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Summary. In this paper we introduce a variant of the three-field formulation where
we use only two sets of variables. Considering, to fix the ideas, the homogeneous
Dirichlet problem for −∆u = g in Ω, our variables are i) an approximation ψh of u
on the skeleton (the union of the interfaces of the sub-domains) on an independent
grid (that could often be uniform), and ii) the approximations us

h of u in each sub-
domain Ωs (each on its own grid). The novelty is in the way to derive, from ψh,
the values of each trace of us

h on the boundary of each Ωs. We do it by solving
an auxiliary problem on each ∂Ωs that resembles the mortar method but is more
flexible. Optimal error estimates are proved under suitable assumptions.

1 Introduction

Assume, for simplicity, that we have to solve the model problem

find u ∈ H1
0 (Ω) such that −∆u = g in Ω with u = 0 on ∂Ω (1)

on a polygonal or polyhedral domain Ω ⊂ Rn, n = 2, 3, where g is a given
function sufficiently regular in Ω. In order to apply a Domain Decomposition
technique we split Ω into sub-domains Ωs (s = 1, 2, ..., S) and we consider the
skeleton

Σ := ∪sΓ s, with Γ s ≡ ∂Ωs. (2)

For the sake of simplicity we will use a three-dimensional notation, and speak
therefore of faces, edges and vertices. The change of terminology in the polyg-
onal case is obvious and left to the reader. On Σ we consider

Φ := {ϕ ∈ L2(Σ) : ∃v ∈ H1
0 (Ω) with ϕ = v|Σ} ≡ H1

0 (Ω)|Σ ≡ H1/2(Σ). (3)

In each Ωs we consider instead

V s := {vs ∈ H1(Ωs) such that ∃v ∈ H1
0 (Ω) with vs = v|Ωs}, (4)
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that can also be seen as the set of functions in H1(Ωs) that vanish at the
intersection (if any) of Γ s with ∂Ω. In its turn, H1

0 (Ω) could be identified
with a subspace of

V := {u ∈ L2(Ω), u|Ωs ∈ V s}, (5)

and in particular, setting vs := v|Ωs we can write

H1
0 (Ω) ≃ {v ∈ V such that ∃ϕ ∈ Φ with vs = ϕ on Γ s, s = 1, ..., S}. (6)

For each s we will also introduce the trace space Θs = H1/2(Γ s), and we set
Θ =

∏
sΘ

s. For v ∈ V , θ = (θ1, . . . , θs) ∈ Θ we will write

v|Σ = θ to indicate that θs = vs|Γ s (with vs = v|Ωs), s = 1, . . . , S.

When discretizing the problem, we assume to be given a decomposition
T Σδ of Σ and a corresponding space Φδ ⊂ Φ of piecewise polynomials. We
also assume that in each Ωs we are given a decomposition T sh ≡ T Ω

s

h with a
corresponding space V sh ⊂ V s of piecewise polynomials, and we set

Vh := {v ∈ V such that v|Ωs ∈ V sh }. (7)

It is clear that each decomposition T sh will induce a decomposition T Γ s

h on
Γ s and a corresponding space of traces Θsh ⊂ Θs. On the other hand the
restriction of T Σδ to Γ s also induces a decomposition T Γ s

δ of Γ s and another
space of piecewise polynomials Φsδ made by the restrictions of the functions in
Φδ to Γ s. Hence, on each Γ s we have two decompositions (one coming from
T Σδ and one from T sh ) and two spaces of piecewise polynomial functions (one
from Φδ and one from V sh ). Note, incidentally, that on each face f belonging to
two different sub-domains we will have three decompositions and three spaces:
one from Σ and the other two from the two sub-domains.

The first basic idea of our method is to design for every sub-domain Ωs a
linear operator Gs (the generation operator) that maps every mother ϕδ ∈ Φδ
into an element (daughter) θsh = Gs(ϕδ) ∈ Θsh. Together with the individual
Gs we consider a global operator G defined as

G(ϕδ) = (θ1h, . . . , θ
S
h ) ∈ Θh with θs = Gs(ϕδ). (8)

The way to construct the operators Gs constitutes the second basic idea
of this paper, and will be described in a while.

Once we have the operators Gs we can consider the subspace Sh of Vh
made of sisters (that is, daughters of the same mother):

Sh := {vh ∈ Vh such that ∃ϕδ ∈ Φδ with vh|Σ = G(ϕδ)} ⊆ V. (9)

We point out that in our previous definitions we consider as daughter, at the
same time, an element θsh (= vsh|Γ s) of Θsh, and any function vsh ∈ V sh having
that same trace. It is clear, comparing (9) with (6), that Sh can be seen
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as a nonconforming approximation of H1
0 (Ω). This allows us to consider the

following discrete formulation. We set

as (u, v) :=

∫

Ωs

∇u · ∇vdx and a (u, v) :=

S∑

s=1

as (us, vs) (10)

and we look for uh ∈ Sh such that

a (uh, vh) =

∫

Ω

g vhdx ∀vh ∈ Sh. (11)

It is clear that, under reasonable assumptions on the subspaces Φδ and V sh
and on the generation operators Gs, problem (11) will have good stability and
accuracy properties.

