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Summary. Interface boundary conditions are the key ingredient to design efficient
domain decomposition methods. However, convergence cannot be obtained for any
method in a number of iterations less than the number of subdomains minus one
in the case of a one-way splitting. This optimal convergence can be obtained with
generalized Robin type boundary conditions associated with an operator equal to
the Schur complement of the outer domain. Since the Schur complement is too
expensive to compute exactly, a new approach based on the computation of the
exact Schur complement for a small patch around each interface node is presented
for the two-Lagrange multiplier FETI method.

1 Introduction

Interface boundary conditions are the key ingredient to design efficient domain
decomposition methods, see Chevalier and Nataf [1998], Benamou and Després
[1997], Gander et al. [2002]. However, convergence cannot be obtained for
any method in a number of iterations less than the number of subdomains
minus one in the case of a one-way splitting. For the two-Lagrange multiplier
FETI method, this optimal convergence can be obtained with generalized
Robin type boundary conditions associated with an operator equal to the
Schur complement of the outer domain, see Roux et al. [2002]. In practice this
optimal condition cannot be implemented since the Schur complement is too
expensive to compute exactly. Furthermore, the Schur complement is a dense
matrix on each interface and even if it were computed, using it would create
a very large increase of the bandwidth of the local subproblem matrix. Hence
the issue is how to build a sparse approximation of the Schur complement that
is not expensive to compute and that leads to good convergence properties of
the two-Lagrange multiplier FETI iterative method.

Different approaches based on approximate factorization or inverse compu-
tation of the subproblem matrix have been tested, see Roux et al. [2002]. Here,
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a new approach based on the computation of the exact Schur complement for
a small patch around each interface node appears to be a very efficient method
for designing approximations of the complete Schur complement. Furthermore
this approach can be easily implemented without any other information than
the local matrix in each subdomain.

2 Review of the Two-Lagrange Multiplier FETI Method

2.1 Introduction of Two-Lagrange Multiplier on the Interface

Consider a splitting of the domain Ω as in Figure 1 and note by subscripts
i and p the degrees of freedom located inside subdomain Ω(s), s = 1, 2, and
on the interface Γ . Then, the contribution of subdomain Ω(s), s = 1, 2 to the
matrix and the right-hand side of a finite element discretization of a linear
partial differential equation on Ω can be written as follows:
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where K
(1)
pp and K

(2)
pp represent the interaction matrices between the nodes

on the interface obtained by integration on Ω(1) and on Ω(2). The global
problem is a block system obtained by assembling local contribution of each
subdomain:
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The block Kpp is the sum of the two blocks K
(1)
pp and K

(2)
pp . In the same way,

bp = b
(1)
p + b

(2)
p is obtained by local integration in each subdomain and sum

on the interface.

Fig. 1. Non-overlapping domain splitting.

The two-Lagrange multiplier FETI method, see Farhat et al. [2000], is an
iterative based domain decomposition method which consists to determine the
solution of the following coupled problem:
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λ(1) + λ(2) − (A(1) + A(2))x(1)
p = 0

λ(1) + λ(2) − (A(1) + A(2))x(2)
p = 0

where the free matrices A(1) and A(2) are to be determined for the best perfor-
mance of the algorithm. It is clear that this coupled problem is equivalent to

the global problem (1), see Roux et al. [2002]. The elimination of x
(s)
i in favor

of x
(s)
p in the two first equations and substitution in the two last equations

leads to the following linear system upon the variable λ := (λ(1), λ(2))T :

Fλ = d (2)

with F and d the matrix and right hand side defined as:

F :=

[

I I − (A(1) + A(2))[S(2) + A(2)]−1

I − (A(1) + A(2))[S(1) + A(1)]−1 I

]
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The iterative solution of this system is usually performs with a Krylov method.

2.2 Optimal Interface Boundary Conditions

It is shown in Roux et al. [2002] that the best choice for the free matrices
A(s), s = 1, 2 corresponds to the complete outer Schur complement, i.e. the
discretization of the optimal continuous boundary conditions associated to
the Steklov-Poincaré operator, see Ghanemi [1997], Collino et al. [2000] and
Boubendir [2002]. An extension of this result in the case of a one way split-
ting can be obtained in the discrete case, see Roux et al. [2002], and in the
continuous case, see Nataf et al. [1994].

