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Summary. We propose a new stabilized three-field formulation applied to the
advection-diffusion equation. Using finite elements with SUPG stabilization in the
interior of the subdomains our approach enables us to use almost arbitrary discrete
function spaces. They need not to satisfy the inf-sup conditions of the standard
three-field formulation. The scheme is stable and satisfies an optimal a priori es-
timate. Furthermore, we show how the scheme can be solved efficiently in parallel
by an adapted Schur complement equation and an alternating Schwarz algorithm.
Finally some numerical experiments confirm our theoretical results.

1 Introduction

In an bounded Lipschitz domain Ω ⊂ R
d, d = 2, 3, we consider the problem

Lu := −ǫ△u+ b · ∇u+ cu = f in Ω, u = 0 on ∂Ω (1)

with ǫ > 0, b ∈ (W 1,∞(Ω))d, c ∈ L∞(Ω), and f ∈ L2(Ω). Especially the
singularly perturbed case ǫ << 1 is of interest, since there the solution can
possess sharp layers. Moreover, it is well known, that simple numerical meth-
ods fail, since spurious oscillations of the numerical solution may occur.

The three-field formulation was introduced by Baiocchi et al. [1992] (see
also Brezzi and Marini [2001]). Decomposing the domain into non-overlapping
subdomains the method allows different discretization techniques in different
subdomains. Especially, the treatment of non-matching grids is possible. In
the discrete case the corresponding function spaces must satisfy two inf-sup
conditions. This is quite restrictive for the choice of the discrete spaces. In
our stabilized scheme we circumvent these conditions by appending additional
terms. The latter terms are well-adapted to the hyperbolic limit ǫ = 0.

2 The three-field formulation

First let us tackle the global problem (1). The weak formulation reads:
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Find w ∈ H1
0 (Ω) | aΩ(w, v) = lΩ(v), ∀v ∈ H1

0 (Ω) (2)

with

aG(w, v) = ǫ

∫

G

∇w · ∇vdx +

∫

G

(b · ∇w + cw)vdx, lG(v) =

∫

G

fvdx

for all w, v ∈ H1(Ω) and a domain G ⊂ Ω. To ensure the well-posedness of (2)
we assume the existence of a constant c0 > 0 such that c̃ := c− 1

2∇ · b ≥ c0.
Then the Lemma of Lax-Milgram shows that (2) possesses a unique solution.

In order to introduce the three-field formulation, we divide the domain Ω
into N non-overlapping subdomains Ωi with sufficiently smooth boundaries,
i.e. Ω =

⋃N
i=1Ωi, Ωi ∩ Ωj = ∅, i 6= j. Moreover, we define local interfaces

Γi := ∂Ωi \ ∂Ω and the skeleton Γ :=
(

⋃N
i=1 ∂Ωi

)

\ ∂Ω. For the three-field

formulation three different function spaces are introduced. The first function
space V :=

∏N
i=1 V

i with V i := {vi ∈ H1(Ωi) | v|∂Ω∩∂Ωi
= 0} is defined

on the subdomains. Furthermore, we need a space of Lagrange multipliers Λi

on each local interface Γi. The local Lagrange multiplier space Λi is given by

the dual space of H
1

2

00(Γi). We denote the dual product on 〈Λi, H
1

2

00(Γi)〉 by

〈·, ·〉i. The global space is given by Λ :=
∏N

i=1 Λ
i. The third function space is

defined on Γ by Φ := {ϕ ∈ L2(Γ ) : there exists u ∈ H1
0 (Ω), u = ϕ on Γ }.

Now we formulate the following three-field formulation (cf. Bertoluzza and
Kunoth [2000]): Find u ∈ V, λ ∈ Λ and ψ ∈ Φ, such that

i)
∑N

i=1
aΩi

(ui, vi) −
∑N

i=1
ǫ〈λi, vi〉i=

∑N

i=1
lΩi

(vi) ∀v ∈ V

ii)
∑N

i=1
ǫ〈νi, ψ − ui〉i =0 ∀ν ∈ Λ (3)

iii)
∑N

i=1
ǫ〈λi, φ〉i =0 ∀φ ∈ Φ.

