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Summary. We present Neumann-Neumann domain decomposition preconditioners
for the solution of elliptic linear quadratic optimal control problems. The precon-
ditioner is applied to the optimality system. A Schur complement formulation is
derived that reformulates the original optimality system as a system in the state
and adjoint variables restricted to the subdomain boundaries. The application of
the Schur complement matrix requires the solution of subdomain optimal control
problems with Dirichlet boundary conditions on the subdomain interfaces. The ap-
plication of the inverses of the subdomain Schur complement matrices require the
solution of subdomain optimal control problems with Neumann boundary conditions
on the subdomain interfaces. Numerical tests show that the dependence of this pre-
conditioner on mesh size and subdomain size is comparable to its counterpart applied
to elliptic equations only.

1 Introduction

We are interested in domain decomposition methods for the solution of large-
scale linear quadratic problems

minimize
1

2
yT My + cT y + yT Nu +

α

2
uTHu + dT u, (1a)

subject to Ay + Bu + b = 0, (1b)

arising from the finite element discretization of elliptic optimal control prob-
lems. In (1) y ∈ R

m, u ∈ R
n are called the (discretized) state and the (dis-

cretized) control, respectively, and Ay+Bu+b = 0 is called the (discretized)
state equation. Throughout this paper we assume that

A. A ∈ R
m×m is invertible, B ∈ R

m×n, N ∈ R
m×n, M ∈ R

m×m is
symmetric, H ∈ R

n×n is symmetric and the reduced Hessian Ĥ =
αH − BTA−TN − NTA−1B + BT A−TMA−1B is positive definite.
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The assumption that Ĥ is positive definite is equivalent to the assumption
that the Hessian of (1a) is positive definite on the null-space of the linear con-
straints (1b). Under the assumption A, the necessary and sufficient optimality
conditions for (1) are given by




M N AT

NT αH BT

A B 0








y

u

p



 =




c

d

b



 . (2)

The system matrix in (2) is also called a KKT (Karush-Kuhn-Tucker) matrix.
Large-scale linear quadratic problems of the form (1) arise as subproblems in
Newton or sequential quadratic programming (SQP) type optimization algo-
rithms for nonlinear PDE constrained optimization problems. The solution of
these subproblems is a very time consuming part in Newton or SQP type opti-
mization algorithms and therefore the development of preconditioners for such
problems is of great interest. Domain decomposition methods for steady state
optimal control problems were considered in Benamou [1996], Bounaim [1998],
Dennis and Lewis [1994], Biros and Ghattas [2000], Lions and Pironneau [1998]
and other preconditioners for the system matrix in (2) are discussed, e.g., by
Ascher and Haber [2003], Battermann and Sachs [2001], Hoppe et al. [2002],
Keller et al. [2000]. Although (2) is a saddle point problem, its structure is
quite different from the saddle point problems arising, e.g., from the Stokes
problem (see, e.g.,Pavarino and Widlund [2002]) or from mixed finite element
discretizations of elliptic PDEs.

We present a Neumann-Neumann (NN) domain decomposition precondi-
tioner for the solution of discretized elliptic linear quadratic optimal control
problems. The preconditioner is applied to the optimality system (2). A Schur
complement formulation is derived that reformulates (2) as a system in the
state and adjoint variables restricted to the subdomain boundaries. The ap-
plication of the Schur complement matrix requires the solution of subdomain
optimal control problems with Dirichlet boundary conditions on the subdo-
main interfaces. The application of the inverses of the subdomain Schur com-
plement matrices require the solution of subdomain optimal control problems
with Neumann boundary conditions on the subdomain interfaces. Our nu-
merical tests in Section 4 show that the dependence of this preconditioner on
mesh size and subdomain size is comparable to that of its counterpart applied
to elliptic PDEs only. Numerical tests also indicate that, unlike several other
KKT preconditioners, the proposed NN preconditioner is rather insensitive to
the choice of the penalty parameter α. Unlike several other KKT precondi-
tioners, our preconditioner does not require a preconditioner for the reduced
Hessian Ĥ, which is often difficult to obtain. Due to page limitations, we only
present the algebraic view of the preconditioner. For more details we refer to
Heinkenschloss and Nguyen [2004].
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2 The Example Problem

We are interested in the solution y ∈ H1(Ω), u ∈ L2(∂Ω) of the optimal
control problem

minimize
1

2

∫

Ω

(y(x) − ŷ(x))2dx+
α

2

∫

∂Ω

u2(x)dx, (3a)

subject to a(y, ψ) + b(u, ψ) =

∫

Ω

f(x)ψ(x)dx ∀ψ ∈ H1(Ω), (3b)

where a(y, ψ) =
∫

Ω
∇y(x)∇ψ(x)+y(x)ψ(x)dx and b(u, ψ) = −

∫
∂Ω

u(x)ψ(x)dx.
The desired state ŷ ∈ L2(Ω) and f ∈ L2(Ω) are given functions, and α > 0 is
a given parameter. It is shown in Lions [1971] that (3) has a unique solution.

