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Summary. For advection-diffusion problems we show that a non-overlapping do-
main decomposition method with interface conditions of Robin type can be acceler-
ated by using a critical parameter of the transmission condition in a cyclic way.

1 Introduction

We consider a non-overlapping domain decomposition method (DDM) with
Robin transmission conditions for the advection-diffusion-reaction model

Lu := −ǫ∆u + (b · ∇)u + cu = f in Ω (1)

u = 0 on ∂Ω (2)

in a bounded polyhedral domain Ω ⊂ Rd with a Lipschitz boundary ∂Ω and
0 < ǫ ≤ 1,b ∈ [H1(Ω) ∩ L∞(Ω)]d, c ∈ L∞(Ω), f ∈ L2(Ω), c − 1

2∇ · b ≥ 0.

Let {Ωk} be a non-overlapping macro partition with Ω = ∪N
k=1Ωk. The

goal of the well-known DDM of Robin type (Lions [1990]) is to enforce (in
appropriate trace spaces) continuity of the solution u and of the diffusive and
advective fluxes ǫ∇u·nkj resp. − 1

2 (b·nkj)u on the interfaces Γkj := ∂Ωk∩∂Ωj .
The algorithm reads in strong form:

For given un
k , n ∈ N0, in each Ωk, find (in parallel) un+1

k , such that

Lun+1
k = f in Ωk (3)

un+1
k = 0 on ∂Ωk ∩ ∂Ω (4)

Φk(un+1
k ) = Φk(un

j ) on Γkj (5)

with Φk(u) = ǫ∇u ·nkj +(zk − 1
2b ·nkj)u on Γkj , k 6= j and the outer normal

vector nkj on ∂Ωk ∩ ∂Ωj . By determining the interface parameter zk > 0 in
a proper way the convergence of the method (3)-(5) can be accelerated.

Let Th be an admissible, quasi-uniform triangulation of Ω being aligned
with the macro partition. Vh := {v ∈ H1

0 (Ω) | v|K ∈ Pl(K) ∀K ∈ Th} denotes
a conforming finite element (FE) space of order l. The stabilized FE method
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Find uh ∈ Vh, such that : as(uh, vh) = ls(vh) ∀vh ∈ Vh , (6)

as(u, v) = (ǫ∇u, ∇v)Ω + (b · ∇u + c u, v)Ω +
∑

T∈Th

(δT Lu, b · ∇v)T ,

ls(v) = (f, v)Ω +
∑

T∈Th

(δT f, b · ∇v)T , δT ∼ h2
T (ǫ + hT ||b||∞,T )−1

with residual stabilization provides improved stability and accuracy (w.r.t.
the streamline derivative b · ∇u) in the hyperbolic limit ǫ → 0 of (1)-(2).

Assume, for simplicity, that the macro partition has no interior cross-
points. Then we restrict the bilinear and linear forms as and ls to each subdo-
main by as

k = as|Ωk
and lsk = ls|Ωk

. Moreover, we define Vk,h = Vh|Ωk
and the

trace space Wkj,h = Vh|Γkj
. Finally, we denote by 〈·, ·〉Γkj

the dual product
on (Wkj,h)∗×Wkj,h. Then the weak formulation of the fully discretized DDM
is given by

(I) Parallel computation step :
For k = 1, . . . , N find un+1

h,k ∈ Vk,h such that for all vk ∈ Vk,h:

as
k(un+1

h,k , vk) + 〈zkun+1
h,k , vk〉Γk

= lsk(vk) +
∑

j( 6=k)

〈Λn
jk, vk〉Γkj

. (7)

(II) Communication step :
For all k 6= j, update Lagrange multipliers Λn+1

kj ∈ W ∗
kj,h such that:

〈Λn+1
kj , φ〉Γkj

= 〈(zk + zj)u
n+1
h,k − Λn

jk, φ〉Γkj
, ∀φ ∈ Wkj,h. (8)

This method is very easy to implement. It is used as a building block in a
parallelized flow solver for the thermally driven incompressible Navier-Stokes
problem, cf. Knopp et al. [2002]. A fast convergence of the DDM is desirable,
in particular for time-dependent problems.

It is well-known that the algorithm (7)-(8) is well-posed if zk = zj > 0.
Moreover, the sequence {un

k}n∈N is strongly convergent according to

lim
n→∞

‖| un
h,k − uh|Ωk

‖|Ωk
= 0 (9)

where ‖|v‖|Ωk
:=
√

as
k(v, v), Lube et al. [2000]. The convergence speed de-

pends in a sensitive way on the parameters zk which have to be optimized. In
Sec. 2 we review an a priori optimization introduced by Nataf and Gander.
Sec. 3 is devoted to an a posteriori based approach.

