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Summary. The numerical simulation of turbulent indoor-air flows is performed
using iterative substructuring methods. We present a framework for coupling eddy-
viscosity turbulence models based on the non-stationary, incompressible, non-
isothermal Navier-Stokes problem with non-isothermal near-wall models; this ap-
proach covers the k/ǫ model with an improved wall function concept. The itera-
tive process requires the fast solution of linearized Navier-Stokes problems and of
advection-diffusion-reaction problems. These subproblems are discretized using sta-
bilized FEM together with a shock-capturing technique. For the linearized problems
we apply an iterative substructuring technique which couples the subdomain prob-
lems via Robin-type transmission conditions. The method is applied to a benchmark
problem, including comparison with experimental data by Tian and Karayiannis
[2000] and to realistic ventilation problems.

1 A full-overlapping DDM for wall-bounded flows

Let Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain. As the basic mathemat-
ical model we consider the (non-dimensional) incompressible, non-isothermal
Navier-Stokes equations with an eddy-viscosity model to be specified later and
the Boussinesq approximation for buoyancy forces. We seek a velocity field u,
pressure p, and temperature θ as solutions of

∂tu − ∇ · (2νeS(u)) + (u · ∇)u + ∇p = − βθg

∇ · u = 0 (1)

∂tθ + (u · ∇)θ − ∇ · (ae∇θ) = q̇V c−1
p

with S(u) := 1
2 (∇u+∇uT ), isobaric volume expansion coefficient β, gravita-

tional acceleration g, volumetric heat source q̇V , and specific heat capacity (at
constant pressure) cp. Moreover, we introduce effective viscosities νe = ν + νt

and ae = a + at with kinematic viscosity ν, turbulent viscosity νt, thermal
diffusivity a = νPr−1 and turbulent thermal diffusivity at = νtPr−1

t with
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Prandtl numbers Pr = 0.7 and Prt = 0.9. Therein, the non-constant νt and
at are supposed to model turbulent effects and are considered in detail later.

Depending on the sign of u · n, the boundary ∂Ω is divided into wall zones
Γ0 ≡ ΓW , inlet zones Γ− and outlet zones Γ+. We impose

σ(u, p)n = τnn on Γ− ∪ Γ+ , u = 0 on Γ0 (2)

with σ(u, p) = 2νeS(u) − pI. For θ we require

θ = θin on Γ− , ae∇θ · n = 0 on Γ+ , θ = θw on Γ0. (3)

In an outer loop, for the semidiscretization in time we apply the implicit Euler
scheme which leads to a sequence of coupled non-linear problems to be solved
from time step to time step. Denote ∂̃tφ = (φ − φold)/(∆t) the backward-
difference quotient in time for a certain variable φ with time-step ∆t.
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Fig. 1. Domain decomposition in the boundary layer region

Near ΓW , the solutions for u and θ often exhibit strong gradients. As an
illustration, Fig. 1 (right) shows the typical near-wall profile of the streamwise
component of u. The aim is to circumvent an anisotropic grid refinement in the
near-wall region, which is computationally very expensive. For this purpose
we study an overlapping domain-decomposition method which is presented
in the sequel, see also Fig. 1 (left). For clarity of the presentation we assume
∂Ω = Γ0 ≡ ΓW ; for the general case we refer to Knopp et al. [2002] and Knopp
[2003]. We start with the global problem with modified boundary conditions
on ΓW compared to (2), (3):

∂̃tu − ∇ · (νe∇u) + (u · ∇)u + ∇p = −βθg in Ω

∇ · u = 0 in Ω

u · n = 0 , (I − n⊗ n)σ(u, p)n = τ t(u,uBL, θBL) on ΓW (4)

∂̃tθ + (u · ∇)θ − ∇ · (ae∇θ) = q̇V c−1
p in Ω

ae∇θ · n = q̇(uBL, θBL)c−1
p on ΓW
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where the r.h.s. data τ t(u,uBL, θBL), q̇(uBL, θBL) are determined from

∂̃tu
BL − ∇ · (νBL

e ∇uBL) + (uBL · ∇)uBL + ∇pBL = f in Ωδ

∇ · uBL = 0 in Ωδ

uBL = 0 on ΓW , uBL = u on Γδ (5)

∂̃tθ
BL + (uBL · ∇)θBL − ∇ · (aBL

e ∇θBL) = q̇V c−1
p in Ωδ

θBL = θw on ΓW , θBL = θ on Γδ.