The idea of imposing weak continuity by introducing the space Φδ and
define a nonconforming approximation of H1

0 (Ω) by taking the subset of Vh
whose elements take (in some weak sense) value ϕh ∈ Φδ is one of the main
ideas of the three field formulation (Brezzi and Marini [1994]). Following that
approach, for each sub-domain Ωs we could take a space M s

h of Lagrange
multipliers, and, for every ϕδ ∈ Φδ, we could define Gs(ϕδ) ∈ Θsh by

∫

Γ s

(ϕδ − Gs(ϕδ))µsh dx = 0 ∀µsh ∈M s
h. (12)

In general, however, equation (12) does not define Gs(ϕdelta) uniquely, even
when the spaces M s

h and Θsh satisfy the required inf-sup condition (see (24)).
Though this is not a problem in the definition and in the analysis of the
three field formulation, we would like to point out that having the trace of
the elements vsh on Γ s somehow uniquely determined by an element of Φδ
has some clear advantage from the point of view of implementation. In par-
ticular it allows to use standard Dirichlet solvers (which can easily be found
already implemented and whose optimization is well understood) as a brick
for treating the equation in the subdomain. In order for Gs(ϕδ) to be uniquely
determined by (12) the spaces M s

h and Θsh must have the same dimension. A
simple minded choice is M s

h ≡ Θsh, that guarantees existence and uniqueness
of the solution of (12) together with optimal stability and accuracy properties
of the projector Gs. This choice however is not the optimal one: in fact, during
the estimate of the error for problem (11), there seems to be no way to get
rid of a term like ∑

s

∫

Γ s

∂u

∂ns
(ϕδ − Gs(ϕδ)) dx. (13)

An obvious way to treat the term in (13) is to use the fact that ϕδ − Gs(ϕδ)
is orthogonal to all elements in M s

h, so that we can subtract from ∂u/∂ns
any element of M s

h. In particular we are interested in subtracting a suitable
approximation µsI ≃ ∂u/∂ns. It is then crucial to be able to find in M s

h a
µsI that approximates ∂u/∂ns with the needed order. However, ∂u/∂ns is
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discontinuous passing from one face to another of the same Ωs. And if the
spaceM s

h is made of continuous functions (as it would be with the choiceM s
h ≡

Θsh), then the order of approximation (say, in H−1/2(∂Ωs)) cannot be better
than O(h) (and actually with some additional logarithmic loss, as O(h|lg h|).
Hence, we do need an M s

h made of functions that can be discontinuous when
passing from one face to another of the same Ωs. The requirement to contain
a suitable amount of discontinuities and the one to have the same dimension
of Θsh seem very difficult to conciliate. Actually, a quite similar difficulty is
met in the mortar method, (see e.g. Bernardi et al. [1993], Belgacem and
Maday [1997], Hoppe et al. [1998], Wohlmuth [2001]), in particular in three
dimensions. There, the requirement that M s

h have the same dimension as Θsh
is relaxed as little as possible. The values of a “weakly continuous” function vsh
at nodes which are interior to the faces of Γ s on the slave sides are uniquely
determined by the weak continuity equation, while the degrees of freedom
corresponding to nodes on the edges of Γ s (whose union forms the so called
wirebasket) are free. We point out that the mortar method can be described
in the framework given here provided we relax the assumption Φδ ⊂ H1/2(Σ)
by allowing the functions φδ to be discontinuous across the “wirebasket”: Φδ
would correspond to the traces of vh on the “master sides” (or “mortars”) and
Gs being defined as the identity on master sides and to one of the available
mortar projections on “slave sides”.

The idea, here, is to give up the equality of the dimensions but still obtain
a well defined operator Gs, by changing (12) in a slightly more complicated
formulation, involving an additional Lagrange multiplier. Let us see the main
features of this path.

