector to be distributed across many processes
- To access the elements of the vector, we cannot simply do
 \[
 \text{for (i=0; i<n; i++) v[i] = i;}
 \]
- We do not want to require that the programmer work only with the “local” part of the vector; we want to permit operations, such as setting an element of a vector, to be performed by any process.

The solution is to make vectors an object, just like a parallel matrix
#include "petscvec.h"

/* Form a vector based on a function for a 2-d regular mesh on the unit square */
Vec FormVecFromFunction2d(int n, double (*f)(double, double))
{
 Vec V;
 int r, rowStart, rowEnd, i, j;
 double h;

 h = 1.0 / (n + 1);
 VecCreate(PETSC_COMM_WORLD, &V);
 VecSetSizes(V, PETSC_DECIDE, n*n);
 VecSetFromOptions(V);
VecGetOwnershipRange(V, &rowStart, &rowEnd);
/* This is a simple but inefficient way to set the vector */
for (r=rowStart; r<rowEnd; r++) {
 i = (r % n) + 1;
 j = (r / n) + 1;
 VecSetValue(V, r, (*f)(i * h, j * h), INSERT_VALUES);
}
VecAssemblyBegin(V);
VecAssemblyEnd(V);
return V;
Understanding the Code

VecCreate Creates the vector. Unlike MatCreate, the size must be set separately

VecSetSizes Sets the global and local size of the vector. Use PETSC_DECIDE to have PETSc choose the distribution across processes

VecSetFromOptions Like the matrix counterpart. VecSetType may be used instead.

VecGetOwnershipRange Like the matrix counterpart

VecSetValue Sets the value for a vector element. Use ADD_VALUES to add to a vector element. Like the matrix routines, elements can be inserted or added by any process.

VecAssemblyBegin and VecAssemblyEnd Like the Matrix counterparts
```c
#include <math.h>
#include "petscsles.h"
extern Mat FormLaplacian2d( int );
extern Vec FormVecFromFunction2d( int, double (*)(double,double) );
/* This function is used to define the right-hand side of the
Poisson equation to be solved */
double func( double x, double y ) {
    return sin(x*M_PI)*sin(y*M_PI); }

int main( int argc, char *argv[] )
{
    SLES sles;
    Mat A;
    Vec b, x;
    int its, n;
    PetscInitialize( &argc, &argv, 0, 0 );
```
n = 10; /* Get the mesh size. Use 10 by default */
PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

A = FormLaplacian2d(n);
b = FormVecFromFunction2d(n, func);
VecDuplicate(b, &x);
SLESCreate(PETSC_COMM_WORLD, &sles);
SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);
SLESSetFromOptions(sles);
SLESSolve(sles, b, x, &its);

PetscPrintf(PETSC_COMM_WORLD, "Solution in %d iterations is:\n", its);
VecView(x, PETSC_VIEWER_STDOUT_WORLD);

MatDestroy(A); VecDestroy(b); VecDestroy(x);
SLESDestroy(sles);
PetscFinalize();
return 0;
SLESCreate Create a context used to solve a linear system. This routine is used for all solvers, independent of the choice of algorithm or data structure.

SLESSetOperators Define the problem.

- The third argument allows the use of a different matrix for preconditioning.
- DIFFERENT_NONZERO_PATTERN indicates whether the preconditioner has the same nonzero pattern each time a system is solved. This default works with all preconditioners. Other values (e.g., SAME_NONZERO_PATTERN) can be used for particular preconditioners. Ignored when solving only one system.

SLESSetFromOptions Set the algorithm, preconditioner, and the associated parameters, using the command-line.

SLESSolve Actually solve the system of linear equations. The number of iterations is returned (a reflection of the bias towards iterative methods). If a direct method is used, one is returned in its.

SLESDestroy Free the SLES context and all storage associated with it.
how should a matrix be described in a program?
- old way:
 - dense matrix

 double precision A(10,10)
 - sparse matrix

 integer ia(11), ja(max_nz)
 double precision a(max_nz)
- new way:

 Mat M

- hides the choice of data structure
- of course, the library still needs to represent the matrix with some choice of data structure, but this is an implementation detail

- benefit
- programs become independent of any particular choice of data structure, making it easier to modify and adapt programs.
Operations in PETSc

- How should operations like “solve linear system” be described in a program?
 - Old way
    ```c
    mpiaijgmres( ia, ja, a, comm, x, b, nlocal, nglobal, ndir, orthomethod, convtol, &its )
    ```
 - New way
    ```c
    SLESSolve( sles, b, x, &its )
    ```

- Hides the choice of algorithm
 - Algorithms are to operations as data structures are to objects

- Benefit
 - Programs become independent of a particular choice of algorithm, making it easier to explore algorithmic choices and to adapt to new methods

- In PETSc, operations have their own “handle”, called a “context variable”
Context Variables in PETSc

- Context variables are the key to solver organization
- They contain the complete state of an algorithm, including
 - parameters (e.g., convergence tolerance)
 - functions run by the algorithm (e.g., convergence monitoring routine)
 - information about the current state (e.g., iteration number)
Each SLES object contains two other objects:

KSP Krylov Space Method
- The iterative method
- The KSP context contains information on the method parameters, e.g. GMRES restart and search directions

PC Preconditioners
- Knows how to apply the preconditioner
- The context contains information on the preconditioner, such as ILU fill level
Available Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>KSP Name</th>
<th>PETSc option</th>
<th>PC Name</th>
<th>PETSc option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugate Gradient</td>
<td>cg</td>
<td></td>
<td>Block Jacobi</td>
<td>bjacobi</td>
</tr>
<tr>
<td>GMRES</td>
<td>gmres</td>
<td></td>
<td>Overlapping</td>
<td></td>
</tr>
<tr>
<td>Bi-CG-stab</td>
<td>bicg</td>
<td></td>
<td>Additive</td>
<td></td>
</tr>
<tr>
<td>Transpose-free QMR</td>
<td>tfqmr</td>
<td></td>
<td>Schwarz</td>
<td></td>
</tr>
<tr>
<td>Richardson</td>
<td>richardson</td>
<td></td>
<td>ILU</td>
<td>ilu</td>
</tr>
<tr>
<td>CG-Squared</td>
<td>cgs</td>
<td></td>
<td>SOR</td>
<td>sor</td>
</tr>
<tr>
<td>SYMMLQ</td>
<td>symmlq</td>
<td></td>
<td>LU (direct solve)</td>
<td>lu</td>
</tr>
<tr>
<td>others</td>
<td>others</td>
<td></td>
<td>Multigrid</td>
<td>mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arbitrary matrix</td>
<td>mat</td>
</tr>
</tbody>
</table>

Note: The table above lists various KSP (Krylov Subspace Methods) and PC (Preconditioner) options available in PETSc. The options are organized by name and include methods such as Conjugate Gradient (cg), GMRES, Bi-CG-stab, Transpose-free QMR, Richardson, CG-Squared, SYMMLQ, and others. The PETSc options corresponding to these methods are also listed.
PETSc makes it easy to try different algorithms:

```
mpiexec -n 4 poisson -ksp_type cg
mpiexec -n 4 poisson -ksp_type gmres
mpiexec -n 4 poisson -pc_type bjacobi -sub_pc_type ilu \  
    -ksp_type bcgs
```

PETSc makes experimentation with different algorithms easy:
- Many are already built-in
- You can add new algorithms and data structures to PETSc; these are then used just like the built-in ones (e.g., a new preconditioner can be used with an existing source code without any changes. (However, this is not a one-day project.)

Many other options available. Use
```
poisson -help | more
```

to get a list of available options
PETSc provides routines to check for and monitor convergence. The choice of monitor and the output from that monitor can be controlled from the command line:

- `-ksp_monitor` Print the preconditioned residual norm
- `-ksp_xmonitor` Plot the preconditioned residual norm
- `-ksp_truemonitor` Print the true residual norm $\| Ax - b \|_2$
- `-ksp_truexmonitor` Plot the true residual norm

Custom monitors can be defined by the user.
Accessing the Solution

- **Viewers** are used in PETSc to access and display the contents of an object.
- A simple viewer prints data out standard output:

 \[
 \text{VecView}(V, \text{PETSC_VIEWER_STDOUT_WORLD});
 \]
- PETSc provides a wide range of viewers for all major objects:
 - Viewers make it easy to send vectors and matrices to Matlab.
 - Graphical viewers make it easy to display data.
 - Binary viewers make it easy to save and load data.
PETSc Viewers

- PETSc has many viewers
 - `PETSC_VIEWER_STDOUT_SELF` Sequential, prints to stdout
 - `PETSC_VIEWER_STDOUT_WORLD` Parallel, prints to stdout
 - `PETSC_VIEWER_DRAW_WORLD` Parallel, draws using X-Windows

- Viewers exist for matrices, vectors, and other objects
 - Matrix viewers provide information and graphical display of matrix sparsity structure and assembly (try `-mat_view_draw`, `-mat_view_info`, or `-mat_view`
 - Viewers on other objects can print out information about the object
It is sometimes helpful to have direct access to the storage for the local elements of a vector.