2 A-priori optimization of the interface condition

The convergence of the Robin DDM (3)-(5) can be described in simple
cases using a Fourier analysis. Nataf and Gander proposed a semi-continuous
a priori optimization of the interface parameter z over a relevant range
S = (smin, smax) of Fourier modes. An optimization is important for highly
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oscillatory solutions, e.g. for the Helmholtz equation (1)-(2) with b ≡ 0
and c/ǫ ≪ −1. An improved idea is a cyclic change of z for appropriate
frequency ranges. For the symmetric case with b = 0 and ǫ = 1, Gan-
der and Golub [2002] proposed the following variant of the DDM (3)-(5) in
Ω = R2, Ω1 = R+ × R, Ω2 = R− × R with the cyclic Robin condition

∇un+1
1 · n1 + zn mod(m)un+1

1 = ∇un
2 · n1 + zn mod(m)un

2 (10)

and similarly for un+1
2 on Γ = {0} × R for m = 2l and appropriate cho-

sen z0, . . . , zm−1. For l = 0, Gander and Golub [2002] obtain the following
contraction rate

ρ(s, z) =

(√
c + s2 − z0

√
c + s2 + z0

)2

for the s−th Fourier mode. For the mesh parameter h, an optimization over
S = (smin, π/h) gives minz0≥0

(

maxs∈S ρ(s, z0)
)

= 1 − O(
√

h). In the cyclic
case m = 2l one gets the rate

ρ(m, s, z) =

m
∏

j=1

(√
c + s2 − zn mod(m)

√
c + s2 − zn mod(m)

)2/m

and the optimized result

min
z≥0

(

max
s∈S

ρ(m, s, z)

)

≈ 1 − 4

m

[

(c + s2
min)h2

16π2

]
1

4m

, h → +0.

This result is useful for meshes with
(c+s2

min)h2

16π2 ≤ 1, but this estimate deteri-
orates in the singularly perturbed case, i.e. for fixed h and c → +∞.

For the non-symmetric case, the optimization of the Schwarz method cor-
responding to l = 0 can be found in Nataf [2001]. The extension to a cyclic
Schwarz method with l ≥ 1 is open.

3 A posteriori based design of the interface condition

As an alternative to the a priori based design of the interface parameter we
propose an approach based on an a posteriori estimate. Consider a simplified
situation with Ω = Ω1 ∪ Ω2 ⊂ R2 with meas1(∂Ω ∩ ∂Ωi) > 0 and straight
interface Γ = ∂Ω1 ∩ ∂Ω2 of size H = meas (Γ ) ∼ diam(Ωi), i = 1, 2. Set

W = H
1

2

00(Γ ). We assume constant data ǫ, b, c. In Lube et al. [2000] we proved

Theorem 1. Let uh be the solution of (6). The DDM-subdomain error en
h,k =

un
h,k − uh|Ωk

, k ∈ {1, 2}, can be controlled via (computable) interface data:

‖|en+1
h,k ‖|Ωk

≤ Aj ‖un
h,k −un+1

h,j ‖W +Bj

∣

∣

∣

∣

zk − b · nk

2

∣

∣

∣

∣

‖un
h,k −un+1

h,j ‖L2(Γ ) (11)
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for j = 3 − k and with data-dependent constants

Aj =
√

ǫ

(

1 +

√

c

ǫ
H + min

[‖b‖∞H

ǫ
;
‖b‖∞√

cǫ

])

, Bj =

√

H

ǫ
. (12)

This result motivates to equilibrate the two right-hand side terms in (11) in
order to obtain information about the design of the interface parameter zk.
In Lube et al. [2000] we considered the estimate

‖|en+1
h,k ‖|s,Ωk

≤ max

(

Aj ; BjC
√

H

∣

∣

∣

∣

zk − 1

2
b · nk

∣

∣

∣

∣

)

‖un
h,k − un+1

h,j ‖W (13)

using the continuous embedding result ‖φ‖L2(Γ ) ≤ C
√

H‖φ‖W for all φ ∈ W .
On the other hand, an inverse estimate in (11) leads to

‖|en+1
h,k ‖|s,Ωk

≤ max

(

CAjh
− 1

2 ; Bj

∣

∣

∣

∣

zk − 1

2
b · nk

∣

∣

∣

∣

)

‖un
h,k − un+1

h,j ‖L2(Γ ). (14)

In the symmetric case b = 0 we get from (13) and (14)

zk ∼ ǫ

H

√

H

L

(

1 + H

√

c

ǫ

)

, L ∈ {h, H}. (15)

In the non-symmetric case b 6= 0, the design of zk has to match the
hyperbolic limit of the Robin condition, i.e.