We discretize (3) using conforming finite elements. Let {Tl} be a triangu-
lation of Ω. We divide Ω into nonoverlapping subdomains Ωi, i = 1, . . . , d,
such that each Tl belongs to exactly one Ωi. We approximate the state y by a
function yh =

∑
k ykψk which is continuous on Ω and linear on each Tl. Our

discretized controls uh are not chosen to be continuous and piecewise linear
on ∂Ω (see the left plot in Figure 1). A domain decomposition formulation
based on such a discretization would introduce ‘interface controls’ (dotted hat
function in the left plot in Figure 1) defined on a ‘band’ of width O(h) around
∂Ω∩∂Ωi ∩∂Ωj , i 6= j. Since the evaluation of u ∈ L2(∂Ω) on ∂Ω∩∂Ωi∩∂Ωj

does not make sense, we avoid interface controls. We discretize the control u
by a function uh =

∑
k ukµk which is continuous on each ∂Ωi, i = 1, . . . , d,

and linear on each ∂Ω ∩ ∂Ωi ∩ Tl. The discretized control uh is not assumed
to be continuous at ∂Ω ∩ ∂Ωi ∩ ∂Ωj, i 6= j. In particular, for each point
xk ∈ ∂Ω∩∂Ωi ∩∂Ωj , i 6= j, there are two discrete controls uki

, ukj
belonging

to subdomains Ωi and Ωj , respectively (see the right plot in Figure 1). Hence,
our control discretization depends on the partition {Ωi}

d
i=1

of the domain Ω.
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Fig. 1. Sketch of the Control Discretization for the Case Ω ⊂ R
2

3 The Domain Decomposition Preconditioners

We define

Ki
ΓΓ =

(
Mi

ΓΓ (Ai
ΓΓ )T

Ai
ΓΓ

)
, Ai =

(
Ai

II Ai
IΓ

Ai
ΓI Ai

ΓΓ

)
, Mi =

(
Mi

II Mi
IΓ

Mi
ΓI Mi

ΓΓ

)
,
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i = 1, . . . , d, and KΓΓ =
∑d

i=1
Ki

ΓΓ xΓ =

(
yΓ

pΓ

)
, gΓ =

(
cΓ

bΓ

)
. Further-

more, for indices i with ∂Ωi ∩ ∂Ω 6= ∅, we define

Ki
II =




Mi

II Ni
II (Ai

II)
T

(Ni
II)

T Hi
II (Bi

II)
T

Ai
II Bi

II



 ,Ki
ΓI =

(
Mi

ΓI Ni
ΓI (Ai

IΓ )T

Ai
ΓI Bi

ΓI

)
,

Bi =

(
Bi

II

Bi
ΓI

)
, Ni =

(
Ni

II

Ni
ΓI

)
, xi

I =




yi

I

ui
I

pi
I



 , gi
I =




ci

I

di
I

bi
I



 ,

and for indices i with ∂Ωi ∩ ∂Ω = ∅, we define

Ki
II =

(
Mi

II (Ai
II)

T

Ai
II

)
, Ki

ΓI =

(
Mi

ΓI (Ai
IΓ )T

Ai
ΓI

)
, xi

I =

(
yi

I

pi
I

)
, gi

I =

(
ci

I

bi
I

)
.

Most of this notation is a direct adaption of the notation used for domain
decomposition of PDEs (see, e.g., Smith et al. [1996]). For example, yi

I is the
subvector containing the coefficients yk of the discretized state belonging to
nodes xk in the interior of Ωi. Note that in our particular control discretiza-
tion, all basis functions µk for the discretised control uh have support in only
one subdomain boundary ∂Ωi (see the right plot in Figure 1). Consequently,
there is no uΓ .

After a symmetric permutation, (2) can be written as





K1

II (K1

ΓI)
T

. . .
...

