
Domain Decomposition Preconditioners for
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Summary. In this paper, we present several domain decomposition preconditioners
for high-order Spectral Nédélec element discretizations for a Maxwell model prob-
lem in H(curl), in particular overlapping Schwarz preconditioners and Balancing
Neumann-Neumann preconditioners. For an efficient and fast implementation of
these preconditioners, fast matrix-vector products and direct solvers for problems
posed on one element or a small array of elements are needed. In previous work, we
have presented such algorithms for the two-dimensional case; here, we will present
a new fast solver that works both in the two- and three-dimensional case. Next,
we define the preconditioners considered in this paper, present numerical results
for overlapping methods in three dimensions and Balancing Neumann-Neumann
methods in two dimensions. We will also give a condition number estimate for the
overlapping Schwarz method.

The model problem is: Find u ∈ H0(curl, Ω) such that for all v ∈ H0(curl, Ω)

a(u,v) := (αu,v) + (β curl u, curl v) = (f ,v). (1)

Here, Ω is a bounded, open, connected polyhedron in R
3 or a polygon in R

2,
H(curl, Ω) is the space of vectors in (L2(Ω))2 or (L2(Ω))3 with curl in L2(Ω)
or (L2(Ω))3, respectively; H0(curl, Ω) is its subspace of vectors with vanishing
tangential components on ∂Ω; f ∈ (L2(Ω))d for d = 2, 3, and (·, ·) denotes the inner
product in L2(Ω) of functions or vector fields. For simplicity, we will assume that α

and β are piecewise constant.

1 Discretization

We have previously presented the discretization for the two-dimensional case
and some fast solvers for it in Hientzsch [2001] and Hientzsch [2003], and we
will here concentrate on the three-dimensional case. As in the two-dimensional
case, we use a hN -extension of Nédélec elements, parametrized by the values
of the vector field on Gauss-Lobatto-Legendre grids inside the elements, with
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only the appropriate tangential continuity between elements (Nédélec [1980,
1986], Monk [1994], Belgacem and Bernardi [1999], Hientzsch [2001, 2003]).
The integrals in the bilinear form and the right hand side are all evaluated
by Gauss-Lobatto-Legendre quadrature of arbitrary order. On the reference
element, the system reads:

Eu = f̃ or
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dir is a mass-matrix for direction dir, integrating products between

components i and j. Primes indicate differentiated components. Ki
dir =

DT
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dir Dmdir
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is the weak 1D Laplacian, Dn is the differentiation matrix

of order n, and ui is of order mx
i × m

y
i × mz

i .
Subassembling such elements in a rectangular array of elements results in a

system of the same form, only that the different mass matrices, laplacians, and
derivatives are changed into the appropriate matrices for the entire array. In
particular, the matrices M1,1

y , M1,1
z , K1

y , K1
z , M2,2

x , M2,2
z , K2

x, K2
z , M3,3

x , M3,3
y ,

K3
x, and K3

y are subassembled; all other mass-matrices are block-diagonal,
and the differentiation matrices in the cross-terms are mixed, mapping from
continuous to discontinuous spaces.

The element-by-element computation of the matrix-vector product with
the stiffness matrix can be implemented by dense matrix-matrix multiplica-
tions of the factors of the tensor products with the vector field laid out in
array form. These multiplications use an optimized BLAS3 kernel and run at
close to maximal efficiency on modern computer architectures.

For general geometries, mapped elements are used. The matrix-vector
product associated to the discretization can again be implemented by ten-
sor products and entry-by-entry (Hadamard) matrix products, and therefore
also has a fast implementation. For some more details in the 2D case, see
[Hientzsch, 2002, Section 4].

2 Fast direct solvers in 2D and 3D

We have previously developed a fast direct solver in Hientzsch [2001] and
Hientzsch [2003] for the two-dimensional case, where the system in the two
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components is reduced to a generalized Sylvester equation in one component
which is then solved either by a fast diagonalization method or by more stable
methods for generalized Sylvester equations. It seems that this solver cannot
be extended to three dimensions in the general case.

Instead of a diagonalization technique, we will try to change bases so that
a block-diagonal matrix with small blocks is obtained. In two dimensions, the
general block is 2 × 2, in three dimensions, it is 3 × 3, coupling modes across
components. In three dimensions, we look for a basis change matrix

V =





V 2
x ⊗ V 1

y ⊗ V 1
z 0 0

0 V 1
x ⊗ V 2

y ⊗ V 1
z 0

0 0 V 1
x ⊗ V 1

y ⊗ V 2
z





so that in V
T
EV all 3 × 3 blocks in the block tensor product matrix are

diagonal (or if they are rectangular, diagonal with an extra block of zeros).
Then, in the new basis, the system splits into many 3× 3 or smaller systems.

We will only treat the x-direction, the same construction can be repeated
for all three directions. Looking at the entries of E, we realize that we can
diagonalize all blocks, if we can diagonalize

V 2,T
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x V 2
x , V 2,T
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x ,
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x DT
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x ;

if the second and third component have the same size in x, they are discretized
in the same way, and the other discretization parameters are chosen so that
mass matrices match. These conditions are not overly restrictive; a large class
of generalized Nédélec elements and some newly proposed elements are of that
form. In two dimensions, no such degree conditions appear, and the block
diagonalization works in the general case.

