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Summary. We consider a FETI-DP formulation of the Stokes problem with mor-
tar methods. To solve the Stokes problem correctly and efficiently, redundant
continuity constraints are introduced. Lagrange multipliers corresponding to the
redundant constraints are treated as primal variables in the FETI-DP formu-
lation. We propose a preconditioner for the FETI-DP operator and show that
the condition number of the preconditioned FETI-DP operator is bounded by
C max;=1,... N {(1 + log (Hi/hi))Q}, where H; and h; are the subdomain size and
the mesh size, respectively, and C is a constant independent of H; and h;.

1 Introduction

Recently, FETI-DP methods, which were originally developed by Farhat
et al. [2001], have been applied to nonconforming discretizations( Dryja and
Widlund [2002, 2003], Kim and Lee [2002]). Nonconforming discretizations
are important for multiphysics simulations, contact-impact problems, the
generation of meshes and partitions aligned with jumps in diffusion coeffi-
cients, hp-adaptive methods, and special discretizations in the neighborhood
of singularities. For the elliptic problems in 2D, Dryja and Widlund [2002]
showed that the Dirichlet preconditioner gives the condition number bound
C(1 +log(H/h))*, where H and h denote the subdomain size and the mesh
size, respectively. Further, Dryja and Widlund [2003] proposed a different pre-
conditioner which is similar to the one in Klawonn and Widlund [2001], and
proved the condition number bound C(1 + log(H/h))? with a restriction that
the mesh sizes on the nonmortar side and the mortar side are comparable.
For the same problem, Kim and Lee [2002] formulated a FETI-DP opera-
tor in a different way from Dryja and Widlund [2002, 2003] and proposed a
Neumann-Dirichlet preconditioner, which gives the condition number bound
C(1 + log(H/h))? without the restriction on mesh sizes between neighboring
subdomains. For the elliptic problems with heterogeneous coefficients, they

* This work was partially supported by KOSEF R01-2000-00008.
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obtained the same condition number bound which does not depend on the
coefficients.

In this paper, we extend the result in Kim and Lee [2002] to the Stokes
problem. We use the inf-sup stable Pj(h) — Py(2h) finite elements in each
subdomain. For the optimality of the approximation under nonmatching dis-
cretizations, we impose mortar matching conditions on the velocity functions
using the standard Lagrange multiplier space introduced in Bernardi et al.
[1994].

2 FETI-DP formulation

Let {2 be a bounded polygonal domain in R?. We assume that 2 is partitioned
into nonoverlapping bounded polygonal subdomains {£2;} ¥ ; and the partition
is geometrically conforming. Let HL(£2;) be a space of functions in H'({2;)
with zero traces on 942; N 912, L(§2;) be a space of functions in L?(£2;) with
zero average and I1° be a space of functions in LZ(§2) which are constants in
each subdomain. Then, we consider the following variational form of Stokes’

problem: Find (u,pr,p°) € [T, [H})(Ql)f x [T¥, L3(52;) x IT° such that
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and the velocity u is continuous across the subdomain interfaces I' =
Uszl(ani N 0£2;). Here, (-,-)q, denotes the inner product in [L?(§2;)]" for
n=1,2.

We associate 2; with quasi-uniform triangulations .Q;” and .thi. Then we
consider the inf-sup stable P;(h;) — Py(2h;) finite elements and denote them
by X; and Q;, respectively. In addition, Q? is defined as a subspace of Q; with
zero average on §2;. Let W; := X; for all i = 1,--- | N. To get a FETI-DP

formulation, we define the following spaces:

N
X = {V c H X, : v is continuous at subdomain corners} ,
i=1

N
W = {W S H W, . w is continuous at subdomain corners} ,
i=1
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N
Q=[]
1=1

In this paper, we will use the same notation for a finite element function and
the vector of nodal values of that function. The same applies to the notations
W;, X, W, etc. For v; € X;, we write

vi=((v)' (vi)" (vi)')
where the symbol I, r and ¢ represent the d.o.f.(degrees of freedom) at the

interior nodes, nodes on edges and corners, respectively. Since v € X is con-
tinuous at subdomain corners, there exists a vector v, such that v, = Liv,

for all i = 1,---, N with a restriction map L!. The vector v. has the d.o.f.
corresponding to the union of subdomain corners. Let
t 1 t 1
vi= (v - (v)), vi=((v)h e (Y)Y

We define the spaces X, W, and W, which consist of vectors vy, v, and v,
respectively. For w € W, we define w,, € W, and w. € W, similarly to v,
and v.

