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Summary. The performance of multigrid methods for the standard Poisson prob-
lem and for the consistent Poisson problem arising in spectral element discretizations
of the Navier-Stokes equations is investigated. It is demonstrated that overlapping
additive Schwarz methods are effective smoothers, provided that the solution in the
overlap region is weighted by the inverse counting matrix. It is also shown that
spectral element based smoothers are superior to those based upon finite element
discretizations. Results for several large 3D Navier-Stokes applications are presented.

1 Introduction

The spectral element method (SEM) is a high-order weighted residual tech-
nique that combines the geometric flexibility of finite elements with the rapid
convergence properties and tensor-product efficiencies of global spectral meth-
ods. Globally, elements are coupled in an unstructured framework with in-
terelement coupling enforced through standard matching of nodal interface
values. Locally, functions are represented as tensor products of stable Nth-
order Lagrangian interpolants based on Gauss-Lobatto (GL) or Gauss (G)
quadrature points. For problems having smooth solutions, such as the incom-
pressible Navier-Stokes equations, the SEM converges exponentially fast with
the local approximation order N . Because of its minimal numerical dissipa-
tion and dispersion, the SEM is particularly well suited for the simulation of
flows at transitional Reynolds numbers, where physical dissipation is small
and turbulence-model dissipation is absent.

The two-level hierarchy of the spectral element discretization provides a
natural route to domain decomposition with several benefits. The loose C0

interelement coupling implies that the stencil depth does not increase with ap-
proximation order, so that interprocessor communication is minimal. The local
tensor-product structure allows matrix-vector products to be recast as cache-
efficient matrix-matrix products and also allows local subdomain problems to
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be solved efficiently with fast tensor-product solvers. Finally, the high-order
polynomial expansions provide a readily available sequence of nested grids
(obtained through successive reductions in polynomial degree) for use in mul-
tilevel solvers.

This paper presents recent developments in spectral element multigrid
(SEMG) methods. Our point of departure is the original work of Rønquist
and Patera [1987] and Maday and Muñoz [1988], who developed variational
SEMG for the two-dimensional Poisson problem using intra-element prolon-
gation/restriction operators coupled with Jacobi smoothing. The high-aspect-
ratio cells present in the tensor-product GL grid are a well-known source of
difficulty in spectral multigrid methods and have drawn much attention over
the past decade. We have developed multigrid smoothers in Lottes and Fis-
cher [2004] based on the overlapping additive Schwarz method of Dryja and
Widlund [1987] and Fischer et al. [2000]. We bypass the high-aspect-ratio
cell difficulty by solving the local problems directly using fast tensor-product
solvers; this approach ensures that the smoother cost does not exceed the
cost of residual evaluation. Here, we extend our SEMG approach from the
two-dimensional Laplacian to the more difficult consistent Poisson operator
that governs the pressure in the mixed IPN– IPN−2 spectral element formula-
tion of Maday and Patera [1989].

In the next section, we introduce the SE discretization for a model Pois-
son problem. The basic elements of our multilevel iterative procedures are
presented in Section 3, along with results for the Poisson problem. Extensions
to unsteady Navier-Stokes applications are described in Section 4.

2 Discretization of the Poisson Problem

The spectral element discretization of the Poisson problem in IRd is based on
the weighted residual formulation: Find u ∈ XN such that

(∇v,∇u)GL = (v, f)GL ∀v ∈ XN . (1)

The inner product (., .)GL refers to the Gauss-Lobatto-Legendre (GL) quadra-
ture associated with the space XN := [ZN ∩ H1

0 (Ω)], where ZN := {v ∈
L2(Ω)|v|Ωe ∈ IPN (Ωe)}. Here, L2 is the space of square integrable functions
on Ω; H1

0 is the space of functions in L2 that vanish on the boundary and
whose first derivative is also in L2; and IPN (Ωe) is the space of functions on
Ωe whose image is a tensor-product polynomial of degree ≤ N in the reference
domain, Ω̂ := [−1, 1]d. For d = 2, a typical element in XN is written

u(xe(r, s))|Ωe =

N∑

i=0

N∑

j=0

ue
ijh

N
i (r)hN

j (s) , (2)

where ue
ij is the nodal basis coefficient; hN

i ∈ IPN is the Lagrange polynomial

satisfying hN
i (ξj) = δij , where ξj , j = 0, . . . , N are the the GL quadrature
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Fig. 1. Spectral element configuration (E = 9, N = 8) showing Lagrange interpola-
tion points for functions in XN (left) and Y N (right). The shaded regions illustrate
the “minimal overlap” domain extension for the overlapping Schwarz smoothers.

