A Model for Parallel Adaptive Finite Element
Software

Krzysztof Banas

Cracow University of Technology, Section of Applied Mathematics ICM

Summary. The paper presents a conceptual model and details of an implementa-
tion for parallel adaptive finite element systems, particularly their computational
kernels. The whole methodology is based on domain decomposition while message
passing is used as a model of programming. The proposed finite element architec-
ture consist of independent modules, most of them taken from sequential codes. The
sequential modules are only slightly modified for parallel execution and three new
modules, explicitly aimed at handling parallelism, are added. The most important
new module is the domain decomposition manager that performs most tasks related
to parallel execution. An example implementation that utilizes 3D prismatic meshes
and discontinuous Galerkin approximation is presented. Two numerical examples,
the first in which Laplace’s equation is approximated using GMRES with multi-grid
preconditioning and the second where dynamic adaptivity with load balancing is
utilized for simulating linear convection, illustrate capabilities of the approach.

1 Introduction

Parallelization of adaptive finite element systems is a complex and complicated
task. There are only few systems (Bastian et al. [1997], Beall and Shephard
[1999], Bangerth and Kanschat [1999]) combining adaptivity and parallelism
within a comprehensive finite element environment. Comprehensive is under-
stood as offering such capabilities as 2D and 3D meshes of various types,
continuous, discontinuous and higher order approximations, multi-level iter-
ative solvers for linear systems, handling of coupled, possibly multi-physics,
non-linear problems. On the other hand there is a growing interest in using
principles of software engineering and object orientedness for design of scien-
tific codes (Bruaset and Langtangen [1997], Beck et al. [1997]). The goal of
the research is to combine flexibility and maintainability of object oriented
codes with efficiency of monolithic Fortran or C programs.

The stress in the present paper is put on the modular structure of codes, de-
sign of modules’ interfaces and fundamental principles for parallelizing adap-
tive finite element codes. The starting point is a modular finite element frame-

160 Krzysztof Banas

work for sequential computations, designed for extendibility, reusability and
efficiency. The goal of the parallelization process is to preserve the modular
structure of the framework and add efficient mechanisms for parallel execu-
tion. Additionally parallelization is designed to change sequential modules as
little as possible and to be conceptually simple. The aim of these last features
is to offer an easy way for parallelizing existing legacy finite element programs.

2 A model architecture

It is assumed that the whole code is built of independent modules having
their own data structures and communicating through interfaces accessible
using the main programming languages of scientific computing (Fortran90, C,
C++) (Bana$ [2002]). There are four fundamental sequential modules:

e mesh manipulation module - that provides the other modules with all
topological data concerning elements and other entities (faces, edges, ver-
tices) present in the mesh; mesh manipulation module performs refine-
ments/derefinements of individual mesh entities

e approximation module - that performs all tasks related to approximation
fields defined for finite element meshes; main tasks include numerical in-
tegration, finite element interpolation and different kinds of projections

e linear solver module - the module may form a solver itself or serve as an
interface for some external solver

e problem dependent module - the rest of the code that includes, among
others, submodules specifying the solved PDE problem and driving the
process of adaptation (the latter involves error estimation)

The mesh manipulation module is the simplest to design. It possess its
own data structure and is organized as a set of services, a library of functions
returning data concerning mesh entities. It does not use data from other fi-
nite element modules, although it can, and sometimes should, interact with
external modules for mesh generation and geometry modeling.

The approximation module handles all tasks related to approximation
fields that are defined in terms of finite element shape functions. Since defini-
tions of shape functions are specific to different types of elements, approxima-
tion modules are strongly related to particular mesh manipulation modules.
Besides the dependence on a specific mesh, the approximation module is also
strongly coupled with the problem dependent module. The problem of effi-
cient realization of numerical integration in flexible, multi-purpose codes is
solved using an interface with few well defined call-backs (Bana$ [2002]).