The question is now if we can find V 1
x and V 2

x such that these four ma-
trices are diagonal. If we first consider the terms only in V 1

x , we see that one
reasonable choice would be to take the eigenbasis of the following generalized
eigenvalue problem:

DT
mx

2

M2′,2′

x Dmx
2
u = λM2,2

x u.

Now if Dmx
2
V 1

x could be chosen as V 2
x and had the right size, we would be

done. Because the two components do not necessarily have the same size in x,
we start with V 2

x = I1,2
x Dmx

2
V 1

x , choosing an appropriate I1,2
x as interpolation.

For diagonalization to succeed, we need
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which can be satisfied by appropriate choice of discretization parameters and
mass matrices, if mx

1 ≥ mx
2 − 1. (If V 1

x contains a constant vector, we need to
remove this vector before differentiating.) Still, the V 2

x so constructed is not
yet a basis in general, since there may not be enough vectors in it. We con-
struct a full basis for the complement of the range and complement V 2

x with it.
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In special cases, we can give a basis for the complement explicitly, otherwise
we start with carefully choosing vectors which we then make orthogonal to
I1,2
x Dmx

2
V 1

x and each other. The same method works for subassembled prob-
lems, and also for essential boundary value problems (also for mixed problems
if each face of the box has only one type of boundary condition).

Using the block diagonalization just derived, all factor matrices in the
tensor products only have non-zero entries on their diagonals (some factor
matrices are rectangular). Therefore, in this basis, the solution of the system
decouples into the solution of arrays of 3 × 3, 2 × 2 and 1 × 1 problems. The
coefficients in the Gaussian elimination for these symmetric small systems can
be precomputed, and the solution reduces to element-wise multiplication and
addition.

For instance, a natural boundary value problem on one generalized Nédélec
element can be solved in MATLAB like fashion:

[fev1,fev2,fev3]=applBasChgT(baschg,fm1,fm2,fm3);

[uev1,uev2,uev3]=nedtwoblslv(blslv,fev1,fev2,fev3);

[u1,u2,u3]=applBasChg(baschg,uev1,uev2,uev3);

where applBasChg and applBasChgT apply the basis change and its transpose
and the resulting array of 3 × 3 problems is solve in nedtwoblslv:

function [uev1,uev2,uev3]=nedtwoblslv(blslv,fev1,fev2,fev3);

rhs=fev3+blslv.t34.*fev2+blslv.t35.*fev1;

uev3=rhs./blslv.t33;

rhs=fev2+blslv.t24.*fev1-blslv.t23.*uev3;

uev2=rhs./blslv.t22;

rhs=fev1-blslv.g12.*uev2-blslv.g13.*uev3;

uev1=rhs./blslv.g11;

return

These element and block solvers run very efficiently; see figure 1.

3 Overlapping Schwarz Methods

To define Schwarz preconditioners (see Smith et al. [1996]), we have to specify
subspaces and solvers on them. For the two-dimensional set-up, see Hientzsch
[2001] and Hientzsch [2003]. Here we will concentrate on the three-dimensional
case. First, a collection of subdomains Ωi is defined, each subdomain being
either one spectral element or a union of several spectral elements. The typical
size of a subdomain is denoted H , and each spectral element has a uniform
degree N in all components. (The analysis goes through and the methods
are implemented for more complicated settings; we chose this case here for
simplicity and ease of presentation.) Now, overlapping subregions Ω′

j,δ ⊂ Ω are
defined, with an overlap of δ. These subregions can be constructed in several
ways, e.g., by extending subdomains by a fixed overlap δ in all directions, or
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Fig. 1. Fast direct solution of a natural boundary value problem on one Nédélec 2
element of degree N by block tensor block diagonalization in 3D.

by finding vertex centered subdomains that overlap by δ. The theory does not
require the Ω′

j,δ to be unions of spectral elements, they can also just contain
rectangular subsets of spectral elements. Most of our early computations (and
the numerical results that we show in this paper) were performed on 2×2×2
vertex centered assemblies of subdomains (taken as single spectral elements).

The local spaces Vj are the linear span of the basis functions associated
with Gauss-Lobatto-Legendre points in Ω′

j,δ. In general, the support of func-
tions in Vj will be larger than Ω′

j,δ, but if one only considers the Gauss-
Lobatto-Legendre grid, they vanish on grid points outside Ω′

j,δ. On the local
spaces, we use exact solvers which corresponds to inversion of a submatrix of
K. In the 2 × 2 × 2 case, or in all cases where the overlapping regions only
contain entire spectral elements, the local solver corresponds to the solution
of a standard tangential value problem on the box made from these elements.
In any case, the local solver can be implemented using the direct fast solvers
introduced in the previous section.