The routines VecGetArray and VecRestoreArray may be used to get and return the local elements.

The routine VecGetLocalSize returns the number of elements in the local part of the vector.

VecGetArray returns a pointer to an array that contains the locally-owned values in the vector. Normally, this is just a pointer into the storage that PETSc uses, but for special vector implementations, it may be different storage used just for VecGetArray.

VecRestoreArray gives the array back to PETSc. Normally, this has no work to do, but if PETSc had to allocate storage for VecGetArray, this routine will free that storage.

We illustrate this with a routine to compute the norm of $\|x + ay\|$.

Often need to compute \(\|x - y\| \), for example, for convergence tests. Also useful in checking a solution.

PETSc does provide routines to compute \(x + \alpha y \) and \(\|x\| \), but no single routine to compute the norm of the difference of two vectors.

As an example of accessing local elements of a vector, we will implement “mVecNormXPAY” which computes \(\|x + \alpha y\| \).

- Accepts all PETSc norm types: NORM_1, NORM_2, and NORM_INFINITY.

A single routine avoids creating an unneeded temporary vector and avoids extra memory motion needed when using multiple routines.
```c
#include "petscvec.h"

/* This is a new vector routine for PETSc, illustrating the use
   of several PETSc functions for accessing vector elements */

int mVecNormXPAY( Vec x, Vec y, const PetscScalar a, NormType ntype,
   PetscReal *norm )
{
    const double * restrict xvals, * restrict yvals;
    int nlocal, i, ierr = 0;
    MPI_Op normop;
    double sum = 0.0, totsum;

    /* Get the local arrays and the size */
    VecGetArray( x, (PetscScalar **)xvals );
    VecGetArray( y, (PetscScalar **)yvals );
    VecGetLocalSize( x, &nlocal );
```
if (a == -1) {
 /* Special case for difference of two vectors */
 switch (ntype) {
 case NORM_1:
 for (i=0; i<nlocal; i++) {
 sum += fabs(xvals[i] - yvals[i]);
 }
 normop = MPI_SUM;
 break;
 case NORM_2:
 for (i=0; i<nlocal; i++) {
 register PetscScalar tmp = xvals[i] - yvals[i];
 sum += tmp*tmp;
 }
 normop = MPI_SUM;
 break;
 }
case NORM_INFINITY:
 for (i=0; i<nlocal; i++) {
 register PetscScalar tmp;
 tmp = fabs(xvals[i] - yvals[i]);
 if (tmp > sum) sum = tmp;
 }
 normop = MPI_MAX;
 break;
default:
 ierr = 1;
 break;
}
Computing $\| x - y \|$ IV

54 MPI_Comm comm;
55 PetscObjectGetComm((PetscObject)x, &comm);
56 MPI_Allreduce(&sum, &totsum, 1, MPI_DOUBLE, comm, normop);
57 if (ntype == NORM_2) {
58 totsum = sqrt(totsum);
59 }
60 *norm = totsum;
61
62
63 VecRestoreArray(x, (PetscScalar **)&xvals);
64 VecRestoreArray(y, (PetscScalar **)&xvals);
65
66 return ierr;
67 }

PetscScalar is just a name for double; using this name allows the
PETSc to be rebuilt for float or Complex scalars.
How should a vector be distributed across processes? PETSc’s default is a “one-dimensional decomposition”
How can you make use of different data decompositions in PETSc? PETSc provides “Distributed Arrays” (DAs) for this purpose.
For example, consider the layout of a mesh onto this processor mesh:

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>P1</td>
<td></td>
</tr>
</tbody>
</table>
On this 2×2 process grid, the vector elements are numbered like this:

<table>
<thead>
<tr>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18</th>
<th>19</th>
<th>20</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Natural numbering

PETSc’s internal numbering

DAs provide a “logically Cartesian” decomposition. There are no physical coordinates associated with a DA.
PETSc distributed arrays (DAs) provide a way to describe a multidimensional arrays, distributed across a parallel processor.

DAs provide a way to use more complex data decompositions:

```
DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC,
DA_STENCIL_STAR,
    nx, ny, px, py, 1, 1, 0, 0, &grid);
```

creates a global $nx \times ny$ grid, with a $px \times py$ process decomposition.

The DA_STENCIL_STAR and the arguments after py have to do with the difference stencil that may be used with this array and will be discussed later.

MPI_Dims_create may be used to determine good values for px and py.
Setting the Vector Values I

```c
#include "petsc.h"
#include "petscvec.h"
#include "petscda.h"

/* Form a vector based on a function for a 2-d regular mesh on the unit square */
Vec FormVecFromFunctionDA2d( DA grid, int n,
                           double (*f)( double, double ) )
{
    Vec V;
    int is, ie, js, je, in, jn, i, j;
    double h;
    double **vval;

    h = 1.0 / (n + 1);
    DACreateGlobalVector( grid, &V );
```
DAVecGetArray(grid, V, (void **)&vval);
/* Get global coordinates of this patch in the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
ie = is + in - 1;
je = js + jn - 1;
for (i=is ; i<=ie ; i++) {
 for (j=js ; j<=je ; j++) {
 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);
 }
}
DAVecRestoreArray(grid, V, (void **)&vval);
return V;
Understanding the Code

- **DACreateGlobalVector** Creates a PETSc vector that may be used with DAs

- **DAVecGetArray** Get a multidimensional array that gives the illusion of a global array (PETSc uses tricks with the array indexing to provide access to the local elements of the vector). Otherwise, like VecGetArray.

- **DAVecRestoreArray** Like VecRestoreArray, used to allow PETSc to free any storage allocated by DAVecGetArray

- **DAGetCorners** Returns the indices of the lower-left corner of the local part of the distributed array relative to the global coordinates, along with the number of points in each direction.
/* Form the matrix for the 5-point finite difference 2d Laplacian
on the unit square. n is the number of interior points along a
side */
Mat FormLaplacianDA2d(DA grid, int n)
{
 Mat A;
 int r, i, j, is, ie, js, je, in, jn, nelm;
 MatStencil cols[5], row;
 double h, oneByh2, vals[5];

 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

 DAGetMatrix(grid, MATMPIAIJ, &A);
 /* Get global coordinates of this patch in the DA grid */
DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);
ie = is + in - 1;
je = js + jn - 1;
/* This is a simple but inefficient way to set the matrix */
for (i=is; i<=ie; i++) {
 for (j=js; j<=je; j++){
 row.j = j; row.i = i; nelm = 0;
 if (j - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j - 1; cols[nelm++].i = i;}
 if (i - 1 > 0) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i - 1;}
 vals[nelm] = - 4 * oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i;
 if (i + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j; cols[nelm++].i = i + 1;}
}
if (j + 1 < n - 1) {
 vals[nelm] = oneByh2;
 cols[nelm].j = j + 1; cols[nelm++].i = i;
 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,
 INSERT_VALUES);
}

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

return A;
Understanding the Code

DAGetMatrix Returns a matrix whose elements can be accessed with the coordinates of the distributed array. The type of the matrix must be specified; this chooses a parallel matrix using AIJ format (MATMPIAIJ).