On each I;(= 042; N 0f2;), we determine mortar and nonmortar sides and
define

m; = {j : .th
§; 1= {j s

r;, is the nonmortar side of Fij} ,

r;, is the mortar side of Fij} .
We consider the standard Lagrange multiplier space M;; and let
N
M = H H Mz]
1=1jEm;

Then the following mortar matching conditions are imposed on v € X:

/ (Vi—Vj)-)\ideZO VAijEMij,V’L'Zl,---,N,Vjemi. (2)
r;

J

Now, we rewrite (2) into a matrix form. Let B be a matrix with entries
(B;'j)lkzi/ Y ppds V=1, LVk=1,- K, (3)
Fi]‘

where {4}/, is basis for M;; and {¢};—, is nodal basis for Wi|r,,. In (3),
the +sign is chosen if 2;|,; is a nonmortar side, otherwise the —sign is chosen.
Let F;; : M;; — M be an extension operator by zero and Réj W - W

for I = i,j be a restriction operator and B; = Y EijBY R};. Then (2)

is written into

jEM;Us;
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Bw =0, (4)

where B = (31 BN) and w = (Wﬁ Wﬁv)t with w; = v;|ag,. Let B;
and B; . be matrices that consist of the columns of B; corresponding to the
d.o.f. on edges and corners, respectively. Then (4) is written into

B,w, + B.w, = 05

where B, = (By, -+ Bn,) and B, = YV | B; L.
Borrowing the idea of Li [2001], we add the following redundant continuity
constraints to the coarse problem

/ (vi—vj)ds=0 Vi=1,--- ,N,Vjem,. (5)
r

ij

and rewrite (5) as
RY(B,w, + B.w.) =0, (6)

with a suitable matrix R. Let S be the Lagrange multiplier space correspond-
ing to the constraints (6).

Then, the following is induced from the Galerkin approximation to (1):
Find (uz, pr, -, ue, %, p,A) € X7 x Q x W, x W, x I1° x S x M such that

Arr Grr A A 0 0 O uy fr
Gy 0 G, G, 0 0 O pI 0
ATI GTI AT’I‘ Arc GTO B;ER Bf« Ur fr
ACI GCI Acr Acc GCO BER Bi Uc | = fc
0 0 Gty G% 0 0 0] 0
0 0 RIB,R'B. 0 0 0] |p 0
0O 0 B, B. 0 0 O A 0

Let
= (g ut), 7k = (ut 00) ).

In the FETI-DP formulation, we regard z. as a primal variable. After elimi-
nating z, and z., we obtain the following equation for A

FppA=d (7)

and call Fpp a FETI-DP operator.

3 Preconditioner

We define S; as the discrete Schur complement operator of the Stokes problem
in {2; obtained by eliminating interior velocity and pressure unknowns. Let

S = diag(S’l,--- ,SN)
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and it can be seen easily that S is s.p.d. on W. Hence, we define a norm for
we W as

N
Wil =" < Siwi, wi > .
=1
Let
H T wi.
i=1j€Em,

where VV0 consists of functions in Wj|r,, with zero value at the end points of
I';;. For a functlon Wi € WO with j € m;, let w;; € W; be the zero extension
of w;;. Using this, we deﬁne the zero extension w € W of w € W9 by

w = (W, -+ ,Wy) with w; = Z Wij
jem;

and a norm on WY by

[wllwo := [[Wlw.

We introduce the following subspaces with the norms induced from the spaces
W and WP:

Wgr = {W ceW : Rt(BrWr + BCWC) = O} )
Wra = {W e Wg : Giowr + GZOWC = O} ’

Wi ={weW": weWg}.
Let us define
Mrp={XxeM : R'A=0}
and a dual norm for A € Mg by

<A w>2

A2, := max
IMar = | ) Tl

)

where < A\, w >,,= ZZ 12 jems fr ij - Wij ds is a duality pairing. From

this dual norm, we can find an operator F 'pp which gives
< FppA A >=[IAl3, (8)

and propose 135 113 as a preconditioner for the FETI-DP operator in (7). To give
a matrix form of F' 5 p» we define R;; WO — W0 as a restriction operator and
Efj : WZ-Oj — W, as an extension operator by zero. Let BZ-J be a matrix obtained

from ij after deleting the columns corresponding to the end points of I5;.
Since, we restrict A € Mg and w € WI%, we need [%-orthogonal projections

ij . 0 iy
PW% W Lijs PMR.
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Let Bjj = PIERBEng% and B; = Siem; Efjgi;lRij. Then, we obtain
N

Fob = Z B!S;B;.
i=1

Thus, the computation of F ' 113/\ can be done parallely in each subdomain.