We choose first a space M s
h having in mind the fact that we must be able

to use it for approximating ∂u/∂ns with the right order. We also need its
dimension to be smaller than (or equal to) that of Θsh. Then we change (12)

in the following way. For every ϕδ ∈ Φδ we look for a pair (θ̃sh, µ̃
s
h) in Θsh×M s

h

such that ∫

Γ s

(ϕδ − θ̃sh)µsh dx = 0 ∀µsh ∈M s
h (14)

and

∑

T∈T Γ s

h

∫

T

h−1
T (ϕδ − θ̃sh) θsh dx+

∫

Γ s

µ̃sh θ
s
h dx = 0 ∀θsh ∈ Θsh. (15)

Then we set
Gs(ϕδ) := θ̃sh. (16)

It is clear that in (14)-(15) the number of equations will always be equal
to the number of unknowns. It is also clear that if (by shear luck) we have

ϕδ|Γ s ∈ Θsh then Gs(ϕδ) = ϕδ|Γ s (and µ̃sh = 0). This will, in the end, provide
for the new approach (14)-(16) an optimal order of accuracy (as we had for
the previous simple-minded (12)). It is, finally, also obvious that some sort of



Non-matching Grids and Lagrange Multipliers 7

inf-sup condition will be needed in order to ensure existence and uniqueness
of the solution of (14)-(15), unless some suitable additional stabilization is
introduced. However, as we shall see, the possibility of escaping the cage
of the equal dimensionality of M s

h and Θsh opens a whole lot of interesting
possibilities.

In this paper we will follow the path indicated above. In the next section we
will make precise all the necessary assumptions, and in Section 3 we will derive
abstract error bounds for problem (11) when the operators Gs are constructed
as in (14)-(16). In Section 4 we will present some possible choices for the
finite element spaces and discuss their stability and accuracy properties. In
particular we will show that the simple choice of using totally discontinuous
functions forM s

h, stabilizing the problem with suitable boundary bubbles, leads
to a problem with optimal convergence properties and, at the same time, a
very simple implementation. This is reminiscent of what has been done for
instance in Baiocchi et al. [1992], Brezzi et al. [1997], Buffa [2002], and Brezzi
and Marini [2000], but simpler and more effective. Finally, in the last section
we briefly discuss some possible variants/extensions, in particular regarding
the possibility of using discontinuous mothers.

2 Assumptions on the decomposition and on the
discretizations

We consider now the assumptions to be made on the decomposition and on
the discretizations.

Assumptions on Ω and on the domain decomposition

We assume that Ω is an open polyhedron, that each Ωs, for s = 1, ..., S, is
also an open polyhedron, that the intersection of two different Ωs is empty,
and that the union of the closures of all Ωs is the closure of Ω. As in (2) the
skeleton Σ will be the union of the boundaries ∂Ωs. We do not assume that
this decomposition is compatible. This means that we do not assume that the
intersection of the closure of two different Ωs is either a common face, or a
common edge, or a common vertex. For simplicity we assume however that
the number S of subdomains is fixed once and for all, and we do not keep
track of the dependency of the various constants on S.

Assumptions on the decomposition T Σ
δ

We assume that we are given a sequence {T Σδ }δ of decompositions of Σ.
Each decomposition T Σδ is made of open triangles, in such a way that the
intersection of two different triangles is empty, and the union of the closures
of all triangles is Σ. We assume compatibility, that is we assume that the
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intersection of the closures of two different triangles is either empty, a common
edge or a common vertex. We also assume, as usual, shape regularity, for
instance by assuming that the ratio between the diameter of each triangle
and the radius of its biggest inscribed circle is ≤ κ0, with κ0 independent of δ.
Finally we assume quasi-uniformity: there exists a constant q, independent of
δ such that, if δminT and δmaxT are the minimum and the maximum diameters
(respectively) of the triangles in T Σδ , then δminT ≥ q δmaxT .

Assumptions on the decompositions T s
h (and T Γ s

h )

We assume that we are given, for each s = 1, ..., S, a sequence {T sh }h of
decompositions of Ωs. Each decomposition is made of open tetrahedra in
such a way that the intersection of two different tetrahedra is empty, and the
union of the closures of all tetrahedra is Ωs. We also assume compatibility:
the intersection of the closures of two different tetrahedra is either empty, a
common face, a common edge, or a common vertex. Finally we assume shape
regularity, for instance by assuming that the ratio between the diameter of
each tetrahedron and the radius of its biggest inscribed sphere is ≤ κ1, with
κ1 independent of h. We point out that we do not assume quasi-uniformity
for the meshes T sh . We recall that the triangulation T Γ s

h is the restriction on
Γ s of T sh .

Assumptions on the discretizations Φδ, V
s

h , and Ms
h

We assume that for each δ and for each T ∈ T Σδ we are given a space of
polynomials PT . The space Φδ will then be defined as

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ PT , T ∈ T Σδ }, (17)

where Φ is always given by (3). Similarly we assume that for each s, for each
h, and for each K ∈ T sh we are given a space of polynomials PK . The space
V sh will then be defined as

V sh := {vs ∈ V s such that vs|K ∈ PK , K ∈ T sh }, (18)

where V s is still given by (4).
The corresponding restrictions of the above spaces to each Γ s are defined

as in the previous section, namely

Φsδ := (Φδ)|Γ s and Θsh := (V sh )|Γ s , s = 1, ..., S. (19)

