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Summary. We derive an upscaled but accurate 2D model of the global behavior of
an underground radioactive waste disposal. This kind of computation occurs in safety
assessment process. Asymptotic development of the solution leads to solve terms of
order 1 on more regular and steady-state auxiliary problems. Neumann-Dirichlet
domain decomposition methods, with non matching spectral grids, are performed to
solve those auxiliary problems. Fourier and Chebychev polynomials approximation
of the solution are used depending on boundary conditions implemented on subdo-
mains. Since spectral representation of the solution or its derivatives allows accurate
mappings between the interfaces of the different grids, we speed up the convergence
of the Neumann-Dirichlet method by the Aitken acceleration which is sensitive to
the accuracy of the representation of the iterate solution on the artificial interfaces.
In order to enforce regularity for the spectral approximation, some regular exten-
sions and filtering techniques on the artificial interfaces for the right hand side of
the problem and the iterate solution are implemented.

1 Field decomposition method applied to an

underground waste disposal

The disposal site can be described as a repository array made of a large number
of units inside a low permeability layer, called host layer, e.g clay. This clay
layer is embedded between layers with higher permeability (Bourgeat et al.
[2003]). There is a large number of units, each of them has a small size (10
m) compared with the layer size (100 m). So a direct numerical simulation
of the whole field, based on a microscopic model, is not realistic. The ratio
between the width l of a single unit and the layer length L can be considered
as a small parameter ǫ in the detailed microscopic model. The study of the
renormalized model behavior, as ǫ tends to 0, by means of the homogenization
method and boundary layers, gives an asymptotic model which could be used
as a global repository model for numerical simulations. According to this
rescaling, the units have a height of order ǫβ , β > 1, and are embedded in a
layer of thickness ǫ. The leaking of a disposal unit is represented by a hole in
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the periodic computational domain with a given flux on the boundaries. The
radioactive pollutant is transported both by the convection due to the water
flowing slowly through the rocks (creeping flow) and by the diffusion due to
the dilution into the water. The transport of concentration of an underground
pollutant is modelled by the advection-diffusion equation (where the advection
velocity is assumed to be given) that follows:

ωR∂c

∂t
−∇ · (A∇c) + (U · ∇)c + λωRc = q inΩ (1)

where: Ω is the porous medium, c a radioactive component concentration in
the water, ω the medium porosity, R the retardation coefficient, U Darcy’s
velocity, A the diffusive term, λ the radioactive decay, q the source term.

We normalize the geometric dimensions taking into account the ratio ǫ.
The process is then described by the following advection-diffusion type equa-
tion:

ωǫ∂cǫ

∂t
−∇ · (Aǫ∇cǫ) + (vǫ.∇)cǫ + λωǫcǫ = 0 inΩT

ǫ (2)

cǫ(0, x) = c0(x), x ∈ Ωǫ (3)

n · σ = n · (Aǫ∇cǫ − vǫcǫ) = Φ(t) on Γ T
ǫ (4)

cǫ = 0 on S1 (5)

n · (Aǫ∇cǫ − vǫcǫ) = 0 on S2 (6)

where Ωǫ is the adimensionalized domain around the units, ΩT
ǫ = Ωǫ×]0, T [,

Γ T
ǫ = ∂Bǫ×]0, T [ where Bǫ is the set of the units, S = ∂Ωǫ, S1 (respect. S2)

represents the bottom (respect. the top) of S, cǫ is a radioactive component
concentration in the water, ωǫ is the adimensionalized medium porosity, vǫ is
the adimensionalized convection, Aǫ the adimensionalized diffusion tensor, λ
the radioactive decay, Φ the incoming flux of radioactive element.

It was proved in (Bourgeat et al. [2003]) this cǫ exists is unique and has
a weak limit c. This weak limit c gives the global long time behavior of the
process only if the flux Φ is not too large. On the one hand, we expect some
fast oscillations of the solution in the vicinity of the containers and therefore
we introduce in that region the fast variable y = x

ǫ . On the other hand,
cǫ is expected to have the same behavior as the weak limit c without any
oscillations far from the units area. These behaviors suggest to use matched
asymptotic expansions:

The domain is split in two parts:

• Gǫ =] − δ/2, δ/2[×]− ǫ log(1/ǫ), ǫ log(1/ǫ)[, the inner domain
• Ω/Ḡǫ, the outer domain.

δ is defined such that ∂Ω
⋂

∂Gǫ = Ø
In Gǫ, we look for an asymptotic expansion of cǫ such as:
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cǫ ≃ c0
ǫ + ǫ(χk

ǫ (
x

ǫ
)
∂c0

ǫ

∂xk
+ wǫ(

x

ǫ
)Φ − c0

ǫρ
k
ǫ (

x

ǫ
)v1

k) ≡ c1
ǫ (7)

where we assume the summation from 1 to 2 over the index k. The function c0
ǫ

mimics the behavior of the concentration far from the source. χk
ǫ represents

the correction on the diffusive term in the near field, ρk
ǫ , the correction on

the convective term and wǫ the correction on the source. Their behaviors are
described by the way of the following type of auxiliary problem:















−∇ · (A∇u) = f in Gǫ

n · (A∇u) = g on ∂Mǫ

u is 1-periodic in y1

limy2→∞ A∇u = r

(8)

In order to evaluate the validity of this asymptotic expansion, accurate
simulations of these behaviors are needed.

