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Summary. We are interested in solving time dependent problems using domain
decomposition method. In the classical methods, one discretizes first the time di-
mension and then one solves a sequence of steady problems by a domain decom-
position method. In this paper, we study a Schwarz Waveform Relaxation method
which treats directly the time dependent problem. We propose algorithms for the
viscous Shallow Water equations.

1 Introduction

The principle of domain decomposition methods is to partition the initial do-
main into several subdomains and then to use a processor per subdomain to
solve the equation. The global solution is obtained if the processors exchange
informations in an iterative way at the common interfaces. This method is use-
ful to solve problems with a great number of unknowns. And it is more and
more used to simulate complex phenomena with different spatial discretiza-
tions in each subdomain.
Solving time dependent problems, classical methods discretize the time dimen-
sion first and then use domain decomposition methods on the steady problems
at each time step. Different strategies rely on the choice of transmission con-
ditions (see Schwarz [1870], Lions [1990], Quarteroni and Valli [1999], Japhet
et al. [2001]). In particular, in Japhet et al. [2001] transmission conditions
are designed which minimize the convergence rate. This strategy proved to
be very useful for many steady problems, for instance convection diffusion,
Euler or Helmholtz equations. However the classical strategy to treat evolu-
tion equations does not allow to manage different time discretizations for each
subdomain.
In some recent works a domain decomposition method for evolution prob-
lems quite different from the classical one has been proposed: they apply
the iterative algorithm directly to the time dependent problem. This Schwarz
Waveform Relaxation (SWR) method, permits to work with different time dis-
cretizations in each subdomain and therefore it provides an accurate method
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to simulate complex phenomena. This method is a derivation of the Waveform
Relaxation method: inspired by the Picard iteration, it has been studied in
Lelarasmee et al. [1982] for integrated circuit simulation and its convergence
can be accelerated by a multigrid method (see Vandewalle [1993]).
The first SWR algorithm used Dirichlet conditions on the interfaces (see Gan-
der and Zhao [1997], Gander and Stuart [1998]) and more recently more ap-
propriate interface conditions have been written in Gander et al. [1999]. In
this paper we apply Schwarz Waveform Relaxation methods to the Shallow
Water equations.

The Shallow Water equations are obtained by average of the Navier-Stokes
equations when the depth of the water is much smaller than the other dimen-
sions of the basin. If linearized around the velocity field U = 0 this model
becomes (see for example Pedlosky [1987])

{

∂tU − ν△U + DU + c2∇h = τs/ρ0,
∂th + divU = 0.

(1)

where U = (u, v) is the velocity field, h the depth of the water, D =

(

0 −f
f 0

)

,

c2 is the speed of internal gravity waves, ν the viscosity of the fluid, τs is
the wind stress and f the Coriolis force supposed to be constant for the
theory. We introduce the Shallow Water operator LSW where W = (U, h)
and we are interested in solving LSWW = FW in Ω × (0, T ) with T < +∞,
W(·, ·, 0) = W0 in Ω and with boundary conditions.

In this paper we study Schwarz Waveform Relaxation algorithms to solve
the Shallow Water equations. We work on the space R

2 which is split into two
half spaces Ω− = (−∞, L) × R and Ω+ = (0, +∞) × R, L ≥ 0 is the overlap
and let Γ0 = {y ∈ R, x = 0} and ΓL = {y ∈ R, x = L} denote the interfaces.

In Section 2 we propose an algorithm with Dirichlet interface conditions
(which needs an overlap), then we propose in Section 3 an optimized algorithm
which can be implemented without overlap. Finally we show numerical results
which underline the efficiency of the optimized method (Sec. 4). More details
about theorems will be found in Martin [2003].

2 Classical Schwarz Waveform Relaxation Method

Following ideas introduced in Gander and Zhao [1997] for the heat equation,
we propose the following algorithm for L > 0






LSW Wk+1
− = FW in Ω− × (0, T ),

Wk+1
− (·, ·, 0) = W0 in Ω−,

Uk+1
− = Uk

+ on ΓL × (0, T ),







LSW Wk+1
+ = FW in Ω+ × (0, T ),

Wk+1
+ (·, ·, 0) = W0 in Ω+,

Uk+1
+ = Uk

− on Γ0 × (0, T ),

(2)

where FW = (F1, F2, 0) = (F, 0), W0 = (U0, h0) and k ≥ 0. This algorithm
is initialized by U0

± in H2,1(Ω± × (0, T )) such that U0
±(·, ·, 0) = U0 in Ω±.
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We recall that we can find in Lions and Magenes [1972] the definition of
anisotropic Sobolev spaces and a theorem of extension. If we use moreover a
Fourier transform in y, a Laplace transform in t and a priori estimates, then
we can prove that algorithm (2) is well posed.

