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Summary. The theory of multilevel methods for solving Ritz-Galerkin equations
arising from discretization of elliptic boundary value problems is by now well de-
veloped. There exists a variety of survey talks and books in this area ( see e.g.Xu
[1992],Yserentant [1993],Oswald [1994] ). Among them the additive methods are
based on a suitable decomposition of the underlying projection operator ( thus
including also domain decomposition methods). In particular there is a close con-
nection with classical concepts in approximation theory via so- called Jackson and
Bernstein inequalities. These provide norm equivalences with the bilinear form un-
derlying the Ritz- Galerkin procedure and thus preconditioners for the arising stiff-
ness matrix.

The size of the constants in this equivalence is crucial for the stability of the
resulting iteration methods. In this note we establish robust norm equivalences with
constants which are independent of the mesh size and depend only weakly on the
ellipticity of the problem, including the case of strongly varying coefficients. Exten-
sions to the case of coefficients with discontinuities are possible, see Scherer [2003/4].
In the case of piecewise constant coefficients on the initial coarse grid there exist al-
ready estimates of the condition numbers of BPX-type preconditioners independent
of the coefficients (see Yserentant [1990], Bramble and J.Xu [1991]) however they
depend still on the mesh size (of the finest level).

1 Introduction

Given coefficients ai,k ∈ L∞(Ω), Ω ⊂ R2 consider the bilinear form

a(u, v) :=

∫

Ω

2
∑

i,k=1

(ai,k(Diu)(Dkv) for u, v ∈ H1(Ω) = W 1
2 (Ω). (1)

Here W r
p (Ω) denotes the usual Sobolev space with norm (1 ≤ p <∞)

‖u‖r,p;Ω := ‖u‖p,Ω + |u|r,p;Ω, |u|r,p;Ω :=
∑

|α|=r

‖Dαu‖p;Ω.



406 Karl Scherer

If a(u, v) is coercive (or L strongly elliptic) the Lax-Milgram-Theorem states
that the equation Lu :=

∑

i,k ∂i(ai,k∂ku) = f has a unique generalized solu-

tion u satisfying weakly Dirichlet boundary conditions, i.e. u ∈ H1
0 (Ω).

Let ψ1, · · · , ψN be a basis of a finite-dimensional subspace V of H1
0 (Ω).

The Ritz-Galerkin-equations compute an approximate solution uN ∈ V by

a(uN , ψk) = (f, ψk), uN :=

N
∑

i=1

αiψi, 1 ≤ k ≤ N, .

These equations are solved iteratively for ν = 0, 1, 2, · · · :

u
(ν+1)
N = u

(ν)
N − ω Cr(ν), r(ν) := Au(ν) − b, b := {(f, ψk)}.

Here ω is a relaxation factor and the matrix C acts as a preconditioner for

the stiffness matrix A :=
(

a(ψi, ψk)
)

i,k
. The speed of convergence of this

iteration scheme is governed by the condition number κ(CA).
In the theory of additive multi-level- methods preconditioners for A have

been constructed for which κ(CA) = κ (C1/2AC1/2) = O(1), independent of
the mesh-size of the underlying FE-space. Thereby the matrix C is derived
via a norm equivalence with a(u, u) and the size of κ(CA) depends on the
equivalence constants.

2 Norm equivalences and Approximation processes

Given a hierarchical sequence of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ := V ⊂ X := L2(Ω), (2)

assume that there exist of bounded projections Pj : V −→ Vj satisfying

β0 a(u, u) ≤ ‖P0‖2
X +

J
∑

j=1

dj ‖Pju− Pj−1u‖2
X ≤ β1 a(u, u) (3)

with suitable coefficients {dj} and constants β0, β1 independent of dj , u ∈ V
or J . Define via (u,Bu) := ‖P0‖2

X +
∑J

j=1 dj ‖Pju − Pj−1u‖2
X a positive

definite operator B for u ∈ V and let C above be the matrix representing
the inverse B−1. It is well known that then κ(CA) ≤ β1/β0, showing that C
is a suitable preconditioner. More generally one can chose the matrix C as
the discrete analogue of an operator C which is spectrally equivalent to B−1.
The derivation of the norm equivalence (3) proceeds in a meanwhile standard
manner (cf. Dahmen and Kunoth [1992], Bornemann and Yserentant [1993],
Oswald [1994]):



Weighted Norm-Equivalences for Preconditioning 407

1.Step: use the equivalence of a(u, v) with a Sobolev-norm, i.e.