2 Numerical solutions of the auxiliary problems

The behavior of the 1-order terms of the homogenization is represented by
a diffusive problem on a domain admitting a hole and periodic conditions in
the x-direction. These problems need accurate discretisation, since they rep-
resent the oscillations at the beginning of the leak, and will influence the rest
of the simulation. Spectral discretization leads to have structured data-blocks
on spectral meshes, then the domain is decomposed into three subdomains,
Ω1, Ω2 and Ω3 in order to take into account the hole. The physical domain
size in x-direction [0, 1] is mapped with a linear mapping to the computational
domain (Ω1 and Ω3) size in x direction [0, π]. The decomposition of the com-
putational domain is illustrated in figure 1. Ω2 has Neumann boundary condi-
tions in the x-direction leading to use Chebychev discretisation while Ω1 and
Ω3 have periodic boundary conditions in x-direction leading to use Fourier
discretisation. Thus, meshes between subdomains do not match so spectral
mapping techniques are used to represent the solution on both meshes on
the artificial interfaces. This accurate representation of the iterate solution on
the artificial interfaces generated by the domain decomposition method will
allow us to use the Aitken acceleration method developed in (Garbey and
Tromeur-Dervout [2002]).

2.1 Computation in subdomains

The diffusion tensor A is assumed to depend only on the vertical direction. The
solution in subdomains Ω1 and Ω3 is computed on an extended subdomain in
order to avoid the 0-mode singularity (because the problems are defined up
to a constant). Thus, we compute ũ : [0, 2Π ] × [−1, 1] → R, an odd periodic
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Fig. 1. Decomposition of the computational domain: Ω1 (resp. Ω3) corresponds to
the upper (resp. lower) part of the domain, Ω2 corresponds to Gright

ǫ ∪ Gleft
ǫ

function, which is equal to u, solution of problem (8) on [0, Π ] × [−1, 1].
The extended solution is then, using Chebychev discretisation in y-direction,
approximated by: PM ũ(xi, yj) =

∑

0≤k≤M

∑

0≤l≤N
ˆ̃uk,lTl(yj) sin(kxi), where

xi = 2iΠ
M , i = 0, . . . , M, and yj = cos( jΠ

N ), j = 0, . . . , N . So we obtain for
subdomain Ω1:

∇ · (A(y)∇ũ) =
∑

0≤k≤M

(
∂

∂y
(A2(y)(

∂

∂y
)) − k2A1(y))ûk(y) sin(kx) in Ω1,

A(y)∇ũ =
∑

0≤k≤M

A2(y)
∂

∂y
(ûk(y)) sin(kx) on Γ1,

where ûk(y) =
∑

0≤j≤N
ˆ̃uk,jTj(y). Due to the linearity, the solution PM ũ can

be decoupled according to the directions. Thus, the subdomain problem is
decoupled in M mode-problems of size (N + 1) × (N + 1) leading to a well
suited situation for the parallelization.

Some difficulties appear due to the boundary condition on G1 = {y =
yN = −1}, coming from the decomposition domain:

{

∂u1(x,y)
∂y = ∂u2(x,y)

∂y , on Γ1 = [x1, x2] × {−1}

n · (A∇u1) = g(x, y), on G1 \ Γ1

The boundary condition on G1 is singular. In order to use a discrete Fourier
transform, smoothing methods have to be applied. First, a C2 Hermite inter-
polation based on two points is computed in the vicinity of x1 and x2 like in
Garbey and Tromeur-Dervout [1998]. Then the “raised cosinus filter ” (Got-
tlieb and Shu [1996]) is applied on the modes of the traces on the extended
boundary condition including G1,(in the same way as ũ) in order to minimize
the Gibbs phenomenon. The third domain Ω3 is treated in the same way.
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On the second subdomain Ω2, a Chebychev-Chebychev discretisation is used
in both directions. Now, the pseudospectral discretisation of the differential
operator leads to solve a ((N1N2) × (N1N2)) full but time independent lin-
ear system with a PLU factorization . Parallel ADI techniques are also under
implementation to save time.