The coarse space V0 is a low-order Nédélec spectral element space of uni-
form degree N0 defined on the coarse (subdomain level) mesh. We use the
direct solvers of the last section as exact solvers. In the standard way, the
local and the coarse solvers define local projections Ti and T0 that can be
used to implement different overlapping Schwarz methods. In this paper, we
only consider the additive operator: a two-level additive Schwarz method Tas2

defined by

Tas2 = T0 +
∑

i≥1

Ti

We recall that this preconditioner gives optimal results in two dimensions;
both iteration numbers and condition numbers are bounded by small constants
for an increasing number of subdomains and degree, if there is a generous
overlap that does not cut through spectral elements. It is also very robust
against changes in α and β over a wide range of magnitudes. For minimal
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overlap that cuts through elements, iteration and condition numbers increase
with increasing degree consistent with a linear growth; the dependence on
the relative overlap could be both consistent with linear or quadratic growth
(Hientzsch [2003, 2002]).

Table 1 and figure 2 suggest similar behavior in three dimensions.
We refer to Hientzsch [2002] for a proof of a condition number estimate

which improves on the one given in Hientzsch [2003], in that it does not depend
on the coefficients α and β, to wit for the case of overlapping regions made
out of entire spectral elements

κ(Tas2) ≤ C

(

1 +

(

H

δ

)2
)

and for the general case, with γ ≤ 1 in two dimensions, and with γ ≤ 2 in
three dimensions,

κ(Tas2) ≤ CNγ

(

1 +

(

H

δ

)2
)

In both cases, C is independent of N , H , δ, α and β.

Table 1. Comparison of different methods for α = β = 1, 5 × 5 × 5 subdomains,
Nédélec 2 elements of degree 10, 2 × 2 × 2 overlapping subdomains, reduction of
residual norm by 10−6.

# of levels iter κest(K) ||error||∞ tCPU in s

one 25 17.39 4.23e-06 187.26

two (N0 = 2) 22 8.89 3.62e-06 165.07

two (N0 = 3) 21 8.94 8.10e-06 155.62

two (N0 = 4) 21 8.46 9.79e-06 157.18

two (N0 = 5) 20 8.16 1.28e-05 154.51

4 Balancing Neumann-Neumann

Balancing Neumann-Neumann preconditioners are examples of iterative sub-
structuring methods. Here, one iterates on the Schur complement system
SuS = fS with respect to the shared degrees of freedom uS on the subdomain
interfaces. To apply the matrix-vector product SuS, one adds up the local con-
tributions from the local Schur complements S(i) from each subdomain. This
requires the solution of an essential (Dirichlet) boundary value problem per
element. Balancing Neumann-Neumann preconditioners are hybrid methods,
with alternating balancing and Neumann-Neumann steps (see, e.g., [Smith
et al., 1996, Section 4.3.3]). The Neumann-Neumann step requires the appli-
cation of the inverse of the local Schur complement which can be implemented
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0 2 4 6 8 10 12 14 16 18 20
18

19

20

21

22

n
u

m
b

e
r 

o
f 
ite

ra
tio

n
s

0 2 4 6 8 10 12 14 16 18 20
7.5

8

8.5

9

9.5

co
n

d
iti

o
n

 n
u

m
b

e
r 

e
st

im
a

te

M − number of elements in each direction

0 2 4 6 8 10 12 14 16 18 20
18

20

22

24

26

28

n
u

m
b

e
r 

o
f 
ite

ra
tio

n
s

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

N − degree of elements in each direction

co
n

d
iti

o
n

 n
u

m
b

e
r 

e
st

im
a

te

Fig. 2. Two-Level additive overlapping Schwarz method, α = β = 1, 2× 2× 2 over-
lapping subdomains, reduction of residual norm by 10−6, M ×M × M subdomains
of degree N . On the left, N = 6. On the right, M = 5.

by the solution of a local Neumann problem, and also requires some diago-
nal scaling. The balancing step constitutes the coarse level correction, and
directly inverts the Schur complement restricted to well-chosen coarse basis
functions. We use the fast direct solvers from the second section to solve the
Dirichlet and Neumann problems; for the coarse grid correction, in general,
a general purpose factorization routine has to be used. We use the standard
partition-of-unity diagonal scaling. Experiments have been run with different
coarse basis functions and variable damping of the coarse grid corrections.
We have been able to develop seemingly optimal and efficient damped coarse
grid corrections for the two-dimensional case, and made some progress for
some lower-order cases in the three-dimensional case, but we do not yet have
general optimal balancing steps for the three-dimensional case.

Finally, we present in figure 3 some numerical experiments for two cases
in two dimensions for several different balancing steps. We intend to present
more complete experiments for two and three dimensions and theory for the
two-dimensional case in future work.

As coarse grid functions we have chosen the standard partition of unity,
either one function for the whole subdomain (BNN1), one for each component
(BNN2), or one for each edge/face (BNN3). γ is the damping factor for the
coarse grid correction. In figure 3, we see that in both cases, one coarse grid
function per subdomain is not enough, even if we allow damping, but that
one coarse grid function per edge gives an efficient method.
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J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35:315–341, 1980.
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