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Summary. In recent years the hybrid-Trefftz finite element (hT-FE) model, which
originated in the work by Jirousek and his collaborators and makes use of an inde-
pendently defined auxiliary inter-element frame, has been considerably improved. It
has indeed become a highly efficient computational tool for the solution of difficult
boundary value problems In parallel and to a large extent independently, a general
and elegant theory of Domain Decomposition Methods (DDM) has been developed
by Herrera and his coworkers, which has already produced very significant numeri-
cal results. Theirs is a general formulation of DDM, which subsumes and generalizes
other standard approaches. In particular, it supplies a natural theoretical frame-
work for Trefftz methods. To clarify further this point, it is important to spell out
in greater detail than has been done so far, the relation between Herrera’s theory
and the procedures studied by researchers working in standard approaches to Trefftz
method (Trefftz-Jirousek approach). As a contribution to this end, in this paper the
hybrid-Trefftz finite element model is derived in considerable detail, from Herrera’s
theory of DDM. By so doing, the hT-FE model is generalized to non-symmetric
systems (actually, to any linear differential equation, or system of such equations,
independently of its type) and to boundary value problems with prescribed jumps.
This process also yields some numerical simplifications.

1 Introduction

Trefftz [1926] method was originated by this author. However, the origins of
the hybrid-Trefftz (HT) finite element (FE) model are only around twenty five
years old, Jirousek and Leon [1977], Jirousek [1978]. Since then it has become
a highly efficient computational tool for the solution of difficult boundary
value problems, Jirousek and Wroblewski [1996], Qin [2000], with an increas-
ing popularity among researchers and practitioners. In parallel and to a large
extent independently, a general and elegant theory of domain decomposition
methods (DDM) has been developed by Herrera and coworkers (Herrera et al.
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[2002] and Herrera [2003]). This, throughout its different stages of develop-
ment, has been known by a variety of names; mainly, localized adjoint method
(LAM), Trefftz-Herrera method and unified theory of DDM. This is a gen-
eral formulation, which subsumes and generalizes many other approaches. In
particular, it seems to be the natural framework for Trefftz methods and sev-
eral aspects of that theory have been recognized as fundamental by some of
the most conspicuous researchers of these methodologies (Jirousek and Wrob-
lewski [1996], Zielinski [1995] and Jirousek and Zielinski [1997]). However, it
is important to spell out in greater detail than thus far, the relation between
Herrera’s theory and the procedures of Trefftz-Jirousek approach, Jirousek
and Wroblewski [1996], which are extensively used by the researchers working
in Trefftz method.

In particular, to this end, in the present paper a detailed analysis and com-
parison of the hybrid-Trefftz finite element model is carried out using Herrera’s
theory. In this manner, the HT-FE approach is generalized to problems with
prescribed jumps and to non-symmetric operators. Also, a manner in which
a significant reduction of the number of degrees of freedom involved in the
HT-FE global equations is indicated. Although only problems formulated in
terms Laplace operator are considered, the results can be extended to very
general classes of differential operators using Herrera’s general framework, as
it will be explained in a paper now being prepared.

2 Notations and auxiliary results

Since the main purpose of this paper is to clarify the relation between Herrera’s
theory and Trefftz-Jirousek approach, as was stated in the Introduction, the
notation that is used follows closely that which is standard is expositions of
this latter approach (Qin [2000]). In addition, it is related with that which has
been applied in Herrera’s theory developments. A domain, Ω, is considered
and one of its partitions {Ω1, ..., ΩE}, referred as ‘the partition’. In addition
to the boundary Γ , of Ω, to be referred as the ‘outer boundary’, one considers
the ‘internal boundary’ ΓI , which separates the subdomains from each other.
The outer boundary is assumed to be the union of Γu and Γq. The boundary
Γe, of every subdomain, Ωe, of the partition, is assumed to be the union of
Γeu ≡ Γe ∩ Γu, Γeq ≡ Γe ∩ Γq and ΓeI ≡ Γe ∩ ΓI . Trial and test functions are
taken from the same linear space, D, whose members are functions defined in
each one of the subdomains and, therefore, are generally discontinuous across
ΓI , together with their derivatives. Borrowing from Herrera’s notation, one
writes

[u] ≡ u+ − u− and
⌢̇
u ≡

1

2
(u+ + u−) (1)

[u] and
⌢̇
u are referred as the ‘jump’ and the ‘average’ of u, respectively.

Here, u+ and u− are the limits from the positive and negative sides, respec-
tively. The internal boundary is oriented by defining a unit normal vector n
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whose sense is chosen arbitrarily; then, the convention is that n points toward
the positive side.