The mechanism of call-backs is also utilized in the design of the interface
between the problem dependent module and the linear solver module. It is
assumed that the problem dependent module calls the linear solver to perform
basic steps of the solution procedure, but it is the linear solver that gathers
all data (on mesh entities, approximation fields and particular entries to the

A Model for Parallel Adaptive Finite Element Software 161

system matrix and the load vector) necessary to perform multi-level solution
of linear equations.

2.1 Parallel execution modules

The proposed model of parallelization is based on domain decomposition as
an algorithmic foundation and message passing as a programming technique.
One of reasons for such a choice is the possibility of reusing much of sequential
modules for parallel codes.

It is assumed that sequential modules are included into parallel codes
without substantial modifications. There are three new modules added to
handle parallel execution. The two first are simple interface modules. The
first, named parallel execution interface, gathers the main calls related to
parallel execution within the problem dependent module. These calls are then
passed to the main parallel module, the domain decomposition manager, or
left with no effect in case of sequential runs.

The second simple module connects the finite element program to a parallel
execution environment. It consist of a set of generic send/receive and group
operations, that have to be implemented for various communication libraries.

The domain decomposition manager performs the following tasks:

e interfacing an external mesh partitioner (and, possibly different, reparti-
tioner)
distributing the mesh among processors
creating necessary overlap and managing all requests related to overlap
entities
implementing domain decomposition algorithm
adapting mesh in parallel
load balancing and data transfer

The domain decomposition manager is composed of several submodules,
responsible for parallel execution of different tasks. In such a way it is possible
to parallelize only parts of the code (e.g. linear solver) while the rest remains
sequential.

3 Implementation

Based on the proposed architecture (see Fig. 1) a prototype implementation
has been created that uses 3D prismatic meshes and discontinuous Galerkin
approximation.

The basis for implementation of the domain decomposition manager is
formed by the assumption that every mesh entity and every set of approxi-
mation data present in the data structure is equipped with a global (inter-
processor) identifier (IPID). This identifier can be understood as a substitute

162 Krzysztof Banas

for a global address space used in sequential codes and is composed of a pro-
cessor (subdomain) number and a local (to a given processor) identifier. IPIDs
are not known to sequential modules of the code and all situation where the
access to non-local data is necessary are handled by the domain decomposition
manager.

4 Numerical examples

Two numerical examples showing capabilities of the described approach and
the prototype implementation are presented in this section. The example prob-
lems are very simple from mathematical point of view. However, they show
the effect of practical realization of two important and technically difficult,
from implementation point of view, phases of simulation: parallel multilevel
solution of linear equations and parallel adaptivity combined with transfer of
mesh entities to maintain load balance.

The computational environment for both examples consist of a set of Linux
workstations connected using a standard 100 Mbit Ethernet network. The
results in tables have been obtained using computers equipped with 1.6 GHz
Pentium IV processor and 1 GByte memory.

4.1 Simulating diffusion
The first example is Laplace’s equation
Au = Augy
where 1., is the known exact solution:
tew = exp (22—~ 22)

The computational domain consist of the box [0,0.1] x [0,1] x [0,10] and
boundary conditions are chosen to match the exact solution. Discontinuous
Galerkin approximation (Oden et al. [1998]) and the preconditioned GMRES
method are used for solving the problem.

Table 1 presents results for a series of computations corresponding to the
described problem. Two preconditioners are employed, both use the combi-
nation of additive Schwarz preconditioning for the whole problem and multi-
plicative Schwarz within subdomains. The first is single level preconditioner
and the second uses three consecutive mesh levels to achieve multigrid precon-
ditioning. For each preconditioner problems of different sizes, corresponding
to subsequently uniformly refined meshes, are considered. For each combina-
tion preconditioner/problem size results of computations using 1, 2, 4 and 8
workstations are shown. For the largest problem the reference number of pro-
cessors to compute speed up and efficiency is two, since the problem did not

