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Abstract. Inexact Newton algorithms are commonly used for solving large sparse nonlinear
system of equations F (u∗) = 0 arising, for example, from the discretization of partial differential
equations. Even with global strategies such as linesearch or trust region, the methods often stagnate
at local minima of ‖F‖, especially for problems with unbalanced nonlinearities, because the methods
do not have built-in machinery to deal with the unbalanced nonlinearities. To find the same solution
u∗, one may want to solve instead an equivalent nonlinearly preconditioned system F(u∗) = 0 whose
nonlinearities are more balanced. In this paper, we propose and study a nonlinear additive Schwarz-
based parallel nonlinear preconditioner and show numerically that the new method converges well
even for some difficult problems, such as high Reynolds number flows, where a traditional inexact
Newton method fails.
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1. Introduction. Many computational engineering problems require the numer-
ical solution of large sparse nonlinear system of equations, i.e., for a given nonlinear
function F : Rn → Rn, compute a vector u∗ ∈ Rn such that

F (u∗) = 0,(1.1)

starting from an initial guess u(0) ∈ Rn. Here F = (F1, . . . , Fn)
T , Fi = Fi(u1, . . . , un),

and u = (u1, . . . , un)
T . Inexact Newton algorithms (INs) [8, 9, 12, 18] are commonly

used for solving such systems and can briefly be described here. Suppose u(k) is the
current approximate solution; a new approximate solution u(k+1) can be computed
through the following steps.

Algorithm 1.1 (IN).
Step 1. Find the inexact Newton direction p(k) such that

‖F (u(k))− F ′(u(k))p(k)‖ ≤ ηk‖F (u(k))‖.(1.2)

Step 2. Compute the new approximate solution

u(k+1) = u(k) − λ(k)p(k).(1.3)
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Here ηk ∈ [0, 1) is a scalar that determines how accurately the Jacobian system needs
to be solved using, for example, Krylov subspace methods [2, 3, 12, 13]. λ(k) is another
scalar that determines how far one should go in the selected inexact Newton direction
[8]. We comment on our strategy for selecting λ(k) in section 4.

IN has two well-known features: (a) if the initial guess is close enough to the
desired solution, then the convergence is very fast provided that the ηk’s are sufficiently
small, and (b) such a good initial guess is generally very difficult to obtain, especially
for nonlinear equations that have unbalanced nonlinearities [20]. The step length λ(k)

is often determined by the components with the strongest nonlinearities, and this may
lead to an extended period of stagnation in the nonlinear residual curve; for a typical
picture, see Figure 6.2 as well as figures in [5, 15, 17, 24, 28, 29]. We say that the
nonlinearities are “unbalanced” when λ(k) is, in effect, determined by a subset of the
overall degrees of freedom.

In this paper, we develop some nonlinearly preconditioned inexact Newton algo-
rithms (PINs): Find the solution u∗ ∈ Rn of (1.1) by solving an equivalent nonlinear
system

F(u∗) = 0.(1.4)

Systems (1.4) and (1.1) are said to be equivalent if they have the same solution. We
solve (1.4) using the inexact Newton method in the following form.

Algorithm 1.2 (PIN).
Step 1. Find the inexact Newton direction p(k) such that

‖F(u(k))−F ′(u(k))p(k)‖ ≤ ηk‖F(u(k))‖.(1.5)

Step 2. Compute the new approximate solution

u(k+1) = u(k) − λ(k)p(k).(1.6)

Here the step length parameter λ(k) is determined with a linesearch procedure
based on the new merit function 1/2‖F‖2.

F and F may have completely different forms, but they must have the same
solution. In general, the linear case being an exception, F is a function of both F
and u, and we do not expect to know explicitly how F depends on F or u. As an
example, F may take the form of a composite function

F(u∗) ≡ G(F (u∗)) = 0,

which makes G look like a preconditioner if we use the language invented for linear
systems of equations. In this case, some desirable properties of the preconditioner
G : Rn → Rn include the following:

1. If G(x) = 0, then x = 0.
2. G ≈ F−1 in some sense.
3. G(F (w)) is easily computable for w ∈ Rn.
4. If a Newton–Krylov-type method is used for solving (1.4), then the matrix-
vector product (G(F (w)))′v should also be easily computable for w, v ∈ Rn.

As in the linear equation case [14], the definition of a preconditioner cannot be given
precisely, nor is it necessary. Also as in the linear equation case, preconditioning can
greatly improve the robustness of the iterative methods, since the preconditioner is
designed so that the new system (1.4) has more uniform nonlinearities. G is ordinarily
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not operationally useful, since it is defined only implicitly. This paper could be written
without reference to G by defining F directly. However, the concept of a nonlinear
preconditioner seems expositorily useful. Note that the Jacobian of the preconditioned
function can be computed, at least in theory, using the chain rule, i.e.,

F ′(u) =
∂G

∂v

∂F

∂u
.(1.7)

If G is close to F−1 in the sense that G(F (u)) ≈ u, then ∂G
∂v

∂F
∂u ≈ I, i.e., F ′(u) ≈ I.

