Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Gert Lube¹, Tobias Knopp², and Gerd Rapin²

¹ University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

² University of Göttingen, Institute of Numerical and Applied Mathematics

Summary. For advection-diffusion problems we show that a non-overlapping domain decomposition method with interface conditions of Robin type can be accelerated by using a critical parameter of the transmission condition in a cyclic way.

1 Introduction

We consider a non-overlapping domain decomposition method (DDM) with Robin transmission conditions for the advection-diffusion-reaction model

$$Lu := -\epsilon \Delta u + (\mathbf{b} \cdot \nabla)u + cu = f \quad \text{in } \Omega \tag{1}$$

$$u = 0$$
 on $\partial \Omega$ (2)

in a bounded polyhedral domain $\Omega \subset \mathbf{R}^d$ with a Lipschitz boundary $\partial \Omega$ and $0 < \epsilon \leq 1, \mathbf{b} \in [H^1(\Omega) \cap L^{\infty}(\Omega)]^d$, $c \in L^{\infty}(\Omega), f \in L^2(\Omega), c - \frac{1}{2}\nabla \cdot \mathbf{b} \geq 0$.

Let $\{\Omega_k\}$ be a non-overlapping macro partition with $\overline{\Omega} = \bigcup_{k=1}^N \overline{\Omega}_k$. The goal of the well-known DDM of Robin type (Lions [1990]) is to enforce (in appropriate trace spaces) continuity of the solution u and of the diffusive and advective fluxes $\epsilon \nabla u \cdot \mathbf{n}_{kj}$ resp. $-\frac{1}{2} (\mathbf{b} \cdot \mathbf{n}_{kj}) u$ on the interfaces $\Gamma_{kj} := \partial \Omega_k \cap \partial \Omega_j$. The algorithm reads in strong form:

For given u_k^n , $n \in \mathbf{N}_0$, in each Ω_k , find (in parallel) u_k^{n+1} , such that

$$Lu_k^{n+1} = f \qquad \qquad \text{in } \Omega_k \tag{3}$$

$$u_k^{n+1} = 0 \qquad \qquad \text{on } \partial \Omega_k \cap \partial \Omega \qquad (4)$$

$$\Phi_k(u_k^{n+1}) = \Phi_k(u_j^n) \qquad \text{on } \Gamma_{kj} \tag{5}$$

with $\Phi_k(u) = \epsilon \nabla u \cdot \mathbf{n}_{kj} + (z_k - \frac{1}{2} \mathbf{b} \cdot \mathbf{n}_{kj})u$ on Γ_{kj} , $k \neq j$ and the outer normal vector \mathbf{n}_{kj} on $\partial \Omega_k \cap \partial \Omega_j$. By determining the interface parameter $z_k > 0$ in a proper way the convergence of the method (3)-(5) can be accelerated.

Let \mathcal{T}_h be an admissible, quasi-uniform triangulation of Ω being aligned with the macro partition. $V_h := \{v \in H_0^1(\Omega) \mid v|_K \in \mathcal{P}_l(K) \; \forall K \in \mathcal{T}_h\}$ denotes a conforming finite element (FE) space of order l. The stabilized FE method 268 Gert Lube, Tobias Knopp, and Gerd Rapin

Find
$$u_h \in V_h$$
, such that: $a^s(u_h, v_h) = l^s(v_h) \qquad \forall v_h \in V_h$, (6)

$$a^{s}(u,v) = (\epsilon \nabla u, \nabla v)_{\Omega} + (\mathbf{b} \cdot \nabla u + c u, v)_{\Omega} + \sum_{T \in \mathcal{T}_{h}} (\delta_{T} L u, \mathbf{b} \cdot \nabla v)_{T},$$
$$l^{s}(v) = (f, v)_{\Omega} + \sum_{T \in \mathcal{T}_{h}} (\delta_{T} f, \mathbf{b} \cdot \nabla v)_{T}, \qquad \delta_{T} \sim h_{T}^{2} (\epsilon + h_{T} ||\mathbf{b}||_{\infty,T})^{-1}$$

with residual stabilization provides improved stability and accuracy (w.r.t. the streamline derivative $\mathbf{b} \cdot \nabla u$) in the hyperbolic limit $\epsilon \to 0$ of (1)-(2).

