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Summary. Hierarchical matrices provide a technique to efficiently compute and
store explicit approximations to the inverses of stiffness matrices computed in the
discretization of partial differential equations. In a previous paper, Le Borne [2003],
it was shown how standard H-matrices must be modified in order to obtain good
approximations in the case of a convection dominant equation with a constant con-
vection direction. This paper deals with a generalization to arbitrary (non-constant)
convection directions. We will show how these H-matrix approximations to the in-
verse can be used as preconditioners in iterative methods.

1 Introduction

Considerable advancements have been achieved in algebraic and geometric
multigrid solvers, state-of-the art domain decomposition methods such as
FETI (Farhat et al. [2001]), direct and approximate (inverse) factorization
solvers (Grote and Huckle [1997], Chow and Saad [1998]) as well as custom
strategies for coarsening, partitioning, ordering, pivoting, etc., which improve
the effectiveness and robustness of these methods. However, many important
challenges remain which in particular include the construction of a robust
solver for convection-dominant systems of PDEs.

A completely new and powerful approach for the construction of efficient
preconditioners and smoothing iterations has recently been introduced that
involve so-called hierarchical matrices, or H-matrices (see, e.g., Hackbusch
[1999], Grasedyck and Hackbusch [2002], Le Borne [2003]). The H-matrix
technique is a generalization of the panel clustering method and permits the
treatment of fully populated matrices while restricting the requirements for
storage and arithmetics (approximate matrix-vector multiplication, matrix-
matrix multiplication and matrix inversion) to nearly optimal complexity
O(n logα

2 n) for some (small) constant α. Related methods are the multipole
method and the mosaic skeleton method (Tyrtyshnikov [2000]). In this pa-
per we use an H-matrix as a preconditioner in an iterative method to solve
a convection-dominant problem. The characteristic feature that distinguishes
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H-matrices from other sparse approximate inverse techniques (SPAI) (see,
e.g., Grote and Huckle [1997], Chow and Saad [1998], Benzi and Tuma [1998])
is the particular storage format of an H-matrix that will be further explained
below. Whereas these sparse (SPAI) methods typically work well if the ap-
proximated matrix contains many very small entries, the H-matrix techniques
provides convergent approximations if (large) subblocks of the approximated
matrix are smooth (but not necessarily have small entries).

The remainder of this paper is organized as follows: After the introduction
of the model problem in Section 2.1 we review the construction of an H-
matrix in Section 2.2. In Sections 2.3 and 2.4, modifications to the standard H-
matrix are developed for the convection-dominant case with constant and non-
constant convection directions, resp. In Section 3, we will provide the results
of numerical tests where H-matrices have been used in iterative methods.

2 Preliminaries

2.1 The model problem

In this paper we consider the two-dimensional convection-diffusion equation
with Dirichlet boundary conditions

−ǫ∆u + b · ∇u = f in Ω = (0, 1)2, (1)

u = g on ∂Ω (2)

for 0 < ǫ ≪ 1 and an arbitrary convection b : R
2 → R

2. An (upwind)
finite element discretization leads to a linear system of equations Ahxh = fh

where the parameter h characterizes the grid width of the underlying mesh.
The H-matrix technique is applicable to matrices obtained by a wide range
of discretizations since its theory is based upon the approximability of the
underlying Green’s function by a separable function (and not on a particular
discretization technique). Even though the construction of an H-matrix is
based on some knowledge on the underlying Green’s function, the Green’s
function need not be known explicitly.

In Le Borne [2003], the case of a constant convection b was analysed. The
numerical results showed better results in the case where the convection b

aligned with the grid compared to a general, non-aligning convection direction.
This can be explained by the numerical diffusion produced by the discretiza-
tion scheme in the case of a non-aligning convection direction. Therefore, the
construction of the H-matrix should not only depend on the continuous prob-
lem but also on the amount of numerical diffusion, especially since in the case
of an arbitrary, non-constant convection we typically cannot expect the grid
to align with the convection.