Kd
II (Kd

ΓI)
T

K1

ΓI · · · Kd
ΓI KΓΓ









x1

I
...

xd
I

xΓ




=





g1

I
...

gd
I

gΓ




. (4)

Frequently, we use the compact notation

(
KII KT

ΓI

KΓI KΓΓ

)(
xI

xΓ

)
=

(
gI

gΓ

)
, (5)

or even Kx = g instead of (4). We make the following assumptions.

B. Ai
II ∈ R

mI
i ×mI

i is invertible and Mi
II ∈ R

mI
i ×mI

i is symmetric, i =

1, . . . , d. For i with ∂Ωi ∩∂Ω 6= ∅, Hi
II ∈ R

nI
i ×nI

i is symmetric and Ĥi
II =

αHi
II−(Bi

II)
T (Ai

II)
−T Ni

II−(Ni
II)

T (Ai
II)

−1Bi
II+(Bi

II)
T (Ai

II)
−T Mi

II(A
i
II)

−1Bi
II

is positive definite.
C. Ai ∈ R

mi×mi is invertible and Mi ∈ R
mi×mi is symmetric, i = 1, . . . , d.

For i with ∂Ωi ∩ ∂Ω 6= ∅, Hi
II ∈ R

nI
i ×nI

i is symmetric and Ĥi = αHi
II −

(Bi)T (Ai)−TNi−(Ni)T (Ai)−1Bi +(Bi)T (Ai)−T Mi(Ai)−1Bi is positive
definite.
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Assumptions A, B, C are satisfied for our example problem.
Assumption B guarantees that KII is invertible. Hence, we can form the

Schur complement system
SxΓ = r, (6)

where S = KΓΓ − KΓIK
−1

II KT
ΓI and r = gΓ − KΓIK

−1

II gI . The Schur com-
plement matrix S can be written as a sum of subdomain Schur complement
matrices. Let R̃

y
i , i = 1, . . . , d, be the restriction operator which maps from

the vector of coefficient unknowns on the artificial boundary, yΓ , to only those
associated with the boundary of Ωi. Let

R̃i =

(
R̃

y
i

R̃
p
i

)
, R̃

p
i = R̃

y
i (7)

The Schur complement can be written as S =
∑

i R̃
T
i SiR̃i, where Si = Ki

ΓΓ −
Ki

ΓI(K
i
II)

−1(Ki
ΓI)

T . It is shown in Heinkenschloss and Nguyen [2004] that the
application Si to a vector R̃i(y

T
Γ ,p

T
Γ )T corresponds to solving a subdomain

optimal control problem in Ωi with Dirichlet boundary conditions for the
state on ∂Ωi \ ∂Ω and then extracting Neumann data of the optimal state
and corresponding adjoint on ∂Ωi \ ∂Ω.

Theorem 1. If Assumptions A and B are valid, then the Schur complement
matrix S has m−

∑d

i=1
mI

i positive and m−
∑d

i=1
mI

i negative eigenvalues. If
Assumptions B and C are valid, then the subdomain Schur complement matrix
Si, i = 1, . . . , d, has mi −mI

i positive and mi −mI
i negative eigenvalues.

Proof. Recall that S = KΓΓ − KΓIK
−1

II KT
ΓI . It is easy to verify that

(
KII KT

ΓI

KΓI KΓΓ

)
=

(
KII 0
KΓI I

)(
K−1

II 0
0 S

)(
KII KT

ΓI

0 I

)
.

The matrix K is a symmetric permutation of the system matrix in (2) and,
hence, both matrices have the same eigenvalues. It is well known that the sys-
tem matrix in (2) and, hence, K hasm+n positive andm negative eigenvalues

(see, e.g., Keller et al. [2000]). Similarly, the matrix KII has
∑d

i=1
mI

i + nI
i

positive and
∑d

i=1
mI

i negative eigenvalues. By Sylvester’s law of inertia, the
number of positive [negative] eigenvalues of K is equal to the number of posi-
tive [negative] eigenvalues of K−1

II plus the number of positive [negative] eigen-

values of S. Since n =
∑d

i=1
nI

i , this implies that S has m−
∑d

i=1
mI

i positive

and m−
∑d

i=1
mI

i negative eigenvalues.
The second assertion can be proven analogously.

If Assumption C is valid, then S−1

i exists. It is shown in Heinkenschloss

and Nguyen [2004] that the application S−1

i to a vector R̃i(v
T
Γ ,q

T
Γ )T corre-

sponds to solving a subdomain optimal control problem in Ωi with Neumann
boundary conditions for the state on ∂Ωi \ ∂Ω and then extracting Dirichlet
data of the optimal state and corresponding adjoint on ∂Ωi \ ∂Ω.
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It is now relatively easy to generalize the Neumann-Dirichlet and Neumann-
Neumann preconditioners used in the context of elliptic PDEs to the optimal
control context. We focus on Neumann-Neumann (NN) preconditioners.

