
Towards a Unified Framework for Scientific

Computing

Peter Bastian1, Mark Droske3, Christian Engwer1, Robert Klöfkorn2,
Thimo Neubauer1, Mario Ohlberger2, Martin Rumpf3

1 Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität
Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg,

2 Abteilung für Angewandte Mathematik, Universität Freiburg,
Hermann-Herder-Str. 10, D-79104 Freiburg,

3 Fachbereich Mathematik, Universität Duisburg Lotharstr. 63/65, D-47048
Duisburg; DUNE website: http://hal.iwr.uni-heidelberg.de/dune/

Summary. Most finite element, or finite volume software is built around a fixed
mesh data structure. Therefore, each software package can only be used efficiently for
a relatively narrow class of applications. For example, implementations supporting
unstructured meshes allow the approximation of complex geometries but are in gen-
eral much slower and require more memory than implementations using structured
meshes. In this paper we show how a generic mesh interface can be defined such that
one algorithm, e. g. a discretization scheme, works on different mesh implementa-
tions. For a cell centered finite volume scheme we show that the same algorithm
runs thirty times faster on a structured mesh implementation than on an unstruc-
tured mesh and is only four times slower than a non-generic version for a structured
mesh. The generic mesh interface is realized within the Distributed Unified Numerics

Environment DUNE.

1 Introduction

There exist many simulation packages for the numerical solution of partial
differential equations ranging from small codes for particular applications or
teaching purposes up to large ones developed over many years which can solve
a variety of problems. Each of these packages has a set of features which the de-
signers decided to need to solve their problems. In particular, the codes differ
in the kind of meshes they support: (block) structured meshes, unstructured
meshes, simplicial meshes, multi-element type meshes, hierarchical meshes, bi-
section and red-green type refinement, conforming or non-conforming meshes,
sequential or parallel mesh data structures are possible.

Using one particular code it may be impossible to have a particular feature
(e. g. local mesh refinement in a structured mesh code) or a feature may be
very inefficient to use (e. g. structured mesh in unstructured mesh code). If
efficiency matters, there will never be one optimal code because the goals

168 Bastian, Droske, Engwer, Klöfkorn, Neubauer, Ohlberger, Rumpf

Mesh
Interface
(IF)E.g. FE discretization

Algorithm

Structured grid

Unstructured simplicial grid

Unstructured multi−element grid

Incomplete
Decomposition

Algebraic
Multigrid

Sparse
Matrix−Vector
Interface

Compressed Row Storage (CRS)

Block CRS

Sparse Block CRS

Fig. 1. Encapsulation of data structures with abstract interfaces.

are conflicting. Extension of the set of features of a code is often very hard.
The reason for this is that most codes are built upon a particular mesh data
structure. This fact is well known in computer science (Brooks [1975]).

A solution to this problem is to separate data structures and algorithms
by an abstract interface, i. e.

• one writes algorithms based on an abstract interface and
• uses exactly the data structure that fits best to the problem.

Figure 1 shows the application of this concept to two different places in a
finite element code: A discretization scheme accesses the mesh data structure
through an abstract interface. The interface can be implemented in different
ways, each offering a different set of features efficiently. In the second example
an algebraic multigrid method accesses a sparse matrix data structure through
an abstract interface.

Of course, this principle also has its implications: The set of supported
features is built into the abstract interface. Again, it is in general very difficult
to change the interface. However, not all implementations need to support the
whole interface (efficiently). Therefore, the interface can be made very general.
At run-time the user pays only for functionality needed in the particular
application.

The paper is organized as follows: The next section describes the Dis-
tributed Unified Numerics Environment (DUNE) which is based on abstract
interfaces and shows how these interfaces can be implemented very efficiently
using generic programming in C++. Then, in Section 3, we describe in more
detail the abstract interface for a general finite element or finite volume mesh
and in Section 4 we evaluate the concept on the basis of a cell centered finite
volume scheme for various implementations of the mesh interface.