MatSetValuesStencil Sets elements of a matrix using mesh coordinates

MatStencil Data structure that contains the indices of a point in the DA, using the i, j, k members of the structure
```c
#include <math.h>
#include "petscsles.h"
#include "petscda.h"
extern Mat FormLaplacianDA2d( DA, int );
extern Vec FormVecFromFunctionDA2d( DA, int, double (*)(double,double) );
/* This function is used to define the right-hand side of the
Poisson equation to be solved */
double func( double x, double y ) {
    return sin(x*M_PI)*sin(y*M_PI); }

int main( int argc, char *argv[] )
{
    SLES      sles;
    Mat       A;
    Vec       b, x;
    DA        grid;
    int       its, n, px, py, worldSize;
```
PetscInitialize(&argc, &argv, 0, 0);

/* Get the mesh size. Use 10 by default */
n = 10;
PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

/* Get the process decomposition. Default it the same as without DAs */
px = 1;
PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);
MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);
py = worldSize / px;

/* Create a distributed array */
DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,
 n, n, px, py, 1, 1, 0, 0, &grid);

/* Form the matrix and the vector corresponding to the DA */
A = FormLaplacianDA2d(grid, n);
b = FormVecFromFunctionDA2d(grid, n, func);
VecDuplicate(b, &x);
SLESCreate(PETSC_COMM_WORLD, &sles);
SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);
SLESSetFromOptions(sles);
SLESSolve(sles, b, x, &its);

PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");
VecView(x, PETSC_VIEWER_STDOUT_WORLD);
PetcPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);
MatDestroy(A); VecDestroy(b); VecDestroy(x);
SLESDestroy(sles); DADestroy(grid);
PetcFinalize();
return 0;
• Lab: Explore the scaling of the in terms of the iteration counts for solving Poisson problem using the default 1-d and the DA-based 2-d decomposition, as a function of the number of processes.
Incremental Application Improvement

- Get the application “up and walking”
- Experiment with options. Determine opportunities for improvement
- Extend algorithms and/or data structures as needed
- Consider interface and efficiency issues for integration and interoperability of multiple toolkits
- Full tutorials available at

 http://www.mcs.anl.gov/petsc/docs/tutorials
Examples of Linear Solves

ex1.c: Solves a tridiagonal linear system with SLES
ex2,3.c: Solves a linear system in parallel with SLES
ex4.c: Uses a different preconditioner matrix and linear system matrix in the SLES solvers
ex5.c: Solves two linear systems in parallel with SLES
ex7.c: Block Jacobi preconditioner for solving a linear system in parallel with SLES
ex8.c: Illustrates use of the preconditioner ASM
ex9.c: The solution of 2 different linear systems with different linear solvers
ex10.c: Reads a PETSc matrix and vector from a file and solves a linear system
ex11.c: Solves a linear system in parallel with SLES
ex12.c: Solves a linear system in parallel with SLES
ex13.c: Solves a variable Poisson problem with SLES
ex15.c: Solves a linear system in parallel with SLES
ex16.c: Solves a sequence of linear systems with different right-hand-side vectors
ex22.c: Solves 3D Laplacian using multigrid
ex23.c: Solves a tridiagonal linear system
ex25.c: Solves 1D variable coefficient Laplacian using multigrid
ex26.c: Solves a linear system in parallel with ESI
ex27.c: Reads a PETSc matrix and vector from a file and solves the normal equations
PETSc provides a large collection of preconditioners, including domain decomposition preconditioners

- Additive Schwarz

  ```
  mpiexec -n 4 poisson -pc_type_asm
  ```

- Control the subdomain solver with `-sub_pc_type`:

  ```
  mpiexec -n 4 poisson -pc_type_asm -sub_pc_type ilu
  ```

 (In general, `-sub_pc_<pcparmname>` may be used to change the PC parameter pcparmname in the subdomain, and `-sub_ksp_<kspparmname>` for KSP in the subdomain.)

- Control the subdomain overlap

  ```
  mpiexec -n 4 poisson -pc_type_asm -pc_asm_overlap 2
  ```

The tutorial example Makefile lets you run these with the “run” target:

```
make run PGM=poisson NP=4 ARGS="-pc_type_asm -pc_asm_overlap 2"
```
PETSc’s Automatic ASM

- PETSc automatically generates overlap by using the structure of the sparse matrix. Control with `-pc_asm_overlap`
- DAs allow you to control the local physical domain
- By using DAs, you can experiment with the effects of different decompositions

  ```
  mpiexec -n 16 poisson  -n 64 -pc_type asm
  mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 8 -my 2 
  mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 4 -my 4 
  ```
- Other ASM types are available with `-pc_asm_type`
 - **basic** full interpolation and restriction
 - **restrict** full restriction, local process interpolation
 - **interpolate** full interpolation, local process restriction
 - **none** local process restriction and interpolation
The number and layout of domains sets a minimum for the number of iterations expected for convergence.

At the very least, data must travel from across the entire mesh:

In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus

Square decompositions provide the best starting point.
The number and layout of domains sets a minimum for the number of iterations expected for convergence.

At the very least, data must travel from across the entire mesh:

In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus

Square decompositions provide the best starting point.
- The number and layout of domains sets a minimum for the number of iterations expected for convergence.
- At the very least, data must travel from across the entire mesh:

\[\text{In general, solving with a } p_x \times p_y \text{ decomposition requires at least } (p_x - 1)(p_y - 1) \text{ steps, thus} \]

- Square decompositions provide the best starting point.
The number and layout of domains sets a minimum for the number of iterations expected for convergence.

At the very least, data must travel from across the entire mesh:

In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus

Square decompositions provide the best starting point.
The number and layout of domains sets a minimum for the number of iterations expected for convergence.

At the very least, data must travel from across the entire mesh:

In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus

Square decompositions provide the best starting point.
The number and layout of domains sets a minimum for the number of iterations expected for convergence.

At the very least, data must travel from across the entire mesh:

- In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus
- Square decompositions provide the best starting point
- The number and layout of domains sets a minimum for the number of iterations expected for convergence
- At the very least, data must travel from across the entire mesh:

- In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus
- Square decompositions provide the best starting point
- The number and layout of domains sets a minimum for the number of iterations expected for convergence.
- At the very least, data must travel from across the entire mesh:

 ![Diagram](image)

- In general, solving with a $p_x \times p_y$ decomposition requires at least $(p_x - 1)(p_y - 1)$ steps, thus
- Square decompositions provide the best starting point.
Aside: Error Handling in PETSc

- All PETSc routines return an error value. This can be tested with CHKERRQ, as in

  ```
  ierr = SLESCreate( PETSC_COMM_WORLD, &sles ); CHKERRQ(ierr);
  ```

 Using CHKERRQ allows PETSc to provide clear and specific error messages.

- An alternative is to set the error handler that PETSc calls when an error is first detected:

  ```
  PetscPushErrorHandler( PetscAbortErrorHandler, 0 );
  ```

 (only available in C in PETSc 2.1.5). Other handlers exist, including PetscAttachDebuggerErrorHandler.

- Command line options `-on_error_abort` and `-start_in_debugger` may also be used to change the default error handler.
We would like to solve

\[F(u) = 0 \]

for \(u \). A powerful method for this is *Newton’s method*:

\[u^{k+1} = u^k - (F'(u^k))^{-1}F(u^k), \quad k = 0, 1, \ldots \]

where \(u^k \) is the approximation to \(u \) at the \(k \)th step. The term \(F'(u^k) \) is a matrix, and this algorithm can be rewritten as

\[
F'(u^k) \Delta u^k = -F(u^k) \\
\]

\[
u^{k+1} = u^k + \Delta u^k
\]
In practice, various modifications are made to Newton’s method. PETSc supports many of the most common:

- Line search strategies
- Trust region strategies
- Pseudo-transient continuation
- Matrix-free variants

PETSc provides a “Simplified Nonlinear Equation Solver” (SNES) for nonlinear problems. SNES is the nonlinear analogue of SLES.
The matrix $F'(u)$ is called the *Jacobian*. For PDE problems, computing the Jacobian can be tricky. Three choices are:

1. Compute F' analytically, then discretize
2. Discretize F, then compute F' by finite difference approximation
3. Discretize F, then compute F' by analytically differentiating the discretization of F

PETSc provides additional support for 2, and by interfacing to ADIFOR and ADIC, support for 3
The *Bratu* problem is defined by

\[-\nabla^2 u - \lambda e^u = 0 \text{ in } [0, 1] \times [0, 1] \]
\[u = 0 \text{ on the boundary} \]

We will use the same simple discretization for this problem as for the Poisson problem.
Evaluating the Function

- Evaluating the function $F(u) = -\nabla^2 u - \lambda e^u$ is somewhat difficult because it involves a differential operator. This requires information from the neighboring processes. We will use distributed arrays (DAs) to help with this, taking advantage of their support for different stencils.