Let D
y
i be the diagonal matrix, whose entries are computed as follows. If

xk ∈ ∂Ωi, then (Dy
i )−1

kk is the number of subdomains that share node xk. Note

that
∑

i D
y
i = I. Furthermore, let D̃

p
i = D̃

y
i and

Di =

(
D

y
i

D
p
i

)
.

If assumptions B, C are valid, then we can form Si and S−1

i . In this case the
one-level NN preconditioner is given by

P =
∑

i

DiR̃
T
i S−1

i R̃iDi. (8)

It is well known that the performance of one-level NN preconditioners for
elliptic PDEs deteriorates fast as the number of subdomains increases. The
same is observed for the NN preconditioner (8) in the optimal control context
(see Section 4). To avoid this, we include a coarse grid. More precisely, we
adapt the balanced NN preconditioner due to Mandel [1993] to the optimal
control context. Following the description in [Smith et al., 1996, Sec. 4.3.3],
the balanced-NN for the optimal control problem is given by

P =
(
I− R̃T

0
S−1

0
R̃0S

)( d∑

i=1

DiR̃
T
i S−1

i R̃iDi

)(
I − SR̃T

0
S−1

0
R̃0

)
+R̃T

0
S−1

0
R̃0,

(9)
where S0 = R̃0SR̃T

0
and R̃0 is defined as in (7) with R̃

y
0

being the restriction
operator which returns for each subdomain the weighted sum of the values of
all the nodes on the boundary of that subdomain. The weight corresponding to
an interface node is one over the number of subdomains the node is contained
in.

4 Numerical Results

We consider (3) with Ω = (−1, 1)2, f(x) = (2π2 +1) sin(πx1) sin(πx2), ŷ(x) =
sin(πx1) sin(πx2). Numerical observations show that the condition number for
the system matrix in (2) computed for a fixed discretization is proportional
to α−1. Hence, (3) becomes more difficult to solve as α > 0 approaches zero.

The domain Ω is partitioned into equal-sized square subdomains in a
checkerboard pattern. The side length of each subdomain is denoted by H .
Regular meshes consisting of triangular elements of various widths, denoted
by h, are generated. The preconditioned system PSxΓ = P(gΓ −KΓIK

−1

II gI)
is solved using the symmetric QMR (sQMR) algorithm of Freund and Nachti-
gal [1995]. The preconditioned sQMR iteration is stopped if the ℓ2-norm of
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the residual is less than 10−8. The subdomain problems are solved exactly
using a sparse LU decomposition.

Tables 1, 2 show the number of preconditioned sQMR iterations needed
to solve for various discretizations h and various subdomain sizes H . As ex-
pected, the performance of the NN preconditioner (8) without coarse grid gets
worse quickly as the number of subdomain increases while the balanced NN
preconditioner (9) remains effective. The number of sQMR iterations for the
balanced NN preconditioner

remain nearly constant for a fixed H/h ratio.
The observed performance of the NN preconditioners (8), (9) applied to

the optimal control problems is similar to the performance of the NN precon-
ditioners applied to the elliptic PDE (3b) with fixed u. A notable result is
that both preconditioners depend only weakly on the regularization parame-
ter α. As α is reduced from 1 to 10−8, the iteration count for the balanced
NN preconditioner grows by only a factor of about two.

Table 1. Number of preconditioned sQMR iterations, α = 1. Left: NN precondi-
tioner (8). Right: Balanced NN preconditioner (9).

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 12 15 19 24 26 28
1/4 53 69 94 107 119
1/8 170 226 287 345
1/16 509 679 798
1/32 1578 2233

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 5 6 8 10 11 12
1/4 5 9 12 14 15
1/8 5 10 13 15
1/16 5 9 13
1/32 4 9

Table 2. Number of preconditioned sQMR iterations, α = 10−8. Left: NN precon-
ditioner (8). Right: Balanced NN preconditioner (9).

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 15 16 16 21 21 23
1/4 58 61 63 74 76
1/8 217 191 202 214
1/16 583 536 584
1/32 1255 1249

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 9 10 13 15 17 20
1/4 11 17 21 26 30
1/8 13 18 24 30
1/16 12 19 24
1/32 11 16
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