We assume that there exist bounded lifting operators from Θsh to V sh . More
precisely, for all s = 1, . . . , S, for all θsh ∈ Θsh there exists wsh ∈ V sh such that

wsh|Γ s = θsh and ‖wsh‖1,Ωs ≤ C‖θsh‖H1/2(Γ s). (20)
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Finally we assume that for each s, for each h, and for each T ∈ T Γ s

h we
are given a space of polynomials QT . The space M s

h will then be defined as

M s
h := {µ ∈ L2(Γ s) such that µ|T ∈ QT , T ∈ T Γ s

h }. (21)

If we like, we can also add some continuity requirements to (21). In view of
the discussion of the previous section, however, it would be unwise to force
continuity in the passage from one face to another. In order for the bilinear
form a to ve coercive in a suitable space, we make the following minimal
assumption on M s

h:

for every Ωs the space M s
h contains the constants on Γ s. (22)

Moreover, for simplicity, we assume that there exists an integer number κ
such that all the spaces PT , PK , and QT verify

PT ⊆ Pκ(T ), PK ⊆ Pκ(K), QT ⊆ Pκ(T ),

where Pκ(ω) is the space of polynomials of degree≤ κ on ω. Using the notation
of Brezzi and Fortin [1991a] for the usual Lagrange finite element spaces we
can then write

V sh ⊆ L1
κ(T sh ), Θsh ⊆ L1

κ(T Γ
s

h ), M s
h ⊆ L0

κ(T Γ
s

h ), Φδ ⊆ L1
κ(T Σδ ).

The operators Gs and the compatibility assumptions among the
discretizations

Having defined the spaces Θsh and M s
h we can now consider the operators

Gs (that will always be given by (14)-(16)) together with the global operator
G (still given by (8)). Once we have the operators Gs and G, we can define the
space of sisters Sh, always as in (9). In Sh we define:

|||vh|||2 :=

S∑

s=1

||∇vsh||20,Ωs (23)

We can now turn to the more important assumptions, that will require
some compatibility conditions among the spaces Φsδ, Θ

s
h and M s

h.
Our first assumption will deal with the well-posedness of the problem (14)-

(16). As this is a problem in classical mixed form, we have no real escape but
assuming an inf-sup condition on the spaces Θsh and M s

h:
∃β > 0 such that ∀s = 1, ..., S and ∀h > 0

inf
µs

h
∈Ms

h
\{0}

sup
θs

h∈Θs
h\{0}

∫
Γ s θ

s
h µ

s
h dx

||θsh||h, 12 ,Γ s ||µsh||h,− 1
2 ,Γ

s

> β, (24)

were the norms in the denominator of (24) are defined, for any real r, as
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||θsh||2h,r,Γ s :=
∑

T∈T Γ s

h

h−2r
T ||θsh||20,T (25)

and hT is the diameter of T . Condition (24) will be, in a sense, the only
nontrivial assumption that we have to take into account in the definition of
our spaces V sh and M s

h. However, in the next section, we are going to see some
families of elements where (24) can be checked rather easily.

Our last assumption will deal with the bound on the mother. We point out
that, so far, we did not assume that an element of the space of sisters Sh had
a unique mother. Indeed, we do not need it. Strictly speaking, we only need
that

∃γ > 0 such that: ∀vh ∈ Sh, ∃ϕδ ∈ Φδ with G(ϕδ) = vh|Σ and

||ϕ||2Φ :=

S∑

s=1

|ϕδ|2H1/2(Γ s) ≤ γ2|||vh|||2. (26)

We point out that || · ||Φ is indeed a norm on Φ, since the elements of Φ vanish
on ∂Ω (see Bertoluzza [2003]). One of the consequences of (26) is that the
seminorm ||| · ||| is indeed a norm. In fact, given vh ∈ Sh and letting ϕ ∈ Φδ
given by (26), provided (22) holds, it can be shown (see Bertoluzza [2003])
that

||vh||0,Ω ≤ C(|||vh|||+ ||ϕ||Φ) ≤ C|||vh|||. (27)

We shall discuss in the following sections whether and when this assump-
tion is satisfied. We anticipate however that this will be another easy condi-
tion, that could be roughly summarized by: on each face f of each ∂Ωs the
mesh T Γ s

δ (induced by T Σδ ) is coarser than the two meshes T Γ s

h (induced by
the two T sh relative to the sub-domains having f in common).

3 Basic Error Estimates

We are now ready to analyze the problem (11) and derive abstract error
estimates for it.

We start by looking in more detail to the operator Gs. Thanks to the
classical theory of mixed finite element (see Brezzi and Fortin [1991b]) we can
prove the following Lemma.

Lemma 1. Assume that the inf-sup condition (24) is satisfied, and let ϕ ∈
L2(Σ); then for every s = 1, ..., S

‖Gs(ϕ)‖h, 12 ,Γ s ≤ C‖ϕ‖h, 12 ,Γ s . (28)

We point out that the norm ‖ · ‖h, 12 ,Γ s , induced by the bilinear form

(u, v) → ∑
T∈T Γs

h

∫
T
h−1
T u v dx plays the role of a discrete H1/2(Γ s) norm.

