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Summary. The hybridization technique is applied to replace the macro-hybrid
mixed finite element problem for the diffusion equation by the equivalent cell-based
formulation. The underlying algebraic system is condensed by eliminating the de-
grees of freedom which represent the interface flux and cell pressure variables to the
system containing the Lagrange multipliers variables. An approach to the numerical
solution of the condensed system is briefly discussed.

1 Introduction

In this paper, we consider macro-hybrid mixed finite element method for the
diffusion equation on nonmatching grids. The paper is organized as follows.
The four-field macro-hybrid mixed formulation for the diffusion equation is
given in Sect. 2.

In Sect. 3, we apply the hybridization technique to replace the macro-
hybrid formulation by the cell-based formulation and describe the condensa-
tion procedure to reduce the underlying algebraic system to the system for the
Lagrange multipliers only. In Sect. 4, we briefly discuss an algebraic solution
method for the condensed system.

2 Problem formulation

We consider the diffusion problem in the form of a system of the first order
differential equations

K='4 + gradp =0 (1)
diva + cp=f
in a bounded connected polygonal (polyhedral) domain 2 in R%, d = 2 (d = 3)
with homogeneous boundary conditions
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p=0 on I,
u-n=0 on Iy.

(2)

Here I'p and Iy are the Dirichlet and the Neumann parts of the boundary
012, 7i is the outward unit normal to 912, K = K(x) is the diffusion tensor,
K = KT >0, ¢c = c¢(x) is a nonnegative function, and f € L(§2). We assume
that I'p is a closed subset of 0f2 consisting of a finite number of segments
(polygons) in the case d =2 (d = 3).

For the sake of simplicity, in the paper, we consider only the case d = 2.
The extension to the three dimensional problem is basically straightforward.

The weak formulation of (1), (2) reads as follows: find

ﬂEVE{T):T)EHdiV(Q), /|’D.ﬁ|2ds<+oo’ ’D'ﬁZOOHFN},
o
p € Q = Ly(£2) such that

dx —

—
8
EI/
S|

p(V-0)dx=0

Z(V-u)qu +

for all (7, q) €V x Q.
Let {25, be a partitioning of {2 into m nonoverlapping polygonal cells e:

O — O —

cpq dx = /fqu
Q

Qh = U €L, (4)
k=1

and V,, and @p be finite element subspaces of V and @, respectively. We
assume that the partitioning (2; is conforming, i.e. the interface I'y; between
any adjacent cells es and e; is always a common edge for both cells and the set
I'nNI'p belongs to the set of vertices in §2;,. If all the cells e are triangles then
Vi, can be chosen as the proper subspace of the lowest Raviart-Thomas finite
element space RT(({2;,) (see, Brezzi and Fortin [1991]). Otherwise, we can use
the new method for the construction of V}, recently invented in Kuznetsov and
Repin [2003]. The normal components @ - 7ig; of the flux @ at the interfaces I's;
between cells e; and e; are constants in both choices of V},. Here ng denotes
the unit normal to [y directed from eg to e;.

The mixed finite element approximation to (1), (2) reads as follows: find
(Gn, pr) € Vi X Qp such that

/(K‘lah) dx — /ph(V~17)dX: 0

QV_ d y d = d )
/( ~p) g dx +/Cphqx Q/qu

o) o)
for all (7, q) € Vi X Qp.
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Let {2 be splitted into two nonoverlapping subdomains §2; and (2, with a
piece-wise linear simply connected interface boundary I'. Then, the four-field
macro-hybrid mixed formulation of (1), (2) originally proposed in Kuznetsov
and Wheeler [1995] reads as follows: find (4, pk, Ak) € Vi X Qi x Ak, k = 1,2,
¢ € @ such that

a1(@1, 91) + bi(p1, U1) + c1(A1, U1) =0
az2(t2, D2) + b2(p2, U2) + c2(A2, U2) =0
bi(qr, 41) — o1(p1, q1) = li(q)
b2(qz, u2) — o2(p2, q2) = l2(q2)
(6)

c1(pa, 1) + di(p, m1) =0
c2(p2, U2) + da(¢, p1) =0

di(, A1)+ da(9h, A2) =0

for all (T, pr, ur) € Vi X Qp X A, k=1,2, ¢ € 0.