- An alternate approach for this example is to use a matrix-vector multiply, using

 \[
 \text{MatMult}(A, x, y);
 \]

 to compute $y = Ax$. This routine handles all data motion required. However, it is suitable only for relatively simple $F(u)$. Thus, we will explore more general techniques.
Stencils

Star Stencil
(DA_STENCIL_STAR)

Box Stencil
(DA_STENCIL_BOX)

Star Stencil
(da_stencil_star)

Box Stencil
(da_stencil_box)
A vector associated with a DA has two representations: the *global* and the *local*

- The global representation is nothing more than the natural mesh, distributed across all processes.
- The local representation is the local part of the global mesh, *plus* the ghost points.

Global: each process stores a unique local set of vertices, and each vertex is owned by exactly one process.

Local: each process stores a unique local set of vertices *as well* as ghost points from neighboring processes.
A ghost region is defined by the coordinates *in the global representation*:

![Diagram of ghost region with coordinates]

The routine DAGetGhostCorners returns this information, similar to DAGetCorners.
DACreateLocalVector Creates a PETSc vector that can hold the local representation of a DA (the local mesh plus ghost points)

DAGlobalToLocalBegin and DAGlobalToLocalEnd Update the ghostpoint values. This involves communication with the neighboring processes

DALocalToGlobal Transfers values in the local representation back to the global representation. The ghost points are discarded.
In the Bratu example,

\[F(u) = -\nabla^2 u - \lambda e^u \]

so

\[F'(u)a = -\nabla^2 a - \lambda ae^u, \]

where \(ae^u \) is just \(\{a_i \times e^{ui}\} \). Thus the Jacobian \(F'(u) \) is almost the same as the matrix for the Poisson problem, with a diagonal element that depends on \(u \). Now that we know what these are, how do we provide them to PETSc?
Providing the Function and Jacobian

We now have functions that evaluate F and F'. How can these be used by the SNESolve routine?

- The algorithm needs to evaluate both, under control of the algorithm.
- The solution used in PETSc is to pass the functions themselves to the routine that defines the problem, much as the matrix defining a linear problem to solve is passed to SLESSetOperators.
- This is a “callback” method, because the user provides functions to the solver that are called back by the algorithm when their results are needed.
- The *calling sequence* for the routine is specified by PETSc.
Specifying Callbacks

- User provides the routines to perform actions that the library requires. For example

 \[\text{SNESSetFunction(snes, } f, \text{ userfunc, userctx) } \]

- \text{sn}es SNES context
- \text{f} Vector that will be used to store the function value
- \text{userfunc} Name of (really, pointer to) the function
- \text{userctx} Pointer to data passed that will be passed to the function

- The library can call this function whenever it needs to evaluate the function

- The userctx pointer allows the user to provide an “application context” object. By using this approach, the library need never know the details of data needed only by the application.
/* Evaluate the function for the Bratu nonlinear problem on the local mesh points */
int FormBratuFunction(SNES snes, Vec v, Vec f, void *ctx)
{
 UserBratuCtx *bratu = (UserBratuCtx *)ctx;
 DA da = bratu->da;
 double lambda = bratu->lambda;
 double h = bratu->h;
 Vec lv;
 int i, j;
 int lli, llj, ni, nj; /* lower left i,j and size for local part of mesh */
const double **varr;
double **fvarr;

/* Get the coordinates of our part of the global mesh */
DAGetCorners(da, &lli, &llj, 0, &ni, &nj, 0);

DAGetLocalVector(da, &lv);

/* Scatter the ghost points to the other processes, using the values in the input vector v */
DAGlobalToLocalBegin(da, v, INSERT_VALUES, lv);
DAGlobalToLocalEnd(da, v, INSERT_VALUES, lv);

DAVecGetArray(da, lv, (void **)varr);
DAVecGetArray(da, f, (void **)fvarr);

for (j=llj ; j<llj+nj ; j++)
 for (i=lli ; i<lli+ni ; i++) {
if (i == 0 || j == 0 ||
 i == bratu->n + 1 || j == bratu->n + 1) {
 fvarr[j][i] = 0.0;
}
else {
 fvarr[j][i] = -(varr[j-1][i] + varr[j][i-1] +
 varr[j+1][i] + varr[j][i+1] -
 4 * varr[j][i]) / (h*h) -
 lambda * exp(varr[j][i]);
}

DAVecRestoreArray(da, f, (void **)&fvarr);
DAVecRestoreArray(da, lv, (void **)&varr);
DARestoreLocalVector(da, &lv);

return 0;
}
One key feature of this routine is the use of the fourth argument, "ctx", to pass additional information to the Function. In this case, we use a user-defined structure defined in bratu.h:

```c
/* This typedef defines a struct that contains the data that we need to have when evaluating the function or the Jacobian for the Bratu problem */
typedef struct {
    DA da;  /* DA for grid */
    double h;  /* Mesh spacing */
    double lambda;  /* parameter in problem */
    int n;  /* interior grid is n x n */
} UserBratuCtx;
```

The rest of the code uses the DA to provide ghost values for the evaluation of the finite difference scheme:

- Boundary conditions, as always, add complexity


```c
#include "petscsnes.h"
#include "petscda.h"
#include "bratu.h"
#include <math.h>

/* Form the matrix for the Jacobian of the Bratu problem, where the
function uses a 5-point finite difference 2d Laplacian
on the unit square. n is the number of interior points along a side */
Mat FormBratuJacobian( SNES snes, Vec u, Mat *A, Mat *B, MatStructure *flag,
          void *ctx )
{
    Mat jac = *A;
    UserBratuCtx *bratu = (UserBratuCtx *)ctx;
    DA da = bratu->da;
    int r, i, j, n = bratu->n;
    double oneByh2, **uvals;
    double h = bratu->h, lambda = bratu->lambda;

```
int lli, llj, ni, nj; /* lower left i,j and size for local part of mesh */

MatStencil row, col[5];
double v[5];

oneByh2 = 1.0 / (h*h);

DAGetCorners(da, &lli, &llj, 0, &ni, &nj, 0);
DAVecGetArray(da, u, (void **)&uvals);

/* This is a simple but inefficient way to set the matrix */
for (j=llj; j<llj+nj; j++) {
 for (i=lli; i<lli+ni; i++) {
 row.i = i; row.j = j;
 if (i == 0 || j == 0 ||
 i == n + 1 || j == n + 1) {
 v[0] = 1.0;
 MatSetValuesStencil(jac, 1, &row, 1, &row, v, INSERT_VALUES

 MatSetValuesStencil(jac, 1, &row, 1, &row, v, INSERT_VALUES

DD-15 July 2003 – p.90/148
} else {
 col[0].i = i; col[0].j = j - 1; v[0] = - oneByh2;
 col[1].i = i; col[1].j = j + 1; v[1] = - oneByh2;
 col[3].i = i + 1; col[3].j = j; v[3] = - oneByh2;
 col[4].i = i; col[4].j = j;
 v[4] = 4.0 * oneByh2 - lambda * exp(uvals[j][i]);
 MatSetValuesStencil(jac, 1, &row, 5, col, v, INSERT_VALUES
 }
 }
 MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY);
 DAVecRestoreArray(da, u, (void **)&uvals);

 flag = SAME_NONZERO_PATTERN; / preconditioner has same structure */
 MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY);
return 0;
}

#include "petscsnes.h"
#include "petscda.h"
#include "bratu.h"

extern int FormBratuJacobian(SNES, Vec, Mat *, Mat *, MatStructure *, void *);
extern int FormBratuFunction(SNES, Vec, Vec, void *);

int main(int argc, char *argv[])
{
 UserBratuCtx bratu;
 SNES snes;
 Vec x, r;
 Mat J;
 int its;

 PetscInitialize(&argc, &argv, 0, 0);
/* Get the problem parameters */
bratu.lambda = 6.0;
PetscOptionsGetReal(0, "-lambda", &bratu.lambda, 0);
if (bratu.lambda >= 6.81 || bratu.lambda < 0) {
 SETERRQ(1, "Lambda must be between 0 and 6.81");
}
bratu.n = 10; /* Get the mesh size. Use 10 by default */
PetscOptionsGetInt(PETSC_NULL, "-n", &bratu.n, 0);
bratu.h = 1.0 / (bratu.n + 1);