4 Condition number estimation

In this section, we only state lemmas that are used to analyze the condi-
tion number bound without proofs. In the following, C' is a generic constant
independent of h; and H;.

Lemma 1. For A € Mg, we have

< Bw, X >?

< FppA, A >= max 5
weWrc\{o}  [[wlljy
Lemma 2. For A € Mg, we have

< Bw, )\ >?

max > A 2 )
weWra\[0} Wl > [|Al 2,

Let us define a notation | - |s, :=< S; -, - >!/2. Then the following lemma can
be found in Bramble and Pasciak [1990].

Lemma 3. For w; € W;, we have

C1B|w;

s: < |Wiliy2,00, < Caolwils,,

where (3 is the inf-sup constant for the finite elements of subdomain (2; and
the constants C1 and Cy are independent of h; and H;.

We also have the following result which is derived from Lemma 5.1 in Mandel
and Tezaur [2001].

Lemma 4. For w € W, we have

)\
Iwi = Wil Sczé‘%?f?}{(l“ogh_l) }('Wi'f/wm + 1wl 200,)-

From Lemma 3, Lemma 4 and the continuity of mortar projection in Hol({Q (L),
we have

Lemma 5. For A € Mp,

< Bw, X >?2 H;\’
max W72 < (C max <1 + log _> ||A||%\/[R'
weWr,a\{0} HWHW =1, N hi ‘
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From Lemma 1, Lemma 2, Lemma 5 and (8), we obtain the following condition
number bound:

Theorem 1.

i=1,,

~ H;\?
H(FB};,FDP)SC maxN{(l—i—logF) }

5 Numerical Results

Let £ = [0,1]x[0, 1] C R? and consider Stokes problem with an exact solution

.3 .2
" ( sin 2(77,7:)511'1 ?gﬂy)cos(ﬂy) ) and p = 2% — 12,
—sin“ (7z)sin” (7y)cos(mx)

Let N denote the number of subdomains. We only consider the uniform par-
tition of {2. The notation N = 4 x 4 means that {2 is partitioned into 4 x 4
square subdomains. Let n denote the number of nodes on subdomain edges
including end points, which is associated with Q;“, a triangulation for velocity
functions. We solve the FETI-DP operator with and without preconditioner
varying N and n under nonmatching discretizations. Those cases are denoted
by PFETI-DP and FETI-DP, respectively. The CG(Conjugate Gradient) it-
eration is stopped when the relative residual is less than 1076.

In Tables 1 and 2, the number of CG iterations and the corresponding
condition number are shown varying N and n. From Table 1, we observe that
PFETI-DP performs well and the condition numbers seem to behave log?-
growth as n increases. In Table 2, as N increases with n = 5 or n = 9, the
CG iteration becomes stable for both cases with and without preconditioner.
Hence, we can see that the developed preconditioner gives the condition num-
ber bound as confirmed in theory.

Table 1. CG iterations(condition number) when N =4 x 4

n |FETI-DP PFETI-DP

5 |16(8.35) 12(3.75)
9 |50(1.15e+2) 15(5.79)
17|86(5.01e+2) 17(7.93)
33|119(1.31e+3) 20(9.88)
65(153(3.29e+3) 22(1.20e+1)
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Table 2. CG iterations(condition number) when n =5,9

n=>5 n=9
N FETI-DP PFETI-DP|FETI-DP PFETI-DP
4x4 |16(8.35) 12(3.75) |50(1.15e+2) 15(5.79)
8x8 [16(9.18) 12(3.68) [53(1.19¢+2) 15(6.21)
16 x 16|16(9.57) 11(3.42)  |57(1.34e+2) 16(6.27)
32 x 32[16(10.88) 12(3.78)  |56(1.25¢+2) 16(6.24)
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