Here

Vie = {0 : 9 € Haiv (), / (0-7g)?ds < +oo, - =0o0n 02 NIN},

02
Qk = LQ(Qk); Ak - LQ(F)a k= 1523

P = LQ(F>5

and

bi(p, 0) = f/p(V%_))dX, ax(A, 0) = (71)k71/>\(5~ﬁp)d8, (8)

Q%
du(, 1) = <—1)k/¢uds, (g) = —/fqu,
T o

k = 1,2, where nr is the unit normal vector to I" directed from (27 to {25.
Let (2, 5, be a partitioning of {2, into m;, polygons egk), k =1,2. We assume
that both partitionings are conformal and the set of vertices of I" belongs to
the set of vertices of both partitionings (21, and (23 5. Subspaces Vj ; and
Qr,n of the spaces Vi, and @y, respectively, are defined similar to V3, and @,

in problem (5).
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®) _ {0 (k)
Let I, ;1 be the trace of {2, onto I' where 7,/ are the edges
i=1 ’

of the cells in Q;ﬁh adjacent to I', i = 1, ng, k = 1,2. Here ny is the number
of cells’ edges in (2}, belonging to I', k = 1,2. We define Ay, by

Apn = {)\ : \ = const on %—(712), 1=1, nk} (9)
k = 1,2, and choose

Dp = Ay p. (10)
The finite element approximation to (6)-(8) reads as follows: find
(Uk,hy Pkhs Meh) € Vien X Qrn X Agny b = 1,2, ¢, € ®p, such that the
equations (6) with up = Uk,hy Pk = Pk h, A = )\k,h7 k=1,2, ¢ = ¢y are
satisfied for all (Tg, qx, ) € Vin X Qrn X Agp, k = 1,2, ¢ € . This
approximation results in the system

w1 F1
A w9 = F2 (1 1)
10} 0
with the matrix
A 0 DlT

A = 0 Ay DT (12)
Dy Dy 0O

where
M, Bl CF

A, = | Be =% 0 (13)
Cy 0 0

are the saddle point matrices, k = 1,2, and

Uk 0
W = Pk ; Fk = _fk ) k= 15 2. (14)
Ak 0

Here M}, is a symmetric positive definite matrix, and X is a symmetric
positive definite (or semidefinite) matrix, k =1, 2.

3 Hybridization and condensation

The extension of (6)-(8) to the case of many subdomains is straightforward.

We consider the hybrid mixed formulation based on partitionings of (2 5, into
(k)

subdomains/cells e;"’ used in Sect. 2 for the approximation of the problem

(6)-(8)-



Mixed Methods on Nonmatching Grids 315

We introduce new spaces V4 ;. and Qi ;. to be the restrictions onto ez(-k)

of Vi, subject to I'v = 0 and Qg,p, respectively, i = 1,my, k = 1,2, and

define the spaces ‘7;61;1 and @k,h as the products of the spaces Vj, ; , and Qg i n,

i =1, my, respectively, k = 1, 2. Then, we introduce spaces Ay, ; », of functions
(k)

%

A defined on 8e§k) which are constants on each interface I ;j between e

and adjacent cells e§-k) as well as on the intersections 66516) with the linear

parts of 042, i = 1, my, k = 1,2. The functions in Ay ;; should vanish on
I'p. We denote by /Tk,h the product of all spaces Ay i x, k = 1,2. Finally, we
preserve the definition for @; from Sect. 2.

The new finite element problem reads as follows: find (4 n, Pr.n, j\k,h) €

?k,h X @Iﬁh X il\k,h; k=1,2, (ﬁh € &, such that

G1(G1,n, 01) + I:)l(ﬁl,h7 1) + él(é\l,m 1) =0
az(tz,n, 02) + ba(Pa,n, T2) + é2(Agn, U2) =0