Given two functions, u ∈ D and w ∈ D, the following relation between
Jirousek’s and Herrera’s notations will be applied in the sequel

E∑

e=1

∫

ΓeI

w
∂u

∂n
dσ ≡ −

∫

ΓI

[
w

∂u

∂n

]
dσ (2)

In the left-hand side of this equation, using Jirousek’s notation, the normal
derivative is taken with respect to the unit normal vector that points outwards
of Ωe. Thus, when Jirousek’s notation is used one has two unit normal vectors
defined at each point of ΓI , while in Herrera’s notation there is only one.

3 Trefftz-Jirousek Approach

For simplicity, we restrict attention to the case when the differential oper-
ator is Laplace’s operator and adopt a notation similar to that followed by
Jirousek and his collaborators (see for example Qin [2000]). The boundary
value problem considered in Trefftz-Jirousek method is

Lu ≡ ∆u = b, in Ωe, e = 1, ..., E (3)

u = ū on Γu and
∂u

∂n
= q̄n on Γq (4)

Together with

[u] =

[
∂u

∂n

]
= 0 on ΓI (5)

Observe that any function u ∈ D, which satisfies Eq.(3), can be written as

u = uP + uH (6)

Where
∆uP = b̄, ∆uH = 0, in Ωe, e = 1, ..., E (7)

The above equation, which is fulfilled by uH ∈ D, is homogeneous. There-
fore the set of functions that satisfy Eq.(3), constitutes a linear subspace
DH ⊂ D. In addition, uP ∈ D is not uniquely determined by Eq.(7). How-
ever, once uP ∈ D is chosen, uH = u−uP is unique. Assuming that a function,
uP ∈ D, fulfilling Eq.(7), has been constructed the search to determine the
solution u ∈ D is carried out in the (affine) subspace DP ≡ uP + DH ⊂ D.
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4 Jirousek’s Variational Principle

The variational principles to be applied are derived from the functional (see
Qin [2000])

Πm ≡
1

2

∫

Ω

(
q2
1 + q2

2

)2
dΩ−

∫

Γu

qnūds+

∫

Γq

(q̄n − qn)uds−
E∑

e=1

∫

ΓeI

qnũds (8)

Observe that Πm is a functional of a pair: (u, ũ), where u ∈ D and ũ,
the so called ‘displacement frame’, is a function defined on ΓI . In Herrera’s
notation, the above functional is

Πm ≡

1

2

∫
Ω
∇u · ∇udx −

∫
Γu

ū∂u
∂n

dx +
∫

Γq

(
q̄n − ∂u

∂n

)
udx −

E∑
e=1

∫

ΓeI

∂u
∂n

ũdx
(9)

or, introducing the jumps (see the Notations Section)

Πm ≡
1

2

∫
Ω
∇u · ∇udx −

∫
Γu

ū∂u
∂n

dx +
∫

Γq

(
q̄n − ∂u

∂n

)
uds +

∫
ΓI

ũ
[

∂u
∂n

]
dx

(10)

The system of equations used in Trefftz-Jirousek method is obtained by
requiring that the variation of this functional be zero, in the (affine) subspace
of functions that fulfill Eq. (3), while no restriction is imposed on the frame,
ũ. The weak formulation derived using this functional is δΠm = 0, which can
be written as

∫
Ω
∇u · ∇wdx −

∫
Γu

ū∂w
∂n

dx +
∫

Γq

{(
q̄n − ∂u

∂n

)
w − u∂w

∂n

}
dx

+
∫
ΓI

{
w̃

[
∂u
∂n

]
+ ũ

[
∂w
∂n

]}
dx = 0

(11)

Here, w ∈ DH and w̃ stand for the variation of u and ũ, respectively. This is
the form in which it is most frequently applied. However, for our analysis it
is more convenient to write it as

∫
Γu

(u − ū) ∂w
∂n

dx −
∫

Γq
w

(
∂u
∂n

− q̄n

)
dx

+
∫
ΓI

{
w̃

[
∂u
∂n

]
− [u]

⌢̇
∂w
∂n

+

(
ũ −

⌢̇
u

) [
∂w
∂n

]
}

dx = 0
(12)

Therefore, the Euler equations for this variational formulation are the bound-
ary conditions of Eqs. (4) and the continuity conditions for the function and
its normal derivative of Eqs. (5), together with

ũ =
⌢̇
u ≡ u on ΓI (13)

Clearly
⌢̇
u ≡ u because u is continuous across ΓI .

In conclusion, a pair (u, ũ), with u ∈ DP , that satisfies Eq. (12) for every
variation w ∈ DH , has the following properties:
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1. u is solution of the BVP, and
2. ũ = u on ΓI .