Assume, for simplicity, that the macro partition has no interior crosspoints. Then we restrict the bilinear and linear forms a^s and l^s to each subdomain by $a_k^s = a^s|_{\Omega_k}$ and $l_k^s = l^s|_{\Omega_k}$. Moreover, we define $V_{k,h} = V_h|_{\Omega_k}$ and the trace space $W_{kj,h} = V_h|_{\Gamma_{kj}}$. Finally, we denote by $\langle \cdot, \cdot \rangle_{\Gamma_{kj}}$ the dual product on $(W_{kj,h})^* \times W_{kj,h}$. Then the weak formulation of the fully discretized DDM is given by

(I) Parallel computation step :

For k = 1, ..., N find $u_{h,k}^{n+1} \in V_{k,h}$ such that for all $v_k \in V_{k,h}$:

$$a_{k}^{s}(u_{h,k}^{n+1}, v_{k}) + \langle z_{k}u_{h,k}^{n+1}, v_{k} \rangle_{\Gamma_{k}} = l_{k}^{s}(v_{k}) + \sum_{j(\neq k)} \langle A_{jk}^{n}, v_{k} \rangle_{\Gamma_{kj}}.$$
 (7)

(II) Communication step :

For all $k \neq j$, update Lagrange multipliers $\Lambda_{kj}^{n+1} \in W_{kj,h}^*$ such that:

$$\langle \Lambda_{kj}^{n+1}, \phi \rangle_{\Gamma_{kj}} = \langle (z_k + z_j) u_{h,k}^{n+1} - \Lambda_{jk}^n, \phi \rangle_{\Gamma_{kj}}, \qquad \forall \phi \in W_{kj,h}.$$
(8)

This method is very easy to implement. It is used as a building block in a parallelized flow solver for the thermally driven incompressible Navier-Stokes problem, cf. Knopp et al. [2002]. A fast convergence of the DDM is desirable, in particular for time-dependent problems.

It is well-known that the algorithm (7)-(8) is well-posed if $z_k = z_j > 0$. Moreover, the sequence $\{u_k^n\}_{n \in \mathbb{N}}$ is strongly convergent according to

$$\lim_{n \to \infty} \|| u_{h,k}^n - u_h|_{\Omega_k} \||_{\Omega_k} = 0$$
(9)

where $|||v|||_{\Omega_k} := \sqrt{a_k^s(v, v)}$, Lube et al. [2000]. The convergence speed depends in a sensitive way on the parameters z_k which have to be optimized. In Sec. 2 we review an *a priori* optimization introduced by Nataf and Gander. Sec. 3 is devoted to an *a posteriori based* approach.

2 A-priori optimization of the interface condition

The convergence of the Robin DDM (3)-(5) can be described in simple cases using a Fourier analysis. Nataf and Gander proposed a semi-continuous a priori optimization of the interface parameter z over a relevant range $S = (s_{min}, s_{max})$ of Fourier modes. An optimization is important for highly

oscillatory solutions, e.g. for the Helmholtz equation (1)-(2) with $\mathbf{b} \equiv \mathbf{0}$ and $c/\epsilon \ll -1$. An improved idea is a *cyclic* change of z for appropriate frequency ranges. For the *symmetric* case with $\mathbf{b} = \mathbf{0}$ and $\epsilon = 1$, Gander and Golub [2002] proposed the following variant of the DDM (3)-(5) in $\Omega = \mathbf{R}^2$, $\Omega_1 = \mathbf{R}^+ \times \mathbf{R}$, $\Omega_2 = \mathbf{R}^- \times \mathbf{R}$ with the *cyclic* Robin condition

$$\nabla u_1^{n+1} \cdot \mathbf{n}_1 + z^{n \mod(m)} u_1^{n+1} = \nabla u_2^n \cdot \mathbf{n}_1 + z^{n \mod(m)} u_2^n \tag{10}$$

and similarly for u_2^{n+1} on $\Gamma = \{0\} \times \mathbf{R}$ for $m = 2^l$ and appropriate chosen z^0, \ldots, z^{m-1} . For l = 0, Gander and Golub [2002] obtain the following contraction rate

$$\rho(s, z) = \left(\frac{\sqrt{c + s^2} - z^0}{\sqrt{c + s^2} + z^0}\right)^2$$