Now we specify νt, τ t(u,uBL, θBL), q̇(uBL, θBL) in (4), and we modify (5).
(I) Global turbulence model in Ω: In (4), as a particular but successful
choice for indoor-air flow simulation, we apply the k/ǫ model for νt (see, e.g.,
Codina and Soto [1999]) using the formula νt = cµk2ǫ−1 (cµ = 0.09) with
turbulent kinetic energy k and turbulent dissipation ǫ being the solution of

∂̃tk + (u · ∇)k − ∇ · (νk∇k) = Pk + G − ǫ (6)

∂̃tǫ + (u · ∇)ǫ − ∇ · (νǫ∇ǫ) + C2ǫ
2k−1 = C1ǫk

−1(Pk + G)

with constants C1 = 1.44, C2 = 1.92, P rk = 1.0, P rǫ = 1.3, effective viscosities
νk = ν + νtPr−1

k , νǫ = ν + νtPr−1
ǫ , production and buoyancy terms

Pk := 2νt|S(u)|2, G := Ctβatg · ∇θ , Ct = 0.8.

The k/ǫ-equations (6) are solved in Ω\Ωδ with the following boundary con-
ditions (with κ = 0.41 and U∗ = |τ t|

1/2)

k = c−1/2
µ U2

∗ , ǫ = U3
∗/(κy) on Γδ.

Alternatively to (6), we can use an eddy-viscosity-based LES model for νt in
Ω, e.g., the non-isothermal Smagorinsky model with Eidson’s modification

νt = (CS∆)2
(

max{ 0 ; ||S(u)||2F +
β

Prt
g · ∇θ}

)1/2

, at =
νt

Prq

with CS = 0.21 and Prq = 0.04.
(II) Boundary layer model in Ωδ: Denote x, y, z the streamwise, wall-
normal and spanwise direction resp. in a wall-fitted coordinate system, see
Fig. 1 (right). We simplify (5) in Ωδ under standard assumptions in Prandtl’s
boundary layer theory (cf. Knopp [2003]) and using modified effective viscosi-
ties in Ωδ

νBL
e = ν max

(

1;
Re

Remin

)

, aBL
e =

ν

Pr
max

(

1;
Pr

PrBL
t

Re

Remin

)

(7)

with Re(x, y, z) = |uBL(x, y, z)|y/ν, PrBL
t = 1.16 and with the following

empirical formula which accounts for effects of thermal stratification in the
boundary layer, see Knopp [2003] and references therein, viz.,
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Remin = R0 min[exp(−Ksq̇P rνU−4
∗ g · n); 70], R0 = 20.0, Ks = 25.0. (8)

Then, instead of a set of partial differential equations (5), in Ωδ we solve

−
d

dy

(

νBL
e

duBL
x

dy

)

= −βθBLgx,

−
d

dy

(

aBL
e

dθBL

dy

)

= 0, (9)

uBL
x |y=0 = 0 , θBL|y=0 = θw,

with gx being the streamwise component of g and matching conditions

uBL
x |y=yδ

= ux(yδ), θBL|y=yδ
= θ(yδ). (10)

Now we decouple and linearize the model (I), (II) within each time step:

(A)First update νt, at. Then update τ t, q̇: Given ux, θ on Γδ from the previous
iteration cycle, we replace the boundary condition (10) with

νe
duBL

x

dy
|y=0 = R, ae

dθBL

dy
|y=0 = S. (11)

and solve the initial value problem (7),(8),(9),(11) using a shooting method
for (R, S) until the conditions (10) are fulfilled. Then we find the r.h.s.
τ t = −U2

∗u/||u|| and q̇ in (4) by setting U2
∗ = R and q̇ = cpS.

(B)We solve (4) and, if the k/ǫ model is used for νt, additionally (6), using a
block Gauss-Seidel method.

(C)If a certain stopping-criterion is not yet fulfilled, then goto step (A). Oth-
erwise goto next time step.

Step (B) requires the solution of two basic problems. First, the linearized
equations for θ, k and ǫ are advection-diffusion-reaction (ADR) problems with
non-constant viscosity of the general form (skipping the restriction ∂Ω = Γ0):

Lu ≡ −∇ · (ν∇u) + (b · ∇)u + cu = f in Ω̃

u = g on Γ̃D (12)

ν∇u · n = h on Γ̃N .