points (the zeros of (1−ξ2)L′
N (ξ), where LN is the Legendre polynomial of de-

gree N) and δij is the Kronecker delta function; and xe(r, s) is the coordinate

mapping from Ω̂ to Ωe. We assume Ω = ∪E
e=1Ω

e and that the intersection of
two subdomains (spectral elements) is an entire edge, a single vertex, or void.
Function continuity (u ∈ H1) is enforced by ensuring that nodal values on
element boundaries coincide with those on adjacent elements. Figure 1 illus-
trates a spectral element decomposition of the square using E = 9 elements.
The Gauss-Lobatto-based mesh on the left shows the nodal distribution for
XN . The Gauss-based mesh on the right is used for functions in YN , which
will be introduced in the context of the Stokes discretization in Section 4.

Computational Preliminaries. Because we employ iterative solvers, we
need an efficient procedure for evaluating matrix-vector products associated
with the bilinear forms in (1). As noted by Orszag [1980], tensor-product bases
play a key role in this respect, particularly for large N (i.e., N ≥ 8). Here,
we introduce several points that are central to our element-based solution
strategy.

As with standard finite element methods, we assume availability of both
local element-based and global mesh-based node numberings, with the local-
to-global map given by q(i1, . . . , id, e) ∈ {1, . . . , n̄}, for ik ∈ {0, . . . , N}, k ∈
{1, . . . , d}, and e ∈ {1, . . . , E}, where n̄ is the number of distinct global nodes.
Let QT be the n̄×E(N+1)d matrix with columns êq(i1,...,id,e), where êq denotes
the qth column of the n̄× n̄ identity matrix. Then the matrix-vector product
uL = Qu represents a global-to-local mapping for any function u(x) ∈ XN ,
and the bilinear form on the left of (1) can be written

(∇v,∇u) = vT QT ALQu, (3)
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where AL=block-diag(Ae)E
e=1 is the unassembled stiffness matrix comprising

the local stiffness matrices, Ae, and QT and Q correspond to respective gather
and scatter operations. In practice the global stiffness matrix, A := QT ALQ,
is never formed. One simply effects the action of A by applying each matrix
to a vector through appropriate subroutine calls.

In the SEM, computational efficiency dictates that local stiffness matrices
should also be applied in matrix-free form. The local contributions to (3) are

(∇v,∇u)e
GL = (ve)T Aeue = (ve)T

(
D1

D2

)T(
Ge

11 Ge
12

Ge
12 Ge

22

) (
D1

D2

)
ue, (4)

with respective geometric factors and derivative operators,

Ge
ij :=

(
B̂ ⊗ B̂

) [
d∑

k=1

∂ri

∂xk

∂rj

∂xk

]e

Je, D1 := (I ⊗ D̂), D2 := (D̂ ⊗ I). (5)

Here, ve and ue are vectors containing the lexicographically ordered nodal
basis coefficients {ve

ij} and {ue
ij}, respectively; B̂=diag(ρk)

N
k=0 is the one-

dimensional mass matrix composed of the GL quadrature weights; and D̂ is
the one-dimensional derivative matrix with entries

D̂ij =
dhj

dr

∣∣∣∣
ξi

, i, j ∈ {0, . . . , N}2.

The Jacobian, Je, and metric terms (in brackets in (5)) are evaluated pointwise
at each GL quadrature point, (ξp, ξq), so that each of the composite geometric
matrices, Ge

ij , is diagonal.
The presence of the cross terms, Ge

12, implies that Ae is full and requires
storage of (N + 1)4 nonzeros for each spectral element if explicitly formed.
In the spectral element method, this excessive storage and work overhead is
avoided by retaining the factored form (5), which requires (to leading order)
storage of only 3E(N + 1)2 nonzeros and work of ≈ 8E(N + 1)3 per matrix-
vector product. The savings is more significant in 3D, where the respective
storage and work complexities are 6E(N + 1)3 and ≈ 12E(N + 1)4 for the
factored form, versus O(EN6) if A is explicitly formed. Moreover, the leading
order work terms for the factored form can be cast as efficient matrix-matrix
products, as discussed in detail by Deville et al. [2002]. These complexity
savings can be extended to all system matrices and are the basis for efficient
realizations of high-order weighted residual techniques.