It can be shown that the three-field formulation (3) possesses a unique solution
(u,λ, ϕ) ∈ V×Λ×Φ. If the solution w ∈ H1

0 (Ω) of (2) is sufficiently regular,
i.e. △w ∈ L2(Ωi), i = 1, . . .N , the solution can be represented by

u = (w|Ω1
, . . . , w|ΩN

), λ =

(

∂w

∂n1
|Γ1
, . . . ,

∂w

∂nN

|ΓN

)

, ϕ = w|Γ (4)

where ni is the outward normal of Ωi (cf. Baiocchi et al. [1992]).

3 A stabilized three-field formulation

Now the three-field formulation (3) is discretized by linear finite elements.
To this end we introduce quasi-uniform meshes T i

u , T i
λ and Tϕ on Ωi, Γi and

Γ . The meshes can be non-matching. But for simplicity we assume that all
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meshes have the same global mesh size h. Moreover, we need the notation ∂T i
u

for the restriction of T i
u onto the local interface Γi. Thus we obtain discrete

spaces Vh ⊂ V, Λh ⊂ Λ and Φh ⊂ Φ.
Replacing the continuous function spaces by discrete subspaces, the well-

posedness of the discrete scheme of (3) requires two certain inf-sup conditions.
One idea to guarantee the conditions is proposed in Brezzi and Marini [2001].
They enrich the space V h by bubble functions. Here, we avoid the constraints
by adding some stabilization terms modifying ideas of Baiocchi et al. [1992].

In the advection dominated case further problems occur. Using a standard
discretization it is well known that there may arise spurious oscillations of the
computed solution. Therefore we use the SUPG method and define

aSD
Ωi

(ui
h, v

i
h) := aΩi

(ui
h, v

i
h) +

∑

T∈T i
u

δT (Lui
h,b · ∇vi

h)T ,

lSD
Ωi

(vi
h) := lΩi

(vi
h) +

∑

T∈T i
u

δT (f,b · ∇vi
h)T

for i = 1, . . . , N . The parameter δT is defined by δT := δ0hT ‖b‖−1
L∞(T ) in

the advection dominated regime for PeT := 1
2hT ǫ

−1‖b‖L∞(T ) > 1 and by

δT := 1
2δ0h

2
T ǫ

−1 else. Now the error in the interior of the subdomains can be
controlled by the streamline diffusion norm

‖|vh|‖2
SD,Ωi

:= ǫ|vh|21,Ωi
+ ‖

√
c̃vh‖2

0,T +
∑

T∈T i
u

δT ‖b · ∇vh‖2
0,T

which gives us additional control in the streamline direction. Taking all the
mentioned problems into account we end up with the following stabilized
three-field formulation: Find uh ∈ Vh,λh ∈ Λh and ϕh ∈ Φh, such that

i)
∑N

i=1

{

aSD
Ωi

(ui
h, v

i
h) − lSD

Ωi
(vi

h) − ǫ〈λi
h, v

i
h〉i + f−

i (ui
h − ϕh, v

i
h)

}

=0

ii)
∑N

i=1

{

ǫ〈νi
h, u

i
h − ϕh〉i −

∑

E∈∂T i
u

βE

(

∂ui
h

∂ni

− λi
h, ν

i
h

)

E

}

=0 (5)

iii)
∑N

i=1

{

ǫ〈λi
h, φh〉i − f+

i (ui
h − ϕh, φh)

}

=0

for all vh ∈ Vh,νh ∈ Λh,φh ∈ Φh. We have used the notation

f±

i (ui
h − ϕh, ψ) :=

∑

E∈∂T i
u

∫

E

(αE + (b · ni)
±)(ui

h − ϕh)ψds, ψ ∈ H
1

2

∗ (Γi)

with (b · ni)
± := 1

2 |b · ni| ± 1
2 (b · ni). Thus (b · ni)

− acts only on the inflow

part Γ−

i := {x ∈ Γi | b(x) ·ni(x) < 0} and (b ·ni)
+ only on the outflow part.