A1 a(u, u) ≤ ‖u‖2
1,2,Ω ≤ A2 a(u, u), ∀u ∈ H1

0 (Ω), (4)

with positive constants A1, A2 (needed also in the Lax-Milgram theorem).

2.Step: describe the Sobolev-norm via the K-functional of J.Peetre

K(t, f ;X,Z) := inf
g∈Z

(‖f − g‖X + t|g|Z), t > 0, f ∈ X.

for normed linear spaces X,Z with Z ⊂ X and seminorm | · |Z such that Z is
complete under norm ‖ · ‖X + | · |Z . In the K-method of interpolation theory
(see Bennett-R.Sharpley [1988], chapter 5) one defines for any integer r and
0 < θ < r :

‖f‖(L2(Ω),W r
p (Ω))θ/r,p,q

:=
(

∞
∑

n=0

[2nθK(2−nθ, f ;L2(Ω),W r
p (Ω))]q

)1/q

. (5)

There holds the equivalence with Besov seminorms (see Johnen and Scherer)

‖f‖(L2(Ω),W r
p (Ω))θ/r,p,q

≈ ‖f‖θ,p,q,Ω :=
(

∞
∑

n=0

[2nθωr(2
−n, f)p]

q
)1/q

where ≈ denotes equivalence up to constants not depending on f . Further the
equivalence of special Besov- norms with (fractional) Sobolev norms is known
(see Triebel [1992],p.9):

‖f‖θ,2,2,Ω ≈ ‖f‖θ,2;Ω for θ > 0. (6)

3.Step: describe the interpolation norms created by the K-functional via ap-
proximation processes V, i.e. sequences of linear bounded operators {Vj} de-
fined on a Banach space X satisfying limn→∞ Vnf = f for all f ∈ X . Then
define approximation norms describing certain rates of approximation by

‖f‖θ,q;V :=
{

∞
∑

n=0

[2nθ‖Vnf − f‖X ]q
}1/q

, θ ≥ 0, 1 ≤ q ≤ ∞

and introduce Jackson- and Bernstein- inequalities:

Definition 1. An approximation process satisfies a Jackson-inequality with
respect to the pair X,Z and order α > 0 if there exists a constant CV

‖Vnf − f‖X ≤ CV 2−αn |f |Z , ∀f ∈ Z. (7)

and a corresponding Bernstein-inequality if there exists DV such that

Vnf ∈ Z, |Vnf |Z ≤ DV 2αn ‖f‖X , ∀f ∈ X. (8)



408 Karl Scherer

Under these assumptions it has been shown (see Butzer and Scherer [1968],
Butzer and Scherer [1972]))

Theorem 1. For the operator sequences Vn defining an approximation process
and satisfying Jackson- and Bernstein-inequalities of order α for a pair X,Z
there holds for all θ > 0

{

∞
∑

n=0

[2nθ‖Vnf−Vn−1f‖X ]q
}1/q

≈ ||f ||θ,q,V ≈
{

∞
∑

n=0

[2nθK(2−nα, f ;X,Z)]q
}1/q

with equivalence constants only depending on α, θ, CV , DV and sup ‖Vn‖ <∞.

The upper bound in the second equivalence follows from the Jackson-type
inequality. For the lower one uses the decomposition f =

∑∞
k=n+1 Vkf−Vk−1f ,

K(2−nα, Vkf − Vk−1f ;X,Z) ≤ min (1, 2(k−n)α)‖Vkf − Vk−1f‖X (9)

and Hardy’s inequalities to estimate the arising double sum (cf. below).
We consider now the case of uniformly bounded linear projections Vj =

Pj : V −→ Vj in (3). For later use we assume Vj ⊂ Z = H2
0 (Ω), α = q = 2

and θ = 1. Then we obtain in combination with (4), (5) and (6)

Corollary 1. Given the elliptic bilinear form a(u, u) in (1) suppose that the
above projections satisfy Jackson- and Bernstein-inequalities of order 2 for the
pair L2(Ω), H2

0 (Ω). Then there holds for u ∈ V the equivalence (P−1u := 0)

J
∑

j=1

4J ‖Pju− Pj−1u‖2
2,Ω ≈

∞
∑

n=0

[2n K(2−2n, f ;L2(Ω), H2
0 (Ω))]2 ≈ a(u, u),

and the equivalence constants do not depend on the level J and u.