Generally the linear subspace DH ⊂ D is infinite dimensional and therefore
the search for u ∈ DP , in the entirety of DP ⊂ D, is not feasible. In order to
make it feasible, a finite-dimensional (affine) subspace D̂P ≡ uP + D̂H ⊂ D

is introduced as follows: a finite family of linearly independent functions E ≡{
w1, ..., wN

}
⊂ D is chosen and D̂H ⊂ DH is defined to be

D̂H ≡ span
{
w1, ..., wN

}
(14)

The system E ≡
{
w1, ..., wN

}
⊂ D̂H , above, is usually referred as a truncated

T-complete system of homogeneous solutions, Jirousek and Wroblewski [1996].
In addition a system of functions each one of them defined on ΓI exclusively,{
w̃1, ..., w̃Ñ

}
, is introduced. This is referred as the frame basis. Then one

approximates u ∈ DP and ũ, by

û = uP + ûH (15)

and

̂̃u =
Ñ∑

α=1

c̃αw̃α (16)

respectively. Here ûH ∈ D̂H . Clearly, Eq. (14) implies

ûH =

N∑

i=1

ciw
i (17)

Above {c1, .., cN} and {c̃1, .., c̃Ñ} are suitable choices of the coefficients. They
are determined by application of the variational principle discussed before.
Actually, the weak formulations of Eq. (11) or (12) are applied, with u and

ũ replaced by û and ̂̃u, respectively. By inspection, it is seen that the Euler
equations associated with Eq. (12) yield the following approximate relations

û ≈ ū on Γu, ∂û
∂n

≈ q̄n on Γq

[û] ≈
[

∂û
∂n

]
≈ 0 and ũ ≈

⌢̇

û on ΓI

(18)

It is relevant to observe that û ∈ D̂P , as given by Eqs. (15) and (17), is a
discontinuous function and, therefore, its average across ΓI , in Eq. (18), can
not be replaced by its value on ΓI . Also, usually the internal ΓI boundary is
much larger than the external boundary, Γu ∪ Γq, then the relation N ≈ 2Ñ

is fulfilled approximately and the total number of degrees of freedom is

N + Ñ ≈
3

2
N (19)
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5 The BVPJ and Herrera’s Variational Principles

The boundary value problem considered in Herrera’s theory is a boundary
value problem with prescribed jumps (BVPJ) in the internal boundary, ΓI ,
which is the same as that considered in Section 3, except that Eq. (5) is
replaced by

[u] = j0
Σ ,

[
∂u

∂n

]
= j1

Σ on ΓI (20)

where j0
Σ and j1

Σ are given functions defined on ΓI. In Herrera’s theory two
weak formulations are introduced, Herrera [2001], Herrera [1985]: the ‘weak

formulation in terms of the data of the problem’. This is the basis of the direct
approach and it yields weak formulations that are quite similar those usually
applied by other authors. For the BVPJ here considered, it is

〈LHu, w〉 ≡

∫
Ω

w∆udx +
∫

Γu
u∂w

∂n
dx −

∫
Γq

w ∂u
∂n

dx +
∫

ΓI

{
⌢̇
w

[
∂u
∂n

]
− [u]

⌢̇
∂w
∂n

}
dx =

∫
Ω

wb̄dx +
∫

Γu
ū∂w

∂n
dx −

∫
Γq

wq̄ndx +
∫

ΓI

{
⌢̇
wj1

Σ − j0
Σ

⌢̇
∂w
∂n

}
dx

(21)

Which is equivalent to the ’weak formulation in terms of the complementary

information’

〈L∗

Hu, w〉 ≡

∫
Ω

u∆wdx +
∫

Γu
w ∂u

∂n
dx −

∫
Γq

u∂w
∂n

dx +
∫

ΓI

{
⌢̇
u

[
∂w
∂n

]
− [w]

⌢̇
∂u
∂n

}
dx =

∫
Ω

wb̄dx +
∫

Γu
ū∂w

∂n
dx −

∫
Γq

wq̄ndx +
∫

ΓI

{
⌢̇
wj1

Σ − j0
Σ

⌢̇
∂w
∂n

}
dx

(22)

Both of these formulations are equivalent, because it can be shown that
〈L∗

Hu, w〉 ≡ 〈LHu, w〉 = 〈LHw, u〉. Furthermore, they are equivalent to the
variational condition δΠH (u) = 0, if ΠH (u) is defined to be

2ΠH (u) ≡

∫
Ω

u∆udx +
∫

Γu
u ∂u

∂n
dx −

∫
Γq

u ∂u
∂n

dx +
∫

ΓI

{
⌢̇
u

[
∂u
∂n

]
− [u]