If Ωe is a regular parallelepiped, the local stiffness matrix simplifies to a
separable form. For example, for an Le

x × Le
y rectangle, one would have

Ae =
Le

y

Le
x

B̂ ⊗ Â +
Le

y

Le
x

Â ⊗ B̂, Â := D̂T B̂D̂. (6)

This form has a readily computable (pseudo-) inverse given by the fast diag-
onalization method (FDM) of Lynch et al. [1964],
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A−1
e = (S ⊗ S)

[
Le

y

Le
x

I ⊗ Λ +
Le

y

Le
x

Λ ⊗ I

]−1

(ST ⊗ ST ), (7)

where S is the matrix of eigenvectors and Λ the matrix of eigenvalues satisfying
ÂS = B̂SΛ and ST B̂S = I. The bracketed term in (7) is diagonal, and its
pseudo-inverse is computed by inverting nonzero elements and retaining zeros
elsewhere. For arbitrarily deformed elements, the discrete Laplacian cannot be
expressed in the tensor-product form (6), and the FDM cannot be used. For
the purposes of a preconditioner, however, it suffices to apply the FDM to a
regular parallelepiped of equivalent size, as demonstrated in Couzy [1995] and
Fischer et al. [2000]. Similar strategies for the case of nonconstant coefficients
are discussed by Shen [1996].

3 Multilevel Solvers

We are interested in methods for solving the global system Au = g. To intro-
duce notation, we consider the two-level multigrid sweep.

Procedure Two-Level: (8)

i) uk+1 = uk + σM(g − Auk), k = 0, . . . , md − 1

ii) r = g − Aumd

iii) ẽ = σCPA−1
C PT r

iv) ũ0 = umd + ẽ

v) ũk+1 = ũk + σM(g − Aũk), k = 0, . . . , mu − 1

vi) If ||Aũmu − g|| < tol, set u := ũmu , quit.

Else, u0 := ũmu , go to (i).

Here M is the smoother, σ and σC are relaxation parameters, and md and mu

are the number of smoothing steps on the downward and upward legs of the
cycle, respectively. Steps (i) and (v) are designed to eliminate high-frequency
error components that cannot be represented on the coarse grid. The idea is
that the error after (ii), e := A−1r, should be well approximated by ẽ, which
lies in the coarse-grid space represented by the columns of P . The coarse-grid
problem, A−1

C , is solved directly, if AC is sufficiently sparse, or approximated
by recursively applying the two-level procedure to the AC system, giving rise
to the multigrid “V” cycle. The prolongation matrix P interpolates from the
coarse space to the fine nodes using the local tensor-product basis functions
for the coarse space.

If the two-level procedure is used as a preconditioner, we take u0 = 0,
md = 1, and mu = 0, and the procedure simplifies to the following.

Procedure Preconditioner: (9)
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i) u1 = σMg,

ii) r = g − Au1

iii) ẽ = σCPA−1
C PT r

iv) u = u1 + ẽ, return.

The preconditioner can be viewed either as an application of the multigrid
V-cycle or as a two-level multiplicative Schwarz method (Smith et al. [1996]).
By simply replacing (ii) with r = g, we obtain a two-level additive Schwarz
method, which has the advantage of avoiding an additional multiplication
by A. This savings is important in the Navier-Stokes applications that we
consider in Section 4.

Smoothers for the Poisson Problem. Here, we review the SEMG smooth-
ing strategies considered for the Poisson problem in Lottes and Fischer [2004].
Our original intent was to base the smoother, M , on the additive overlapping
Schwarz method of Dryja and Widlund [1987], with local subdomain prob-
lems discretized by finite elements (FEs) having nodes coincident with the GL
nodes, as considered by Casarin [1997], Fischer [1997], and Pahl [1993]. By
using the fast diagonalization method to solve the local problems, however, we
are freed from the constraint of using FE-based preconditioners because the
cost depends only on the use of tensor-product forms and not on the sparsity
of the originating operator. Hence, we are able to consider subdomain prob-
lems derived as restrictions of the originating spectral element matrix, A, as
first suggested by Casarin [1997].