2.2 H-matrices

We will briefly review the the definition and standard construction of an
H-matrix in order to later derive modifications for the convection-dominant
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case. More details on H-matrix approximations can be found in, e.g. Hack-
busch [1999], Hackbusch and Khoromskij [2000b,a], Hackbusch et al. [2003],
Grasedyck and Hackbusch [2002], and the references therein. An H-matrix
approximation to a given (fully populated) matrix A ∈ R

I×I for a finite index
set I is obtained by first constructing a certain block partitioning of the ma-
trix index set I×I, and then replacing each subblock b = b1×b2 ⊂ I×I of this
partitioning that is larger than a certain threshold by a matrix of low rank
k(b). If this rank k(b) is small compared to the number of indices contained in
b1 and b2, then such a low rank matrix has much lower storage requirements
than the approximated full matrix.

Definition 1 (R(k)-matrix representation). Let k, n, m ∈ N0, and let
M ∈ R

n×m be a matrix of at most rank k. A representation of M in fac-
torised form M = ABT , A ∈ R

n×k, B ∈ R
m×k, with A and B stored as full

matrices, is called an R(k)-matrix representation of M , or, in short, we call
M an R(k)-matrix.

Remark 1. The storage requirement NR,St(n, m, k) and the costs NR·v(n, m, k)
for the matrix-vector product with a matrix M ∈ R

n×m in R(k)-matrix repre-
sentation are NR,St(n, m, k) = k(n+m) and NR·v(n, m, k) = 2k(n+m)−n−k.

Compared to the respective complexities for full matrices, O(nm), we have
significant savings for the R(k)-matrix if the rank k is small compared to the
size of the matrix.

Definition 2 (H-matrix). Let nmin ∈ N0. Let P be a partition of the block
index set I × I. Let k : P → N0 be a mapping that assigns a rank k(b) to each
block b = s × t ∈ P. The set of H-matrices induced by the partition P and
with minimum block size nmin is defined by

H(P , k) := {M ∈ R
I×I |∀s × t ∈ P : rank(M |s×t) ≤ k(s × t) or

min{#s, #t} ≤ nmin}.

A matrix M ∈ H(P , k) is said to be given in H-matrix representation if the
blocks M |s×t with rank(M |s×t) ≤ k(s× t) are stored in R(k)-matrix represen-
tation and the remaining blocks with min{#s, #t} ≤ nmin as full matrices.

The accuracy of an H-matrix approximation depends on how well the
individual blocks in the partition can be approximated by low rank matri-
ces, which in turn depends on the approximability of the underlying Green’s
function by separable functions as well as the ordering of the unknowns. To
obtain a suitable block partition, we construct a hierarchy of partitionings
from which we choose the “coarsest” one that satisfies a certain admissibility
condition which shall ensure the approximability by a low rank matrix. The
construction of a hierarchy of partitionings of an index set is shown in Figure
1. The hierarchical index set partition of Figure 1 does not state how to divide
an index set into two subsets. Typically, the indices are ordered in a certain
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Let I = I0,0 be a finite index set. If the jth subset on level ℓ, Iℓ,j ⊂ I ,
contains more than one index, we subdivide it into two disjoint succes-
sor index sets Iℓ+1,jℓ−1 and Iℓ+1,jℓ of approximately the same size on
the next level ℓ + 1 that satisfy Iℓ,j = Iℓ+1,jℓ−1 ∪ Iℓ+1,jℓ.

Fig. 1. Hierarchical index set partitioning

way based upon the geometric information associated with the indices, and
then this ordered list of indices is bisected into two sets of approximately the
same size. In the case of uniformly elliptic differential operators, it has been
shown in Bebendorf and Hackbusch [2003] that a partitioning into subsets
with small diameters (with respect to the Euclidean norm) will lead to a con-
vergent H-matrix approximation. Such a partition is obtained if the indices
within each index set Iℓ,j are ordered as follows:

if max
v,w∈Iℓ,j

|xv − xw| > max
v,w∈Iℓ,j

|yv − yw| then

n(v) < n(w) if xv < xw or (xv = xw and yv < yw)

else n(v) < n(w) if yv < yw or (yv = yw and xv < xw).

Here, (xv, yv) describes the geometric location associated with an index v, and
n(v) ∈ {1, · · · , #Iℓ,j} assigns the index number. We will refer to this type of
bisection as the standard partition or geometric bisection.