⌢̇
∂u
∂n

}
dx−

2

{
∫

Ω
wb̄dx +

∫
Γu

ū∂w
∂n

dx −
∫

Γq
wq̄ndx +

∫
ΓI

{
⌢̇
wj1

Σ − j0
Σ

⌢̇
∂w
∂n

}
dx

} (23)

When u is varied subjected to the restriction u ∈ DP , so that ∆w = 0, Eqs.
(21) and (22) can also be written as

∫
Γu

(u − ū) ∂w
∂n

dx −
∫

Γq
w

(
∂u
∂n

− q̄n

)
dx

+
∫

ΓI

{
⌢̇
w

([
∂u
∂n

]
− j1

Σ

)
−

(
[u] − j0

Σ

) ⌢̇
∂w
∂n

}
dx = 0

(24)
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and

∫

Γu

w
∂u

∂n
dx −

∫

Γq

u
∂w

∂n
dx +

∫

ΓI





⌢̇
u

[
∂w

∂n

]
− [w]

⌢̇

∂u

∂n




dx =

∫

Ω

wb̄dx +

∫

Γu

ū
∂w

∂n
dx −

∫

Γq

wq̄ndx +

∫

ΓI





⌢̇
wj1

Σ − j0
Σ

⌢̇

∂w

∂n




dx

(25)

respectively. Eq. (24) exhibits the Eqs. (4) and (20), as the Euler equations of
the variational principle in terms of the data of the BVPJ. However, the use
of Eq. (25) is different.

Let ũ, q̃n, ũa and q̃a be functions defined, the first two, on Γq and Γu

respectively, and on ΓI , the last two. Assume that they satisfy
∫

Γu

wq̃ndx −

∫

Γq

ũ
∂w

∂n
dx +

∫

ΓI

{
ũa

[
∂w

∂n

]
− [w] q̃a

}
dx =

∫

Ω

wb̄dx +

∫

Γu

ū
∂w

∂n
dx −

∫

Γq

wq̄ndx +

∫

ΓI





⌢̇
wj1

Σ − j0
Σ

⌢̇

∂w

∂n




dx

(26)

for every w ∈ DH , then subtracting Eq. (26) from Eq. (25), it is seen that
∫

Γu

w

(
∂u

∂n
− q̃n

)
dx −

∫

Γq

(u − ũ)
∂w

∂n
dx

+

∫

ΓI






(
⌢̇
u − ũa

) [
∂w

∂n

]
− [w]




⌢̇

∂u

∂n
− q̃a








dx = 0

(27)

Eq. (26) is a variational principle whose Euler equations, in view of Eq. (27),

are q̃n = ∂u
∂n

on Γu, ũ = u on Γq and ũa =
⌢̇
u , q̃a =

⌢̇
∂u
∂n

on ΓI .
When a truncated T-complete system of homogeneous solutions, E ≡{

w1, ..., wN
}
⊂ DH , is used to generate a subspace D̂H ⊂ DH , and DH is

replaced by D̂H , then these equations are only approximately satisfied. In par-
ticular, ũa and q̃a are approximations of the averages, across ΓI , of the function
and its normal derivative, respectively. The following systems of ‘frames’ are

introduced: Ẽu ≡
{
w̃1

u, ..., w̃Ñu
u

}
, Ẽq ≡

{
w̃1

q , ..., w̃
Ñq

q

}
, Ẽua ≡

{
w̃1

ua, ..., w̃Ñua
ua

}

and Ẽqa ≡
{
w̃1

qa, ..., w̃
Ñqa

qa

}
. The first two are defined on Γq and Γu respectively,

and the last two on ΓI . Then the functions are taken to be linear combinations
of these bases with suitable coefficients, which are determined by application
of the weak formulation of Eq. (26). Of course a necessary condition for this
to be possible is that N = Ñu + Ñq + Ñua + Ñqa. The total number of degrees
of freedom is N and global matrix associated the system of equations (26) is
N × N .
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6 Comparisons and Conclusions

Clearly Trefftz-Jirousek and Trefftz-Herrera formulations are closely related.
However, this latter approach generalizes Jirousek’s since the boundary value
problem considered in Section 4 is a particular case of the more general BVPJ
treated in Section 5; namely, Trefftz-Jirousek method deals with the particular
case of this BVPJ when j0

Σ = j1
Σ = 0. Also, according to Eq. (19) in Trefftz-

Herrera formulation the number of degrees of freedom is reduced a 33%, in
comparison with Trefftz-Jirousek formulation. Indeed, in this latter approach
one deals with 3

2
N × 3

2
N global matrices, while these are only N × N in the

former. A more thorough discussion of these points will be presented in a
paper now being prepared.
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