2 The DUNE Library

Writing algorithms based on abstract interfaces is not a new concept. Classical
implementations of this concept in procedural languages use function calls. As
an example consider the basic linear algebra subroutines BLAST [2001]. In

Towards a Unified Framework for Scientific Computing 169

Geometry IF

Functions &
Operators IF

Visualization IF

Grid IF

Sparse
Matrix
Vector
IF

Solvers IF

CRS

Block−CRS

SPGridAlbert

User Code

UG

Grape DX

Sparse BCRS

Fig. 2. DUNE module structure.

object oriented languages one uses abstract base classes and inheritance to
implement polymorphism. E. g., C++ offers virtual functions to implement
dynamic polymorphism. The function call itself poses a serious performance
penalty in case a function/method in the interface consists only of a few
instructions. Therefore, function calls and virtual method invocation can only
be used efficiently for interfaces with sufficiently coarse granularity.

However, to utilize the concept of abstract interfaces to full extent one
needs interfaces with fine granularity. E. g., in the case of a mesh interface
one needs to access coordinates of nodes, normals of faces or evaluate ele-
ment transformations at individual quadrature points. Generic programming,
implemented in the C++ language through templates, offers a possibility to
implement interfaces without performance penalty. The abstract algorithm
is parameterized by an implementation of the interface (a concrete class) at
compile-time. The compiler will then be able to inline small functions and to
employ all code optimizations. Basically, the interface is removed completely
at compile-time. This technique is also called static (or compile-time) poly-
morphism and is used extensively in the well-known standard template library
STL, see Musser et al. [2001]. Many C++ programming techniques we use are
described in Barton and Nackman [1994] and Veldhuizen [2000].

DUNE is a template library for all software components required for the nu-
merical solution of partial differential equations. Figure 2 shows the high level
design. User code written in C++ will access geometries, grids, sparse linear
algebra, visualization and the finite element functionality through abstract
interfaces. Many implementations of one interface are possible and particular
implementations are selected at compile-time. It is very important that incor-
poration of existing codes is very natural within this concept. Moreover, the
design can also be used to couple different existing codes in one application.

In the rest of this paper we concentrate on the design of the abstract
interface for finite element and finite volume meshes.

170 Bastian, Droske, Engwer, Klöfkorn, Neubauer, Ohlberger, Rumpf

3 Design of the Sequential Grid Interface

There are many different types of finite element or finite volume grids. We
have selected the features of our grid interface according to the needs of our
applications. In particular, we wanted to support grids that

• discretize unions of manifolds (e. g. fracture networks, shell elements),
• consist of elements of different geometric shapes (e. g tetrahedra, prisms,

pyramids and hexahedra),
• support local, hierarchical mesh refinement.

In the following we define a grid T in mathematical terms. It is supposed to
discretize a domain Ω ⊂ IRn, n ∈ IN, n > 0, with piecewise smooth boundary
∂Ω. A grid T consists of L + 1 grid levels

T = {T0, T1, . . . , TL} .

Each grid level Tl consists of sets of grid entities Ec
l of codimension c ∈

{0, 1, . . . , d} where d ≤ n is the dimensionality of the grid:

Tl =
{

E0
l , . . . , Ed

l

}

.

Each entity set consists of individual grid entities which are denoted by Ωc
l,i:

Ec
l =

{

Ωc
l,0, Ω

c
l,1, . . . , Ω

c
l,N(l,c)−1

}

.

The number of entities of codimension c on level l is N(l, c) and we define a
corresponding index set

Ic
l = {0, 1, . . . , N(l, c) − 1}.

Definition 1. T is called a grid if the following conditions hold:

1. (Partitioning). The entities of codimension 0 on level 0 define a partition-
ing of the whole domain:

⋃

i∈I0
0

Ω0
0,i = Ω, ∀i 6= j : Ω0

0,i ∩ Ω0
0,j = ∅.

2. (Nestedness). Entities of codimension 0 on different levels form a tree
structure. We require:

∀l > 0, i ∈ I0
l : ∃!j ∈ I0

l−1 : Ω0
l,i ⊂ Ω0

l−1,j .

This Ω0
l−1,j is called father of Ω0

l,i. For entities with at least one side on the
boundary this condition can be relaxed. We define the set of all descendant
entities of codimension 0 and level l ≤ L of an entity Ω0

k,i as

CL(Ω0
k,i) = {Ω0

l,j| Ω0
l,j ⊂ Ω0

k,i, l ≤ L}.