for the s-th Fourier mode. For the mesh parameter h, an optimization over $S = (s_{min}, \pi/h)$ gives $\min_{z^0 \ge 0} (\max_{s \in S} \rho(s, z^0)) = 1 - \mathcal{O}(\sqrt{h})$. In the cyclic case $m = 2^l$ one gets the rate

$$\rho(m, s, z) = \prod_{j=1}^{m} \left(\frac{\sqrt{c+s^2} - z^{n \mod(m)}}{\sqrt{c+s^2} - z^{n \mod(m)}} \right)^{2/m}$$

and the optimized result

$$\min_{z \ge 0} \left(\max_{s \in S} \rho(m, s, z) \right) \approx \ 1 - \frac{4}{m} \left[\frac{(c + s_{\min}^2) h^2}{16 \pi^2} \right]^{\frac{1}{4m}}, \quad h \to +0.$$

This result is useful for meshes with $\frac{(c+s_{min}^2)h^2}{16\pi^2} \leq 1$, but this estimate deteriorates in the singularly perturbed case, i.e. for fixed h and $c \to +\infty$.

For the non-symmetric case, the optimization of the Schwarz method corresponding to l = 0 can be found in Nataf [2001]. The extension to a cyclic Schwarz method with $l \ge 1$ is open.

3 A posteriori based design of the interface condition

As an alternative to the a priori based design of the interface parameter we propose an approach based on an *a posteriori* estimate. Consider a simplified situation with $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2 \subset \mathbf{R}^2$ with $\text{meas}_1(\partial \Omega \cap \partial \Omega_i) > 0$ and straight interface $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$ of size $H = \text{meas}(\Gamma) \sim \text{diam}(\Omega_i), i = 1, 2$. Set $W = H_{00}^{\frac{1}{2}}(\Gamma)$. We assume constant data ϵ , **b**, *c*. In Lube et al. [2000] we proved

Theorem 1. Let u_h be the solution of (6). The DDM-subdomain error $e_{h,k}^n = u_{h,k}^n - u_h|_{\Omega_k}$, $k \in \{1,2\}$, can be controlled via (computable) interface data:

$$\||e_{h,k}^{n+1}\||_{\Omega_k} \le A_j \|u_{h,k}^n - u_{h,j}^{n+1}\|_W + B_j \left| z_k - \frac{\mathbf{b} \cdot \mathbf{n}_k}{2} \right| \|u_{h,k}^n - u_{h,j}^{n+1}\|_{L^2(\Gamma)}$$
(11)

270 Gert Lube, Tobias Knopp, and Gerd Rapin

for j = 3 - k and with data-dependent constants

$$A_j = \sqrt{\epsilon} \left(1 + \sqrt{\frac{c}{\epsilon}} H + \min\left[\frac{\|\mathbf{b}\|_{\infty}H}{\epsilon}; \frac{\|\mathbf{b}\|_{\infty}}{\sqrt{c\epsilon}}\right] \right), \qquad B_j = \sqrt{\frac{H}{\epsilon}}.$$
 (12)

This result motivates to equilibrate the two right-hand side terms in (11) in order to obtain information about the design of the interface parameter z_k . In Lube et al. [2000] we considered the estimate

$$\||e_{h,k}^{n+1}\||_{s,\Omega_k} \le \max\left(A_j; \ B_j C\sqrt{H} \left| z_k - \frac{1}{2} \mathbf{b} \cdot \mathbf{n}_k \right| \right) \|u_{h,k}^n - u_{h,j}^{n+1}\|_W$$
(13)

using the continuous embedding result $\|\phi\|_{L^2(\Gamma)} \leq C\sqrt{H} \|\phi\|_W$ for all $\phi \in W$. On the other hand, an inverse estimate in (11) leads to

$$\||e_{h,k}^{n+1}\||_{s,\Omega_k} \le \max\left(CA_jh^{-\frac{1}{2}}; B_j\left|z_k - \frac{1}{2}\mathbf{b}\cdot\mathbf{n}_k\right|\right) \|u_{h,k}^n - u_{h,j}^{n+1}\|_{L^2(\Gamma)}.$$
 (14)