The use of Schwarz-based smoothing, which is arguably more expensive
than traditional smoothers, is motivated by several factors. First, it is not
practical to apply Gauss-Seidel smoothing in the SEM because the matrix en-
tries are not available (see (4)). The alternative of pointwise-Jacobi smoothing
was shown by Rønquist [1988] and Maday et al. [1992] not to scale for d > 1.
Specifically, the authors demonstrated a convergence factor of ρ = 0.75 for
d = 1, but only ρ = 1−c/N log N for d = 2. Second, while one can exploit the
SE-FE spectral equivalence established by Orszag [1980] to ostensibly convert
the SE problem into a FE problem and then apply traditional multigrid, the
FE problem inherits the difficulties of its SE counterpart, namely, the high-
aspect ratio cells that arise from the tensor-product of the one-dimensional
Gauss-Lobatto grids. Moreover, even if the GL-based FE problem could be
solved with low work, the iteration count would still be higher than what is
observed for the Schwarz-based approach. Third, to minimize cost, it is reason-
able to have a smoother whose cost is on par with that of residual evaluation
if it can substantially reduce the iteration count.

We illustrate the problem of high-aspect ratio cells by considering appli-
cation of the two-level procedure (8) to the model Poisson problem (1) dis-
cretized on the unit square with an 8N×8N array of bilinear finite elements.
Iteration counts for four different smoothing strategies are shown in Table 1.
Jacobi implies M−1:=diag(A); GSRB is a Gauss-Seidel sweep with the nodes
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Table 1. MG method on FE problem.

FE Smoother/ Coarse Iterations, 10−11 Reduction
Spacing No. Preconditioner Space N = 4 N = 8 N = 12 N = 16

Uniform a Jacobi N/2 39 38 38 38
b GSRB N/2 9 9 9 9
c H Schwarz N/2 40 41 42 42
d H Schwarz (W ) N/2 7 7 6 6

SE e Jacobi N/2 41 84 148 219
f GSRB N/2 11 28 46 65
g H Schwarz N/2 40 43 47 52
h H Schwarz (W ) N/2 6 7 7 9

ordered into two maximally independent (“red-back”) subsets; and H Schwarz
and H Schwarz(W ) correspond to the hybrid Schwarz-based smoothers intro-
duced below. In all cases, σ is chosen such that the maximum eigenvalue of
σMA is unity, and σC = 1. The coarse system is solved directly and is based
on the same FE discretization, save that, in each direction, every other nodal
point is discarded. The first set of results is for uniformly sized elements of
length 1/8N on each side. Resolution-independent convergence is obtained
for each of the smoothing strategies, with GSRB and H Schwarz(W ) being
the most competitive. Although H Schwarz(W ) has a lower iteration count,
GSRB requires less work per iteration, and the two are roughly equal in com-
putational cost. The second set of results is for an 8N×8N array of bilinear
elements whose vertices coincide with the GL node spacing associated with an
8×8 array of spectral elements of order N . In this case, the pointwise Jacobi
and GSRB smoothers break down as N is increased. Only H Schwarz(W )
retains performance comparable to the uniform grid case. We note that line-
based relaxation strategies proposed by Shen et al. [2000] and Beuchler [2002]
also compensate for the high-aspect-ratio cell difficulty. For the values of N
considered here, however, the hybrid Schwarz approach is likely to be faster, at
least on cache-based architectures, where the matrix-matrix product-oriented
fast-diagonalization method is very effective.

Our hybrid Schwarz strategy is based on a multiplicative combination of
an additive Schwarz smoother at the fine scale and a coarse-grid correction.
The smoother, originally due to Dryja and Widlund [1987], is written as

M :=

E∑

e=1

RT
e A−1

e Re. (10)

Here, Re is the standard Boolean restriction matrix that extracts from a global
nodal vector those values associated with the interior of the extended sub-
domain Ω̄e. In all cases, Ω̄e is an extension of Ωe that includes a single row
(or plane, in 3D) of nodal values in each of 2d directions. as illustrated in
Fig. 1 (left). RT

e extends by zero the vector of nodal values interior to Ω̄e
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Fig. 2. Error plots for the hybrid Schwarz preconditioner and coarse solve, with
NC = N/2 and (E, N) = (4, 16), applied to a random initial guess.

to a full length vector. Multiplication by A−1
e is effected by using the fast

diagonalization method similar to (7). In a preprocessing step, one assembles
one-dimensional stiffness and mass matrices, A∗ and B∗ (∗ = x, y or z), for
each space dimension, 1, . . . , d; restricts these to the relevant ranges using a
one-dimensional restriction matrix Re