In this case, Algorithm 1.2 converges in one iteration, or a few iterations, depending
on how close G is to F−1. In fact, the same thing happens as long as G(F (u)) ≈ Au,
where A is a constant matrix independent of u. On the other hand, if G is a linear
function, then ∂G

∂v would be a constant matrix independent of u. In this case the
Newton equation of the preconditioned system

F ′(u(k))p(k) = F(u(k))

reduces to the Newton equation of the original system

F ′(u(k))p(k) = F (u(k))

and G does not affect the nonlinear convergence of the method, except for the stopping
conditions. However, G does change the conditioning of the linear Jacobian system,
and this forms the basis for the matrix-free Newton–Krylov methods.

Most of the current research has been on the case of linear G; see, for example,
[5, 25]. In this paper, we shall focus on the case when F is obtained using the single-
level nonlinear additive Schwarz method. As an example, we show the nonlinear
iteration history, in Figure 6.2, for solving a two-dimensional flow problem with various
Reynolds numbers using the standard IN (top figure) and the newly introduced PIN
(bottom figure). It can be seen clearly that PIN is much less sensitive to the increase
in Reynolds number than IN. Details of the numerical experiment will be given later
in the paper. Nonlinear Schwarz algorithms have been studied extensively as iterative
methods [4, 10, 21, 22, 23, 26, 27] and are known, at least experimentally, to be not
very robust, in general, unless the problem is monotone. However, we show in this
paper that nonlinear Schwarz can be an excellent nonlinear preconditioner.

We remark that nonlinear methods can also be used as linear preconditioners as
described in [7], but we will not explore this issue here.

Nested linear and nonlinear solvers are often needed in the implementation of
PIN, and as a consequence the software is much harder to develop than for the reg-
ular IN. Our target applications are these problems that are difficult to solve using
traditional Newton-type methods. Those include (1) problems whose solutions have
local singularities such as shocks or nonsmooth fronts, and (2) multiphysics problems
with drastically different stiffness that require different nonlinear solvers based on a
single physics submodel such as coupled fluid-structure interaction problems.

The rest of the paper is organized as follows. In section 2, we introduce the
nonlinear additive Schwarz preconditioned system and show how it reduces in certain
special cases to known methods. In section 3, we derive a formula for the Jacobian of
the nonlinear preconditioned system and a readily computable approximation thereto.
The details of the algorithm, with some practical comments about each step, are given
in section 4. Section 5 contains a proof of the equivalence of the original nonlinear sys-
tem and the preconditioned system, under some reasonable local assumptions. Some
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numerical experiments motivating the value of the additive Schwarz preconditioned
inexact Newton algorithm (ASPIN) appear in section 6. In section 7, we make further
comments and discuss some future research topics in nonlinear preconditioning.

2. A nonlinear additive Schwarz preconditioner. In this section, we de-
scribe a nonlinear preconditioner based on the additive Schwarz method [4, 10]. Let

S = (1, . . . , n)

be an index set, i.e., one integer for each unknown ui and Fi. We assume that
S1, . . . , SN is a partition of S in the sense that

N⋃
i=1

Si = S and Si ⊂ S.

Here we allow the subsets to have overlap. Let ni be the dimension of Si; then, in
general,

N∑
i=1

ni ≥ n.

Using the partition of S, we introduce subspaces of Rn and the corresponding restric-
tion and extension matrices. For each Si we define Vi ⊂ Rn as

Vi = {v|v = (v1, . . . , vn)
T ∈ Rn, vk = 0, if k ∈ Si}

and an n × n restriction (also extension) matrix ISi whose kth column is either the
kth column of the n×n identity matrix In×n if k ∈ Si or zero if k ∈ Si. Similarly, let
s be a subset of S; we denote by Is the restriction on s. Note that the matrix Is is
always symmetric and the same matrix can be used as both restriction and extension
operators. Many other forms of restriction/extension are available in the literature;
however, we consider only the simplest form in this paper.

Using the restriction operator, we define the subdomain nonlinear function as

FSi = ISiF.

We next define the major component of the algorithm, namely, the nonlinearly pre-
conditioned function. For any given v ∈ Rn, define Ti(v) ∈ Vi as the solution of the
subspace nonlinear system

FSi(v − Ti(v)) = 0(2.1)

for i = 1, . . . , N . We introduce a new function,

F(u) =
N∑
i=1

Ti(u),(2.2)

which we will refer to as the nonlinearly preconditioned F (u). The main contribution
of this paper is the following algorithm.

Algorithm 2.1. Find the solution u∗ of (1.1) by solving the nonlinearly precon-
ditioned system

F(u) = 0(2.3)
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with u(0) as the initial guess.
Remark 2.1. In the linear case, this algorithm is the same as the additive Schwarz

algorithm. Using the usual notation, if

F (u) = Au− b,
then

F(u) =
(

N∑
i=1

A−1
i

)
(Au− b),

where A−1
i is the subspace inverse of Ai = ISi

AISi
in Vi.