In the symmetric case $\mathbf{b} = \mathbf{0}$ we get from (13) and (14)

$$z_k \sim \frac{\epsilon}{H} \sqrt{\frac{H}{L}} \left(1 + H \sqrt{\frac{c}{\epsilon}} \right), \qquad L \in \{h, H\}.$$
 (15)

In the non-symmetric case $\mathbf{b} \neq \mathbf{0}$, the design of z_k has to match the hyperbolic limit of the Robin condition, i.e.

$$0 = \lim_{\epsilon \to 0} \Phi_k(u) = \left(-\frac{1}{2}\mathbf{b} \cdot \mathbf{n}_k + \lim_{\epsilon \to 0} z_k\right)u \text{ if } \mathbf{b} \cdot \mathbf{n}_k \ge 0.$$

By extending this condition to the inflow part of $\partial \Omega_k$ with $\mathbf{b} \cdot \mathbf{n}_k < 0$, we obtain from (13)-(14) as a reasonable choice

$$z_k = \frac{1}{2} |\mathbf{b} \cdot \mathbf{n}_k| + R_k(L), \qquad L \in \{h, H\},$$
(16)

$$R_k(L) \sim \frac{\epsilon}{H} \sqrt{\frac{H}{L}} \left(1 + H \sqrt{\frac{c}{\epsilon}} + \min\left[\frac{H \|\mathbf{b}\|}{\epsilon}; \frac{\|\mathbf{b}\|}{\sqrt{c\epsilon}}\right] \right).$$
(17)

Inserting (16), (17) with L = H in (13) and applying an inverse inequality, we obtain the *optimized a posteriori* estimates

$$\||e_{h,k}^{n+1}\||_{\Omega_k} \le A_j \|u_{h,k}^n - u_{h,j}^{n+1}\|_W \le CA_j h^{-\frac{1}{2}} \|u_{h,k}^n - u_{h,j}^{n+1}\|_{L^2(\Gamma)}.$$
 (18)

The last estimate also follows directly by inserting (16), (17) with L = h in (14). Therefore we propose to extend the condition (16) to $L \in [h, H]$.

In Lube et al. [2000] we considered the case L = H. This choice usually allows a fast error reduction down to the discretization error level if the solution has no highly oscillatory behaviour. Fortunately, the latter case is rare for problem (1)-(2) with $c - \frac{1}{2}\nabla \cdot \mathbf{b} \ge 0$.

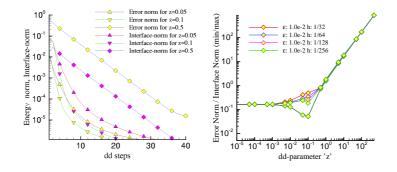


Fig. 1. Reliability of the a posteriori estimate for $h = \frac{1}{128}$ (left), Control of $\max_n / \min_n \sum_{i=1}^4 ||e_{h,k}^{n+1}||_{\Omega_i} / \sum_{i \neq j} ||u_{h,i}^{n+1} - u_{h,j}^n||_{L^2(\Gamma_{ij})}$ vs. z (right).

Example 1. Consider the problem (1)-(2) with $\mathbf{b} \equiv 0$, $\epsilon = 10^{-2}$, c = 1 in $\Omega = (0, 1)^2$. The exact (smooth) solution is $u = x_1(1-x_1)x_2(1-x_2)e^{x_1x_2}$. We denote the solution of (6) with \mathcal{P}_1 -elements and $h = \frac{1}{128}$ by $u_k = u_h|_{\Omega_k}$. The DDM on an equidistant 2×2 macro partition with an initial guess $\Lambda_{jk}^0 = 0$ leads to the sequence $u_{h,k}^n$. The stopping criterion $\sum_k ||u_{h,k}^n - u_h|_{\Omega_k}|||_{\Omega_k} \leq 10^{-6}$ has a tolerance beyond the discretization error level.

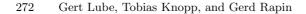
Fig. 1 (left) shows that the subdomain error $\||\cdot\||_{\Omega_k}$ is clearly controlled by the $L^2(\Gamma)$ interface error according to Theorem 1. Moreover, the convergence of the DD-iteration depends strongly on z. The fast error reduction in the first phase corresponds to a fast reduction of "low" frequencies; but then a (very) slow reduction of "higher" modes can be seen. In Fig. 1 (right) we control the maximal/minimal (w.r.t. to the number n of DD steps) ratio between the subdomain and interface errors for varying h. The value $z_k \sim \frac{1}{10}$ corresponding to the minimum of this ratio for $h = \frac{1}{256}$ is in agreement with the value predicted by (15) with L = H. As predicted by Theorem 1, we observe a linear dependence of the error on z for increasing z.