∗; and solves an eigenvalue problem of the
form ((Re

∗)
T A∗R

e
∗)S

e
∗ = ((Re

∗)
T B∗R

e
∗)S

e
∗Λ

e
∗ to obtain the requisite eigenpairs

(Se
∗ , Λ

e
∗). Because the spectral elements are compactly supported, the prepro-

cessing step requires knowledge only of the size of the elements on either side
of Ωe, in each of the d directions. For subdomains that are not rectilinear, Ae

is based on average lengths in each direction.
We have found it important to weight the solutions in the overlap region

by the inverse of the diagonal counting matrix

C :=
E∑

e=1

RT
e Re. (11)

The entries of C enumerate the number of subdomains that share a particu-
lar vertex. Setting W = C−1 gives rise to the weighted overlapping Schwarz
smoother MW := WM . Although convergence theory for the weighted
Schwarz method is yet to be developed, the methodology of Frommer and
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Szyld [2001] should be applicable to this setting as well. In addition to reduc-
ing the maximum eigenvalue of MA (which, by simple counting arguments, is
maxCii; see Smith et al. [1996]), multiplication by W significantly improves
the smoothing performance of the additive Schwarz step. This latter point is
illustrated in Fig. 2, which shows the error when the two-level preconditioner
(9) is applied to random right-hand-side vector for a 2×2 array of spectral
elements with N=16. Figure 2(a) shows the error after a single application of
the additive Schwarz smoother (10), with σ=1. While the solution is smooth
in the interior, there is significant undamped error along the interface, par-
ticularly at the cross point. As noted by Lottes and Fischer [2004], the error
along the interface can be reduced by choosing σ = 1/4, but the overall error
is no longer smooth. In either case, the subsequent coarse-grid correction does
not yield a significant error reduction. By contrast, the error after application
of MW , seen in Fig. 2(c), is relatively smooth, and the coarse-grid correction
is very effective. Comparing the magnitudes in Figs. 2(b) and 2(d), one sees
a tenfold reduction in the error through the introduction of W .

Table 2 presents convergence results for the Poisson problem on the square
discretized with an 8×8 array of spectral elements. Case 2(a) shows results for
the unweighted additive Schwarz preconditioner using an FE-based smoother.
This scheme is the Poisson equivalent to the method developed by Fischer
et al. [2000] for the pressure subproblem considered in the next section. For
all the other cases, Ae is based on a restriction of A rather than on an FE
discretization. Case 2(b) shows that this simple change considerably reduces
the iteration count. Enriching the coarse space from NC = 1 to N/2 and
incorporating the weight matrix W yields further reductions in iteration count
and work. (Because of symmetry requirements, W is applied as a pre- and
postmultiplication by W 1/2 for the preconditioned conjugate gradient, PCG,
cases). The work shown in the last column of Table 2 is an estimate of the
number of equivalent matrix-vector products required to reduce the error by
10−11. Rather than attempting to symmetrize the hybrid Schwarz method
(9), we simply switched to GMRES, which allowed W to be applied directly
during the summation of the overlapping solutions. Comparison of cases 2(f)
and 2(h) underscores the importance of weighting.

4 Extension to Navier-Stokes

Efficient solution of the incompressible Navier-Stokes equations in complex
domains depends on the availability of fast solvers for sparse linear systems.
For unsteady flows, the pressure operator is the leading contributor to stiff-
ness, as the characteristic propagation speed is infinite. Our pressure solution
procedure involves two stages. First, we exploit the fact that we solve similar
problems from one step to the next by projecting the current solution onto
a subspace of previous solutions to generate a high-quality initial approxima-
tion, as outlined in Fischer [1998]. We then compute the correction to this
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Table 2. Iteration count for E=8×8 SE problem.

Smoother/ Coarse Iterations, 10−11 Reduction Work
Method No. Preconditioner Space N = 4 N = 8 N = 12 N = 16 N = 16

PCG a A Schwarz (FE) 1 28 35 46 58 116
b A Schwarz 1 25 27 35 43 86
c A Schwarz N/2 26 26 26 27 81
d A Schwarz (W ) 1 17 24 33 43 86
e A Schwarz (W ) N/2 16 21 22 24 72

MG/ f H Schwarz N/2 21 23 24 25 100
GMRES g H Schwarz (W ) 1 14 20 29 36 108

h H Schwarz (W ) N/2 13 12 12 13 52

approximation using a scalable iterative solver. Here, we extend the multigrid
methods presented in the preceding sections to computation of the pressure
in SE-based simulations of incompressible flows.