0 = lim
ǫ→0

Φk(u) = (−1

2
b · nk + lim

ǫ→0
zk)u if b · nk ≥ 0.

By extending this condition to the inflow part of ∂Ωk with b · nk < 0, we
obtain from (13)-(14) as a reasonable choice

zk =
1

2
|b · nk| + Rk(L), L ∈ {h, H}, (16)

Rk(L) ∼ ǫ

H

√

H

L

(

1 + H

√

c

ǫ
+ min

[

H‖b‖
ǫ

;
‖b‖√

cǫ

])

. (17)

Inserting (16), (17) with L = H in (13) and applying an inverse inequality,
we obtain the optimized a posteriori estimates

‖|en+1
h,k ‖|Ωk

≤ Aj‖un
h,k − un+1

h,j ‖W ≤ CAjh
− 1

2 ‖un
h,k − un+1

h,j ‖L2(Γ ). (18)

The last estimate also follows directly by inserting (16), (17) with L = h in
(14). Therefore we propose to extend the condition (16) to L ∈ [h, H ].

In Lube et al. [2000] we considered the case L = H . This choice usually
allows a fast error reduction down to the discretization error level if the so-
lution has no highly oscillatory behaviour. Fortunately, the latter case is rare
for problem (1)-(2) with c − 1

2∇ · b ≥ 0.



Acceleration of an Non-overlapping Schwarz Method 271

10-5 10-4 10-3 10-2 10-1 100 101 102

dd-parameter ’z’

10-2

10-1

100

101

102

E
rr

or
N

or
m

/I
nt

er
fa

ce
N

or
m

(m
in

/m
ax

)

ε: 1.0e-2 h: 1/32
ε: 1.0e-2 h: 1/64
ε: 1.0e-2 h: 1/128
ε: 1.0e-2 h: 1/256

Fig. 1. Reliability of the a posteriori estimate for h = 1
128

(left), Control of

maxn / minn

P4
i=1 ‖|e

n+1
h,k ‖|Ωi

/
P

i6=j ‖u
n+1
h,i − un

h,j‖L2(Γij) vs. z (right).

Example 1. Consider the problem (1)-(2) with b ≡ 0, ǫ = 10−2, c = 1 in
Ω = (0, 1)2. The exact (smooth) solution is u = x1(1−x1)x2(1−x2)e

x1x2 . We
denote the solution of (6) with P1-elements and h = 1

128 by uk = uh|Ωk
. The

DDM on an equidistant 2 × 2 macro partition with an initial guess Λ0
jk = 0

leads to the sequence un
h,k. The stopping criterion

∑

k ‖|un
h,k − uh|Ωk

‖|Ωk
≤

10−6 has a tolerance beyond the discretization error level.
Fig. 1 (left) shows that the subdomain error ‖|·‖|Ωk

is clearly controlled by
the L2(Γ ) interface error according to Theorem 1. Moreover, the convergence
of the DD-iteration depends strongly on z. The fast error reduction in the first
phase corresponds to a fast reduction of “low” frequencies; but then a (very)
slow reduction of “higher” modes can be seen. In Fig. 1 (right) we control
the maximal/minimal (w.r.t. to the number n of DD steps) ratio between the
subdomain and interface errors for varying h. The value zk ∼ 1

10 corresponding
to the minimum of this ratio for h = 1

256 is in agreement with the value
predicted by (15) with L = H . As predicted by Theorem 1, we observe a
linear dependence of the error on z for increasing z. �

Obviously, the results of Example 1 with the optimized value of z according
to (16), (17) with L = H depend only on the data of the problem (1)-(2) and
not on h. We want to check this result for other typical cases.

Example 2. Let be Ω and the solution u as in Example 1. The FEM solution
uh of (6) is computed with P1-elements on a fine mesh with h = 1

256 and with
SUPG stabilization in advection-dominated cases for

A: Symmetric case: b = (0, 0), c = 1, DDM with 4 subdomains,
B: Case |b · ni| > 0: b = (2, 1), c = 1, DDM with 2 subdomains,
C: Case |b · ni| ≡ 0: b = (0, 1), c = 1, DDM with 2 subdomains .