In order to define an admissibility condition, let Bℓ,j := BIℓ,j
be an axially

parallel bounding box that contains the union of the supports of the basis
functions corresponding to the indices in Iℓ,j . Then, the standard admissibility
condition is given by: Iℓ,j × Iℓ,k is admissible if

min{diam(Bℓ,j), diam(Bℓ,k)} ≤ η dist(Bℓ,j , Bℓ,k) (3)

for some parameter η > 0.
Given a hierarchical index set partitioning, a hierarchy of partitionings of

the block index set I × I is obtained in a canonical way as shown in Figure 2.

Let a hierarchical index set partitioning be given. We define a hierarchy
of block partitionings by defining I × I = I0,0 × I0,0, and a block b :=
Iℓ,j1 × Iℓ,j2 satisfies exactly one of the following three conditions:

(i) b satisfies an admissibility condition (3),
(ii) min{#Iℓ,j1 , #Iℓ,j2} ≤ nmin,
(iii) b has (four) successors Iℓ+1,k1

× Iℓ+1,k2
where Iℓ+1,k1

and Iℓ+1,k2
are

successors of Iℓ,j1 and Iℓ,j2 , resp..

Fig. 2. Hierarchical block index set partitioning
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In terms of the respective matrix blocks, the three cases (i) - (iii) cor-
respond to (i) the approximation of a block that satisfies the admissibility
condition (3) by an R(k)-matrix, (ii) the representation of small blocks as
full matrices, and, (iii) the subdivision of blocks that have successors in the
hierarchical block index set partition.

2.3 Modifications for constant convection directions

In Le Borne [2003], modifications to the standard H-matrix have been devel-
oped at first for the pure convection case ǫ = 0 and then been generalized
for arbitrary ǫ > 0 to an ǫ- and b-dependent partitioning and admissibility
condition which produce a gradual transition from the standard partitioning
and admissibility condition to their modified counterparts as ǫ → 0. In order
to generate such a gradual transition for a constant convection direction b,
the (Euclidean) norm that was used for the calculation of the diameter and
distance of clusters in the admissibility (3) has been replaced by the norm

‖x‖α,b :=
√

α(b · x)2 + (b⊥ · x)2 for x = (x1, x2)
T ∈ R

2

where b is the convection vector in the convection-diffusion equation, b⊥ is
its orthogonal complement, and α ∈ R

+ is a parameter that depends on
the convection dominance given by ǫ, the mesh width h, and the numerical
viscosity induced by the discretization.

In the index partitioning algorithm we will now use bounding boxes that
are parallel to the convection b and its orthogonal complement b⊥, and the
objective is no longer to produce subsets with small diameters but rather to
produce subsets stretched in convection direction. The modified partition is
obtained as follows:

if ( max
v,w∈Bℓ,j

{α|b · (v − w)|} > max
v,w∈Bℓ,j

|b⊥ · (v − w)|) then

partition cluster Iℓ,j along b⊥ (orthogonal complement of b)

else partition cluster Iℓ,j along b (convection vector);

If we set α = 1 and b = (1, 0)T we obtain the standard partition. Given
such a hierarchical index partitioning, we will then construct the hierarchy of
block partitioning in the canonical way described in Figure 2.

2.4 Modifications for non-constant convection directions

In the case of a non-constant convection b, we begin our consideration with
an example where the convection aligns perfectly with the underlying grid as
shown in Figure 3. We will later generalize our strategy to the more realistic
case of a convection b that does not necessarily align with the grid. In the
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initial triangulation

(0,−1)T if x<y

else(1,0) T

non−constant convection b(x,y) that aligns with the grid

b(x,y)=

vertex numbering

2
11 m +1

m
m1

2

n

Fig. 3. Non-constant convection that aligns with the grid

given example, we will order the n unknowns with respect to the convection
as indicated in Figure 3.

We now construct an H-matrix structure using the index and block index
partitioning as described in Figures 1 and 2. Using the weak admissibility
condition: s × t is admissible if s 6= t (i.e., all off-diagonal blocks are admissi-
ble), we can represent the exact inverse in the case of ǫ = 0 (pure convection
problem) as an H-matrix with local ranks k(b) = 1. The storage costs for this
H-matrix structure amount to O(n log2 n) as proven in [Hackbusch, 1999,
Lemma 3.1]. The fact that we indeed represent the exact inverse results from
the particular ordering which guarantees that off-diagonal blocks have at most
rank 1.

