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Summary. We consider a FETI-DP formulation of the Stokes problem with mor-
tar methods. To solve the Stokes problem correctly and efficiently, redundant
continuity constraints are introduced. Lagrange multipliers corresponding to the
redundant constraints are treated as primal variables in the FETI-DP formu-
lation. We propose a preconditioner for the FETI-DP operator and show that
the condition number of the preconditioned FETI-DP operator is bounded by
C maxi=1,··· ,N

˘

(1 + log (Hi/hi))
2
¯

, where Hi and hi are the subdomain size and
the mesh size, respectively, and C is a constant independent of Hi and hi.

1 Introduction

Recently, FETI-DP methods, which were originally developed by Farhat
et al. [2001], have been applied to nonconforming discretizations( Dryja and
Widlund [2002, 2003], Kim and Lee [2002]). Nonconforming discretizations
are important for multiphysics simulations, contact-impact problems, the
generation of meshes and partitions aligned with jumps in diffusion coeffi-
cients, hp-adaptive methods, and special discretizations in the neighborhood
of singularities. For the elliptic problems in 2D, Dryja and Widlund [2002]
showed that the Dirichlet preconditioner gives the condition number bound
C(1 + log(H/h))4, where H and h denote the subdomain size and the mesh
size, respectively. Further, Dryja and Widlund [2003] proposed a different pre-
conditioner which is similar to the one in Klawonn and Widlund [2001], and
proved the condition number bound C(1 + log(H/h))2 with a restriction that
the mesh sizes on the nonmortar side and the mortar side are comparable.
For the same problem, Kim and Lee [2002] formulated a FETI-DP opera-
tor in a different way from Dryja and Widlund [2002, 2003] and proposed a
Neumann-Dirichlet preconditioner, which gives the condition number bound
C(1 + log(H/h))2 without the restriction on mesh sizes between neighboring
subdomains. For the elliptic problems with heterogeneous coefficients, they
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obtained the same condition number bound which does not depend on the
coefficients.

In this paper, we extend the result in Kim and Lee [2002] to the Stokes
problem. We use the inf-sup stable P1(h) − P0(2h) finite elements in each
subdomain. For the optimality of the approximation under nonmatching dis-
cretizations, we impose mortar matching conditions on the velocity functions
using the standard Lagrange multiplier space introduced in Bernardi et al.
[1994].

2 FETI-DP formulation

Let Ω be a bounded polygonal domain in R
2. We assume that Ω is partitioned

into nonoverlapping bounded polygonal subdomains {Ωi}
N
i=1 and the partition

is geometrically conforming. Let H1
D(Ωi) be a space of functions in H1(Ωi)

with zero traces on ∂Ωi ∩ ∂Ω, L2
0(Ωi) be a space of functions in L2(Ωi) with

zero average and Π0 be a space of functions in L2
0(Ω) which are constants in

each subdomain. Then, we consider the following variational form of Stokes’

problem: Find
(
u, pI , p

0
)
∈

∏N
i=1

[
H1

D(Ωi)
]2

×
∏N

i=1 L2
0(Ωi) × Π0 such that

N∑

i=1

(∇u,∇v)Ωi −

N∑

i=1

(pI + p0,∇ · v)Ωi =

N∑

i=1

(f ,v)Ωi ∀ v ∈

N∏

i=1

[
H1

D(Ωi)
]2

,

−

N∑

i=1

(∇ · u, qI)Ωi = 0 ∀ qI ∈

N∏

i=1

L2
0(Ωi),

−

N∑

i=1

(∇ · u, q0)Ωi = 0 ∀ q0 ∈ Π0,

(1)

and the velocity u is continuous across the subdomain interfaces Γ =⋃N
i,j=1(∂Ωi ∩ ∂Ωj). Here, (·, ·)Ωi denotes the inner product in [L2(Ωi)]

n for
n = 1, 2.

We associate Ωi with quasi-uniform triangulations Ωhi

i and Ω2hi

i . Then we
consider the inf-sup stable P1(hi) − P0(2hi) finite elements and denote them
by Xi and Qi, respectively. In addition, Q0

i is defined as a subspace of Qi with
zero average on Ωi. Let Wi := Xi for all i = 1, · · · , N . To get a FETI-DP
formulation, we define the following spaces:

X :=

{
v ∈

N∏

i=1

Xi : v is continuous at subdomain corners

}
,

W =

{
w ∈

N∏

i=1

Wi : w is continuous at subdomain corners

}
,
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Q :=

N∏

i=1

Q0
i .

In this paper, we will use the same notation for a finite element function and
the vector of nodal values of that function. The same applies to the notations
Wi, X , W , etc. For vi ∈ Xi, we write

v
t
i =

(
(v

i
I)

t (vi
r)

t (vi
c)

t
)
,

where the symbol I, r and c represent the d.o.f.(degrees of freedom) at the
interior nodes, nodes on edges and corners, respectively. Since v ∈ X is con-
tinuous at subdomain corners, there exists a vector vc such that v

i
c = Li

cvc

for all i = 1, · · · , N with a restriction map Li
c. The vector vc has the d.o.f.

corresponding to the union of subdomain corners. Let

v
t
I =

(
(v

1
I)

t · · · (vN
I )t

)
, v

t
r =

(
(v

1
r)

t · · · (vN
r )t

)
.