The parameters αE , βE ≥ 0 will be specified later.
Let us shortly explain, why we have added the different stabilization terms.

f±

i (·, ·), which are added to the first resp. third line of (5), couple the local
spaces V i

h and the space Φh . They give additional control in stream-wise direc-

tion, especially in the hyperbolic limit ǫ→ 0. By
∑

E∈∂T i
u

βE

(

∂ui

h

∂ni
− λi

h, ν
i
h

)

E
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the spaces Φh and Λh are coupled. Theses couplings enable us to ignore the
mentioned inf-sup conditions.

We can prove the following a priori estimate (for the rather technical proof
cf. Rapin and Lube [2003b], Theorems 1 and 2). Here, a � b means, that there
exists a constant C > 0 independent of h and ǫ such that a ≤ Cb.

Theorem 1. Assume for the stabilization parameters the inequalities

min{ǫ/h, ǫ2/h2} � αE � max{1, ǫ/h}, min{ǫ2, hǫ} � βE � hmax{h2, ǫ}.

Then there exists a unique solution uh ∈ Vh,λh ∈ Λh and ϕh ∈ Φh of (5)
and the error is bounded by

‖|(u,λ, ϕ) − (uh,λh, ϕh)|‖ �
(

ǫ
1

2 + h
1

2

)

h
∑N

i=1
|ui|2,Ωi

(6)

for a solution u ∈ V ∩H2(Ω). The norm is given by

‖|(uh,λh, ϕh)|‖2 :=
∑N

i=1
(1 − β0)‖|ui

h|‖2
SD,Ωi

+
∑N

i=1

∑

E∈∂T i
u

∫

E

[

(2αE + |b · ni|)(ui
h − ϕh)2 + βE(λi

h)2
]

ds.

If we insert a sufficiently regular solution (u,λ, ϕ) of (3) into the stabilized
formulation (5), all additional terms vanish. In this sense (5) is consistent.

There is some degree of freedom for the choice of the stabilization param-
eters in the advection dominated regime. In the diffusion dominated case we
obtain the well known choice of the discontinuous Galerkin method αE ∼ ǫ/hE

(and βE ∼ ǫhE). Using suitable global constants 0 < α0, β0 < 1 we determine

αE = α0

{

ǫ/hE , ǫ ≥ h2
E

ǫ2/h3
E , ǫ < h2

E

, βE = β0

{

ǫhE, ǫ ≥ h2
E

h3
E , ǫ < h2

E

. (7)

By (7) we mainly enforce boundary conditions in a weak sense on the inflow
part of the subdomains, even for ǫ = 0.

Remark 1. For given ϕh ∈ Φh and right hand side f ∈ L2(Ω) the equations
(5,i), (5,ii) are discretizations of the local Dirichlet problems

Lwi = f in Ωi wi = ϕh on ∂Ωi, wi = 0 on ∂Ω \ ∂Ωi.

These problems are well-posed (cf. Rapin and Lube [2003a]).

4 A Schur complement method

Now we derive the corresponding Schur complement equation for our sta-
bilized scheme. Then the solution of (3) can be obtained by solving local
problems. Computing the local problems can be done completely in parallel.
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Recall that for given f ∈ L2(Ω), ϕh ∈ Φh the first two lines of (5)
are local Dirichlet problems (cf. Remark 1). Denoting the local solutions by
(zh(f, ϕh),γh(f, ϕh)) ∈ V h × Λh we see

(zh(f, ϕh),γh(f, ϕh)) = (zh(f, 0),γh(f, 0)) + (zh(0, ϕh),γh(0, ϕh))

due to the linearity of the scheme. Inserting this in the third line of (5) yields
the Schur complement equation for our scheme: Find ϕh ∈ Φh, such that

〈Shϕh, ψh〉 =
∑N

i=1

{

−ǫ〈γi
h(f, 0), ψh〉i + f+

i (zi
h(f, 0), ψh)

}

, ∀ψh ∈ Φh (8)

where the discrete Steklov-Poincaré operator Sh is defined by

〈Shϕh, ψh〉 :=
∑N

i=1

{

ǫ〈γi
h(0, ϕh), ψh〉i − f+

i (zi
h(0, ϕh) − ϕh), ψh)

}

.