2.2 Methodology on Neumann-Dirichlet Domain Decomposition

and Aitken Acceleration method

The Neumann-Dirichlet domain decomposition method leads to solve for the
auxiliary problems:

∇ · (A∇u
n+1/2
1 ) = f in Ω1 (9)

∂

∂n
u

n+1/2
1 =

∂

∂n
un

2 on Γ1 (10)

∇ · (A∇u
n+1/2
3 ) = f in Ω3 (11)

∂

∂n
u

n+1/2
3 =

∂

∂n
un

2 on Γ2 (12)

∇ · (A∇un+1
2 ) = f in Ω2 (13)

un+1
2 = u

n+1/2
1 on Γ1 (14)

un+1
2 = u

n+1/2
3 on Γ2 (15)

Using Aitken acceleration method for the Schwarz DDM based on the lin-
ear convergence or divergence of the iterative method (Garbey and Tromeur-
Dervout [2002]), the convergence of the solution on the artificial interface can
be speed up in few iterations. The linear convergence can only be obtained for
the iterated solution Fourier modes on the artificial interfaces. The solution u
on Γ1 and Γ2 on the Chebychev grid being not periodic, u|Γ1

is left-extended
on [0, π] with a fifth-degree Hermite interpolation. Then we seek an odd solu-
tion on the extended domain [0, 2π].

The distance between the artificial interfaces Γ1 and Γ2 is small. Thus
these interfaces are coupled for low modes. Let us consider the sequence ûn

k =
(ûn

k,1|Γ1
, ûn

k,3|Γ2
)t k = 0, · · · , M . The operator Tk,

(ûn
k − Û∞

k ) → (ûn+1
k − Û∞

k ) (16)

where U∞
k is the k mode of the exact solution, is linear. As long as the artificial

interfaces are coupled, the matrix Pk , k = 0, · · · , M associated to the operator
Tk is full.

From (16), we have:

ûi+2
k − ûi+1

k = Pk(ûi+1
k − ûi

k), i = n − 1, n; k = 0, · · · , M. (17)

We notice that, for each mode, only three iterations are needed to determine
the coefficients of the matrix Pk with( 17). If the operator Id − Pk is not
singular, then the Aitken acceleration will be written as follows for each mode:
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Û∞
k = (Id − Pk)−1(ûn+1

k − Pkûn
k ), k = 0, · · · , M. (18)

Finally, a backward Fourier transform on these Û∞
k gives the solution in the

physical space on the artificial interfaces. The extension of the solution on the
artificial interfaces is a C2 function and it is enough to get a three order rate
for the discretisation error of our approximation.
Remark 1: as the smoothing procedure introduces some non linearities, more
than one acceleration has to be applied on the Neumann-Dirichlet algorithm.
Remark 2: the linear behavior of the mode error for this Schwarz DDM with
smoothing procedures is not obtained directly (because of the Gibbs phe-
nomenon), so that the Aitken speed-up can be applied only after some itera-
tions.

3 Numerical Results

We first checked the accuracy of the method on an analytical solution u :
(x, y) → sin(x)sin(y) of an elliptical problem defined on the computational
domain Ω. Figures 2 and 3 show the Aitken acceleration (at iteration 20)
effect on usual Schwarz convergence (the error is the ‖.‖∞ of the difference
between two successive iterations for each mode).
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Fig. 2. Aitken acceleration of the mode-error (after 16 iterations) for the analytical
problem

The error in the table 1 shows the ‖.‖∞ of the difference between the ex-
act trace and the computed solution on artificial interfaces. The method is
of order-2.5 of consistency instead of an expected order-3. Nevertheless, the
acceleration of the convergence thanks to the Aitken speed-up is satisfactory
(30 iterations instead of 100) for the same accuracy.
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Fig. 3. Aitken acceleration of the error in the physical space (after 16 iterations)
for the analytical problem

Table 1. Precision and velocity of the algorithm

Accel./ modes nb. y-discr. Precision iterations nb. Time(s)

No acceleration 40 32 0.05 100 22,77
No acceleration 80 32 1.e-4 100 27,07
No acceleration 178 32 7.e-5 100 41,64
No acceleration 256 32 4.e-5 100 58,82
Acceleration 178 32 7.e-5 30 13,44

If we now apply our methodology on one of the auxiliary problems, for in-
stance the corrector ρk

ǫ on the convective term, Fig. 4 shows the isolines of the
computed solution of the problem (19), for k=2, obtained with the present
methodology in 12 iterations.

We recall that ρk
ǫ follows the equation:















−∇ · (A∇ρk
ǫ ) = 0 in Gǫ

n · (A∇ρk
ǫ + ek) = 0 on ∂Mǫ

ρk
ǫ is 1-periodic in y1

limy2→∞ ∇ρk
ǫ = 0

(19)

4 Conclusion

Our aim was to develop a methodology adapted to a physical problem, which
cannot be easily simulated directly. The field decomposition splits the solution
into regular problems according to the physical situation. In order to speed up
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Fig. 4. ρk, k=2, isolines in the vicinity of the artificial interfaces for problem (19)

this Schwarz method by Aitken process, spectral methods are helping to obtain
an accurate representation of the Neumann-Dirichlet algorithm iterations on
a non-matching grid. This methodology has been applied on a problem with
an analytical solution and clearly accelerates the speed of convergence of the
Schwarz method. The same methodology was also applied successfully on
all the auxiliary problems of the 1-order of the asymptotic expansion. The
computation of the 0 order term of the model is currently under development
(the Aitken-Schwarz method is applied on mixed finite element / spectral
element systems).
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