Theorem 1. In a case of a two-domain splitting, the Jacobi iterative algo-

rithm for the two-Lagrange multiplier FETI method with augmented term

equal to the complete outer Schur complement converges in one iteration at

most.

Theorem 2. In a case of a one way splitting, the Jacobi iterative algorithm

for the two-Lagrange multiplier FETI method with augmented term equal to

the complete outer Schur complement converges in a number of iteration equal

to the number of subdomain minus one.
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3 Approximation of Optimal Interface Boundary

Conditions

In the previous section, we have recalled that the best choice for the augmented
matrix in the case of a one way splitting domain decomposition is the complete
outer Schur complement matrix. This choice can not be done in practice since
the computational cost of the complete outer Schur complement matrix is too
expensive.

3.1 Neighbor Schur Complement

From a physical point of view, the complete outer Schur complement ma-
trix represent the interactions of all the degree of freedom of the subdomains
condensed on the interfaces. The restriction of the interactions only with the
neighboring subdomains, leads to approximate the complete outer Schur com-
plement with the neighbor Schur complement. The computational cost and
the exchange of data are thus reduced to the neighboring subdomains only.
Unfortunately, this approach still leads to an expensive computational cost.
Hence the issue is how to build a sparse approximation of the Schur comple-
ment that is not expensive to compute and that gives good convergence for
the two-Lagrange multiplier FETI method.

3.2 Lumped Approximation

We have shown in Roux et al. [2002] that an approximation of the neighbor

Schur complement matrix K
(s)
bb − K

(s)
bi [K

(s)
ii ]−1K

(s)
ib with its first term, i.e.

with the matrix K
(s)
bb gives good results. Such an approximation, presents the

advantage to be very easy to implement since this matrix is computed by the
neighboring subdomain during the assembly procedure and the integration of
the contribution of the interface nodes. Only an exchange with the neighboring
subdomain is required for this regularization procedure.

3.3 Sparse Approximation based on Overlapping Layers

In this section we present a new approach for the approximation of the neigh-
boring Schur complement with a sparse matrix, which leads to a better approx-
imation than the lumped approximation, as shown in the numerical results.
The goal is to obtained a spectral density of the approximated matrix close to
the spectral density of the neighbor Schur complement matrix. We first define
the following subsets of indexes:

VΩ(2) = {indexes of nodes inside the subdomain Ω(2)}

VΓ = {indexes of nodes on the interface Γ}

V l
i = {indexes of the nodes j such that the minimum

connectivity distance between i and j is lower or

equal than l, l ∈ N}

V l
Γ,i = VΓ ∩ V l

i
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The sparse approximation investigated here consist to define a sparse aug-
mented matrix obtained through an extraction of some coefficients and local
condensation along the interface. The complete algorithm to compute the aug-
mented matrix—in the case of a two domain splitting—in subdomain Ω(1) can
be define as:

Algorithm 1. [sparse approximation]

1. construction of the structure of the interface matrix A1 ∈ RdimVΓ ×dimVΓ .
2. construction of the sparse structure of the subdomain matrix

K(2) ∈ RdimV
Ω(2)×dimV

Ω(2) .
3. assembly of the matrix K(2).
4. for all i in VΓ do

4.1. extraction of the coefficients Kmn, (m, n) ∈ V l
i ×V l

i , and construction

of the sparse matrix A2 ∈ RdimV l
i ×dimV l

i with these coefficients.

4.2. computation of the dense matrix A3 ∈ RdimV 1
Γ,i×dimV 1

Γ,i by conden-
sation of the matrix A2 on the degree of freedom V 1

Γ,i.
4.2. extraction of the coefficients of the line associated with the node

i from the matrix A3 and insertion inside the matrix A1 at the line
associated with the node i.

5. construction of the symmetric matrix A4 =
(AT

1 +A1)
2 .