Obviously, the results of Example 1 with the optimized value of z according to (16), (17) with L = H depend only on the data of the problem (1)-(2) and not on h. We want to check this result for other typical cases.

Example 2. Let be Ω and the solution u as in Example 1. The FEM solution u_h of (6) is computed with \mathcal{P}_1 -elements on a fine mesh with $h = \frac{1}{256}$ and with SUPG stabilization in advection-dominated cases for

A: Symmetric case: $\mathbf{b} = (0,0)$, c = 1, DDM with 4 subdomains, **B:** Case $|\mathbf{b} \cdot \mathbf{n}_i| > 0$: $\mathbf{b} = (2,1)$, c = 1, DDM with 2 subdomains, **C:** Case $|\mathbf{b} \cdot \mathbf{n}_i| \equiv 0$: $\mathbf{b} = (0,1)$, c = 1, DDM with 2 subdomains.

The initial guess for the Lagrange multipliers is $\Lambda_{ij}^0 = 0$. The stopping criterion for the error between the discrete solutions with and without DDM is $\sum_k \|u_{h,k}^n - u_h|_{\Omega_k}\|_{L^2(\Omega_k)} \leq 10^{-6}$. The convergence in this range is predicted



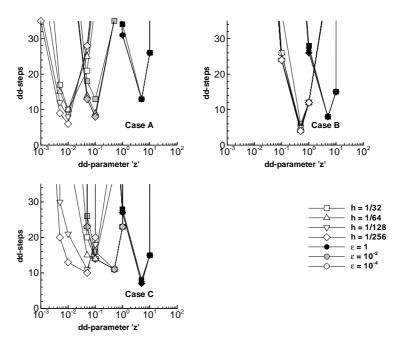


Fig. 2. Optimization of the interface parameter z with one-level approach.

by the data of (1)-(2) and is *h*-independent. The optimal values of z_k are predicted by the optimized z_k from (16), (17) with L = H, see Fig. 2.

The nice convergence behaviour can be explained by the smoothness of the solutions and of the initial guess Λ_{ij}^0 . Moreover, in our experiments we never found problems for singularly perturbed problems with sharp layers.

Nevertheless, the convergence behaviour of the Robin-DDM is not satisfactory beyond the discretization error level. Moreover, regarding our application to flow problems (Knopp et al. [2002]), in the turbulent case the solution usually has high-frequent components which may not be efficiently damped in our previous approach. As a remedy we propose a combination of the a posteriori control of the interface error with a *cyclic multi-level* version of the DDM:

- **Step 1:** (optionally) Apply (7)-(8) with the optimized z_k from (16)-(17) with L = H until reduction of the interface error down to discretization error level, e.g. $\|u_{h,i}^n u_{h,j}^{n+1}\|_{L^2(\Gamma)} \leq \kappa h^{l+1/2}$ for \mathcal{P}_l elements. **Step 2:** Apply (7)-(8) in a cyclic way with p levels (see below) using (16)-(17) with
- Step 2: Apply (7)-(8) in a cyclic way with p levels (see below) using (16)-(17) with $z_k^1, ..., z_k^p$ related to L = H (for z_k^1) and l = h (for z_k^p), resp., and an even number (to our experience, 4 or 6 are sufficient) of DD steps per level until $||u_{h,i}^n u_{h,j}^{n+1}||_{L^2(\Gamma)} \leq TOL$.

Let us discuss this approach for some cases of Example 2. First of all, we have to fix the number p of levels. Assume a dyadic representation of the coarse

and of the fine mesh of the domain $\Omega = (0, 1)^2$ with $H = 2^{-s}$, $h = 2^{-t}$, $s, t \in \mathbb{N}$. From (16)-(17) we obtain $R_k(L) \leq R_k(h) \sim \sqrt{H/h}$, i.e. a mild dependence on $\sqrt{H/h}$. We propose the following rule: For $2^p < \sqrt{H/h} \leq 2^{p+1}$, take p levels. Thus we obtain for a very fine mesh width $h = 2^{-10}$ a number of two levels for a coarse grid width $H = 2^{-5}$ and of four levels for $H = 2^{-1}$.