Theorem 1. Let F be in L2(0, T ;L2(Ω)), W0 = (U0, h0) in H1(Ω)×H1(Ω).
The algorithm (2) defines two unique sequences Wk

± = (Uk
±, hk

±) in H2,1(Ω±×
(0, T )) × H1,1(Ω± × (0, T )) with ∇h± in H1(0, T ;L2(Ω±)).

We can prove that algorithm (2) converges by computing its convergence rate
written in Fourier-Laplace variables.

Theorem 2. Let F be in L2(0, T ;L2(Ω)), W0 = (U0, h0) in H1(Ω)×H1(Ω).
The algorithm (2) converges in L2(0, T ;H1(Ω±)) × L2(0, T ; L2(Ω±)).

It is well-known that this algorithm is not efficient: the overlap between the
two subdomains is necessary and the convergence is slow. In Gander et al.
[1999] interface conditions have been introduced which are more appropriate.
In the next section we apply this new strategy to the Shallow Water equations.

3 Optimized Schwarz Waveform Relaxation Method

In this section we consider the case without overlap of the subdomains (L = 0)
and we denote by Γ the common interface. Since physical transmission con-
ditions, (i.e. quantities that must be continuous through the interface) are U

and −ν∂xU + c2(h, 0)t we propose the algorithm

8

<

:

LSW Wk+1

−

= FW in Ω
−
× (0, T )

Wk+1

−

(·, ·, 0) = W0 in Ω
−

−ν∂xU
k+1

−

+ c2(hk+1

−

, 0)t
− Λ+Uk+1

−

= −ν∂xU
k

+ + c2(hk

+, 0)t
− Λ+Uk

+ on Γ × (0, T )

8

<

:

LSW Wk+1

+ = FW in Ω+ × (0, T )

Wk+1

+ (·, ·, 0) = W0 in Ω+

ν∂xU
k+1

+ − c2(hk+1

+ , 0)t
− Λ−Uk+1

+ = ν∂xU
k

−
− c2(hk

−
, 0)t

− Λ−Uk

−
on Γ × (0, T )

(3)
with Λ+ and Λ− to be defined. The next theorem shows that we can choose
the operators Λ± in an optimal way.

Theorem 3. The operators Λ± can be chosen such that algorithm (3) con-
verges in two iterations. These operators are denoted Λ±

exac.

These transmission conditions coincide with absorbing boundary conditions
(see for example Gander et al. [1999] for time dependent scalar equations). As
for many problems the operators Λ±

exac are not differential and difficult to use,
therefore we have to approximate them (see for example Nataf and Rogier
[1995]). For low spatial frequencies, small Coriolis force and small viscosity
Λ±

exac are approximated by:
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Λ±

app =

(

c + ν
2c

∂t 0
0 p

)

,

with p a constant to be chosen. The following theorem gives a result of well-
posedness for the corresponding algorithm. It can be proved by a Fourier-
Laplace analysis and by an extension theorem.

Theorem 4. Let F be in H2,1(Ω×(0, T )), W0 = (U0, h0) in H3(Ω)×H3(Ω)
and p be a strictly positive constant. If algorithm (3) is initialized by U0

±

in H4,2(Ω± × (0, T )) and h0
± in H1(0, T ; H3(Ω±)) with some compatibil-

ity relations satisfied at t = 0, then algorithm (3) defines two unique se-
quences (Uk

±, hk
±) in H4,2(Ω± × (0, T )) × H3,2(Ω± × (0, T )) with hk

± in
H1(0, T ; H3(Ω±)).

By a priori estimates we can prove that algorithm (3) converges.

Theorem 5. Let F be in H2,1(Ω×(0, T )), W0 = (U0, h0) in H3(Ω)×H3(Ω)
and p be a strictly positive constant. If algorithm (3) is initialized by U0

±

in H4,2(Ω± × (0, T )) and h0
± in H1(0, T ; H3(Ω±)) with some compatibility

relations satisfied at t = 0, then the sequences (Uk+1
± , hk+1

± ) defined by (3)
converge in L2(0, T ;H1(Ω±)) × L2(0, T ; L2(Ω±)).