To introduce notation, we review the Navier-Stokes discretization pre-
sented in detail in Fischer [1997]. The temporal discretization is based on
a semi-implicit scheme in which the nonlinear term is treated explicitly and
the remaining unsteady Stokes problem is solved implicitly. Our spatial dis-
cretization is based on the IPN − IPN−2 spectral element method of Maday
and Patera [1989]. Assuming fn incorporates all terms explicitly known at
time tn, the IPN − IPN−2 formulation of the Navier-Stokes problem reads:
Find (un, pn) ∈ XN × YN such that

1

Re
(∇v,∇un)GL +

1

∆t
(v,un)GL − (∇ · v, pn)G = (v, fn)GL, (12)

(q,∇ · un)G = 0,

∀ (v, q) ∈ XN ×YN . The inner products (., .)GL and (., .)G refer to the Gauss-
Lobatto-Legendre (GL) and Gauss-Legendre (G) quadratures associated with
the spaces XN := [ZN ∩ H1

0 (Ω)]d and YN := ZN−2, respectively, and ZN is
the space introduced in conjunction with (1). The local velocity basis is given,
componentwise, by the form (2). The pressure is similar, save that the nodal
interpolants are based on the N -1 Gauss points, ηi ∈ (−1, 1), as illustrated in
Fig. 1 (right).

Insertion of the SEM bases into (12) yields a discrete Stokes system to be
solved at each step:

Hun − DT pn = Bfn, Dun = 0. (13)

H = 1
ReA + 1

∆tB is the discrete equivalent of the Helmholtz operator, (
− 1

Re∇
2 + 1

∆t ); −A is the discrete Laplacian; B is the (diagonal) mass matrix
associated with the velocity mesh; D is the discrete divergence operator, and
fn accounts for the explicit treatment of the nonlinear terms. Note that the
Galerkin approach implies that the governing system in (13) is symmetric and
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that the matrices H, A, and B are all symmetric positive definite. We have
used bold capital letters to indicate matrices that interact with vector fields.

The Stokes system (13) is advanced by using the operator splitting ap-
proach presented by Maday et al. [1990] and Perot [1993]. One first solves

Hû = Bfn + DT pn−1, (14)

which is followed by a pressure correction step

E δpn = −
1

∆t
Dû, un = û + ∆tB−1DT δpn, pn = pn−1 + δpn, (15)

where E := DB−1DT is the Stokes Schur complement governing the pressure
in the absence of the viscous term.

E is the consistent Poisson operator for the pressure and is spectrally
equivalent to A. Through a series of tests that will be reported elsewhere,
we have found the following to be an effective multilevel strategy for solving
E. We employ (9) to precondition GMRES with a weighted additive Schwarz
smoother. The local problems are based on Ee := R̃eER̃T

e , where the sub-
domains defined by the restriction matrices R̃e correspond to the minimal-
overlap extension illustrated in Fig. 1 (right). The coarse-grid problem, AC ,
is based on A with NC = N/2 (typically), which was found not only to be
cheaper but also better at removing errors along the element interfaces. At
all intermediate levels, A−1

C is approximated with a single V-cycle (8).
The local problems are solved using the fast diagonalization method, which

requires that Ee (and therefore E) be separable. In two dimensions, we need
to cast E in the form

E = Jy ⊗ Ex + Ey ⊗ Jx. (16)

For simplicity, we assume that we have a single element with Ω = Ω̂ and
ignore the details of boundary conditions. From the definition of E, we have

E = DxB−1DT
x + DyB−1DT

y . (17)

The divergence and inverse mass matrices have the tensor-product forms

Dx = (B̃ ⊗ B̃)(J̃ ⊗ D̃), Dy = (B̃ ⊗ B̃)(D̃ ⊗ J̃), B−1 = (B̂−1 ⊗ B̂−1).(18)

Here, B̃=diag(ρ̃i)
N−1
i=1 consists of the Gauss-Legendre quadrature weights, and

J̃ and D̃ are respective interpolation and derivative matrices mapping from
the GL points to the G points,

J̃ij = hN
j (ηi), D̃ij =

dhN
j

dr

∣∣∣∣∣
r=η

i

. (19)

Inserting (18) into (17) yields the desired form (16) with
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(a)

(b)

(c) (d) (e)

Fig. 3. SE Navier-Stokes examples: (a) E = 1021 mesh, inlet profile, and vorticity
contours for roughness element; (b) E = 1536 mesh and (c) temperature contours
for buoyancy driven convection; (d) E = 2544 mesh and (e) coherent structures for
flow in a diseased carotid artery.