SNESCreate(PETSC_COMM_WORLD, &snes);

/* Create the mesh and decomposition */
DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,
 bratu.n + 2, bratu.n + 2, PETSC_DECIDE, PETSC_DECIDE,
 1, 1, 0, 0, &bratu.da);

DACreateGlobalVector(bratu.da, &x);
Bratu Example III

VecDuplicate(x, &r); /* Use this as the vector to give SetFunction */
SNESSetFunction(snes, r, FormBratuFunction, &bratu);

DAGetMatrix(bratu.da, MATMPIAIJ, &J);
SNESSetJacobian(snes, J, J, FormBratuJacobian, &bratu);

SNESSetFromOptions(snes);

FormBratuInitialGuess(&bratu, x);
SNESolve(snes, x, &its);

PetscPrintf(PETSC_COMM_WORLD,
 "Number of Newton iterations = %d\n", its);

VecDestroy(r);
SNESDestroy(snes);
PetscFinalize();
return 0;
Understanding the Code

SNESCreate Creates the SNES context

SNESSetFunction Specify the function to be called to evaluate the function \(F(u) \)

SNESSetJacobian Specify the function to be called to create the Jacobian matrix.

SNESSetFromOptions Set SNES parameters from the commandline

VecSet Set all elements of a vector to the same value

SNESSolve Solve the system of nonlinear equations. Return the number of iterations in its

SNESDestroy Free the SNES context and recover space
Using the Command Line Interface

- Easy to control Newton features
 - -snes_type ls
 - -snes_type tr
 - -snes_rtol num (relative convergence tolerance)

- Complete control over solution of Jacobian problem—just use the same commandline parameters
 - -ksp_type cgs
 - -pc_type asm
Convenience Functions

- PETSc’s design makes it relatively easy to layer functionality
- One example is the support for function and Jacobian evaluation on DAs

 DASetLocalFunction Attach a function to a DA
 DASetLocalJacobian Attach a Jacobian to a DA
 SNESDAFormFunction Tell SNES that the function evaluation should use the function on a DA to provide the function values
 SNESDACAcomputeJacobian Tell SNES that the Jacobian evaluation should use the Jacobian function on a DA
- The functions provide just the computation applied to the local vector (from the DA, which includes the ghost points)
- *Wrapper* functions provided by DASetLocalFunction and Jacobian handle all of the details of setting up the local vectors and arrays.
- The function passed to DASetLocalFunction has the calling sequence:

 `FormFunctionLocal(DALocalInfo *info, PetscScalar **x, PetscScalar **f, AppCtx *user)`
int FormFunctionLocal(DALocalInfo *info, PetscScalar **x,
 PetscScalar **f, AppCtx *user)
{
 PetscFunctionBegin;

 int ierr, i, j;
 PetscReal two = 2.0, lambda, hx, hy, hxdhy, hydhx, sc;
 PetscScalar u, uxx, uyy;

 lambda = user->param;
 hx = 1.0/(PetscReal)(info->mx-1);
 hy = 1.0/(PetscReal)(info->my-1);
 sc = hx*hy*lambda;
 hxdhy = hx/hy;
 hydhx = hy/hx;

 PetscFunctionReturn(ierr);
/*
 Compute function over the locally owned part of the grid
 */
for (j=info->ys; j<info->ys+info->ym; j++) {
 for (i=info->xs; i<info->xs+info->xm; i++) {
 if (i == 0 || j == 0 || i == info->mx-1 || j == info->my-1) {
 f[j][i] = x[j][i];
 } else {
 u = x[j][i];
 uxx = (two*u - x[j][i-1] - x[j][i+1])*hydhx;
 uyy = (two*u - x[j-1][i] - x[j+1][i])*hxdhy;
 f[j][i] = uxx + uyy - sc*PetscExpScalar(u);
 }
 }
}

ierr = PetscLogFlops(ll*info->ym*info->xm); CHKERRQ(ierr);
PetscFunctionReturn(0);
PETSc can solve time-dependent equations of the form

\[\frac{\partial u}{\partial t} = F(U, t) \]

by making use of the TS (timestepping solvers). F may be linear in U (i.e., of the form AU or $A(t)U$) or nonlinear, and may involve derivatives Two classic examples are

\[
U_t = \kappa \nabla^2 U \\
U_t = UU_x + \epsilon U_{xx}
\]

Heat equation

Burger’s equation
PETSc’s timestepping solvers are layered over the SLES and SNES solvers

- Full access to all parameters for the linear and nonlinear solvers
- Distributed arrays available for managing regular meshes

Following the other solvers, the TS solvers complete control of the solution process. Commandline options include

- `-ts_max_steps`, `-ts_type beuler`, `-ts_view`
Key Routines

See petsc-tut/frompetsc/heat-eqn.c or petsc-2.1.5/src/ts/examples/tutorials/ex4.c for some examples

TSCreate Create a Time Stepping context.
TSSetProblemType Set the problem type. Use

 TS_LINEAR for $U_t = AU$ or $U_t = A(t)U$
 TC_NONLINEAR for $U_t = F(t, U)$

TSSetRHSMatrix Defines the matrix A or $A(t)$ (TS_LINEAR only)
TSSetInitialTimeStep Set the initial time and timestep
TSSetSolution Set the initial solution (U at the initial time)
TSSetDuration Set the maximum time and number of time steps
TSSetFromOptions Like all other PETSc objects
TSSetType Specify the algorithm to use. May be one of TS_EULER, TS_BEULER,
 TS_PSEUDO, and (if installed) TS_PVODE
TSStep Step until the maximum time or time steps is reached
Extending PETSc

- KSP Convergence test
- Matrix-free Solvers (adding a matrix)
- Adding a custom preconditioner
- Letting Petsc know about a custom preconditioner
Most operations in PETSc are implemented by calling a function for that operation.
Most functions can be replaced, with a `<Object>Set<operation>`. For example, the convergence test for the Krylov method used in a SLES solve can be replaced:

```c
MyConvData convdata;
SLESGetKSP( sles, &ksp );
KSPSetConvergenceTest( ksp, MyConvTest, &convdata )
```

The following example implements a test based on

\[\| W (Ax - b) \|_2, \text{ where } W \text{ is a diagonal matrix of weights.} \]
#include <math.h>
#include "petscsles.h"

typedef struct {
 double ttol, rnorm0;
 Vec weight;
} MyConvData;

int MyConvTest(KSP ksp, int it, PetscReal rnormUnweighted,
 KSPConvergedReason *reason, void *convdata)
{
 Vec V, WV;
 PetscReal rtol, atol, dtol;
 double rnorm;
 int maxits;
 MyConvData *cdata = (MyConvData *)convdata;

reason = KSP_CONVERGED_ITERATING; / Continue iterating */

KSPBuildResidual(ksp, 0, 0, &V);
/* Scale the residual vector */
VecDuplicate(V, &WV);
VecPointwiseMult(cdata->weight, V, WV);
/* Compute the norm */
VecNorm(WV, NORM_2, &rnorm);
VecDestroy(V); VecDestroy(WV);

KSPGetTolerances(ksp, &rtol, &atol, &dtol, &maxits);
if (it == 0) {
 /* save the initial values */
 cdata->ttol = fmax(rtol*rnorm, atol);
 cdata->rnorm0 = rnorm;
}

/* The following is essentially the code from the default test, KSPDefaultConverged */
if (rnorm <= cdata->ttol) {
 if (rnorm < atol) {
 *reason = KSP_CONVERGED_ATOL;
 } else {
 *reason = KSP_CONVERGED_RTOL;
 }
} else if (rnorm >= dtol*cdata->rnorm0) {
 *reason = KSP_DIVERGED_DTOL;
} else if (rnorm != rnorm) { /* NaN */
 *reason = KSP_DIVERGED_DTOL;
}

return 0;

You can create your own PETSc matrix with

```c
MatCreateShell( MPI_Comm comm, int localRows, int localCols,
              int globalRows, int globalCols, void *mctx,
              Mat *A );
```

followed by

```c
MatShellSetOperation( Mat A, MatOperation op, void (*f)(void) );
```

For example

```c
MatShellSetOperation( A, MATOP_MULT, MyMatV );
```

tells Petsc to call MyMatV when performing a matrix-vector product with A.
Creating A New Preconditioner for SLES