Theorem 2. The discrete Schur complement equation (8) possesses a unique
solution. Moreover, (zh(f, ϕh),γh(f, ϕh), ϕh) is the solution of (5).

Proof. cf. Rapin and Lube [2003b], Lemma 3.

5 An alternating Schwarz method

Tallec and Sassi [1995] describe a non-conforming discretization for the Pois-
son problem. We extend the algorithm to the advection-diffusion problem
using the additional stabilization terms f±

i (·, ·) of (5). Starting with an initial
guess (ψh)0 ∈ Φh, (λh)0 ∈ Λh, we obtain the algorithm:

1. Find (uh)k+1 ∈ Vh such that

aSD
Ωi

((ui
h)k+1, v

i
h) + f−

i ((ui
h)k+1 − (ψh)k, v

i
h) =

lSD
Ωi

(vi
h) + ǫ〈(λi

h)k, v
i
h〉Γi

, ∀vi
h ∈ V i

h .

2. Compute (λi
h)k+ 1

2

∈ Λi
h by

ǫ〈(λi
h)k+ 1

2

, µi
h〉Γi

= ǫ〈(λi
h)k, µ

i
h〉Γi

− f−

i ((ui
h)k+1 − (ψh)k, µ

i
h), ∀µi

h ∈ Λi
h.

3. Find (ψh)k+1 ∈ Φh such that there holds for all φh ∈ Φh

∑N

i=1

{

ǫ〈(λi
h)k+ 1

2

, φh〉Γi
− f+

i ((ui
h)k+1 − (ψh)k+1, φh)

}

= 0.

4. Compute (λi
h)k+1 ∈ Λi

h such that there holds for all µi
h ∈ Λi

h

ǫ
〈

(λi
h)k+1, µ

i
h

〉

Γi

= ǫ〈(λi
h)k+ 1

2

, µi
h〉Γi

− f+
i ((ui

h)k+1 − (ψh)k+1), µ
i
h).

It can be proved that the algorithm is well-posed. In step 1 local problems with
Robin conditions on the interface are solved. The algorithm is quite similar to
the algorithm proposed by Lube et al. [2003]. The Robin values on the inflow
part of the local problems are mainly determined by the Robin values of the
neighbouring subdomains, computed in the previous step.

A convergence proof of this algorithm is still an open problem. But the
numerical results are very promising (cf. Rapin [2003]).
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6 Numerical experiments

The main focus of our algorithm is the application to the advection dominated
case. Especially the case of nontrivial flows is of interest. To demonstrate the
power of our approach we consider the following (quite hard) example.

Example 1. We search for a solution Lu = f in Ω = (0, 1)2 with boundary
conditions u = −0.5 on γ1 := {(x1, x2) ∈ ∂Ω | x2 = 0}, u = 0.5 on γ2 :=
{(x1, x2) ∈ ∂Ω | x2 = 1}, and u = 0 on the remainder ∂Ω \ (γ1 ∪ γ2) of the
boundary. The flow is given by

b(x1, x2) :=
(

(2x2 − 1)(1 − (2x1 − 1)2), 4x2(2x1 − 1)(x2 − 1)
)T
.

b is a rotational flow with a center in (1
2 ,

1
2 ) and ∇ · b = 0.

We decompose the unit square Ω into (6×6) squares. In the context of do-
main decomposition this example is particularly interesting. In the advection
dominated case the solution is almost constant in the interior of Ω. The con-
stant is given by the mean value of the Dirichlet data on the boundary. Now
any discretization has to find this value by mixing the boundary information.