Indeed we have the following lemma.



Non-matching Grids and Lagrange Multipliers 11

Lemma 2. The following inverse inequality holds: for all θsh ∈ Θsh
‖θsh‖H1/2(Γ s) ≤ C‖θsh‖h, 12 ,Γ s (29)

Proof. We shall actually prove that (29) holds for all θsh ∈ L1
κ(T Γ

s

h ). It is
well known that a function in L1

κ(T sh ) is uniquely identified by its values
at a set {xi}i of nodes corresponding to the canonical Lagrange basis. Let
θsh ∈ L1

κ(T Γ
s

h ) and let wh ∈ L1
κ(T sh ) be its finite element lifting, i.e., the

function verifying wsh(xi) = θsh(xi) at all nodes on Γ s and wsh(xi) = 0 at
all other nodes. Clearly, ‖θsh‖H1/2(Γ s) ≤ C‖wsh‖H1(Ωs). Let us then bound

the H1(Ωs) norm of wsh. By definition wsh is different from 0 only on those
tetrahedra T ∈ T sh which are adjacent to the boundary. Let K be one of such
tetrahedra and let Ti ∈ T Γ

s

h , i = 1, . . . ,m be the triangles that share one or
more nodes with K. Thanks to usual arguments, we can write:

‖wsh‖2H1(K) ≤ Ch−1
K ‖wsh‖2L2(∂K) ≤ C

m∑

i=1

h−1
Ti
‖wsh‖2L2(Ti)

.

Adding with respect to all elements K adjacent to Γ s, we obtain that

‖wsh‖H1(Ωs) ≤ C‖θsh‖h, 12 ,Γ s ,

which implies (29).

Remark 1. Note that if we had assumed the quasi-uniformity of the triangula-
tion T Γ s

h , then (29) could easily be obtained by space interpolation, using the
standard inverse inequality between the H1 and the L2 norms. This is how-
ever not the case, and in the above proof we only made use of the regularity
of the mesh.

Lemma 2 trivially implies the continuity of Gs from L2(Γ s) (endowed with
the norm ‖ · ‖h, 12 ,Γ s), to H1/2(Γ s). However a stronger result holds, stated in
the following theorem

Theorem 1. Gs(·) is continuous from H1/2(Γ s) to H1/2(Γ s):

‖Gs(ϕ)‖H1/2(Γ s) ≤ C‖ϕ‖H1/2(Γ s). (30)

Proof. First, we introduce the Clément interpolant θsI ∈ Θsh of θs = ϕ|Γ s ,
which gives (see Clément [1975])

‖θsI‖H1/2(Γ s) ≤ C‖θs‖H1/2(Γ s)

‖θs − θsI‖h, 12 ,Γ s ≤ C‖θs‖H1/2(Γ s).
(31)

Since Gs(·) is linear and using the triangle inequality, we have

‖Gs(θs)‖H1/2(Γ s) ≤ ‖Gs(θs − θsI)‖H1/2(Γ s) + ‖Gs(θsI)‖H1/2(Γ s) = I + II.
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Making use of Lemma 2, Lemma 1 and (31), we get

I = ‖Gs(θ − θsI)‖H1/2(Γ s) ≤ C‖Gs(θ − θsI)‖h, 12 ,Γ s

≤ C‖θ − θsI‖h, 12 ,Γ s

≤ C‖θ‖H1/2(Γ s).

Moreover, since Gs(θsI) = θsI and using (31), we have

II = ‖Gs(θsI)‖H1/2(Γ s) ≤ C‖θ‖H1/2(Γ s),

giving (30).

We can now prove our error estimate. From the definition (10) and as-
sumption (27) we easily get that problem (11) has a unique solution. Let now
ψI be an interpolant of the exact solution u in Φδ. For every Ωs (s = 1, ..., S)
let usI ∈ V sh be defined as the unique solution of

{
usI = Gs(ψI) on Γ s

as (usI , v
s
h) =

∫
Ωs g v

s
h dx ∀vsh ∈ V sh ∩H1

0 (Ωs).
(32)

It is obvious that (32) has a unique solution. Let uI be equal to usI in each Ωs

(s = 1, ..., S). It is clear that uI ∈ Sh. We now set eh := uI − uh ∈ Sh. Using
the the definition (10) and adding and subtracting u we have:

|||eh|||2 = a (eh, eh) = a (uI − u, eh) + a (u− uh, eh) =: I + II. (33)

Using (11) and integrating a (u, eh) by parts in each Ωs we obtain

II = a (u− uh, eh) = −
S∑

s=1

∫

Ωs

g esh dx+
S∑

s=1

∫

Γ s

∂u

∂ns
esh dx−

S∑

s=1

∫

Ωs

g esh dx

=

S∑

s=1

∫

Γ s

∂u

∂ns
esh dx. (34)