Example 3. Consider the situation of Example 2 with a 2×2 macro partition with $H = \frac{1}{2}$ and a fine mesh with $h = 2^{-6}$. This leads to p = 2 levels. We start with the symmetric case of (1)-(2) with $\epsilon = 1$, $\mathbf{b} = \mathbf{0}$, c = 1. The fast error reduction within the first steps is followed by a very slow reduction in the one-level case, cf. Fig. 3 (left). Here u^h and u^h_{seq} denote the solutions with and without DDM. The two-level method with 6 DD-steps per level leads to a dramatic acceleration, cf. Fig. 3 (right).

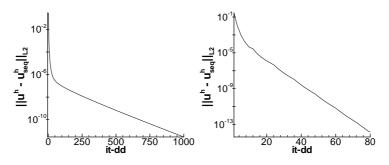


Fig. 3. Error reduction for the symmetric case: p = 1 (left), p = 2 (right)

Consider now the non-symmetric and advection-dominated case with $\epsilon = 10^{-5}$, $\mathbf{b} = \frac{(1,2)^T}{\sqrt{5}}$, c = 0. In Fig. 4 we observe a similar behaviour of the proposed approach with p = 1 (left) and p = 2 (right) levels, although the acceleration is not so dramatic as in the symmetric case.

Finally, let us note an observation of Gander and Golub [2002] for the symmetric case: The quality of the cyclic DDM (3)-(5) with an optimized condition (10) as a solver increases with the number of levels such that no improvement can be found with Krylov acceleration. A similar behaviour is very likely in the non-symmetric case.

4 Summary

Considerable progress has been reached for Schwarz methods with (a priori) optimized transmission conditions. We propose an approach based on a refined a posteriori error estimate for a DDM with transmission conditions of Robin type. For the one-level variant, this condition can be optimized in such a

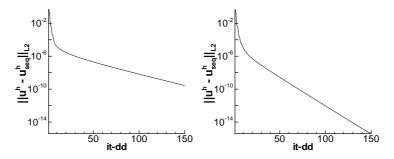


Fig. 4. Error reduction for the *non-symmetric* case: p = 1 (left), p = 2 (right)

way that the convergence is very reasonable down to the discretization error level; but then one observes a rapid slow-down of error reduction for higher error modes. This is valid for "smooth" solutions and is in contrast to highly oscillatory solutions typically appearing, e.g., for turbulent flows.

A multilevel-type method with optimized interface parameters allows a strong acceleration of the convergence. The approach is motivated by theoretical results, but more efforts are necessary to improve its present state. An advantage of the method over a priori optimized methods is the control of the convergence within the iteration. Moreover, a combination with adaptive mesh refinement is possible. It remains open whether the method is linearly convergent. Moreover, a genuinely multilevel-type implementation might be possible. Finally, the extension to incompressible flows has to be done.

References

- M. J. Gander and G. Golub. A non-overlapping optimized Schwarz method which converges with arbitrarily weak dependence on *h*. In I. H. et.al., editor, *Proc. Fourteenth Intern. Conf. on Domain Decomposition Methods*, pages 281–288. DDM.org, 2002.
- T. Knopp, G. Lube, R. Gritzki, and M. Rösler. Iterative substructuring techniques for incompressible nonisothermal flows and its application to indoor air flow simulation. *Intern. J. Numer. Meths. Fluids*, 40:1527–1538, 2002.
- P. L. Lions. On the Schwarz alternating method III: A variant for nonoverlapping domains. In Chan et al., editor, *Proc. Third Intern. Symp.* on Domain Decomposition Methods, pages 202–223. SIAM, 1990.
- G. Lube, L. Müller, and F. Otto. A non-overlapping domain decomposition method for the advection-diffusion problem. *Computing*, 64:49–68, 2000.
- F. Nataf. Interface connections in domain decomposition methods. In NATO Advanced Study Institute, Modern Methods in Scientific Computing and Applications. NATO Science Ser.II., vol. 75, 2001.