
The Parareal in Time Iterative Solver:

a Further Direction to Parallel Implementation

Yvon Maday1, Gabriel Turinici2,3
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Summary. This paper is the basic one of the series resulting from the minisym-
posium entitled “Recent Advances for the Parareal in Time Algorithm” that was
held at DD15. The parareal in time algorithm is presented in its current version
(predictor-corrector) and the combination of this new algorithm with other more
classical iterative solvers for parallelization which makes it possible to really con-
sider the time direction as fertile ground to reduce the time integration costs.

1 Introduction

In the seminal paper Lions et al. [2001] the generalization of the concept
of domain decomposition for time solution was first proposed. Even though
the time direction seems intrinsically sequential, the combination of a coarse
and a fine solution procedure have proven to converge and allow for more
rapid solution if parallel architectures are available. This has led to the name
“parareal in time” that has been proposed for this method. Since then, this
scheme has received some attention and a presentation under the format of
a predictor-corrector algorithm has been made in Bal and Maday [2002] and
also in Baffico et al. [2002]. It is this last presentation that we shall use in what
follows. Before this let us mention that a matricial form of the scheme was
also presented in Maday and Turinici [2002] were the parareal methodology
appears as a preconditioner.

Let us consider the partial differential equation (P.D.E.)

∂u

∂t
+ Au = 0, over the time interval [T0, T ] (1)

where A is some functional operator, linear or not, from a Hilbert space V
into its dual space V ′. This P.D.E. is complemented with initial conditions
u(t = T0) = u0 and appropriate boundary conditions that are implicitly
incorporated in the formulation and the space V .
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It is well known that, when it exists, the solution of this P.D.E. can be
written as

u(t) = Et−T0
(u0; T0) (2)

and that we have the following semigroup property for any T ∗, T0 ≤ T ∗ ≤ t

u(t) = Et−T∗(ET∗−T0
(u0; T0); T

∗). (3)

that formalizes the sequential nature of the this Cauchy problem.
Associated with this formal operator, the numerical solution of this prob-

lem leads to an approximate operator F based on a discretization scheme
with time steps δt and some order m. In addition to the time discretization,
a discretization in space (with discretization parameter δx) can also be used
that leads to an error of the order δtm + δxν at any final time T .

Let us assume that a time range ∆T >> δt is being given and that we are
interested in the collection of snapshots {u(Tn)}0≤n≤N where Tn = T0 +n∆T
and TN = T . The proper approximation of these values are given by {λn =
Fn∆T (u0; T0)}0≤n≤N (hence λ0 = u0) as in (3) we note that

λn = F∆T (λn−1; Tn−1). (4)

The parareal algorithm makes it possible to define iteratively a sequence
λk

n that converges toward λn as k goes to infinity. It involves a coarse solver
G, less accurate than F , but much cheaper. It can be based for example
on the time step ∆T (or any coarser time step than δt) together, as was
proposed already in Lions et al. [2001], with a coarser discretization in space
∆X (see also Fischer et al. [2003]) or even, a simpler physical model, as was
implemented in Maday and Turinici [2003]. The assumptions that are made
are that

• ‖D(F∆T − G∆T )‖ ≤ cε∆T where ε depends on both ∆T , δt, ∆X and δx,
and goes to zero when ∆T , and ∆X go to zero. The symbol D denotes
the first derivative with respect to the first variable.

• ‖DG∆T ‖ ≤ c

In the parareal algorithm, starting from λ0
n = Gn∆T (u0; T0) the sequence

λk
n, k ≥ 1 is determined by

λk
n = G∆T (λk

n−1; Tn−1) + F∆T (λk−1

n−1; Tn−1) − G∆T (λk−1

n−1; Tn−1). (5)

and we can prove the following error

‖λn − λk
n‖ ≤ C

n
∑

m=k

(n

m

)

‖D(F∆T − G∆T )‖m‖DG∆T ‖
n−m. (6)

from which the convergence in k follows since our hypothesis leads to

max
0≤n≤N

‖λn − λk
n‖ ≤ C(T )εk. (7)
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In order to prove this result we remark that from Eqn (5) one obtains:

λk
n − λn =

(

G∆T (λk
n−1; Tn−1) − G∆T (λn−1; Tn−1)

)

+ (F∆T − G∆T ) (λk−1

n−1; Tn−1) − (F∆T − G∆T ) (λn−1; Tn−1) (8)

Suppose now that G∆T (·; ·) and (F∆T − G∆T ) (·; ·) are differentiable with re-
spect to the (first) variable uniformly over all its values and over all values of
the time parameter. Denoting by ek

n = ‖λk
n − λn‖ one can write

G∆T (λk
n−1; Tn−1) − G∆T (λn−1; Tn−1)

= DG∆T (λn−1; Tn−1)(λ
k
n−1 − λn−1) + o(ek

n−1)

and obtain the estimate

‖G∆T (λk
n−1; Tn−1) − G∆T (λn−1; Tn−1)‖ ≤ 3/2‖DG∆T (·; ·)‖ek

n−1

for any ek
n−1 ≤ µg

3/2
. Using the same technique for (F∆T − G∆T ) (λk−1

n−1; Tn−1)

one obtains:

ek
n ≤ 3/2‖DG∆T (·; ·)‖ek

n−1 + 3/2‖D (F∆T − G∆T ) (·; ·)‖ek−1

n−1 (9)

provided that ek
n−1 and ek−1

n−1 are smaller than some constants µg
3/2

and µf−g
3/2

respectively. Provided that the initial guess λ0
n, n = 1, ..., N is chosen suffi-

ciently close to the solution λn from Eqn (4), one can prove by induction the
result in Eqn (6). Then, we notice that

n
∑

m=k

(n

m

)

‖D(F∆T − G∆T )‖m‖DG∆T ‖
n−m ≤ ǫk

n
∑

m=k

(n

m

)

(c∆T )m‖DG∆T ‖
n−m

≤ ǫk(∆T )k
n

∑

m=0

(n

m

)

cm‖DG∆T ‖
n−m = ǫk(∆T )k(c + ‖DG∆T ‖)

n,

and thus we obtain the result in Eqn (7).
We refer also to Farhat and Chandesris [2003], Staff and Rønquist [2003]

and to Bal [2003a] for other issues about stability and approximation of the
parareal in time scheme.

2 Combination with domain decomposition – the

overlapping case

2.1 The iterative procedure

Let Ω be a domain decomposed into P subdomains that, in this section,
we shall assume to be overlapping to make things easier. More precisely let
Ω = ∪P

p=1Ω
p

with Ωp ∩ Ωq = ∅ whenever p 6= q, in addition, we assume
that there exists ωp,q – called here “bandages” – associated with any pair
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(p, q) such that Ω
p
∩ Ω

q
6= ∅ so that Ω = {∪Ωp} ∪ {∪ωp,q}. Note that those

bandages may (and most often have to) overlap.
In what follows, we shall propose a space-time parallel iterative method

for solving the following type of problem

∂u
∂t − ∆u = f, in Ω × [0, T ]

u(0, x) = u0(x), in Ω,
u(t, x) = g(t, x), over ∂Ω × [0, T ],

(10)

To make it easy, for the definition of the algorithm, we assume no dis-
cretization is used in space neither for the coarse nor for the fine propagator,
similarly we assume that the fine propagator does not involve any discretiza-
tion in time. We are going to define an iterative procedure that involves the fine
and accurate solution (here actually exact) only over each block Ωp×[Tn, Tn+1]
or ωp,q × [Tn, Tn+1]. The solution at iteration k will be denoted as uk

p,n over

Ωp× [Tn, Tn+1] and vk
p,q,n over ωp,q× [Tn, Tn+1]. By construction, the function

uk
n built by “concatenation” of the various

(

uk
p,n

)

p
is an element of H1(Ω) for

almost each time (continuity enforced at the interfaces). We will also have the
snapshots λk

n available at each time Tn.