6. regularization of the matrix K(1) with the matrix A4.

where l denotes the number of layers considered.
Similar calculation performed in the subdomain Ω(2) gives the augmented

matrix A(2) to add to the subdomain matrix K(2). As an example the regu-
lar mesh with Q1-finite elements presented Figure 2 leads to the subsets of
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Fig. 2. Numbering of the nodes in subdomain Ω(2).

indexes V 1
7 = {1, 2, 7, 8, 13, 14}, V 2

7 = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21} and
V 1

Γ,7 = {1, 7, 13}. These subsets correspond to the overlapping layers repre-
sented Figure 3.

4 Numerical Results

4.1 The Model Problem

In this section, a two dimensional beam of length L1 and high L2 submitted to
flexion is analyzed. The Poisson ratio and the Young modulus are respectively
ν = 0.3 and E = 2.0 105N/m2. Homogeneous Dirichlet boundary conditions



288 F.-X. Roux, F. Magoulès, L. Series, Y. Boubendir

Fig. 3. On the left one interface node, on the middle one interface node with one
layer, and on the right one interface node with two layers.

are imposed on the left and homogeneous Neumann boundary conditions are
set on the top and on the bottom. Loading, model as non homogeneous Neu-
mann boundary condition are imposed on the right of the structure. The beam
is meshed with triangular elements and discretized with P1 finite elements.
The domain is then split into two or ten subdomains in a one way splitting
and the condensed interface problem is solved iteratively with the orthodir

Krylov method. The stopping criterion is set to ||rn||2 < 10−6||r0||2, where rn

and r0 are the nth and initial global residuals.

4.2 Spectral Analysis

Figure 4 represent the spectral density of the eigenvalues of the matrix of the
condensed interface problem (2) for different augmented matrices. An aug-
mented matrix equal to the neighbor Schur complement will leads to eigen-
values equal to one which correspond to a spectral density equal to a Dirac
function.
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Fig. 4. Spectral density of the condensed interface problem with an augmented
matrix issue from the lumped approximation (left) vs from the sparse approximation
(right) (L1 = 10, L2 = 1, h = 1/160). Case of two subdomains.

We can see on Figures 4 that a sparse approximation performed with a
number of layers equal to four leads to a spectral density close to a Dirac
function. Opposite, a lumped approximation leads to spectrum much more
different. This result can be explain by the fact that the sparse approximation
is based on local condensation i.e. on local Steklov-Poincaré operators which
is not the case of the lumped approximation.
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4.3 Asymptotic Analysis

The asymptotic analysis of the proposed methods upon different parameters is
now analyzed. The analysis upon the domain size reported Figure 5 show the
respective dependence of the methods. The asymptotic behavior of the pro-
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Fig. 5. Asymptotic behavior for different augmented matrices and different subdo-
main size. (L1 = 64, L2 = 1, h = 1/20).

posed methods upon the mesh size is presented Figure 6. On the left picture,
four layers are considered for the sparse approximation. A linear dependence
upon the mesh size can be noticed for all the methods. On the right picture,
the number of layers of the sparse approximation increase proportionally with
the mesh size. A linear dependence still occurs for the sparse approximation
but the slope of the curve is lower than with a constant number of layers
equal to four. The asymptotic results obtained with this last approximation
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Fig. 6. Asymptotic behavior for different augmented matrices and different mesh
size on the left for a constant number of layers, and on the right for a number of
layers increasing proportionally with the mesh size. (L1 = 10, L2 = 1). Case of ten
subdomains.

are still less efficient than those obtained with a continuous approach, see
Gander et al. [2002], but the implementation of the previous method doesn’t
depends on a priori knowledge of the problem to be solved (coefficients of the
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partial differential equation, mesh size, . . . ) and thus helps its use as a black
box routine!

5 Conclusions

In this paper the principle of the two-Lagrange multiplier FETI method with
optimal interface boundary conditions has been remain. A new method for
the approximation of these optimal conditions has been introduced. This new
method is based on the computation of the exact Schur complement for a small
patch around each interface node. This method appears to be a very efficient
method for designing approximations of the complete Schur complement that
give robust iterative algorithms for solving many different kinds of problems.
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