Remark 2.2. The evaluation of the function F(v), for a given v, involves the
calculation of the Ti, which in turn involves the solution of nonlinear systems on Si.

Remark 2.3. If the overlap is zero, then this is simply a nonlinear block Jacobi
preconditioner.

Remark 2.4. If (2.3) is solved with Picard iteration, or Richardson’s method,
then the algorithm is simply the nonlinear additive Schwarz method, which is not a
robust algorithm, as is known from experience with linear and nonlinear problems.

3. Basic properties of the Jacobian. If (2.3) is solved using a Newton-type
algorithm, then the Jacobian is needed in one form or another. Here we provide a
computable form of it and discuss some of its basic properties. Let J be the Jacobian
of the original nonlinear system, i.e.,

J = F ′ =
(
∂Fi
∂uj

)
n×n

,

and let JSi
be the Jacobian of the subdomain nonlinear system, i.e.,

JSi = (ISiJISi)n×n,

for i = 1, . . . , N. Note that if F (·) is a sparse nonlinear function, then J is a sparse
matrix and so are the JSi . Unfortunately, the same thing cannot be said about the
preconditioned function F(·). Its Jacobian, generally speaking, is a dense matrix
and is very expensive to compute and store, as one may imagine. In the following
discussion, we denote by

J = F ′ =

(
N∑
i=1

JSi

)
n×n

(3.1)

and

JSi =

(
∂Ti
∂uj

)
n×n

(3.2)

the Jacobian of the preconditioned whole system and the subsystems, respectively.
Because of the definition of Ti, JSi is an n × n matrix. Ti(u) has ni nontrivial
function components in Si and n independent variables u1, . . . , un; its other n − ni
components are zeros.

Suppose we want to compute the Jacobian J at a given point u ∈ Rn. Consider
one subdomain Si. Let S

c
i = S \ Si be the complement of Si in S. We can write u =
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(uSi
, uSc

i
), which is correct up to a reordering of the independent variables uSi

= ISi
u

and uSc
i
= ISc

i
u. Using the definition of Ti(u), we have that

FSi
(uSi

− Ti(uSi
, uSc

i
), uSc

i
) = 0.(3.3)

Taking the derivative of the above function with respect to uSi , we obtain(
∂FSi

∂vSi

)(
ISi −

∂Ti(u)

∂uSi

)
= 0.(3.4)

Here vSi ≡ uSi − Ti(uSi , uSc
i
). Equation (3.4) implies that

∂Ti(u)

∂uSi

= ISi
,(3.5)

assuming the subsystem Jacobian matrix
∂FSi

∂vSi
is nonsingular in the subspace Vi. Next,

we take the derivative of (3.3) with respect to uSc
i
,

− ∂FSi

∂vSi

∂Ti(u)

∂uSc
i

+
∂FSi

∂uSc
i

= 0,(3.6)

which is equivalent to

∂Ti(u)

∂uSc
i

=

(
∂FSi

∂vSi

)−1
∂FSi

∂uSc
i

.(3.7)

Note that

∂Ti(u)

∂u
=
∂Ti(u)

∂uSi

+
∂Ti(u)

∂uSc
i

since the sets Si and S
c
i do not overlap each other. Combining (3.4) and (3.5), we

obtain

∂Ti(u)

∂u
=

(
∂FSi

∂vSi

)−1
∂F

∂u
.(3.8)

Although (3.8) is computable, it is more convenient and cheaper in practice to use
the following approximation:

∂Ti(u)

∂u
≈ J−1

Si
J.(3.9)

Summing up (3.9) for all subdomains, we have a formula for the Jacobian of the
preconditioned nonlinear system in the form

J̃ ≡
N∑
i=1

J−1
Si
J.(3.10)

We shall use (3.10) in numerical experiments presented later in this paper. Equation
(3.10) is an interesting formula since it corresponds to the additive Schwarz precondi-
tioned linear Jacobian system of the original unpreconditioned equation. This fact im-
plies that, first of all, we know how to solve the Jacobian system of the preconditioned
nonlinear system, and second, the Jacobian itself is already partly well-conditioned.
In other words, nonlinear preconditioning automatically offers a linear preconditioning
for the corresponding Jacobian system.
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4. Additive Schwarz preconditioned inexact Newton algorithm. We de-
scribe a nonlinear additive Schwarz preconditioned inexact Newton algorithm (AS-
PIN). Suppose u(0) is a given initial guess, and u(k) is the current approximate so-
lution; a new approximate solution u(k+1) can be computed through the following
steps.

Algorithm 4.1 (ASPIN).
Step 1. Compute the nonlinear residual g(k) = F(u(k)) through the following
steps:

(a) Find g
(k)
i = TSi

u(k), i = 1, . . . , N , by solving the local subdomain
nonlinear systems

FSi(u
(k) − g(k)

i ) = 0

with a starting point g
(k)
i = 0.