As eh ∈ Sh, and using assumption (26) there will be a mother ηδ ∈ Φδ
with ‖ηδ‖Φ ≤ C|||eh|||, such that G(ηδ) = eh|Σ . Hence the continuity of ∂u/∂n,
and the fact that ηδ is single-valued on the skeleton Σ yield

II =

S∑

s=1

∫

Γ s

∂u

∂ns
(esh − ηδ) dx =

S∑

s=1

∫

Γ s

∂u

∂ns
(Gs(ηδ)− ηδ) dx. (35)

We can now use the definition of Gs (see (15)) and subtract from ∂u/∂n
its best approximation µsI , thus obtaining

II =

S∑

s=1

∫

Γ s

( ∂u
∂ns
− µsI

)
(Gs(ηδ)− ηδ) dx. (36)
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We remember now that Gs(ηδ) = esh on Γ s for all s. We also point out
that (thanks to (22)) we can assume that the mean value of ∂u/∂ns − µsI on
each Γ s is zero, so that we can use the H1/2-seminorm of es and ηδ instead
of the norm in the estimate. Then we use Cauchy-Schwarz inequality, we use
(26) for ηδ, and (27) standard trace inequality in each Ωs for es to obtain

II ≤
S∑

s=1

|| ∂u
∂ns
− µsI ||H−1/2(Γ s)

(
|es|H1/2(Γ s) + |ηδ|H1/2(Γ s)

)

≤
( S∑

s=1

|| ∂u
∂ns
− µsI ||2H−1/2(Γ s)

)1/2

|||eh|||. (37)

It remains to estimate I. After the obvious

I = a (uI − u, eh) ≤ |||uI − u||| |||eh||| (38)

we have to estimate |||u − uI |||. Using the definition (32) of usI we can apply
the usual theory for estimating the error for each Dirichlet problem in Ωs.
Thanks to (20) we have first

||u− usI ||1,Ωs ≤ C
(

inf
vs

h∈V s
h

||u − vsh||1,Ωs + ||u− usI ||H1/2(Γ s)

)
. (39)

It is then clear that the crucial step is to estimate ||u − usI ||H1/2(Γ s), for each
s.

To this aim let us introduce an interpolant χsI ∈ Θsh of u|Γ s . We can write

‖u− usI‖H1/2(Γ s) ≡ ‖u− Gs(ψI)‖H1/2(Γ s)

≤ ‖u− χsI‖H1/2(Γ s) + ‖χsI − Gs(u)‖H1/2(Γ s) (40)

+‖Gs(u)− Gs(ψI)‖H1/2(Γ s) (41)

Since χsI = Gs(χsI) and using Theorem 1, we easily get ‖χsI−Gs(u)‖H1/2(Γ s) =
‖Gs(χsI − u)‖H1/2(Γ s) ≤ C‖u− χsI‖H1/2(Γ s). By a similar argument we obtain
‖Gs(u − ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s).

We can then collect (33)-(38) and (39)–(41) in the following theorem.

Theorem 2. Assume that the assumptions of Section 2 on the decomposition
and on the discretizations are satisfied. Assume that the operators Gs are
constructed as in (14)-(16). Let u be the exact solution of (1) and uh be the
solution of (11). Then we have

|||u − uh|||2 ≤ C
S∑

s=1

(
inf

vs
h∈V s

h

||u − vsh||21,Ωs + inf
µs

h∈Ms
h

|| ∂u
∂ns
− µsh||2H−1/2(Γ s)

)

+ inf
ϕδ∈Φδ

||u− ϕδ||2H1/2(Σ). (42)
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4 Examples and Remarks

In this section we want to show an example of finite element discretizations
that satisfy the abstract assumptions of Section 2, and derive the correspond-
ing error bounds in terms of suitable powers of h.

We do not discuss the assumptions on the decomposition of Ω into the
Ωs. We just remark once more that it does not need to be compatible: for
instance, the intersection of the closures of two different Ωs can be a face of
one of them and only a piece of a face of the other.

We discuss instead the choice of the finite element spaces Φδ, V
s
h , and M s

h.
Assume that we are given an integer number k ≥ 1.
For every T in the triangulation T Σδ of the skeleton Σ we choose PT :=

Pk(T ), the space of polynomials of degree ≤ k on T . The space Φδ, according
to (17), becomes then

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ Pk(T ), T ∈ T Σδ } = L1
k(T Σδ ) ∩ Φ (43)

(we recall that the elements of Φ have to vanish on ∂Ω so we need to take the
intersection of L1

k(T Σδ ) with Φ in order to properly define Φδ). For each s and
for every T in the triangulation T Γ s

h of Γ s we take instead as QT the space
QT := Pk−1(T ). According to (21) the space M s

h becomes then

M s
h := {µ ∈ L2(Γ s) : µ|T ∈ Pk−1(T ), T ∈ T Γ s

h } = L0
k(T Γ

s

h ). (44)