Towards a Unified Framework for Scientific Computing 171

3. (Recursion over codimension). The boundary of a grid entity is composed
of grid entities of the next higher codimension, i. e. for c < d we have

∂Ωc
l,i =

⋃

j∈I
c+1

l,i
⊂I

c+1

l

Ωc+1
l,j .

Grid entities Ωd
l,j of codimension d are points in IRn.

4. (Reference elements and dimension). For each grid entity Ωc
l,i there is a

reference element ωc
l,i ⊂ IRd−c and a sufficiently smooth map

mc
l,i : ωc

l,i → Ωc
l,i

from the reference element to the actual element. Reference elements are
convex polyhedrons in IRd−c. The dimension of the grid d is the dimension
of the reference elements corresponding to grid entities of codimension 0.
For c = d the map md

l,i simply returns the corresponding point in IRn.
5. (Nonconformity). Note that we do not require the mesh to be conforming

in the sense that the intersection of the closure of two grid entities of
codimension c is either zero or a grid entity with codimension greater
than c. However, we require that all grid entities in Ec

l are distinct, i. e. :

∀i, j, c, l : Ωc
l,i = Ωc

l,j ⇒ i = j.

The set of all neighbors of an entity Ω0
l,i is represented by the set of all

non empty intersections with that entity:

I(Ω0
l,i) = {Ω0

l,i ∩ Ω0
l,j | Ω0

l,i ∩ Ω0
l,j 6= ∅, i 6= j}.

Classes in the DUNE grid interface

According to the description in Definition 1, the grid interface consists of the
following abstract classes:

1. Grid〈dim, dimworld, ...〉
This class corresponds to the whole grid T . It is parametrized by the grid
dimension d = dim and the space dimension n = dimworld. The grid
class provides iterators for the access to its entities.

2. Entity〈codim, dim, dimworld, ...〉, Element〈dim, dimworld, ...〉
Grid entities Ωc

l,i of codimension c = codim are realized by the classes En-
tity and Element. The Entity class contains all topological information,
while geometrical specifications are provided by the Element class.

3. LevelIterator〈codim, dim, dimworld, ...〉
The level iterator gives access to all grid entities on a specified level l.
This allows a traversal of the set Ec

l .

172 Bastian, Droske, Engwer, Klöfkorn, Neubauer, Ohlberger, Rumpf

Grid (level l-1)

Grid (level l)

Grid (level l+1)

 LevelIterator L (level l-1)

 ++L ++L

HierarchicIterator H
(maxlevel l)

 ++H

Entity codim = 1

Entity codim = 2

Entity codim = 3

Entity codim = 0

 LevelIterator L (level l+1) ++L ++L ++L

Example GridEntity

Fig. 3. DUNE Grid walk-trough of an 3 dimensional Grid.

4. HierarchicIterator〈dim, dimworld, ...〉
Another possibility to access grid entities is provided by the hierarchic
iterator. This iterator runs over all descendant entities with level l ≤ L of
a given entity Ω0

k,i. Therefore, it traverses the set CL(Ω0
k,i).

5. IntersectionIterator〈dim, dimworld, ...〉
Part of the topological information provided by the Entity class of codi-
mension 0 is realized by the intersection iterator. For a given entity Ω0

l,i

the iterator traverses the set I(Ω0
l,i).

A specific grid is realized by an implementation of derived classes of these
abstract interface classes. The efficiency of the specific implementations is
guaranteed by using static polymorphism (see Barton and Nackman [1994]).
Figure 3 gives a sketch of the functionality of the grid interface. It shows the
access of the grid entities via level, or hierarchic iterators and displays the
recursive definition of entities via codimension.

4 Example and Performance Evaluation

In order to assess the performance of the proposed concept we compare dif-
ferent implementations for the numerical solution of the following linear hy-
perbolic equation:

∂u

∂t
+ ∇ · (vu) = 0 in Ω, u = g on Γin = {x ∈ ∂Ω | v(x) · n ≤ 0}.

We discretize this equation with a cell-centered finite volume scheme using
full upwind and an implicit Euler scheme in time. We note that this is not
a particularly good scheme. However, it is very well suited to compare run-
times since it is simple but contains all essential features of more complicated
schemes as far as the mesh interface is concerned.