(b) Form the global residual

g(k) =

N∑
i=1

g
(k)
i .

(c) Check stopping conditions on g(k).
Step 2. Find the inexact Newton direction p(k) by solving the Jacobian system
approximately,

N∑
i=1

J−1
Si
Jp(k) = g(k),

in the sense that ∥∥∥∥∥g(k) −
N∑
i=1

J−1
Si
Jp(k)

∥∥∥∥∥ ≤ ηk‖g(k)‖

for some ηk ∈ [0, 1). Various approximations to the matrix elements of the
Jacobian may be used in forming the preconditioned Jacobian vector products
required in the inexact solution process.
Step 3. Compute the new approximate solution

u(k+1) = u(k) − λ(k)p(k),

where λ(k) is a damping parameter.
ASPIN may look a bit complicated, but as a matter of fact, the required user

input is the same as that for the regular IN Algorithm 1.1, i.e., the user needs to
supply only two routines for each subdomain:

(1) The evaluation of the original function FSi(w). This is needed in both Step
1(a) and Step 2 if the Jacobian is to be computed using finite-difference methods. It
is also needed in Step 3 in the linesearch steps.

(2) The Jacobian of the original function JSi in terms of a matrix-vector multi-
plication. This is needed in both Step 1(a) and Step 2.

We now briefly discuss the basic steps of the algorithm. In Step 1(a) of Algo-
rithm 4.1, N subdomain nonlinear systems have to be solved in order to evaluate the
preconditioned function F at a given point. More explicitly, we solve

GSi

(
g
(k)
i

)
≡ FSi

(
u

(k)
Si

− g(k)
i , u

(k)
Sc
i

)
= 0,(4.1)
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which has ni equations and ni unknowns, using Algorithm 1.1 with a starting value

0 for i = 1, . . . , N . Note that the vector u
(k)
Sc
i

∈ Vi is needed to evaluate GSi
(ξ) for

ξ ∈ Vi, and this requires the ghost points in a mesh-based software implementation.
In a parallel implementation, the ghost values often belong to several neighboring
processors, and communication is required to obtain their current values. We note,
however, that the ghost values do not change during the solution of the subdomain
nonlinear system.

In Step 2, pieces of the Jacobian matrix are computed. The full Jacobian matrix
J never needs to be formed. In our distributed memory parallel implementation,
the submatrices JSi are formed and saved, and the multiplication of J with a given
vector is carried out using the submatrices JSi

. Therefore the global J matrix is never
needed. Several techniques are available for computing the JSi , for example, using
an analytic formula, multicolored finite differencing, or automatic differentiation. A
triangular factorization of JSi

is also performed at this step, in our implementation,
and the resulting matrices are stored.

Note that the matrix

N∑
i=1

J−1
Si

should not be considered as a linear preconditioner since it does not appear on the
right-hand side of the linear system. However, using the additive Schwarz precondi-
tioning theory, we know that for many applications the matrix

∑N
i=1 J

−1
Si
J is well-

conditioned, under certain conditions. We also note that if an inexact solver is used
to compute

∑N
i=1 J

−1
Si
w in Step 2, the Newton search direction would be changed

and, as a result, the algorithm becomes more inexact than a regular inexact Newton
algorithm, in which the matrix is assumed to be exact but the linear system is not
solved exactly.

As noted above the Jacobian system in Step 2 does not have the standard form
of a preconditioned sparse linear system

M−1Ax =M−1b.

However, standard linear solver software packages can still be used with some slight
modification, such as removing the line that performs

b :=M−1b.

Since the explicit sparse format of
∑N

i=1 J
−1
Si
J is often not available, further precon-

ditioning of the Jacobian system using sparse matrix–based techniques, such as ILU,
is difficult.

A particular interesting case is when the overlap is zero; then the diagonal blocks
of
∑N

i=1 J
−1
Si
J are all identities and therefore do not involve any computations when

multiplied with vectors. Let us take a two-subdomain case, for example,

J =

(
J11 J12

J21 J22

)

and JSi = Jii; then

2∑
i=1

J−1
Si
J =

(
I J−1

11 J12

J−1
22 J21 I

)
.
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The same thing can also be done for the overlapping case. This is a small savings
when there are many small subspaces. However, the savings can be big if there are
relatively few subspaces and the sizes are large. For example, in the case of a coupled
fluid-structure interaction simulation, there could be only two subdomains: one for
the fluid flow and one for the structure.

In Step 3, the step length λ(k) is determined using a standard linesearch technique
[8] based on the function

f(u) =
1

2
‖F(u)‖2.

More precisely, we first compute the initial reduction

s(k) = (g(k))T
N∑
i=1

J−1
Si
Jp(k).(4.2)

Then, λ(k) is picked such that

f(u(k) − λ(k)p(k)) ≤ f(u(k))− αλ(k)s(k).