bi(qr, @) — 61(P1,n, q1) =h(q)
b2(q2, G2,n) — 62(P2,n, q2) = l2(g2)
(15)
ér(p1, t1n + d:1(<2:5h7 ) =0
C2(pz, Uo,n) + do(¢pn, p1) =0
dl(l/)v 5\1,h) + dA2(1/), 5\2,h) =0
for all (o, pr, i) € Vin X Qup X Apn, k= 1,2, 9 € &y,
Here,
mp . mp
ak(ig, o) = [ (K ki) - Oradx,  be(pr, 06) = — > [ pri (V- 0r) dx,
0 e
my my
(A, Tr) = Z / Mo (Ukyi - ki) ds,  Gk(pr, qr) = Z /Cpk,i%,i dx,
(RO =1 (n
e, D e,
. & mp . me
(¢, ) = (1) D / Gprids,  D(gr) = = /qu,idX7
(16)

where iy, ; is the outward unit normal to aegk), 1=1, mg, k=1,2.

The finite element problem (15), (16) is said to be the hybridization of
the finite element problem of the previous Section. It can be proved that the
problems are equivalent, i.e. the restrictions of %y and pyj onto a cell ez(-k)
coincide with 4y ; », and Py 4 5, respectively, Ax j coincides with restriction of

Xk,h onto I', and ¢y, coincides with ¢,.
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Problem (15), (16) results in the system of linear algebraic equations

w1 F1
A1 0
A w2 = F2
A2 0
) 0

with the 5 x 5 block matrix

ACcT 0 0 0
C, 0 0 0 DT
A=10 0 4,¢cf o
0 0C, 0DF
0 Dy 0 Dy O

where Ay is the block diagonal matrix with the diagonal blocks

M, , BYT.
Aki = b ki )
’ Bri =Xk

Cr = (Chn - Cromy) s

and

Fiq

Fk: . 5 Fk,z( 0 )a 1:17 mg,

—fri

Fk,mk

(17)

—~

21)

k = 1,2. The subvectors w; and wy can be excluded from the system by the

block Gauss elimination method. The reduced system is given by

Sl 0 *D? )\1 g1
0 SQ *D%ﬂ )\2 = g2 (22)
Dy -Dy 0 & 0
where
my
Sk = D Oi Ayt Ol (23)
i=1
mi
gk = Z Cri At Fri, (24)
i=1
k = 1,2. The system (22)-(24) is said to be the condensation of the system
17)-(21).
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4 Algebraic solvers

The saddle point system (22) can be explicitly reduced to a system with a
positive definite matrix. With additional block partitioning

Sir S,
Sk< wk Skr

. Dp = (0Dyr),
Sh gt ). D= (0Dur)

Akk gkl
)\ = s =
» ( Akr ) Ik ( gkr
where the blocks Sl(ﬂkp), Dyr, Ak, and gi correspond to the degrees of freedom

located on the interface I'; k = 1,2. System (22) can be written in the form
of 5 x 5 block system

(25)

S11 Sir 0 0 0 A1 Jg11

Sri S}l} 0 0 -DT. Air gir
0 0 S22 SQ[‘ 0 )\22 = g22 . (26)
0 0 Spo Sl(?} -DT. Aar gar
0 —Dir 0 —Dop 0 ¢ 0

In this system D;r is the diagonal matrix. Then, excluding the subvectors
A1r and ¢ by the block Gauss elimination method we get the system

A1 g11
R A2 = 922 (27)
Aar gr

with the symmetric positive definite matrix

Si1 0 R,{F
R = 0 S Sor (28)
Rir Sr2 Rrr

where

Rrr = S(FQ} + D3r Dip S(Fllz Dir Do,
Rir = — Dip D}t Sra, (29)
gr = gor — DI Difoir.

To solve the system (27) we can use iterative techniques developed for
algebraic systems with symmetric positive definite matrices. We recall that
for the mortar P; finite element methods the above explicit reduction is not
applicable.

The preconditioned Lanczos method is a good candidate to solve the sad-
dle point system (22). In Kuznetsov [1995] an efficient preconditioner was
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proposed for the P; mortar element method. By coupling the ideas from
Kuznetsov [1995], Kuznetsov and Wheeler [1995] with the new results from
the recent publication by Kuznetsov [2003] we are able to derive efficient pre-
conditioners for the system matrix in (22) as well. This is a topic for another
publication.

Acknowledgement. The author is thankful to Oleg Boyarkin for his help in prepa-
ration of the paper.
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