The coarse propagator

Once the solution is known at iteration k, the definition of the solution at
iteration k + 1 involves a coarse operator that can be defined as follows:

G∆T (λk
n) − λk

n

∆T
− ∆(G∆T (λk

n)) = f(Tn+1). (11)

The fine propagator

The fine propagator actually involves not only the knowledge of λk
n but also

of uk
n. It proceeds as follows

Step one. We first propagate the solution over ωp,q × [Tn, Tn+1] by solving

∂vk+1
p,q,n

∂t
− ∆vk+1

p,q,n = f, in ωp,q × [Tn, Tn+1]

vk+1
p,q,n(Tn, x) = λk

n(x), in ωp,q,
vk+1

p,q,n(t, x) = uk
p,n(t, x) + λk

n(x) − uk
p,n(Tn, x),

over ∂ωp,q ∩ ∂Ωp × [Tn, Tn+1],

(12)

Note that the correction: λk
n − uk

p,n(Tn, .), allows us to have the boundary
conditions compatible with the initial condition for each local problem.

Step two. We now define from the various vk+1
p,q,n a current global boundary

value, named vk+1
n over (∪p∂Ωp)\∂Ω. In the case where the subdomains ωp,q

do not overlap, then vk+1
n is, over each (∪p∂Ωp) ∩ ωp,q, equal to the unique

possible value that is vk+1
p,q,n. In case of overlapping ωp,q’s, there is a conflict

between the vk+1
p,q,n that is solved by choosing a continuous convex combination

of the different vk+1
p,q,n’s.
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Step three. We now propagate the solution over Ωp × [Tn, Tn+1] by solving

∂uk+1
p,n

∂t
− ∆uk+1

p,n = f, in Ωp × [Tn, Tn+1]

uk+1
p,n (Tn, x) = λk

n(x), in Ωp,
uk+1

p,n (t, x) = g(x), over ∂Ωp ∩ ∂Ω × [Tn, Tn+1],
uk+1

p,n (t, x) = vk+1
n (t, x), over ∂Ωp ∩ ∂ωp,q × [Tn, Tn+1],

(13)

This allows us to define a new global solution uk+1
n over each Ω × [Tn, Tn+1]

since, as we already said, the uk+1
p,n do match at the interfaces.

The k + 1 iteration

The definition of each λk+1
n , 1 ≤ n ≤ N then proceeds similarly as for (5)

λk+1
n = G∆T (λk

n) + uk+1
n (Tn+1) − G∆T (λk−1

n ). (14)

2.2 Numerical results

The first set of computations has been done on a rectangular domain ]0, 4[×]0, 1[,
decomposed into 2 equal rectangles Ω1 =]0, 2[×]0, 1[ and Ω2 =]2, 4[×]0, 1[ plus
a rectangular “bandage” ω1,2 of various width (]1, 3[×]0, 1[ or ]1.5, 2.5[×]0, 1[).
The P.D.E. that we have solved is

∂u

∂t
− ν∆u = f, (15)

with ν = 1 and f = 50 sin(2π(x+t)) cos(2π(y+t)) over a time range T−T0 = 1.
We have used a P1-finite element discretization in space and an implicit Euler
scheme of first order in time. The fine propagator is based on a time step δt
that is 50 times smaller than the large time step. In the experiments reported
below in Table 1, the size of the large time step ∆T = 1/N varies. A priori
N is related to the number of parallel processors we have. Here this figure
should be 2N as there are two subdomains that can be run at the same time.
Table 1 summarizes the error between λk

n and the finite element solution with
a very fine discretization in time. Note that in all the situations the error
after 5 (resp. 4) iterations remains constant and is (resp. is of the order of)
the error resulting from δt = 1/(50N). Note that if we double N , achieving
thus an error that is, at convergence, twice smaller, the number of iterations
remains the same. This indicates the perfect scalability of our global (parareal
+ Schwarz) scheme.