Here α is a preselected parameter (use α = 10−4). The standard cubic backtracking
algorithm [8] is used in our computations.

5. Some analysis of ASPIN. In this section we provide some preliminary
analysis of ASPIN. We show that, under certain conditions, the original nonlinear
system (1.1) and the nonlinearly preconditioned system (2.3) have the same solution.
Such analysis is trivial for the case of linear preconditioning, but not so for the case of
nonlinear preconditioning. Our analysis will be based mostly on the results of [4, 10].

We consider the nonlinear problem (1.1). Let D be a neighborhood of the exact
solution u∗. We assume that the function F (u) is well-defined in D, and in addition
we assume the following.

Assumption 5.1. F
′
(u) is continuous in D and the matrix F

′
(u∗) is nonsingu-

lar.

These assumptions are satisfied, for example, for the class of monotone elliptic
partial differential equations [4, 10]. Following the nonlinear additive Schwarz theory
of [10], we have the following.

Lemma 5.1 (Dryja and Hackbusch). The subproblems (2.1) are all uniquely
solvable in a neighborhood of u∗ in D.

Lemma 5.2 (Dryja and Hackbusch). The matrix J̃ =
∑N

i=1 J
−1
Si
J is nonsingular

for any u in a neighborhood of u∗ in D.

The difference between J̃ and J is that, in the latter case, the subdomain deriva-
tives are taken at the point vSi

= uSi − Ti(uSi , uSc
i
) instead of uSi . Due to the

continuity assumption on F , we know that Ti(u) → 0 as u → u∗. Therefore using
Assumption 5.1, Lemma 5.1, and Lemma 5.2, it is clear that there exists a subdomain
D

′
satisfying u∗ ∈ D′ ⊂ D such that the following hold.

Lemma 5.3. The matrix J , defined by (3.1), (3.2), and (3.8), is nonsingular for
any u ∈ D′

.

Theorem 5.4. Under Assumption 5.1, the nonlinear systems (1.1) and (2.3) are
equivalent in the sense that they have the same solution in a neighborhood of u∗ in
D.
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Proof. Let us first assume that u∗ is the solution of (1.1), i.e., F (u∗) = 0, which
immediately implies that

FSi(u
∗) = 0.(5.1)

By definition, Ti satisfies

FSi
(u∗ − Ti(u∗)) = 0.(5.2)

Comparing (5.1) and (5.2), and using the local unique solvability Lemma 5.1, we must
have

Ti(u
∗) = 0

for i = 1, . . . , N . Therefore, u∗ is a solution of (2.3); i.e.,

N∑
i=1

Ti(u
∗) = 0.(5.3)

This proves not only that the solution of (1.1) is a solution of (2.3) but also that
(2.3) has at least one solution. Next, we show that (2.3) has only one solution in
the common neighborhood of Lemmas 5.1 and 5.2, which will then imply that the
solution must be u∗.

Using Lemma 5.3, we have that F ′
is nonsingular in a neighborhood of u∗ in

D; therefore, according to the inverse function theorem of calculus, the solution is
unique. This concludes the proof.

We remark that the theorem implies that any isolated solution of the nonlinear
system (1.1) in a relatively smooth region can be captured by solving the precondi-
tioned nonlinear system. We also remark that our analysis is local, and it does not
require that the nonlinear problem (1.1) have a global unique solution. As long as
the solution is locally isolated, our analysis should apply.

6. Numerical experiments. We show a few numerical experiments in this
section using ASPIN and compare with the results obtained using a standard inexact
Newton’s algorithm. We are mostly interested in the kind of problems on which the
regular inexact Newton-type algorithm does not work well. The application of ASPIN
for a full potential equation can be found in the report [6], and in this paper we shall
focus our discussion on the following two-dimensional driven cavity flow problem [16]
using the velocity-vorticity formulation in terms of the velocity u, v and the vorticity
ω, defined on the unit square Ω = (0, 1)× (0, 1),



−∆u− ∂ω
∂y

= 0,

−∆v + ∂ω
∂x

= 0,

− 1
Re∆ω + u

∂ω

∂x
+ v
∂ω

∂y
= 0.

(6.1)

Here Re is the Reynolds number. The boundary conditions are
• bottom, left, and right: u = v = 0,
• top: u = 1, v = 0.



NONLINEARLY PRECONDITIONED INEXACT NEWTON 193

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡

❡

❡ ❡

❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡
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✻

x

y

Fig. 6.1. A 9× 9 fine mesh with 3× 3 subdomain partition. The “o” are the mesh points. The
dashed lines indicate a 3 × 3 = 9 subdomain nonoverlapping partitioning. The solid lines indicate
the “overlapping = 1” subdomains.