In the case of a non-zero parameter ǫ or a non-aligning convection direc-
tion, the discrete system will contain some artificial diffusion. In the case of
a constant convection b, we introduced a parameter α to let the amount of
diffusion control the partition and admissibility. In the case of non-constant
convection, the general idea to proceed is as follows: For the first p refinement
steps, we use a precomputed downwind ordering of the unknowns (along the
non-constant convection direction) to partition the index set. Suitable down-
wind ordering strategies can be found in, e.g, Le Borne [2000]. For any further
refinement steps, we use the standard partitioning (trying to obtain subsets
with small diameters).

3 H-matrices in iterative methods and numerical results

The H-matrix technique allows to compute a data-sparse approximation A−H

to a (typically fully populated) matrix A−1 in nearly optimal complexity. Such
an approximation can be used

• in a linear iteration xi+1 = xi − A−H(Axi − b),
• as a preconditioner in a Krylov subspace method (e.g., BiCG-stab, GM-

RES, etc.), or
• as a smoother in a multigrid iteration,
• for the computation of Schur complements and their inverses, etc.

Here we provide numerical results for the first two applications. The
convection-diffusion equation (1) serves as a test problem for various values of ǫ

and convection directions b = (1, 0)T (Table 1) and b(x, y) = (0.5−y, x−0.5)T
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(Table 2). In Tables 1 and 2 we provide the number of iteration steps that are
necessary to reduce the Euclidean norm of the residual ‖b−Axi‖2 to an accu-
racy of 10−8 for n = 16129 unknowns (with a maximum number of iterations
of 100 and initial iterate x0 = 100(1, · · · , 1)T ). The time per iteration step
is recorded in the second column of Table 1 (computed on a DELL Precision
Workstation, 2.4GHz, compare with 0.012s for a classical Gauß-Seidel step).

Table 1. Iteration steps for b = (0, 1)T , modified H-matrix

time per basic iteration bicg-stab
k(b)/ǫ step (s) 1 1e-2 1e-4 1e-6 1 1e-2 1e-4 1e-6

1 0.117 100 19 4 2 100 9 2 1
2 0.128 61 7 3 2 11 4 2 1
3 0.143 8 5 3 2 4 3 2 1
4 0.155 6 4 3 2 3 2 2 1
5 0.165 4 3 2 2 2 2 1 1
6 0.183 3 3 2 2 2 2 1 1

As expected, the number of necessary steps decreases considerably as we
increase the local rank of the H-matrix. For the numerical tests reported
in Table 2 we used the standard H-matrix. For the convection-dominant case
ǫ = 10−6, we also provide in parentheses the results for the modified partition.
Here, in the first two index partitions the indices have been ordered with
respect to their distance to the circle origin (0.5, 0.5). All further partitions
were performed in the standard way. We observe slight improvements.

Table 2. Iteration steps for b =circle, standard H-matrix

basic iteration bicg-stab
k(b)/ǫ 1 1e-2 1e-4 1e-6 1 1e-2 1e-4 1e-6

1 100 100 100 100 (100) 100 100 63 69 (90)
2 57 26 100 100 (100) 11 9 26 40 (29)
3 8 6 39 55 (72) 4 3 11 13 (11)
4 6 4 20 34 (23) 3 2 7 9 (6)
5 4 3 9 14 (10) 2 2 4 5 (4)
6 3 3 8 11 (8) 2 2 4 4 (3)

The H-matrix approximations A−H have been computed using a block
Gauß elimination process and are therefore not necessarily the best possible
approximations. When evaluating a preconditioner, the costs for the construc-
tion of the preconditioner have to be taken into account. In this case, the con-
struction of the H-matrix A−H is of nearly optimal complexity O(n log2

2 n),
however, with a relatively high constant, see Grasedyck and Hackbusch [2002]



638 Sabine Le Borne

(taking 73s (k = 1) up to 166s (k = 6) for ǫ = 1.0 and 40s (k = 1) up to 76s
(k = 6) for ǫ = 1e − 6). A−H can, however, be computed more efficiently via
a (parallelizable) domain decomposition algorithm, see Hackbusch [2002].

These positive results encourage the further study of H-matrix precondi-
tioners in harder problems involving non-constant, cyclic convection directions
in systems of PDEs in three spatial dimensions where there is still a need for
efficient iteration methods.
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