To create a new preconditioner, follow these steps. The routines “myPCMult” and “myPCSetup” implement \(y \leftarrow Mx \) and the initialization of the preconditioner \(M \).

```c
PC pc;
SLESGetPC( sles, &pc );
PCSetType( pc, PCSHELL );
PCShellSetName( pc, "MyPreconditioner" );
PCShellSetApply( pc, myPCMult, &pcdata );
PCShellSetSetUp( pc, myPCSetup ); /* Optional (e.g., for ILU factorization */
Compute $Mx - \frac{(Mx)^T}{w} w$ where $w = \{1, 1, 1, \ldots, 1\}^T$ (project off the component of all ones, e.g., for a problem where $Aw = 0$):

```c
#include "petscpc.h"

typedef struct {
 Mat m;
} MyPCData;

int myPCMult(void *ctx, Vec xin, Vec xout)
{
 Vec ones;
 int size;
 double one = 1, r, scale;
```
MyPCData *pcdata = (MyPCData *)ctx;

MatMult( pcdata->m, xin, xout );
VecDuplicate( xin, &ones );
VecGetSize( xin, &size );
VecSet( &one, ones );
VecDot( ones, xout, &r );
scale = r / size;
VecAXPY( &scale, ones, xout );

VecDestroy( ones );
}
Adding Your Preconditioner to PETSc

PCRegister( "MyPreconditioner", 0, "PCMyPreconditioner", MyPCCreate );

where

typedef struct { ... } MyPCData;

int MyPCCreate( PC pc )
{
    MyPCData *pcdata;
    PetscNew( MyPCData, &pcdata );
    pc->data = (void *)pcdata;
    pc->ops->apply = myPCMult;
    pc->ops->setup = 0;
    pc->ops->destroy = myPCDestroy;
    pc->ops->setfromoptions = myPCFromOptions;
    ...
}

(To build this, look at an example such as petsc/src/sles/pc/impls/jacobi.c). Then

    poisson -pc_type MyPreconditioner

will use your new preconditioner!
To find out more about PETSc, look at the implementation. PETSc has a regular directory structure:
PETSc includes examples of some applications:

- Driven cavity (snes/.../ex19.c)
- MHD (snes/.../ex29.c)
- Radiative transport (snes/.../ex18.c)
Nonlinear Solvers Examples

ex1.c: Newton’s method to solve a two-variable system, sequentially
ex2.c: Newton method to solve $u_{xx} + u^2 = f$, sequentially
ex3.c: Newton methods to solve $u_{xx} + u^2 = f$ in parallel
ex5.c: Bratu nonlinear PDE in 2d
ex5s.c: 2d Bratu problem in shared memory parallel with SNES
ex6.c: $u_{xx} + u^2 = f$
ex14.c: Bratu nonlinear PDE in 3d
ex18.c: Nonlinear Radiative Transport PDE with multigrid in 2d
ex19.c: Nonlinear driven cavity with multigrid in 2d
ex20.c: Nonlinear Radiative Transport PDE with multigrid in 3d
ex21.c: Solves PDE optimization problem
ex22.c: Solves PDE optimization problem
ex23.c: Solves PDE problem from ex22
ex24.c: Solves PDE optimization problem of ex22
ex25.c: Minimum surface problem
ex26.c: Grad-Shafranov solver for one dimensional CHI equilibrium
The problem

\[-\nabla^2 u - \frac{\partial \omega}{\partial y} = 0,\]

\[-\nabla^2 v + \frac{\partial \omega}{\partial x} = 0,\]

\[-\nabla^2 \omega + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} - \text{Gr} \frac{\partial T}{\partial x} = 0,\]

\[-\nabla^2 T + \text{Pr} \left( u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = 0,\]

with velocity \((u, v)\), vorticity \(\omega\), and temperature \(T\).

Boundary conditions

bottom: \( u = v = 0, \frac{\partial T}{\partial y} = 0, \)

top: \( u = V_{lid}, v = 0, \frac{\partial T}{\partial y} = 0, \)

left: \( u = v = 0, T = 0 \)

right: \( u = v = 0, T = 1 \) if \( \text{Gr} > 0 \), \( T = 0 \) otherwise

with \( \omega = -\frac{\partial u}{\partial y} + \frac{\partial y}{\partial x} \) along the boundary.
The examples use a very simple discretization to concentrate on the use of PETSc to solve the system of nonlinear equations.

Improving the discretization is relatively easy:
- Higher order discretizations can be used by increasing the stencil width.
- Because the DA is a *logical* mesh, it is easy to put more mesh points along the boundaries:

```
+---+---+---+
| | | |
+---+---+---+
```

(But you must manage the discretization.)
- PETSc provides support for general sparse matrices:
  - Index sets (ISxxx routines); VecScatter and VecGather
  - Access to matrix partitioning for parallelism
• Try matrix-free Jacobian approximation with no preconditioning (via -snes_mf)
  - 1 process: (thermally-driven flow)
    ex19 -snes_mf -snes_monitor -grashof 1000.0 -lidvelocity 0.0
  - 2 processes, view DA
    mpirun -np 2 ex19 -snes_mf -snes_monitor \\ -da_view_draw -draw_pause 1
  - View contour plots of converging iterates
    ex19 -snes_mf -snes_monitor -snes_vecmonitor
Driven Cavity Example II

- Use MatFDColoring for sparse finite difference Jacobian approximation; view SNES options used at runtime
  
  ```
 ex19 -snes_view -mat_view_info
  ```

- Set trust region Newton method instead of default line search
  
  ```
 ex19 -snes_type tr -snes_view -snes_monitor
  ```

- Set transpose-free QMR as the Krylov method and set relative KSP convergence tolerance to 0.01
  
  ```
 ex19 -ksp_type tfqmr -ksp_rtol 0.01 -snes_monitor
  ```
PETSc Programming Aids

- Correctness Debugging
  - Automatic generation of tracebacks
  - Detecting memory corruption and leaks
  - Optional user-defined error handlers
  - Differential debugging

- Performance Debugging
  - Integrated profiling using `log_summary`
  - Profiling by stages of an application
  - User-defined events
Error handlers

Many useful commandline options:

- `start_in_debugger`
- `on_error_attach_debugger name`
- `on_error_abort`

You may also need `-display $DISPLAY` or `-display `hostname`:0.0` to get the separate debugger windows to appear. Also, placing a breakpoint in PetscError will often give you control when PETSc first detects an error.
Performance Tuning

- Limits of performance
- Finding problems
  - Built-in timing information
  - Adding user-specified states
  - Pitfalls
- Using PETSc features
  - Better data structures
  - Aggregate operations
- Making best use of C or Fortran
Real systems have many levels of memory
  - Programming models try to hide memory hierarchy

Simplest model: Two levels of memory
  - Divide at the largest (relative) gap
  - Processes have their own memory
    - Managing a processes memory is known (if unsolved) problem
    - Exactly matches the distributed memory model

But even the single process job is often bound by memory performance
Sparse Matrix-Vector Product

- Common operation for optimal (in floating-point operations) solution of linear systems
- Sample code