We point out that Φδ is made of continuous functions, while M s
h is made of

functions that are, a priori, totally discontinuous from one element to another.
The choice of each V sh will be slightly more elaborate. For each tetrahedron

K ∈ T sh with no faces belonging to Γ s we take PK := Pk. If instead K has a
face f on Γ s we consider the cubic function bf on K that vanishes on the three
remaining internal faces of K, and we augment the space Pk with the space
Bfk+2 obtained multiplying bf times the functions in Qf ≡ Pk−1(f) (that is
the space of polynomials of degree ≤ k − 1 on f : remember that the face f
will be one of the triangles T ∈ T Γ s

h ). If K has another face on Γ s we repeat
the operation, augmenting further the space Pk. In summary

PK := Pk(K) + {
⊕

f⊂Γ s

Bfk+2} ≡ Pk + {
⊕

f⊂Γ s

bfPk−1(f)}. (45)

We note that
⊕
bfPk−1(f) is a direct sum, but its sum with Pk(K) is not

direct whenever k ≥ 3. This however will not be a problem for the following
developments.

We can now discuss the various abstract assumptions that have been made
in Section 2. To start with, condition (22) is obviously satisfied. Similarly, (20)
holds as shown for instance in Bernardi et al. [to appear]. We consider then
the inf-sup condition (24).

Lemma 3. Let M s
h and Θsh be constructed as in (44) and in (19) with (45),

respectively. Then the inf-sup condition (24) holds true.
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Proof. For every µsh ∈M s
h we construct vsh ∈ V sh as

vsh =
∑

T∈T Γ s

h

hT bT µ
s
h (46)

where as before bT is the cubic function on K (the tetrahedron having T as
one of its faces) vanishing on the other three faces of K and having mean
value 1 on T . It is not too difficult to check that

||µsh||h,− 1
2 ,Γ

s ||vsh||h, 12 ,Γ s ≤ C
∫

T Γs

h

vshµ
s
h (47)

that is precisely the inf-sup condition (24) that we need.

We consider now the other inf-sup that is involved in the present scheme
(although we did not write it as an inf-sup), that is the bound on the mother
(26). By applying the technique of Babuska [1973] it is not difficult to realize
that if T Σδ is “coarse enough” on each face, compared with the meshes of the
two sub-domains having that face in common, then

inf
ϕδ∈L1

k(T Γs

δ )\{0}
sup

µs
h∈Ms

h\{0}

∫
Γ s ϕδ µ

s
h dx

||µsh||H−1/2(Γ s) ||ϕδ||H1/2(Γ s)

> γ0. (48)

It is now easy to see that (48) implies (26): let vsh ∈ Sh, then, by definition,
there exists ϕδ ∈ Φδ such that vsh|Σ = ϕδ. Letting ϕ̌s = (1/|Γ s|)

∫
Γ s ϕδdx we

have that ϕδ − ϕ̌s ∈ L1
k(T Γ

s

δ ). Let now µ∗h ∈M s
h be the element that realizes

the supremum in (48) for such an element of L1
k(T Γ

s

δ ). Using (48), and then
(14), we obtain

γ0||µ∗h||H−1/2(Γ s) ||ϕδ − ϕ̌s||H1/2(Γ s) ≤
∫

Γ s

µ∗h (ϕδ − ϕ̌s) dx (49)

=

∫

Γ s

µ∗h Gs(ϕδ − ϕ̌s) dx. (50)

Now, since ϕδ−ϕ̌s has zero mean value on Γ s, the same is true for Gs(ϕδ−ϕ̌s)
(see (14) and (22)). Then, denoting by v̌s = (1/|Γ s|)

∫
Γ s v

s
hdx the average of

vsh on Γ s, we have

∫

Γ s

µ∗h Gs(ϕδ − ϕ̌s) dx =

∫

Γ s

µ∗h (vsh − v̌s) dx

≤ ||µ∗h||H−1/2(Γ s) |vsh|H1/2(Γ s)

≤ ||µ∗h||H−1/2(Γ s) |vsh|1,Ωs

that, since |ϕδ|H1/2(Γ s) = |ϕδ − ϕ̌s|H1/2(Γ s) ≃ ‖ϕδ − ϕ̌s‖H1/2(Γ s), joined with
(49) immediately implies (26).

We can collect the previous results, together with the abstract error esti-
mates of the previous section, in the following theorem.
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Theorem 3. Assume that the assumptions on the decompositions T Σδ and
T sh of Section 2 are satisfied, and assume that the spaces Φδ, M

s
h and V sh are

defined as in (43), (44) and (18) with (45), respectively. Assume finally that
(48) holds. Then we have

|||uh − u||| ≤ C (|h|k + |δ|k)||u||k+1,Ω (51)

The proof follows immediately from Theorem 1, the results of this section,
and usual approximation estimates.