We apply this to the case of FE- spaces consisting of piecewise polynomial
functions of degree k in (2) with respect to the sequence of triangulations

T0 ⊂ T1 ⊂ · · · ⊂ TJ := T . (10)

The coarse initial triangulation T0 is adaptively refined by dividing each tri-
angle either into 4 congruent triangles or halving it such that each triangle in
Tk is geometrically similar to a triangle of T0.

Jackson- inequalities for projections into such spaces with respect to the
pair X = L2(Ω), Z = Hk+1

0 (Ω) of order k + 1 are well known (cf. Ciar-
let [1978]) whereas corresponding Bernstein-inequalities are only possible of
maximal order k. However the modified inequality (9) can be proved (in case
of maximal smoothness of u) with order α = k+1/2 which suffices for a proof
of Theorem 1. Such an inequality follows from a corresponding one for the Lp

modulus of continuity ωk(t, f)p (see Oswald [1994]) and the equivalence (see
Johnen and Scherer):

K(tk, f ;Lp(Ω),W k
p (Ω)) ≈ ωk(t, f)p.
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3 Weighted norm equivalences

The disadvantage of above approach is that the “equivalence constants ” in (3)
depend on the ellipticity constants A1, A2 in (4). In the following we want to
study robust norm equivalences, i.e. how they depend on these constants. (In
the following constants C will only depend on the initial coarse triangulation
T0). Thereby we restrict us to subspaces Vj consisting of piecewise linear
functions. The basic idea is to introduce for the triangulations (10)

Assumption A: There exist weights ωi, ωi such that the bilinear form (1)
satisfies on the triangles Zi of TJ the ellipticity condition

ωi

2
∑

ν=1

ξ2ν ≤
2
∑

ν,µ=1

aν,µ(x)ξνξµ ≤ ωi

2
∑

ν=1

ξ2ν , for all x ∈ Zi. (11)

Then one wants to establish Jackson- and Bernstein- inequalities for suitable
projections Pj in (3) with respect to a “weighted norm” arising from this
assumption. This will be described shortly in the following (for more details
see Scherer [2003/4]). Ideally one should take for Pj the Ritz projection Qa

j

defined on V by

a(Qa
ju, v) = a(u, v), u ∈ V , v ∈ Vj (12)

since then vj := Qa
ju − Qa

j−1u with Qa
−1u := 0 satisfies a(u, u) := ||u||2a =

∑J
j=0 ||vj ||2a. Then the idea is to replace Qa

j by projections Qω
j with respect

to a weighted norm (from now on we omit subscript and superscript on ω):

(Qω
j u, v)ω = (u, v)ω :=

∑

Zi∈TJ

ωi

∫

Zi

u · v dx, v ∈ Vj .

Essential for our analysis are also the average weights ωT := 1
µ(T )

∑

Zi⊂T µ(Zi)ωi

with corresponding weighted norms

‖v‖2
j,ω :=

∑

T∈Tj

ωT

∫

T

|v|2

At first two Bernstein-type inequalities of order 1/2 are proved. To this end
we assume a continous weight ω(x) in Assumption A and work with average
weights ω∗

i := 1
µ(Zi)

∫

Zi
ω as well as corresponding ones ω∗

T for T ∈ Tj .

Lemma 1. Define the semi-norm

‖u‖1/2,ω,l :=
(

∑

T∈Tl

ω∗
T

∫

∂T

|u|2
)1/2

for u ∈ VJ ⊂ H1
0 (Ω). Then there holds for vj := Qa

ju−Qa
j−1u and any w ∈ Vj
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‖Qa
ju−Qa

j−1u‖a ≤ Ej
ω ‖u− w‖a + C 2j/2 ‖u‖1/2,ω,j, (13)

where Ej
ω := maxT∈Tj maxx,y∈T |[ω(x)−ω(y)]/ω(y)| is a modulus of continuity

of ω(x).

Lemma 2. There holds for any u ∈ Vk and k ≥ j

‖u‖1/2,ω,j ≤ C 2k/2 ‖u‖∗k,j, ‖uk‖∗k,j :=
(

∑

U∈Tj

ω∗
U

∫

Sk(U)

|uk|2
)1/2

.