```c
for row=0,n-1
 m = i[row+1] - i[row];
 sum = 0;
 for k=0,m-1
 sum += *a++ * x[*j++];
 y[row] = sum;
```
- Data structures are a[nnz], j[nnz], i[n], x[n], y[n]
Simple Performance Analysis

- Memory motion:
  - \( \text{nnz} \times (\text{sizeof(double)} + \text{sizeof(int)}) + \)
  - \( n \times (2 \times \text{sizeof(double)} + \text{sizeof(int)}) \)
  - Perfect cache (never load same data twice)

- Computation:
  - \( \text{nnz multiply-add (MA)} \)

- Roughly 12 bytes per MA

- Typical workstation node can move \( \frac{1}{2} \)–4 bytes/MA
  - Maximum performance is 4–33% of peak
More Performance Analysis

- Instruction counts:
  - \(\text{nnz} \times (2 \times \text{load-double} + \text{load-int} + \text{mult-add}) + n \times (\text{load-int} + \text{store-double})\)

- Roughly 4 instructions per multiply-add

- Maximum performance is 25% of peak (33% if MA overlaps one load or store)

- Changing the matrix data structure (e.g., exploit small block structure) allows some reuse of data in register, eliminating some loads (of \(x\) and \(j\))

- Implementation improvements (tricks) cannot improve on these limits
Why use BAIJ?

The BAIJ format can provide added performance:

<table>
<thead>
<tr>
<th>Format</th>
<th>Mflops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ideal</td>
</tr>
<tr>
<td>AIJ</td>
<td>49</td>
</tr>
<tr>
<td>BAIJ</td>
<td>64</td>
</tr>
</tbody>
</table>

These results, from a 250 MHz R10000, are for matrices with a natural blocksize of four.

Multiple right-hand sides show much greater improvement, if you can take advantage of them.

PETSc provides built-in tools to measure and report on performance:

- **-log_summary** Provides a breakdown by routine of each PETSc routine
- **-log_info** Provides information on object use
- **-log_trace** Trace the execution of each PETSc routine

Make sure that you use an optimized version of PETSc (BOPT=O) and that you have avoided “cold start” problems.

- PETSc provides PreLoadBegin, PreLoadStage, and PreLoadEnd to help. This make it easy to ensure that a test is run once to get memory “warmed up” and that timings are taking from a second test.
<table>
<thead>
<tr>
<th><strong>Max</strong></th>
<th><strong>Max/Min</strong></th>
<th><strong>Avg</strong></th>
<th><strong>Total</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (sec):</td>
<td>7.709e-02</td>
<td>1.19728</td>
<td>6.854e-02</td>
</tr>
<tr>
<td>Objects:</td>
<td>0.000e+00</td>
<td>0.00000</td>
<td>0.000e+00</td>
</tr>
<tr>
<td>Flops:</td>
<td>1.735e+04</td>
<td>1.56176</td>
<td>1.422e+04</td>
</tr>
<tr>
<td>Flops/sec:</td>
<td>2.694e+05</td>
<td>1.59360</td>
<td>2.073e+05</td>
</tr>
<tr>
<td>Memory:</td>
<td>8.410e+04</td>
<td>1.06257</td>
<td></td>
</tr>
<tr>
<td>MPI Messages:</td>
<td>3.000e+01</td>
<td>1.87500</td>
<td>2.350e+01</td>
</tr>
<tr>
<td>MPI Message Lengths:</td>
<td>2.442e+03</td>
<td>1.90484</td>
<td>8.183e+01</td>
</tr>
<tr>
<td>MPI Reductions:</td>
<td>4.450e+01</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>Event Stage 0: Main Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecMDot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 1.0 4.7554e-03 3.7 2.38e+06 3.7 0.0e+00 0.0e+00 1.2e+01 5 27 0 0 7 5 27 0 0 7 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecNorm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 5.2183e-03 1.7 2.58e+05 2.6 0.0e+00 0.0e+00 1.3e+01 6 5 0 0 7 6 5 0 0 7 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecScale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 4.4698e-05 1.3 1.13e+07 1.9 0.0e+00 0.0e+00 0.0e+00 0 2 0 0 0 2 0 0 0 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecSet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 1.0 5.3079e-05 1.1 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecAXPY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 1.0895e-05 1.6 8.95e+06 2.4 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecMAXPY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 7.3752e-05 1.2 8.52e+07 1.7 0.0e+00 0.0e+00 0.0e+00 0 32 0 0 0 32 0 0 0 244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecScatterBegin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 1.4695e-04 1.3 0.0e+00 0.0 7.2e+01 8.0e+01 0.0e+00 0 77 75 0 0 0 77 75 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VecScatterEnd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 4.4182e-03 2.2 0.0e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 0 0 5 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatMult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 1.0 4.7492e-03 2.0 1.23e+06 2.8 7.2e+01 8.0e+01 0.0e+00 5 17 77 75 0 5 17 77 75 0 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatSolve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 1.1091e-04 1.3 2.56e+07 1.5 0.0e+00 0.0e+00 0.0e+00 0 16 0 0 0 16 0 0 0 82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatLUFactorNum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 3.5479e-05 1.3 5.46e+06 1.8 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 1 0 0 0 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatILUFactorSym</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 1.9489e-03 1.9 0.0e+00 0.0 0.0e+00 0.0e+00 7.0e+00 2 0 0 0 4 2 0 0 0 4 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatAssemblyBegin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1.0 2.0382e-03 1.9 0.0e+00 0.0 0.0e+00 0.0e+00 4.0e+00 2 0 0 0 2 2 0 0 0 2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatAssemblyEnd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1.0 4.9942e-03 1.3 0.0e+00 0.0 6.0e+00 4.0e+01 2.0e+01 6 0 6 3 11 6 0 6 3 11 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatGetOrdering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 6.5651e-04 1.3 0.0e+00 0.0 0.0e+00 0.0e+00 4.0e+00 1 0 0 0 2 1 0 0 0 2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCSetUp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1.0 5.7393e-03 1.2 3.24e+04 1.7 0.0e+00 0.0e+00 2.2e+01 8 1 0 0 12 8 1 0 0 12 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCSetUpOnBlocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 2.5428e-03 1.4 7.31e+04 1.6 0.0e+00 0.0e+00 1.1e+01 3 1 0 0 6 3 1 0 0 6 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCApply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 1.0 6.9981e-04 1.1 4.51e+06 1.7 0.0e+00 0.0e+00 0.0e+00 1 16 0 0 0 1 16 0 0 0 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSPGMRESOrthog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 1.0 4.9157e-03 3.4 4.21e+06 3.4 0.0e+00 0.0e+00 1.2e+01 5 54 0 0 7 5 54 0 0 7 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLESSetup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1.0 8.8296e-03 1.2 2.11e+04 1.7 0.0e+00 0.0e+00 3.2e+01 12 1 0 0 12 1 0 0 18 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLESSolve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1.0 1.8024e-02 1.0 9.83e+05 1.6 7.2e+01 8.0e+01 4.5e+01 26 99 77 75 25 26 99 77 75 25 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adding User Events

It is easy to add user defined events to PETSc

```c
int USER_EVENT;
PetscLogEventRegister(&USER_EVENT,"User event");
PetscLogEventBegin(USER_EVENT,0,0,0,0);
 [code segment to monitor]
 PetscLogFlops(user_flops)
 PetscLogEventEnd(USER_EVENT,0,0,0,0);
```

“USER_EVENT” is returned by PETSc (instead of allowing you to define it) so that many routines can define user events without any possibility of two routines unintentionally using the same event value.
Obtaining Higher Performance with PETSc

- Often, the most important step is to make use of “aggregate operations” wherever possible. That is, use one routine that performs multiple operations, instead of multiple calls to a single routine.
  - For setting the elements of a matrix or vector, use MatSetValues and VecSetValues instead of MatSetValue and VecSetValue
  - MatSetValuesBlocked inserts submatrices
  - Same technique uses in parallel programming (both message-passing and shared-memory)
- Consider other sparse data structures, particularly BAIJ and Bdiag
- Those mysterious parameters (like DIFFERENT_NONZERO_PATTERN) can be very important. PETSc tries to provide a correct solution first
  - As a result, PETSc is more cautious that other environments
  - Setting these parameters correctly can make a huge difference in performance
Petsc provides several routines to add multiple entries at a time to a matrix:

MatSetValues( Mat mat, int nrows, int rowidx[],
             int ncols, int colidx[], PetscScalar vals[],
             INSERT_VALUES or ADD_VALUES )
MatSetValuesBlocked( ... ) same, but for blocked matrices
Matrix Memory Preallocation

- PETSc sparse matrices are dynamic data structures. Can add additional nonzeros freely
- Dynamically adding many nonzeros
  - requires additional memory allocations
  - requires copies
  - can kill performance
- Memory pre-allocation provides the freedom of dynamic data structures plus good performance
Indicating Expected Nonzeros

- For parallel sparse matrices