We define the spaces XI , Wr and Wc which consist of vectors vI , vr and vc,
respectively. For w ∈ W , we define wr ∈ Wr and wc ∈ Wc similarly to vr

and vc.
On each Γij(= ∂Ωi ∩∂Ωj), we determine mortar and nonmortar sides and

define

mi :=
{
j : Ωh

i |Γij is the nonmortar side of Γij

}
,

si :=
{
j : Ωh

i |Γij is the mortar side of Γij

}
.

We consider the standard Lagrange multiplier space Mij and let

M :=

N∏

i=1

∏

j∈mi

Mij .

Then the following mortar matching conditions are imposed on v ∈ X :

∫

Γij

(vi − vj) · λij ds = 0 ∀λij ∈ Mij , ∀ i = 1, · · · , N, ∀j ∈ mi. (2)

Now, we rewrite (2) into a matrix form. Let Bij
i be a matrix with entries

(Bij
i )lk = ±

∫

Γij

ψl · φk ds ∀l = 1, · · · , L, ∀k = 1, · · · , K, (3)

where {ψl}
L
l=1 is basis for Mij and {φk}

K
k=1 is nodal basis for Wi|Γij . In (3),

the +sign is chosen if Ωi|Γij is a nonmortar side, otherwise the −sign is chosen.
Let Eij : Mij → M be an extension operator by zero and Rl

ij : Wl → Wl|Γij

for l = i, j be a restriction operator and Bi =
∑

j∈mi∪si
EijB

ij
i Ri

ij . Then (2)
is written into
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Bw = 0, (4)

where B =
(
B1 · · · BN

)
and w =

(
w

t
1 · · · w

t
N

)t
with wi = vi|∂Ωi . Let Bi,r

and Bi,c be matrices that consist of the columns of Bi corresponding to the
d.o.f. on edges and corners, respectively. Then (4) is written into

Brwr + Bcwc = 0,

where Br =
(
B1,r · · · BN,r

)
and Bc =

∑N
i=1 Bi,cL

i
c.

Borrowing the idea of Li [2001], we add the following redundant continuity
constraints to the coarse problem

∫

Γij

(vi − vj) ds = 0 ∀i = 1, · · · , N, ∀j ∈ mi. (5)

and rewrite (5) as
Rt(Brwr + Bcwc) = 0, (6)

with a suitable matrix R. Let S be the Lagrange multiplier space correspond-
ing to the constraints (6).

Then, the following is induced from the Galerkin approximation to (1):
Find (uI , pI ,ur,uc, p

0,µ,λ) ∈ XI × Q × Wr × Wc × Π0 × S × M such that




AII GII AIr AIc 0 0 0

Gt
II 0 Gt

rI Gt
cI 0 0 0

ArI GrI Arr Arc Gr0 Bt
rR Bt

r

AcI GcI Acr Acc Gc0 Bt
cR Bt

c

0 0 Gt
r0 Gt

c0 0 0 0

0 0 RtBr RtBc 0 0 0

0 0 Br Bc 0 0 0







uI

pI

ur

uc

p0

µ

λ




=




f I

0

f r

fc

0

0

0




.

Let
z

t
r =

(
u

t
I pt

I u
t
r

)
, z

t
c =

(
u

t
c (p0)t µt

)
.

In the FETI-DP formulation, we regard zc as a primal variable. After elimi-
nating zr and zc, we obtain the following equation for λ

FDPλ = d (7)

and call FDP a FETI-DP operator.

3 Preconditioner

We define Si as the discrete Schur complement operator of the Stokes problem
in Ωi obtained by eliminating interior velocity and pressure unknowns. Let

S := diag(S1, · · · , SN )
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and it can be seen easily that S is s.p.d. on W . Hence, we define a norm for
w ∈ W as

‖w‖2
W :=

N∑

i=1

< Siwi,wi > .

Let

W 0 =

N∏

i=1

∏

j∈mi

W 0
ij ,

where W 0
ij consists of functions in Wi|Γij with zero value at the end points of

Γij . For a function wij ∈ W 0
ij with j ∈ mi, let w̃ij ∈ Wi be the zero extension

of wij . Using this, we define the zero extension w̃ ∈ W of w ∈ W 0 by

w̃ = (w̃1, · · · , w̃N ) with w̃i =
∑

j∈mi

w̃ij

and a norm on W 0 by
‖w‖W 0 := ‖w̃‖W .

We introduce the following subspaces with the norms induced from the spaces
W and W 0:

WR :=
{
w ∈ W : Rt(Brwr + Bcwc) = 0

}
,

WR,G :=
{
w ∈ WR : Gt

r0wr + Gt
c0wc = 0

}
,

W 0
R :=

{
w ∈ W 0 : w̃ ∈ WR

}
.