We vary the Reynolds number in the experiments. The boundary condition on ω is
given by its definition:

ω(x, y) = −∂u
∂y

+
∂v

∂x
.(6.2)

The usual uniform mesh finite difference approximation with the 5-point stencil is
used to discretize the boundary value problem. Upwinding is used for the divergence
(convective) terms and central differencing for the gradient (source) terms. To obtain
a nonlinear algebraic system of equations F , we use natural ordering for the mesh
points, and at each mesh point, we arrange the knowns in the order of u, v, and ω.
The partitioning of F is through the partitioning of the mesh points. In other words,
the partition is neither physics-based nor element-based. Figure 6.1 shows a typical
mesh, together with an overlapping partition. The subdomains may have different
sizes depending on whether they touch the boundary of Ω. The size of the overlap
is as indicated in Figure 6.1. Note that since this is mesh-point-based partition, the
zero overlap case in fact corresponds to the half-cell overlap case of the element-based
partition, which is used more often in the literature on domain decomposition methods
for finite element problems [11].

The subdomain Jacobian matrices JSi are formed using a multicolored finite dif-
ference scheme.

The implementation is done using PETSc [1], and the results are obtained on
a cluster of DEC workstations. Double precision is used throughout the computa-
tions. The initial iterate is zero for u, v, and ω. Either 2 × 2 or 4 × 4 processor
decompositions are used in all experiments reported here. We report here only the
machine-independent properties of the algorithms.
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6.1. Parameter definitions. We stop the global PIN iterations if

‖F(u(k))‖ ≤ εglobal−nonlinear‖F(u(0))‖.

εglobal−nonlinear = 10−10 is used for all the tests. The global linear iteration for solving
the global Jacobian system is stopped if the relative tolerance∥∥∥∥∥F(u(k))−

N∑
i=1

J−1
Si
J(u(k))p(k)

∥∥∥∥∥ ≤ εglobal−linear−rtol‖F(u(k))‖

is satisfied. In fact we pick ηk = εglobal−linear−rtol independent of k throughout the
nonlinear iterations. Several different values of εglobal−linear−rtol are used as given in
the tables found near the end of this section.

At the kth global nonlinear iteration, nonlinear subsystems

FSi

(
u(k) − g(k)

i

)
= 0,

defined in Step 1(a) of Algorithm 4.1, have to be solved. We use the standard IN with

a cubic linesearch for such systems with initial guess g
(k)
i,0 = 0. The local nonlinear

iteration in subdomain Si is stopped if the following condition is satisfied:∥∥∥FSi

(
g
(k)
i,l

)∥∥∥ ≤ εlocal−nonlinear−rtol

∥∥∥FSi

(
g
(k)
i,0

)∥∥∥ .
The overall cost of the algorithm depends heavily on the choice of εlocal−nonlinear−rtol.
We report computational results using a few different values for it.

6.2. Comparison with a Newton–Krylov–Schwarz algorithm. We com-
pare the newly developed algorithm ASPIN with a well-understood inexact Newton
algorithm using a cubic backtracking linesearch as the global strategy, as described
in [8]. At each IN iteration, the Newton direction p(k) satisfies

‖F (u(k))− F ′(u(k))p(k)‖ ≤ ηk‖F (u(k))‖.(6.3)

Several values of ηk were tested and the results are similar. The stagnation appears in
all cases. Here we show the result with ηk = 10−10. GMRES with a one-level additive
Schwarz preconditioner is used as the linear solver with the same partition and overlap
as in the corresponding ASPIN algorithm. The history of nonlinear residuals is shown
in Figure 6.2 (top) with several different Reynolds numbers on a fixed fine mesh of
size 128× 128.

6.3. Test results and observations. As the Reynolds number increases, the
nonlinear system becomes more and more difficult to solve. In this paper, the Reynolds
number should be understood only as a parameter that controls the nonlinearity. We
do not claim that the physics of the viscous boundary layer is resolved independently of
Reynolds number for our fixed discretization. The Newton–Krylov–Schwarz algorithm
fails to converge once the Reynolds number passes the value Re = 770.0 on this
128 × 128 mesh. Standard techniques for going further would employ pseudotime
stepping [19], nonlinear continuation in h or Re [29], or mesh sequencing [29]. ASPIN
converges for a much larger range of Reynolds numbers, as shown in Figure 6.2,
without employing any of the standard tricks. Furthermore, the number of PIN
iterations does not change much as we increase the Reynolds number. A key to the
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Fig. 6.2. Nonlinear residual history for the flow problem with different Reynolds numbers.

success of the method is that the subdomain nonlinear problems are well solved, which
helps balance the nonlinearities of the outer Newton iterations.

In Table 6.1, we present the number of global nonlinear PIN iterations and the
number of global GMRES iterations per PIN iteration for various Reynolds numbers
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Table 6.1
Global PIN iterations. Fine mesh 128 × 128, 4 × 4 subdomain partition on 16 processors.

Subdomain linear systems are solved exactly. εglobal−linear−rtol is the stopping condition for the
global GMRES iterations. εlocal−nonlinear−rtol is the stopping condition for the local nonlinear
iterations. The finite difference step size is 10−8.