Secondly, the linearized Navier-Stokes equations are of Oseen-type with a
positive reaction term and non-constant viscosity:

LO(a,u, p) ≡ −∇ · (2νS(u)) + (a · ∇)u + cu + ∇p = f in Ω

∇ · u = 0 in Ω (13)

σ(u, p)n = τnn on Γ− ∪ Γ+

(I − n⊗ n)σ(u, p)n = τ t, u · n = 0 on Γ0.
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For the finite element discretization of (12)-(13) we assume an admissible
triangulation Th = {K} of Ω and define discrete subspaces X l

h ≡ {v ∈
C(Ω) | v|K ∈ Πl(K) ∀K ∈ Th}, l ∈ N.
For the ADR-problem (12), for simplicity with g = 0 on ΓD, we apply the
Galerkin-FEM with SUPG-stabilization:

Find u ∈ Vh = {v ∈ X l
h | v|ΓD

= 0} s.t. : bs(u, v) = ls(v) ∀v ∈ Vh , (14)

bs(u, v) = (ν∇u, ∇v)Ω + ((b · ∇)u + cu, v)Ω +
∑

T∈Th

(δT Lu, (b · ∇)v)T

ls(v) = (f, v)Ω + (h, v)ΓN
+
∑

T∈Th

(δT f, (b · ∇)v))T

where (·, ·)S denotes the inner product on some S and with an appropriate
parameter set {δT }T , see Knopp et al. [2002]. Additionally, we use a (nonlin-
ear) shock-capturing method, see Knopp et al. [2002].
For the Oseen problem (13), we define the discrete spaces Vh × Qh =
(Xr

h)d × Xs
h with r, s ∈ N . The Galerkin FEM reads:

Find U = (u, p) ∈ Vh × Qh, s.t. A(U, V ) = L(V ) ∀V = (v, q) ∈ Vh × Qh

(15)
with the (bi)linear forms

A(U, V ) = a(u,v) + b(v, p) − b(u, q) , b(v, p) = −(p, ∇ · v),

a(u,v) = (2νS(u), ∇v)Ω + ((a · ∇)u + cu,v)Ω − (n ⊗ nσ(u, p)n,v)Γ0

L(V ) = (f ,v)Ω + (τnn,v)Γ
−
∪Γ+

+ (τ t,v)Γ0
.

Here we use an equal-order ansatz in Vh × Qh (r = s = 1); thus the discrete
inf-sup condition is not satisfied. As a remedy we apply a pressure stabilization
(PSPG) together with divergence and SUPG stabilizations, cf. Knopp et al.
[2002].

2 Domain decomposition of the linearized problems

A nonoverlapping domain decomposition method with Robin interface condi-
tions is applied to the basic linearized problems (12), (13). Consider a nonover-
lapping partition of Ω (which, for simplicity, is assumed to be stripwise) into
convex, polyhedral subdomains being aligned with the FE mesh, i.e.

Ω = ∪N
k=1Ωk, Ωk ∩ Ωj = ∅ ∀k 6= j , ∀K ∈ Th ∃k : K ⊂ Ωk.

Moreover, we set Γjk := ∂Ωj ∩ ∂Ωk, j 6= k, with Γkj ≡ Γjk.

For the (continuous) ADR-problem (12) the DDM reads: for given un
k from

iteration step n on each Ωk, seek (in parallel) for un+1
k
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Lun+1
k = f in Ωk

un+1
k = 0 on ΓD ∩ ∂Ωk (16)

ν∇un+1
k · nk = h on ΓN ∩ ∂Ωk

together with the interface conditions (with a relaxation parameter θ ∈ (0, 1])

Φk(un+1
k ) = θΦk(un

j ) + (1 − θ)Φk(un
k ) on Γjk, j = 1, . . . , N, j 6= k

Φk(u) = ν∇u · nk + (−
1

2
b · nk + zk)u. (17)

Let Vk,h, bs
k, and lsk denote the restrictions of Vh, bs, and ls to a subdomain Ωk.

Moreover, Wkj,h is the restriction of Vh to the interface part Γkj . The inner
product in L2(Γkj) or, whenever needed, the dual product in (Wkj,h)∗×Wkj,h

is denoted by 〈·, ·〉Γkj
.