4 Numerical Results

4.1 Description of the experience

We work on a rectangular basin with closed boundaries, which extends from
0 to 15000 km in the x (east-west) direction and from -1500 km to 1500 km
in the y (north-south) direction. The wind stress τ s = (τx, τy) is purely zonal
(τy = 0) and we have τx = 0.5τ0(1 + tanh((x − x0)/L)), with τ0 = 5 · 10−2

N/m2 and x0 = 3000 km. The value of the physical parameters are c = 3
m/s and ν = 500 m2/s. For further details about the experience the reader
is referred to Jensen and Kopriva [1990].

The Figure 1 shows the evolution in time of the depth of water. At t = 0 the
ocean is at rest when the wind stress begins to be applied. Towards the equator
the upper layer thickness increases. This anomaly travels eastward with a
speed c = 3m/s (the speed of Kelvin waves present in the model without
viscosity or external stress). After 60 days the wave reaches the eastern wall
and the incoming wave is divided into four waves: two coastal Kelvin waves
and two Rossby waves (see for example Pedlosky [1987] for more details about
these waves).

4.2 Solving by domain decomposition method

We solve now this problem by domain decomposition method with the inter-
face at x = 7500 km. The value of the space and time steps is ∆x = 25 km
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Fig. 1. Width of water at day 10, 30, 60, 100, 130, 150, 170 and 200
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Fig. 2. Evolution of the logarithm of the error L2(Ω) at the end of the time windows
11 and 20 versus the iterations

and ∆t = 30 min. The experience lasts 200 days, therefore 200×24×2 = 9600
time steps are needed. Schwarz Waveform Relaxation methods work on the
whole time interval, but if this one is too large, solving the equation in (0, T )
can be too expensive. So, we will split the time interval into several smaller
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Fig. 3. Solution after two Schwarz iterations and with Dirichlet conditions at day
10, 30, 60, 100, 130, 150, 170 and 200

time intervals. We write (0, T ) = ∪i=0,N−1(Ti, Ti+1) with T0 = 0 and TN = T ,
then we apply our domain decomposition algorithm on each time window; we
first solve LSW W0 = F in Ω × (0, T1) with W0(·, ·, 0) = W0 in Ω then for all
i ≥ 1:

{

LSWWi = F in Ω × (Ti, Ti+1),
Wi(·, ·, Ti) = Wi−1(·, ·, Ti) in Ω,

(4)

Here Ti+1 − Ti = 10 days, i.e. we are going to work with 20 windows of 10
days.

When the overlap is L = ∆x, we use the Dirichlet conditions introduced in
Section 2 and the optimized conditions of Section 3. When there is no overlap
we can only use optimized conditions. The parameter p of algorithm (3) with
Λ± = Λ±

app optimizes the convergence rate of the algorithm (see for example
Japhet [1998]). The Figure 2 shows the evolution of the logarithm of the error
L2(Ω) at the end of the time windows 11 and 20 versus the iterations for
each method. We can see how fast is the optimized method compared to the
classical Schwarz method. Obviously with an overlap the optimized method
is better than without one.
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Fig. 4. Solution after two Schwarz iterations and with optimized conditions at day
10, 30, 60, 100, 130, 150, 170 and 200

For more realistic simulations where such interface conditions appear, we
can not wait for the convergence of the Schwarz algorithm because of the cost
of each model, and only a few iterations can be implemented. The Figures 3
and 4 show the solution obtained after two Schwarz iterations in each time
window with Dirichlet conditions or optimized one. We can see that Dirichlet
conditions act like a wall and waves reflect in it, whereas with optimized
conditions the solution is admittedly discontinuous at the interface but it is
closed to the monodomain solution.

5 Conclusion and perspectives

We have applied a Schwarz Waveform Relaxation method to the viscous Shal-
low Water equations; we have studied the classical SWR algorithm and a an
optimized algorithm. Numerical results have shown that the optimized method
is a good one. Perspectives of that work is to improve the interface conditions
of the optimized algorithm and apply this method to the Shallow Water equa-
tions linearized around any velocity field U0 6= 0.
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