Number of PIN iterations

Overlap Re = 100 Re = 101 Re = 102 Re = 103 Re = 104

εglobal−linear−rtol = 10−6, εlocal−nonlinear−rtol = 10−6

0 2 3 4 8 7

1 2 3 4 7 7

εglobal−linear−rtol = 10−6, εlocal−nonlinear−rtol = 10−3

0 2 3 4 8 7

1 2 3 4 8 7

εglobal−linear−rtol = 10−3, εlocal−nonlinear−rtol = 10−6

0 4 4 5 7 8

1 3 3 4 7 7

εglobal−linear−rtol = 10−3, εlocal−nonlinear−rtol = 10−3

0 4 4 5 7 9

1 3 2 4 7 6

Number of GMRES iterations per PIN

εglobal−linear−rtol = 10−6, εlocal−nonlinear−rtol = 10−6

0 118 100 152 146 122

1 71 61 87 90 69

εglobal−linear−rtol = 10−6, εlocal−nonlinear−rtol = 10−3

0 118 100 153 141 130

1 71 62 87 80 69

εglobal−linear−rtol = 10−3, εlocal−nonlinear−rtol = 10−6

0 60 61 56 46 34

1 42 37 40 32 27

εglobal−linear−rtol = 10−3, εlocal−nonlinear−rtol = 10−3

0 60 61 56 45 37

1 42 37 40 31 26

and overlapping sizes. Two key stopping parameters are εglobal−linear−rtol for the
global linear Jacobian systems and εlocal−nonlinear−rtol for the local nonlinear systems.
We test several combinations of two values 10−6 and 10−3. As shown in the table, the
total number of PIN iterations does not change much as we change εglobal−linear−rtol

and εlocal−nonlinear−rtol; however, it does increase from 2 or 3 to 6 or 9 when the
Reynolds number increases from 1 to 104. The bottom part of Table 6.1 shows the
corresponding number of GMRES iterations per PIN iteration. These linear iteration
numbers change drastically as we switch to different stopping parameters. Solving
the global Jacobian too accurately costs many GMRES iterations and does not result
in corresponding savings in the total number of PIN iterations.

Table 6.1 also compares the results with two sizes of overlap. A small number
of PIN iterations can be saved as one increases the overlapping size from 0 to 1 or
more, as shown also in Table 6.2. The corresponding number of global linear itera-
tions decreases considerably. We should mention that the size of subdomain nonlinear
systems increases as one increases the overlap, especially for three-dimensional prob-
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Table 6.2
Varying the overlapping size. Fine mesh 128×128, 4×4 subdomain partition on 16 processors.

Subdomain linear systems are solved exactly. εglobal−linear−rtol = 10−3 is the stopping condition
for the global GMRES iterations. εlocal−nonlinear−rtol = 10−3 is the stopping condition for the
local nonlinear iterations. The finite difference step size is 10−8.

Overlap 0 1 2 3 4 5
PIN 7 7 6 6 4 6
GMRES/PIN 45 31 23 21 18 17

Table 6.3
Total number of subdomain nonlinear iterations. Fine mesh 128 × 128, 4 × 4 subdomain

partition on 16 processors. Subdomains are naturally ordered. Subdomain linear systems are
solved exactly. εglobal−linear−rtol = 10−3 is the stopping condition for the global GMRES iter-
ations. εlocal−nonlinear−rtol = 10−3 is the stopping condition for the local nonlinear iterations.
Overlap = 1. The finite difference step size is 10−8.

Subdomain # Re = 100 Re = 101 Re = 102 Re = 103 Re = 104

Ω1 2 2 3 7 12
Ω2 2 2 3 6 8
Ω3 2 2 3 6 8
Ω4 2 2 3 7 9
Ω5 2 2 3 8 10
Ω6 2 2 3 7 10
Ω7 2 2 3 6 9
Ω8 2 2 3 9 10
Ω9 2 2 3 10 12
Ω10 2 2 3 9 10
Ω11 2 2 3 8 10
Ω12 2 2 3 10 10
Ω13 4 4 6 12 18
Ω14 4 4 6 13 19
Ω15 4 4 6 13 18
Ω16 4 4 7 15 19

lems. The communication cost in a distributed parallel implementation also increases
as we increase the overlap. Recent experiments seem to indicate that small overlap,
such as overlap = 1, is preferred when balancing the saving of the computational cost
and the increase of the communication cost; see, for example, [11, 15]. Of course, the
observation is highly machine- and network-dependent.

In Table 6.3, we look at the number of Newton iterations for solving the subdo-
main nonlinear systems. In this test case, we partition the domain into 16 subdomains,
4 in each direction, and number them naturally from the bottom to top, and left to
right. Four subdomains Ω13, Ω14, Ω15, and Ω16 touch the moving lid. The solution
of the problem is less smooth near the lid, especially when the Reynolds number is
large. As expected, the subdomains near the lid need more iterations—two to three
times more than what is needed in the smooth subdomains for the large Reynolds
number cases.