The fully discretized DDM reads for k = 1, . . . , N and given un
k , Λn

jk:

Parallel computation step: find un+1
k ∈ Vk,h s.t. ∀ vk ∈ Vk,h

bs
k(un+1

k , vk) + 〈(−
1

2
b · nk + zk)un+1

k , vk〉Γkj
= lsk(vk) +

∑

j( 6=k)

〈Λn
jk, vk〉Γkj

.

Communication step: for all j 6= k, update the Lagrangian multipliers

〈Λn+1
kj , φ〉Γkj

= 〈θ(zk + zj)u
n+1
k − θΛn

jk + (1 − θ)Λn
kj , φ〉Γkj

∀φ ∈ Wkj,h.

In Knopp et al. [2002], the analysis of the method is resumed and the following
design of the interface function is proposed (motivated by an a-posteriori
estimate)

zk =
1

2
|b · nk| + Rk(H), (18)

Rk(H) ∼
νmin

H

[

1 + H

√

cmax

νmin
+ min

(

H‖b‖max

νmin
;

‖b‖max
√

(νc)min

)]

,

with H being the diameter of the interface. A further improvement is achieved
with a multilevel type approach with appropriate change of Rk(·) correspond-
ing to higher frequencies of the error, for details see Lube et al. [2003].

For the Oseen problem (13) we proceed similar to the method (16) for the
ADR problem. We use the interface conditions

Φk(un+1
k , pn+1

k ) = θΦk(un
j , pn

j ) + (1 − θ)Φk(un
k , pn

k ) on Γjk.

with relaxation parameter θ ∈ (0, 1] and the interface function

Φk(u, p) = ν∇u · nk − pnk + (−
1

2
a · nk + zk)u (19)

with acceleration parameter zk which has the same structure as in (18). Con-
cerning the corresponding parallel algorithm (in weak form), its analysis and
further details, we refer to Knopp et al. [2002] and references therein.
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3 Application to Indoor Air Flow Simulation

The approach is applied to a standard benchmark test case for indoor-air flow
simulation, viz., turbulent natural convection in an air-filled square cavity as
sketched in Fig. 2 (left), using the research code Parallel NS. Let a tilde denote
dimensional quantities. Denote Ω̃ = (0, H̃)3 with H̃ = 0.75m. We impose
θ̃w = 323.15K on Γh and θ̃w = 283.15K on Γc. On Γb ∪ Γt, alternatively,
(i) we impose θw using the experimental data given in Tian and Karayiannis
[2000] or (ii) we simply require that ae∇θ · n = 0. Moreover, we have ν̃ =
1.53×10−5m2s−1, β̃ = 3.192×10−3K−1, g̃ = 9.81ms−2, thus giving a Rayleigh
number Ra = g̃β̃(θ̃h − θ̃c)H̃

3Pr/ν̃ = 1.58 × 109. We used a structured mesh
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with 81×65×29 grid points being equidistantly distributed in each coordinate
direction and we use ∆t̃ = 1.0 for the time step. Computations were performed
on a cluster of 4 COMPAQ Professional Workstations XP1000 (667 MHz)
connected by Ethernet. Parallelization is accomplished using a master/slave
paradigm in the PVM configuration. No coarse-grid solver is used so far.
First, the agreement of the solution with DDM (using a coarse-granular 2 ×
2×1 partition of Ω) and without DDM (for variant (ii)) is obvious, see Fig. 2
(right). Therein, V denotes the streamwise component of u and Ũ0 = 0.9692.
The parallel speed-up achieved was 3.7. The accuracy of the approach (for
variant (i)) is validated by reference to the experimental data by Tian and
Karayiannis [2000]. Fig. 3 (left) shows the k/ǫ model prediction (with DDM)
for V . Fig. 3 (right) gives the predictions for Cf ≡ 2U2

∗/Ũ0 on Γh with s ≡ y
(k/ǫ with DDM for a 2 × 2 × 1 partition, LES model (7) without DDM).
The method is applied at Dresden University as an analysis tool for the design
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and investigation of natural ventilation systems, see Richter et al. [2003]. Note
that for the simulation presented in Fig. 4, the DDM described in Sec.2 is
applied where one subdomain is used for the room and one for the surrounding
air with the interface being located in the window.
Summarizing, in this paper we combined two DD strategies for turbulent
flows, one for near-wall modelling and one for parallel computation of the
linearized problems. For this approach, we demonstrated both the accuracy
for a benchmark problem and the applicability to a real-life problem.
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Fig. 4. Indoor-air flow simulation for natural building ventilation.
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