Table 1 shows the run-time for assembling the system matrix using various
implementations. Implementation A is for a structured mesh. In implementa-
tions B and C the discretization is based on the DUNE mesh interface, thus it
can be used for any dimension and element type. B uses simplegrid, an imple-
mentation of the mesh interface supporting structured meshes of variable di-
mension with entities of codimension d and 0. C uses an implementation of the

Towards a Unified Framework for Scientific Computing 173

Table 1. Run-time for matrix assembly in a cell-centered finite volume scheme. We
used a Pentium IV computer (2.4 GHz) with the Intel C++ compiler icc 7.0.

Key Implementation Grid Run-time [s]

A structured grid 1283 hex 0.37
B DUNE/simplegrid 1283 hex 1.59
C DUNE/albertgrid 6 · 643 tet 4.20
D Albert 6 · 643 tet 3.13
E UG 6 · 643 tet 2.64
F UG 1283 hex 45.60

mesh interface based on the PDE toolbox ALBERT, see Schmidt and Siebert
[2000], D is the same test using ALBERT directly without going through the
interface. ALBERT supports simplicial elements in two and three space di-
mensions with bisection refinement. Finally, in E and F, we implemented the
discretization scheme within the PDE framework UG (Bastian et al. [1997])
using hexahedral and tetrahedral meshes. Increase of run-time per element
from E to F is due to the more costly element transformation for hexahe-
dra. We are currently implementing the DUNE mesh interface based on UG.
Run-times of cases E and F can be considered as preliminary results for a
DUNE/UG mesh module.

From Table 1 we conclude that performance can be increased by a factor
of 30 when we replace the unstructured hexahedral mesh (F) by a struc-
tured mesh (B). Memory requirements are reduced by a factor 10. These
improvements are achieved without changes in the application code (here the
discretization). Additional savings by a factor 4 in run-time (A) are only possi-
ble at the cost of reduced functionality of the user code. Memory requirements
of the DUNE/simplegrid and structured mesh variants are the same.

Fig. 4. Large scale parallel three-dimensional simulations. Contaminant transport
in a heterogeneous medium (higher order Godunov scheme, 5 ·108 cells, left), density
driven flow in a porous medium (8 · 108 cells in three dimensions, right).

174 Bastian, Droske, Engwer, Klöfkorn, Neubauer, Ohlberger, Rumpf

5 Conclusion and Future Prospects

In this paper we presented a new framework for the numerical solution of
partial differential equations. The concept consequently separates data struc-
tures and algorithms. Algorithms are written in terms of abstract interfaces,
the interfaces are implemented efficiently using static polymorphism in C++.
We evaluated the performance of this approach for a simple discretization
scheme. The run-time can be improved by up to a factor 30 by replacing an
unstructured mesh implementation with a structured mesh implementation.
The improvement is possible without any changes in the application code.

Currently we are extending the mesh interface by a general parallel data
distribution model which will allow the formulation of overlapping and non
overlapping domain decomposition methods as well as parallel multigrid meth-
ods on the same interface. First results of the parallel implementation are
shown in Figure 4. Large scale computations with up to 1010 grid cells are
possible on a 500 processor Linux cluster with a structured mesh implemen-
tation.

For data visualization, DUNE will be linked to the graphics packages
GRAPE, Geßner et al. [1999], and AMIRA, Amira [2002].

References

Amira. Amira 3.0 Visualization Software. http://www.amiravis.com/, 2002.
J. Barton and L. Nackman. Scientific and Engineering C++. Addison-Wesley,

1994.
P. Bastian et al. UG - A flexible software toolbox for solving partial differential

equations. Computing and Visualization in Science, 1:27–40, 1997.
BLAST. Basic Linear Algebra Subprograms Technical (BLAST) Forum Stan-

dard. http://www.netlib.org/blas/blast-forum/, 2001.
F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley, 1975.
T. Geßner et al. A procedural interface for multiresolutional visualization of

general numerical data. Report 28, SFB 256, Bonn, 1999.
D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide.

Addison-Wesley, 2001.
A. Schmidt and K. Siebert. ALBERT – An adaptive hierarchical finite element

toolbox. Preprint 06/2000 Freiburg, 2000.
T. Veldhuizen. Techniques for scientific C++. Technical Report 542,

Indiana University Computer Science, 2000. http://osl.iu.edu/˜tveld-
hui/papers/techniques/.