We next show how the iteration numbers change as we change the number of
subdomains with a fixed 128 × 128 fine mesh. The results are displayed in Table
6.4. As we increase the number of subdomains from 4 to 16 the number of global
PIN iterations does not change much—up or down by 1—and is most likely due to
the last bits of the stopping conditions rather than to the change of the algorithm.
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Table 6.4
Different subdomain partitions with the same fine mesh 128 × 128. Subdomain linear systems

are solved exactly. εglobal−linear−rtol = 10−3 is the stopping condition for the global GMRES
iterations. εlocal−nonlinear−rtol = 10−3 is the stopping condition for the local nonlinear iterations.
Overlap = 1. The finite difference step size is 10−8.

Number of PIN iterations

Subdomain partition Re = 100 Re = 101 Re = 102 Re = 103 Re = 104

N = 2× 2 = 4 3 3 4 6 7
N = 4× 4 = 16 3 2 4 7 6

Number of GMRES iterations per PIN
N = 2× 2 = 4 22 21 23 20 15
N = 4× 4 = 16 42 37 40 31 26

Table 6.5
Different fine meshes on 16 processors. Subdomain linear systems are solved ex-

actly. εglobal−linear−rtol = 10−3 is the stopping condition for the global GMRES iterations.
εlocal−nonlinear−rtol = 10−3 is the stopping condition for the local nonlinear iterations. Overlap =
1. The finite difference step size is 10−8.

Number of PIN iterations

Fine mesh Re = 100 Re = 101 Re = 102 Re = 103 Re = 104

32× 32 3 3 4 6 6
64× 64 3 3 4 6 7
128× 128 3 2 4 7 6

Number of GMRES iterations per PIN
32× 32 16 16 18 15 16
64× 64 25 25 24 22 20
128× 128 42 37 40 31 26

Note that when we change the number of subdomains, the inexact Newton direction
changes, and as a result the algorithm changes. As a matter of fact, we are comparing
two mathematically different algorithms. The bottom part of Table 6.4 shows that
the number of GMRES iterations per PIN increases quite a bit as we increase the
number of subdomains. In a one-level Schwarz preconditioned linear solver, we would
expect the condition number to deteriorate linearly in the number of partitions in
each coordinate direction and the iteration count to go up as the square root of this.

In Table 6.5, both linear and nonlinear iteration numbers are given with a fixed
4 × 4 subdomain partition. The fine mesh sizes change from 32 × 32 to 128 × 128.
The number of Newton iterations is not sensitive to the change of the fine mesh size,
but the number of linear iterations increases as we refine the mesh. This is due to
that fact that we fix the overlapping size to one mesh cell. In this case, the ratio of
the overlap to the subdomain size becomes smaller as we refine the fine mesh without
changing the number of subdomains.

7. Some further comments. We comment on a few important issues concern-
ing the newly proposed algorithm, including parallel scalabilities and load balancing
in parallel implementations.

Parallel scalability is a very important issue when using linear or nonlinear iter-
ative methods for solving problems with a large number of unknowns on machines
with a large number of processors. It usually involves two separate questions, namely,
how the iteration numbers change with the number of processors and with the num-
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ber of unknowns. From our limited experience, the number of ASPIN iterations is
not sensitive at all to either the number of processors or the number of unknowns.
In other words, the number of nonlinear PIN iterations is completely scalable, as is
often seen with Newton’s method on PDE problems. However, this cannot be carried
over to the linear solver. To make the linear solver scalable, a coarse grid space is
definitely needed. Our current software implementation is not capable of dealing with
the coarse space; therefore no further discussion of this issue can be offered at this
point.

Load balancing is another important issue for parallel performance that we do not
address in the paper. As shown in Table 6.3, the computational cost is much higher
in the subdomains near the lid than in the other subdomains, in particular for the
large Reynolds number cases. To balance the computational load, ideally one should
partition the domain such that these subdomains that require more linear/nonlinear
iterations contain fewer mesh points. However, the solution-dependent cost informa-
tion is not available until after a few iterations, and therefore the ideal partition has
to be obtained dynamically as the computation is being carried out.

We discussed only one partitioning strategy based on the geometry of the mesh
and the number of processors available in our computing system. Many other parti-
tioning strategies need to be investigated. For example, physics-based partitions: all
the velocity unknowns as Ω1 and the vorticity unknowns as Ω2. In this case, the num-
ber of subdomains may have nothing to do with the number of processors. Further
partitions may be needed on both Ω1 and Ω2 for the purpose of parallel process-
ing. One possible advantage of this physics-based partition is that the nonlinearities
between different physical quantities can be balanced.

An extreme case of a mesh-based partition would be that each subdomain contains
only one grid point. Then, the dimension of the subdomain nonlinear system is the
same as the number of variables associated with a grid point, 3 for our test case. In
this situation, ASPIN becomes a pointwise nonlinear scaling algorithm. As noted in
[8], linear scaling does not change the nonlinear convergence of Newton’s method, but
nonlinear scaling does. Further investigation should be of great interest.
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