A Model for Parallel Adaptive Finite Element Software
= e e e e e e e e e e e e e e = = -
|
I L. Submodule for Interface between Adaptivity

Finite linear solver module and
1 L submodule
I dement . mesh and approximation modules 1
|
| core 1 Coefficients | Problem dependent |
I l submodule module }
I 1 A 1
! : s ' ;
| Linear solver Approximation Mesh manipulation | |
I | interface module module module |
1 A A A :
[Sequential '_'_'_'_'_'_'_'_'_'1_"
| PR HE b - Parallel execution
1 interface module
- Parallel
CTo oo ‘
i Linear ' _ . L .
' solver 1 Linear solver Approximation specific
LIooI. ' interface submodule submodule

Overlap management

submodule

Mesh |
partitioner |

Mesh partitioner
interface submodule

Domain decomposition

Mesh specific
submodule

manager module

— ™ One-way interfaces
Call-backs

- - - -

¢ Y

Parallel communication library

interface module

. . . !
| Parallel communication library 1
1

e e e e e e e e e e e e e e - - -

163

Fig. 1. Diagram of the proposed modular architecture for computational kernels of
parallel adaptive finite element codes

fit into a memory of a single computer. For the smallest problem the number
of mesh levels was equal two and the only possible preconditioner was single

level.

Results are reported for 10 iterations of the preconditioned GMRES
method to focus on the efficiency of parallel implementation, not considering

164 Krzysztof Banas

the influence of parallelization on the convergence of GMRES (nevertheless
the latter is reported for completeness). Subsequent meshes are obtained by
uniform refinements and for each mesh Npor is the number of degrees of free-
dom. Nproc is the number of workstations solving the problem. Error is the
norm of residual after 10 GMRES iterations (within a single restart) and Rate
is the total GMRES convergence rate during solution. Execution time T'ime
is a wall clock time. Speed-up and efficiency are computed in the standard
way.

Table 1. Results for 10 iterations of the preconditioned GMRES method and dis-
continuous Galerkin approximation used for solving Laplace’s equation in a box
domain (description in the text).

Single level preconditioner

Npor Nproc Error*10° Conv. rate Exec. time Speed up Efficiency

48 896 1 0.288 0.443 2.26 1.00 100%
2 0.328 0.448 1.16 1.94 97%

4 0.340 0.450 0.61 3.70 92%

8 0.361 0.452 0.36 6.28 78%

391 168 1 9.313 0.626 17.85 1.00 100%
2 10.173 0.632 8.93 1.99 100%

4 10.252 0.633 4.53 3.94 98%

8 11.183 0.638 2.34 7.63 95%

3 129 344 2 48.041 0.738 70.76 1.00 100%
4 47.950 0.738 35.63 1.98 99%

8 48.748 0.739 17.71 3.99 100%

Three level preconditioner

Npor Nproc Error*10° Conv. rate Exec. time Speed up Efficiency

391 168 1 0.018 0.335 26.18 1.00 100%
2 0.017 0.334 14.18 1.85 92%

4 0.018 0.335 9.08 2.88 2%

8 0.024 0.346 7.60 3.44 43%

3 129 344 2 0.027 0.350 111.16 1.00 100%
4 0.027 0.350 57.76 1.92 96%

8 0.027 0.348 33.15 3.35 84%

4.2 Simulating convection

The second example is a simple convection problem in the box [0,38] x
[0..1000] x [0..18]. A rectangular pattern is traveling from left to right (along

A Model for Parallel Adaptive Finite Element Software 165

the y-axis). GMRES with single level Schwarz preconditioning is used, once
again with discontinuous Galerkin approximation. The only interesting pro-
cess for this example, that will be described in more detail, are the subsequent
parallel mesh adaptations and load balancing achieved through transfer of
mesh entities. There are four workstations used for simulation and the com-
putational domain is divided into four subdomains. Subdomains have two
element overlap to enable mesh adaptations and overlapping Schwarz precon-
ditioning. After each time step (in the example run there were 120 time steps)
the mesh is adapted in parallel.