Jx = Jy = B̃J̃ B̂−1J̃T B̃T , Ex = Ey = B̃D̃B̂−1D̃T B̃T . (20)

The extension to multiple elements follows by recognizing that the gather-
scatter operator used to assemble the local matrices can be written as Q =
Qy ⊗Qx for a tensor-product array of elements. Following our element-centric
solution strategy, we thus generate Ee by viewing Ωe as being embedded in
a 3d array of rectilinear elements of known dimensions. Unlike Ae, the entries
of Ee are also influenced by the “neighbors of neighbors.” This influence,
however, is small and is neglected.

Navier-Stokes Results. We turn now to application of spectral element
multigrid (SEMG) to the simulation of unsteady incompressible flows. In nu-
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Fig. 4. Iteration histories for FE-based two-level (std), weighted SE-based two-
level (wgt), additive multilevel (add), and multiplicative multilevel (hyb) schemes
for spectral elements simulations of order N=9: (a) hairpin vortex, E=1021; (b)
hemispherical convection, E=1536; and (c) carotid artery simulation, E=2544.

merous 2D and 3D Navier-Stokes test problems, we have found the additive
variant of the procedure outlined in the preceding section to be roughly two
to three times faster than the two-level additive Schwarz method developed
in Fischer et al. [2000]. A sample of these results is presented below.

We consider the three test cases shown in Fig. 3. The first case, Fig. 3(a),
is boundary-layer flow past a hemispherical roughness element at Reynolds
number Re=1000 (based on roughness height). The flow generates a pre-
transitional chain of hairpin vortices evidenced by the spanwise vorticity con-
tours shown in the symmetry plane. The second example, Fig. 3(b)-(c), is
buoyancy-driven convection in a rotating hemispherical shell having inner
radius 2.402 and outer radius 3.3. The Rayleigh number (based on shell thick-
ness) is Ra=20,000 and the Taylor number is Ta=160,000. The third case,
Fig. 3(d)-(e), simulates transitional flow in a diseased carotid artery. The se-
vere stenosis in the internal (right) branch results in high flow velocities and,
ultimately, transition to turbulence. Figure 3(e) shows the coherent structures
that arise just before peak systole.

Figure 4 shows the pressure iteration history for the first 85 timesteps of
the three examples, using the initial conditions of Fig. 3. For all cases, N=9
and the coarse problem is based on linear elements whose vertices are derived
from an oct-refinement of the SE mesh. Four methods are considered: std

refers to the two-level additive Schwarz method of Fischer et al. [2000]; wgt

is the same as std, save that Ee is based on a restriction of E, rather than an
FE-based discretization of the Poisson problem, and that the weight matrix
W is included; add is the same as wgt, save that three levels are employed,
with Nmid=5; hyb is the same as add, save that the multiplicative variant of
(9) is used. PCG is used for std and wgt, whereas GMRES is used for add

and hyb. Although hyb requires fewer iterations, add is the fastest method
because it requires only one product in E per iteration. The prominent spikes
in Fig. 4(b) result from resetting the projection basis set (Fischer [1998]).
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Table 3. add Avg. Iteration Count for Navier-Stokes Examples

Problem N=5 N=7 N=9 N=11 N=13 N=15 N=17

Hairpin Vortex 9.8 11.1 15.1 17.5 20.4 23.5 26.1

Spherical Conv. 8.2 7.8 8.3 8.9 9.9 10.9 11.6

Carotid Artery 18.5 20.6 23.7 26.0 29.3 32.5 36.0

Carotid (wgt) 16.5 22.2 30.0 39.5 48.4 59.4 65.8

The scalability of the three-level add method is illustrated in Table 3,
which shows the average iteration count over the last 20 steps for varying
N with Nmid=N/2. Order-independence is not assured in complex domains,
particularly if the mesh contains high aspect-ratio elements (Fischer [1997]).
The performance of add is nonetheless quite reasonable when one considers
that the number of pressure nodes varies by a factor of 64 in moving from N =
5 to 17. For purposes of comparison, results for the wgt method are shown
for the carotid. The additional level of add clearly reduces order dependence.
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