For a global mesh size hint the local meshes are chosen by a checkerboard
pattern with local mesh sizes hu = hint \ 2hint, hλ = (1/3)hint \ (2/3)hint,
hϕ = hint. For all computations we have chosen α0 = 1 and β0 = 1. The
result for ǫ = 10−6 is plotted in Figure 1 (a). It coincides quite well with the
solution of the one-domain case. Although the SUPG stabilization technique
is used, typically crosswind wiggles of the finite element solution appear.

The purpose of the next example is to numerically validate the a priori
estimate of Theorem 1.

Example 2. For −ǫ△u + (−1,−1)T · ∇u = f in Ω and u = g on ∂Ω we dis-
tinguish two cases. (a) We choose f , g in such a way that u(x, y) = x cos(πy)
becomes the exact solution. In the second case (b) with f = 1 and g = 0
strong boundary layers appear in the singularly perturbed case.

We consider Example 2 (a). Using a decomposition of Ω into (6 × 6) sub-
rectangles we alter the mesh size for ǫ = 1, 0.1, 10−4. The results are plotted in
Figure 1 (b) and agree with Theorem 1. If we choose the nonsmooth Example
2 (b) with layers, we obtain a convergence rate of 1/2 in the L2(Ω) norm
as in the SUPG case without domain decomposition, since the layers are not
resolved. Moreover, we obtain the optimal rates on subdomains Ω′ ⊂ Ω away
from the layers (cf. Rapin [2003]).

Next, we study the effect of the stabilization on the discrete Schur com-
plement equation (8) and the alternating Schwarz algorithm.

We start with the Schur complement equation (8) applied to Example 2
(a). The equation is solved by the GMRES method. In Table 1 (a) we observe
that the number of iteration steps is independent of the mesh size for the
singularly perturbed case (ǫ = 10−4, 10−6). In the diffusion dominated regime
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Fig. 1. (a) Plot of Example 1; (b) error in the energy norm
PN

i=1
(ǫ|·|21,Ωi

+‖·‖2

0,Ωi
)

1

2

for Example 2 (a).

(ǫ = 1, 0.1) the number of iteration steps increases for smaller mesh sizes.
Therefore in this case we have to introduce a preconditioner. First experiments
with a generalized Neumann–Neumann preconditioner can be found in Rapin
[2003]. As expected, in Table 1 (b) we observe an increase of the number of
iteration steps for more subdomains.

Please note, that, in general, the local solutions of the first iteration steps
possess sharp boundary layers on the outflow part, although the reference
solution is smooth. The layers become smaller within the convergence process.
Therefore, we obtain the same results for Example 2 (b).

Now we consider the alternating Schwarz algorithm. In our numerical ex-
periments we compare the discrete solution with the reference solution of
the continuous problem. In Figure 2 we see that the discretization error is
reached within a few steps for the singularly perturbed case. In the diffusion
dominated case the convergence is quite slow, but can be accelerated by an
adaptive choice of the parameter αE (cf. Lube et al. [2003]).

Summarized one can state that both methods work well both in the dif-
fusion dominated case and the singularly perturbed case. But we suggest to

ǫ \ hint 0.05 0.02 0.01 0.005

1 21 32 46 66

10−1 19 31 43 59

10−4 19 20 19 18

10−6 19 20 19 19

(a)

ǫ \ n 2 4 6 8 10 12

1 25 51 65 78 81 97

10−1 26 21 26 30 34 38

10−4 16 21 26 30 34 38

10−6 6 21 26 30 34 38

(b)

Table 1. Number of iteration steps of the GMRES algorithm, which is needed to
reduce the initial residuum by the factor 10−8 for Example 2 (a). The initial guess
is always 0. In (a) we consider different mesh sizes hint and diffusion coefficients ǫ

for a (4 × 3) partition. In (b) the domain is decomposed into (n × n) subdomains
for mesh size hint = 0.01.
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Fig. 2. Convergence behavior of the alternating Schwarz algorithm in the L
2(Ω)

norm for a (4 × 3) decomposition. On the left hand side the mesh size is chosen by
hint = 0.02 and on the right hand side by hint = 0.01.

use the Schur complement method in the diffusion dominated case and the
alternating Schwarz method in the advection dominated case.
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