After each mesh adaptation, the number of degrees of freedom in each
subdomain is checked against the average (it is assumed that processors are
of the same speed). If imbalance larger than 10% is encountered, mesh repar-
titioner is called, to provide new domain decomposition. According to the new
assignment of elements to processors and two element overlap requirements,
mesh entities are marked respectively, and the transfer between subdomains
takes place. To enable clustering, mesh transfers consider always whole ele-
ment families - initial elements that are marked for a transfer and all their
antecedents.

Table 2 presents characteristics of mesh transfers for five subsequent time
steps, from 100 to 104. The average number of DOFs in a subdomain remains
constant since the same number of elements appears due to refinements and
disappears due to derefinements. Since refinements and derefinements takes
place in different regions the difference between the subdomain with the great-
est number of DOFs and the subdomain with the smallest number of DOF's
grows after each time step. The numbers of mesh entities reported in the ta-
ble concern the total number of entities effectively transferred between all the
subdomains. The numbers do not include entities for which IPIDs only are
exchanged.

For the whole simulation, the speed up obtained using 4 processors was
equal to 2.67, giving the efficiency of 67%. For the overhead that includes
mesh repartitioning, mesh transfers and the fact that, according to the overall
strategy, the load for processors is not perfectly balanced, the results appear
to be reasonable.

5 Conclusions

The new architecture proposed for parallel adaptive finite element codes ful-
fills the requirement of combining execution efficiency and code modularity.
Further improvements of the prototype implementation concerning efficiency
and the creation of new specialized modules that would increase code’s flexi-
bility are under way.

Acknowledgement. This work has been supported by the Polish State Committee
for Scientific Research under grant 7 T11F 014 20

166 Krzysztof Banas

Table 2. Characteristics of mesh transfers during parallel simulation for the con-
vection problem.

Time step number

100 101 102 103 104

Average number of DOFs 5086 5086 5086 5086 5086

Maximal number of DOFs 5636 5120 5372 5596 5120

Minimal number of DOFs 4468 5012 4732 4508 4996

Number of transferred vertices 300 0 0 390 0

Number of transferred edges 1212 01671

0 0
Number of transferred faces 1284 0 0 1863 0
0 0

Number of transferred elements 438 0 657

References

K. Bana$. Finite element kernel modules for parallel adaptive codes. Re-
port 4/2002, Section of Applied Mathematics ICM, Cracow University of
Technology, Warszawska 24, 31-155 Krakéow, Poland, 2002. submitted to
Computing and Visualization in Science.

W. Bangerth and G. Kanschat. Concepts for object-oriented finite element
software - the deal.Il library. Preprint SFB 359, Universitat Heidelberg,
1999.

P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert,
and C. Wieners. UG - a flexible software toolbox for solving partial dif-
ferential equations. Computing and Visualization in Science, 1(1):27-40,
1997.

M. Beall and M. Shephard. An object-oriented framework for reliable numer-
ical simulations. Engineering with Computers, 15:61-72, 1999.

R. Beck, B. Erdman, and R. Roitzsch. An object-oriented adaptive finite el-
ement code: design issues and application in hyperthermia treatment plan-
ning. In E. Arge, A. Bruaset, and e. H.P Langtangen, editors, Modern
software tools for scientific computing, pages 105—123. Birkhauser Press,
1997.

A. Bruaset and H. Langtangen. A comprehensive set of tools for solving
partial differential equations - Diffpack. In M. Daehlen and A. Tveito,
editors, Numerical Methods and Software Tools in Industrial Mathematics,
pages 63-92. Birkhauser, 1997.

J. Oden, I. Babuska, and C. Baumann. A discontinous hp finite element
method for diffusion problems. Journal of Computational Physics, 146:
491-519, 1998.