```c
MatCreateMPIAIJ(..., int d_nz,
 const int d_nnz[], int o_nz,
 const int o_nnz[], Mat *A)
```

where

- `d_nnz` expected number of nonzeros per row in diagonal portion of local submatrix. The “diagonal portion” is the square diagonal block of the rows owned by this process.
- `o_nnz` expected number of nonzeros per row in off-diagonal portion of local submatrix
Verifying Predictions

Use runtime option: -log_info

[0] MatSetUpPreallocation: Warning not preallocating matrix storage
[0] MatAssemblyBegin_MPIAIJ: Stash has 0 entries, uses 0 mallocs.
[0] MatAssemblyEnd_SeqAIJ: Matrix size: 50 X 50; storage space: 50 unneeded, 200 used.
[0] MatAssemblyEnd_SeqAIJ: Number of mallocs during MatSetValues() is 0
[0] MatAssemblyEnd_SeqAIJ: Most nonzeros in any row is 5
[0] Mat_AIJ_CheckInode: Found 50 nodes out of 50 rows. Not using Inode routines.
[1] MatAssemblyBegin_MPIAIJ: Stash has 0 entries, uses 0 mallocs.
[1] MatAssemblyEnd_SeqAIJ: Matrix size: 50 X 50; storage space: 50 unneeded, 200 used.
[1] MatAssemblyEnd_SeqAIJ: Number of mallocs during MatSetValues() is 0
[1] MatAssemblyEnd_SeqAIJ: Most nonzeros in any row is 5
[1] MatAssemblyEnd_SeqAIJ: Matrix size: 50 X 10; storage space: 90 unneeded, 10 used.
[1] MatAssemblyEnd_SeqAIJ: Number of mallocs during MatSetValues() is 0
[1] MatAssemblyEnd_SeqAIJ: Most nonzeros in any row is 1
[0] MatAssemblyEnd_SeqAIJ: Matrix size: 50 X 10; storage space: 90 unneeded, 10 used.
[0] MatAssemblyEnd_SeqAIJ: Number of mallocs during MatSetValues() is 0
[0] MatAssemblyEnd_SeqAIJ: Most nonzeros in any row is 1
C2000 has features to allow compilers to optimize memory use:

- **const** Data is constant (cannot change because of a store through another pointer)
- **restrict** Data is accessed only through this pointer

These allow Fortran-like argument semantics, allowing a sophisticated compiler to produce code as good as Fortran allows.

```c
int dadd(double * restrict a,
 const double * restrict b, int n)
```

Benefit depends on compiler and system. Small on most PC’s; factor of ten (!) on one vector machine.
Order array elements so that related references are first

```fortran
double precision vars(2,100,100)
```

not

```fortran
double precision u(100,100), v(100,100)
```
For the Fun3d CFD code, changing the order of arrays provided a factor of seven (!) improvement Time on an IBM SP with different orderings, starting with original (Basic) code.

<table>
<thead>
<tr>
<th>Basic</th>
<th>Interlaced</th>
<th>Interlaced Blocking</th>
<th>Interlaced Reordered</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.8</td>
<td>45.9</td>
<td>32</td>
<td>26.9</td>
<td>14.9</td>
</tr>
</tbody>
</table>
Conclusion

- PETSc provides a powerful framework for
  - Developing applications
  - Experimenting with different algorithms
  - Using abstractions to simplify parallel programming

- PETSc continues to grow and develop
  - New routines added as needed and understood
  - PETSc 3 will provide a more powerful framework for combining tools written in different programming languages
References

- **Documentation** [www.mcs.anl.gov/petsc/docs](www.mcs.anl.gov/petsc/docs)
  - PETSc Users Manual
  - Manual pages (the most up-to-date)
  - Many hyperlinked examples
  - FAQ, Troubleshooting info, installation info, etc.

- **Publications** [www.mcs.anl.gov/petsc/publications](www.mcs.anl.gov/petsc/publications)
  - Research and publications that make use of PETSc

- **MPI information** [www.mpi-forum.org](www.mpi-forum.org)

- **Using MPI** (2nd Edition), by Gropp, Lusk, and Skjellum

- **Domain Decomposition**, by Smith, Björstad, and Gropp
PETSc contains many features, each introduced to provide a necessary feature for an application or researcher

- Unstructured Meshes
- Matrix free methods
- Access to other packages
- Using different preconditioner matrices
- Others
Using PETSc with Other Packages

- **Linear solvers**
  - AMG
    www.mgnet.org/mgnet-codes-gmd.html
  - BlockSolve95
    www.mcs.anl.gov/BlockSolve95
  - ILUTP
    www.cs.umn.edu/~saad
  - LUSOL
    www.sbsi-sol-optimize.com
  - SPAI
    www.sam.math.ethz.ch/~grote/spai
  - SuperLU
    www.nersc.gov/~xiaoye/SuperLU

- **Mesh and discretization tools**
  - Overture
    www.llnl.gov/CASC/Overture
  - SAMRAI
    www.llnl.gov/CASC/SAMRAI
  - SUMAA3d
    www.mcs.anl.gov/sumaa3d

- **ODE solvers**
  - PVODE
    www.llnl.gov/CASC/PVODE

- **Others**
  - Matlab
    www.mathworks.com
  - ParMETIS
    www.cs.umn.edu/~karypis/metis/par
Changing the Behavior of Viewer

- Change the standard viewer to output in canonical order (independent of the number of processes)
- Change the behavior of the standard viewer *Danger!*

```c
PetscViewerSetFormat(PETSC_VIEWER_STDOUT_WORLD,
 PETSC_VIEWER_ASCII_COMMON);
VecView(vec, PETSC_VIEWER_STDOUT_WORLD);
```

- Change temporarily the behavior of the standard viewer

```c
PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,
 PETSC_VIEWER_ASCII_COMMON);
VecView(vec, PETSC_VIEWER_STDOUT_WORLD);
PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
```
All PETSc features that can be set with command-line options can be controlled from within a program.

Routines to do so are often named `<Object>Set<feature>`, as in KSPSetMonitor or PCLUSetMatOrdering.
## Some Vector Operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VecAXPY(Scalar *a, Vec x, Vec y)</td>
<td>( y \leftarrow y + ax )</td>
</tr>
<tr>
<td>VecAYPX(Scalar *a, Vec x, Vec y)</td>
<td>( y \leftarrow x + ay )</td>
</tr>
<tr>
<td>VecWAXPY(Scalar *a, Vec x, Vec y, Vec w)</td>
<td>( w \leftarrow ax + y )</td>
</tr>
<tr>
<td>VecScale(Scalar *a, Vec x)</td>
<td>( x \leftarrow ax )</td>
</tr>
<tr>
<td>VecCopy(Vec x, Vec y)</td>
<td>( y \leftarrow x )</td>
</tr>
<tr>
<td>VecPointwiseMult(Vec x, Vec y, Vec w)</td>
<td>( w_i \leftarrow x_i y_i )</td>
</tr>
<tr>
<td>VecMax(Vec x, int *idx, Scalar *r)</td>
<td>( r \leftarrow \max_i (x_i) )</td>
</tr>
<tr>
<td>VecNorm(Vec x, NormType type, double *r)</td>
<td>( r \leftarrow |x|_{\text{normtype}} )</td>
</tr>
<tr>
<td>VecSet(Scalar *a, Vec x)</td>
<td>( x_i = a )</td>
</tr>
</tbody>
</table>

This is just a sample; there are more. Check the manual page index under “V”. 
### PETSc Components

#### Nonlinear Solvers

<table>
<thead>
<tr>
<th>Newton-based Methods</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Search</td>
<td>Trust Region</td>
</tr>
</tbody>
</table>

#### Time Steppers

<table>
<thead>
<tr>
<th>Euler</th>
<th>Backward Euler</th>
<th>Pseudo Time Stepping</th>
<th>Other</th>
</tr>
</thead>
</table>

#### Krylov Subspace Methods

<table>
<thead>
<tr>
<th>GMRES</th>
<th>CG</th>
<th>CGS</th>
<th>Bi-CG-STAB</th>
<th>TFQMR</th>
<th>Richardson</th>
<th>Chebychev</th>
<th>Other</th>
</tr>
</thead>
</table>

#### Preconditioners

<table>
<thead>
<tr>
<th>Additive Schwarz</th>
<th>BlockJacobi</th>
<th>Jacobi</th>
<th>ILU</th>
<th>ICC</th>
<th>LU(Sequential only)</th>
<th>Others</th>
</tr>
</thead>
</table>

#### Matrics

<table>
<thead>
<tr>
<th>Compressed Sparse Row (AIJ)</th>
<th>Blocked Compressed Sparse Row (BAIJ)</th>
<th>Block Diagonal (BDIAG)</th>
<th>Dense</th>
<th>Matrix-free</th>
<th>Other</th>
</tr>
</thead>
</table>