The initial guess for the Lagrange multipliers is Λ0
ij = 0. The stopping

criterion for the error between the discrete solutions with and without DDM
is
∑

k ‖un
h,k−uh|Ωk

‖L2(Ωk) ≤ 10−6. The convergence in this range is predicted
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Fig. 2. Optimization of the interface parameter z with one-level approach.

by the data of (1)-(2) and is h-independent. The optimal values of zk are
predicted by the optimized zk from (16), (17) with L = H , see Fig. 2. �

The nice convergence behaviour can be explained by the smoothness of
the solutions and of the initial guess Λ0

ij . Moreover, in our experiments we
never found problems for singularly perturbed problems with sharp layers.

Nevertheless, the convergence behaviour of the Robin-DDM is not satisfac-
tory beyond the discretization error level. Moreover, regarding our application
to flow problems (Knopp et al. [2002]), in the turbulent case the solution usu-
ally has high-frequent components which may not be efficiently damped in our
previous approach. As a remedy we propose a combination of the a posteriori
control of the interface error with a cyclic multi-level version of the DDM:

Step 1: (optionally) Apply (7)-(8) with the optimized zk from (16)-(17) with
L = H until reduction of the interface error down to discretization error
level, e.g. ‖un

h,i − un+1
h,j ‖L2(Γ ) ≤ κhl+1/2 for Pl elements.

Step 2: Apply (7)-(8) in a cyclic way with p levels (see below) using (16)-(17) with
z1

k, ..., zp
k related to L = H (for z1

k) and l = h (for zp
k), resp., and an even

number (to our experience, 4 or 6 are sufficient) of DD steps per level
until ‖un

h,i − un+1
h,j ‖L2(Γ ) ≤ TOL.

Let us discuss this approach for some cases of Example 2. First of all, we
have to fix the number p of levels. Assume a dyadic representation of the coarse
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and of the fine mesh of the domain Ω = (0, 1)2 with H = 2−s, h = 2−t, s, t ∈
N. From (16)-(17) we obtain Rk(L) ≤ Rk(h) ∼

√

H/h, i.e. a mild dependence

on
√

H/h. We propose the following rule: For 2p <
√

H/h ≤ 2p+1, take p
levels. Thus we obtain for a very fine mesh width h = 2−10 a number of two
levels for a coarse grid width H = 2−5 and of four levels for H = 2−1.

Example 3. Consider the situation of Example 2 with a 2×2 macro partition
with H = 1

2 and a fine mesh with h = 2−6. This leads to p = 2 levels. We
start with the symmetric case of (1)-(2) with ǫ = 1,b = 0, c = 1. The fast
error reduction within the first steps is followed by a very slow reduction in
the one-level case, cf. Fig. 3 (left). Here uh and uh

seq denote the solutions with
and without DDM. The two-level method with 6 DD-steps per level leads to
a dramatic acceleration, cf. Fig. 3 (right).
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Fig. 3. Error reduction for the symmetric case: p = 1 (left), p = 2 (right)

Consider now the non-symmetric and advection-dominated case with ǫ =

10−5,b = (1,2)T

√
5

, c = 0. In Fig. 4 we observe a similar behaviour of the

proposed approach with p = 1 (left) and p = 2 (right) levels, although the
acceleration is not so dramatic as in the symmetric case. �

Finally, let us note an observation of Gander and Golub [2002] for the
symmetric case: The quality of the cyclic DDM (3)-(5) with an optimized
condition (10) as a solver increases with the number of levels such that no
improvement can be found with Krylov acceleration. A similar behaviour is
very likely in the non-symmetric case.

4 Summary

Considerable progress has been reached for Schwarz methods with (a priori)
optimized transmission conditions. We propose an approach based on a refined
a posteriori error estimate for a DDM with transmission conditions of Robin
type. For the one-level variant, this condition can be optimized in such a
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Fig. 4. Error reduction for the non-symmetric case: p = 1 (left), p = 2 (right)

way that the convergence is very reasonable down to the discretization error
level; but then one observes a rapid slow-down of error reduction for higher
error modes. This is valid for “smooth” solutions and is in contrast to highly
oscillatory solutions typically appearing, e.g., for turbulent flows.

A multilevel-type method with optimized interface parameters allows a
strong acceleration of the convergence. The approach is motivated by theo-
retical results, but more efforts are necessary to improve its present state. An
advantage of the method over a priori optimized methods is the control of
the convergence within the iteration. Moreover, a combination with adaptive
mesh refinement is possible. It remains open whether the method is linearly
convergent. Moreover, a genuinely multilevel-type implementation might be
possible. Finally, the extension to incompressible flows has to be done.
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