We end this section with some observations on the actual implementation
of the method when the bubble stabilization (45) is used.

Indeed, let us see how the computation of the generation operators Gs
can be performed in practice. Assume that we are given a function ϕ in, say,
L2(Γ s). We recall that, to compute θ̃sh = Gs(ϕ), we have to find the pair

(θ̃sh, µ̃
s
h) ∈ Θsh ×M s

h such that

∫

Γ s

(ϕ− θ̃sh)µsh dx = 0 ∀µsh ∈M s
h, (52)

∑

T∈T Γ s

h

∫

T

h−1
T (ϕ− θ̃sh) θsh dx+

∫

Γ s

µ̃sh θ
s
h dx = 0 ∀θsh ∈ Θsh. (53)

We also recall that, with the choice (45), the space Θsh can be written as Θsh =
L1
k(T Γ

s

h ) + Bk+2(T Γ
s

h ) where L1
k(T Γ

s

h ) is, as before, the space of continuous
piecewise polynomials of degree k on the mesh T Γ s

h , and Bk+2(T Γ
s

h ) is the
space of bubbles of degree k+2, always on T Γ s

h . In order to write is as a direct
sum we introduce the space

W s = {θsh ∈ Θsh such that

∫

Γ s

θsh µ
s
hdx = 0 ∀µsh ∈M s

h} (54)

We can then split in a unique way θ̃sh = w̃+b̃ with w̃ ∈ W s and b̃ inBk+2(T Γ
s

h ).

It is now clear that b̃ can be computed immediately from (52) that becomes:

∫

Γ s

(ϕ− b̃)µsh dx = 0 ∀µsh ∈M s
h. (55)

Once b̃ is known, one can compute w̃ from (53) that easily implies

∑

T∈T Γ s

h

∫

T

h−1
T (ϕ− w̃)w, dx =

∑

T∈T Γ s

h

∫

T

h−1
T b̃ w, dx ∀w ∈W s. (56)

In this way the saddle point problem (52)-(53) splits into two smaller sub-
problems, each with a symmetric and positive definite matrix. In particular
(55) can be solved element by element, so that (56) is the only true system to
be solved.



Non-matching Grids and Lagrange Multipliers 17

5 Relaxing the continuity of the Mothers

One of the main advantages of the present method (and in general of all
non conforming domain decomposition methods) is the freedom given by the
possibility of meshing and treating each sub-domain independently of the
others. In our approach however, the discretization Φδ of H1/2(Σ) is required
to be continuous. Such request can be relaxed by defining Φδ face by face and
asking for continuity within each face but allowing the elements of Φδ to jump
across the boundary between two adjacent faces. More precisely, considering a
splitting of the skeleton Σ in disjoint faces Σ = ∪f (with f = Γ s∩Γ ℓ for some

s, ℓ = 1, . . . , S) we can introduce for each face a family of triangulations T fδ
and consider a corresponding space Φfδ ⊂ H1/2(f) of piecewise polynomials.
The global space Φδ could then be defined by

Φδ = {ϕδ ∈ L2(Σ) with ϕδ|f ∈ Φfδ for all faces f of Σ}.

Such a choice has several advantages, in particular from the point of view
of implementation. Each face can be meshed independently of the other faces.
Moreover, each node on Σ belongs to only one face f and therefore it only
“sees” two sub-domains. This greatly simplifies the data structure needed for
describing the elements of Φδ and the manipulations of such elements and of
their interaction with other elements.

The analysis presented in the previous section needs then to be modified
in order to take the discontinuity of the mothers into account. In particular,
if the elements of Φδ are discontinuous, the space Φδ is not a subspace of
H1/2(Σ), and therefore bounds like ‖Gs(u− ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s)

would not make sense. A completely revised analysis is carried out in a further
work in preparation, and results in an almost optimal estimate (with the loss
of a logarithmic factor). We just point out that the analysis of Section 3 could
still be applied if the space Φcδ = Φδ ∩H1/2(Σ) has good approximation prop-
erties. Such space is the one where one should choose the best approximation
ψI . This is indeed a very special case: in general such space does not provide a
good approximation. It may very well happen that it contains only the func-
tion ϕδ = 0. A case in which the space Φcδ does provide good approximation is
the case in which the meshes on two adjacent faces share a sufficiently fine set
of common nodes (in particular the case when, restricted to the common edge,
the nodes of the two (or more) meshes are one a subset of the other). Though
this is quite an heavy restriction to the freedom given by the possibility of us-
ing discontinuous mothers, such a case would still have many advantages from
the implementation point of view, while retaining the optimal error estimate.
Remark that the subspace Φcδ would only be used for analyzing the method,
while its implementation fully relies on the discontinuous space Φδ.
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