Let us define
MR =

{
λ ∈ M : Rtλ = 0

}

and a dual norm for λ ∈ MR by

‖λ‖2
MR

:= max
w∈W 0

R\{0}

< λ,w >2
m

‖w‖2
W 0

,

where < λ,w >m=
∑N

i=1

∑
j∈mi

∫
Γij
λij · wij ds is a duality pairing. From

this dual norm, we can find an operator F̂DP which gives

< F̂DPλ,λ >= ‖λ‖2
MR

(8)

and propose F̂−1
DP as a preconditioner for the FETI-DP operator in (7). To give

a matrix form of F̂−1
DP , we define Rij : W 0 → W 0

ij as a restriction operator and

Ei
ij : W 0

ij → Wi as an extension operator by zero. Let B̂ij
i be a matrix obtained

from Bij
i after deleting the columns corresponding to the end points of Γij .

Since, we restrict λ ∈ MR and w ∈ W 0
R, we need l2-orthogonal projections

P ij
W 0

R
: W 0|Γij → W 0

R|Γij , P ij
MR

: M |Γij → MR|Γij .
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Let B̂ij = P ij
MR

B̂ij
i P ij

W 0

R
and B̂i =

∑
j∈mi

Ei
ijB̂

−1
ij Rij . Then, we obtain

F̂−1
DP =

N∑

i=1

B̂t
iSiB̂i.

Thus, the computation of F̂−1
DPλ can be done parallely in each subdomain.

4 Condition number estimation

In this section, we only state lemmas that are used to analyze the condi-
tion number bound without proofs. In the following, C is a generic constant
independent of hi and Hi.

Lemma 1. For λ ∈ MR, we have

< FDPλ,λ >= max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

.

Lemma 2. For λ ∈ MR, we have

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

≥ ‖λ‖2
MR

.

Let us define a notation | · |Si :=< Si ·, · >1/2. Then the following lemma can
be found in Bramble and Pasciak [1990].

Lemma 3. For wi ∈ Wi, we have

C1β|wi|Si ≤ |wi|1/2,∂Ωi
≤ C2|wi|Si ,

where β is the inf-sup constant for the finite elements of subdomain Ωi and
the constants C1 and C2 are independent of hi and Hi.

We also have the following result which is derived from Lemma 5.1 in Mandel
and Tezaur [2001].

Lemma 4. For w ∈ W , we have

‖wi −wj‖
2

H
1/2

00
(Γij)

≤ C max
l∈{i,j}

{(
1 + log

Hl

hl

)2
} (

|wi|
2
1/2,∂Ωi

+ |wj |
2
1/2,∂Ωj

)
.

From Lemma 3, Lemma 4 and the continuity of mortar projection in H
1/2
00 (Γij),

we have

Lemma 5. For λ ∈ MR,

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2
W

≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2

MR
.
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From Lemma 1, Lemma 2, Lemma 5 and (8), we obtain the following condition
number bound:

Theorem 1.

κ(F̂−1
DP FDP ) ≤ C max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

.

5 Numerical Results

Let Ω = [0, 1]×[0, 1] ⊂ R
2 and consider Stokes problem with an exact solution

u =

(
sin3(πx)sin2(πy)cos(πy)
−sin2(πx)sin3(πy)cos(πx)

)
and p = x2 − y2.

Let N denote the number of subdomains. We only consider the uniform par-
tition of Ω. The notation N = 4 × 4 means that Ω is partitioned into 4 × 4
square subdomains. Let n denote the number of nodes on subdomain edges
including end points, which is associated with Ωhi

i , a triangulation for velocity
functions. We solve the FETI-DP operator with and without preconditioner
varying N and n under nonmatching discretizations. Those cases are denoted
by PFETI-DP and FETI-DP, respectively. The CG(Conjugate Gradient) it-
eration is stopped when the relative residual is less than 10−6.

In Tables 1 and 2, the number of CG iterations and the corresponding
condition number are shown varying N and n. From Table 1, we observe that
PFETI-DP performs well and the condition numbers seem to behave log2-
growth as n increases. In Table 2, as N increases with n = 5 or n = 9, the
CG iteration becomes stable for both cases with and without preconditioner.
Hence, we can see that the developed preconditioner gives the condition num-
ber bound as confirmed in theory.

Table 1. CG iterations(condition number) when N = 4× 4

n FETI-DP PFETI-DP

5 16(8.35) 12(3.75)
9 50(1.15e+2) 15(5.79)
17 86(5.01e+2) 17(7.93)
33 119(1.31e+3) 20(9.88)
65 153(3.29e+3) 22(1.20e+1)
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Table 2. CG iterations(condition number) when n = 5, 9

n = 5 n = 9
N FETI-DP PFETI-DP FETI-DP PFETI-DP

4× 4 16(8.35) 12(3.75) 50(1.15e+2) 15(5.79)
8× 8 16(9.18) 12(3.68) 53(1.19e+2) 15(6.21)
16× 16 16(9.57) 11(3.42) 57(1.34e+2) 16(6.27)
32× 32 16(10.88) 12(3.78) 56(1.25e+2) 16(6.24)
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