Note that to be completely legal in the former statement, we assume that
the cost of the coarse solvers should be considered as negligible with respect
to the cost of the fine solver. To do so a coarse discretization in space should
be added, we are currently working in that direction.
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Table 1

width of ω1,2= 2 width of ω1,2 = 1
k= N=15 N=30 N=60 N=120 N=15 N=30 N=60 N=120

1 0.95 0.49 0.28 0.17 0.50 0.38 0.31 0.27

2 0.076 0.040 0.031 0.020 0.10 0.068 0.065 0.042

3 0.045 0.022 0.016 0.009 0.056 0.022 0.016 0.009

4 0.045 0.024 0.014 0.005 0.041 0.022 0.016 0.005

5 0.045 0.022 0.011 0.006 0.041 0.020 0.010 0.005

6 0.045 0.022 0.011 0.006 0.041 0.020 0.010 0.005

Another indication on this scalability is that, if we maintain the accuracy,
by having the product n×N constant, then the number of iterations required
for convergence remains also constant. Hence provided that you have twice
the number of processors, then N can be multiplied by a factor of 2 and the
cost of each iteration is divided by 2. Since the number of iterations remains
constant, this means that the global time to wait is divided by 2.

We have also performed the same Schwarz method over ]0, 4[×]0, 4[ di-
vided into 4 squares of size 2 (the Ωp’s) and 2 rectangular “bandage” ωp,q:
]1.5, 2.5[×]0, 4[ and ]0, 4[×]1.5, 2.5[. The results are reported in Table 2.

Table 2

k= N=15 N=30 N=60 N=120
1 0.28 0.11 0.077 0.046
2 0.082 0.032 0.020 0.010
3 0.034 0.014 0.007 0.004
4 0.021 0.009 0.007 0.004
5 0.017 0.009 0.007 0.004
6 0.017 0.009 0.007 0.004

The same conclusion holds for this set of experiments. It is even better
since the saturated convergence is achieved for smaller values of k when N
(thus here both the accuracy and the number of processors) increases.

We refer also to Farhat and Chandesris [2003] and especially to Bal [2003b]
for other issues about scalability of this algorithm.

3 Combination with domain decomposition – the

non-overlapping case

We have generalized this approach to a non overlapping situation in the case
were we only assume Ω = ∪P

p=1Ω
p

with Ωp∩Ωq = ∅ whenever p 6= q. We have
chosen here the Neumann-Neumann strategy as in Bourgat et al. [1989] The
approach results also in the fine solution of problems set over P subdomains
times a time span of ∆T . The approach here differs from the overlapping case
in the sense that the fine propagator involves both a Dirichlet and a Neumann
solver:
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The fine propagator

Let us assume that {λk
n}n are given together with the values {βk

n}n corre-
sponding to a predictor for the Dirichlet value of the solution over ∪∂Ωp \∂Ω.
We first propagate the solution over each Ωp×]Tn, Tn+1[ from λk

n with the
boundary conditions βk

n. In order to correct these boundary conditions, as
in the Neumann-Neumann algorithm, we transform the jump in the nor-
mal derivatives of the solutions that have been computed at interface by
a harmonic lifting that provides a corrector for the boundary condition. A
relaxation parameter is adjusted (in our case through an optimal gradient
approach) in order to minimize the final jump in the solution.

The coarse propagator

The coarse propagator is similar to that of the previous section. We can remark
at this level that both in this case or in the overlapping case, there is room for
reducing the cost of this global propagation, either by coarsening the spacial
mesh size or by using a (sole) domain decomposition approach.

The numerical results

What we report here are only preliminary results that have to be extended to
more complex cases. We should also replace the gradient method by a faster
(at least a conjugate gradient or a GMRES) methods. We have considered
the same problem as for the overlapping strategy, on the rectangular domain
]0, 4[×]0, 1[. We assume it is only decomposed into Ω1 and Ω2 (without any
bandage). We have run the procedure and shown that, by keeping the fine time
step constant, thus decreasing the number of fine time step within ∆T as we
increase N , the number of iteration for convergence again remains constant.
This gives evidences of the scalability of the method. We have to remark that
the convergence rate of the iterative procedure is appreciably lower for this
non-overlapping strategy than for the overlapping one. We are convinced that
by replacing the crude gradient method that we have implemented by a better
approach, the method will perform as nicely as in the overlapping case. This
is the subject of a forthcoming paper to improve this strategy and extend it
to other classes of classical iterative-domain decomposition based- methods in
space (as FETI, Dirichlet Neuman, substructuring..).

Acknowledgement. The numerical results have been performed on the Freefem++
platform and we have benefitted from the advices of Frédéric Hecht and Olivier
Pironneau.
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