Here Sk(U) denotes the strip along ∂U consisting of triangles T ∈ Tk.

We apply the first lemma to each term ‖vj‖2
a with j ≥ j0 for some j0 ≥ 1 to

be chosen later, take u−Qω
j−1u instead of u, w = Qa

j−1u−Qω
j−1u and obtain

J
∑

j=j0

‖vj‖2
a

(

1 − 2

J
∑

j=j0

(

Ej
ω

)2
)

≤ 2C

J
∑

j=j0

2j
(

J
∑

k=j

‖uk‖1/2,ω,j

)2

. (14)

Next we use the decomposition of u −Qω
j−1u =

∑J
k=j uk, with uk := Qω

ku −
Qω

k−1u and apply the second Bernstein-type inequality. After inserting this
into the right hand side of (14) we obtain a double sum which is estimated
with a refined version of Hardy’s inequality giving

J
∑

j=0

2j
(

J
∑

k=j

2k/2 ‖uk‖∗k,j

)2[

1 − 2Ej
ω

]

≤ 4

J
∑

j=j0

4j ‖uj‖2
j,ω (15)

In addition, by an other application of Lemma 1, one can obtain a bound for
the remaining sum

∑j0−1
j=0 ‖vj‖2

a = ‖Qa
j0‖2

a. The final estimate is then

a(u, u) ≤ C

{

1 + 3(Ej0
ω )2

[1 − 2Ej0
ω ]
[

1 − 2
∑J

j=j0

(

Ej
ω

)2
]

J
∑

j=j0

4j‖uj‖2
j,ω

}

+ ‖Qω
j0−1u‖2

a.

Theorem 2. If there exists j0 ≥ 1 such that
∑J

j=j0

(

Ej
ω

)2≤ 1/4 there holds

a(u, u) ≤ C

J
∑

j=j0

4j ‖Qω
j u−Qω

j−1u‖2
j,ω + a(Qω

j0−1u,Q
ω
j0−1u).

Remarks: The assumption of the theorem can be fulfilled for continuous ω.
In case ω ∈ C1 or ω ∈ Cα a more quantitative description can be given,
e.g. for ω(x) := exp{q(x)} we have Ej

ω ≤ c2−j‖∇q‖∞ exp{c2−j‖∇q‖∞}. The
continuity of ω also justifies the choice ωi = ωi = ω∗

i in (11) since then a(v, v)
is norm-equivalent to ã(v, v) :=

∑

Zi∈TJ
ω∗

i

∫

Zi
‖∇v‖2. Finally we remark that

the above argument can be extended also to the case of a weight function ω(x)
which is continous on Ω up to a (smooth ) curve. If this curve coincides with
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the edges of the initial coarse grid the above argument can be applied to each
of the two subregions separately with corresponding moduli of continuity. But
also the more general case can be treated (see Scherer [2003/4]).

We turn now to the problem of a lower bound for a(u, u) (more details can
be found in Scherer [2003/4]). At first observe that by Hardy’s inequality

J
∑

j=1

[

2j‖uj‖ω

]2

≤
J
∑

j=0

[

2j‖Qa
ju− u‖ω

]2

≤ 4

J
∑

j=1

(

2j‖Qa
ju−Qa

j−1u‖ω

)2

.

In order to pass from ‖ · ‖ω -norm to ‖ · ‖j,ω - norm use

Theorem 3. Suppose that there exists a constant γ ∈ (0, 1] such that for any
T ∈ Tj the weights ωi satisfy

ωE / ωT ≤ µ(T ) / 2µ(E), ∀ E ⊂ T with µ(E) ≤ γ µ(T ) . (16)

Then there holds for v ∈ Vj

[1 + C γ−1]−1 ‖v‖j,ω;T ≤ ‖v‖ω;T ≤ [1 +
√

6 C] ‖v‖j,ω;T . (17)

Application of this theorem gives

J
∑

j=1

[

2j‖Qω
j u−Qω

j−1u‖ω

]2

≤ C
J
∑

j=1

(

2j‖Qa
ju−Qa

j−1u‖j,ω

)2

. (18)

The crucial step is the following local estimate

Theorem 4. Let be U be the support of a nodal function in Vj−1, ψ
(j−1)
l say.

Then there holds ( S, S′ ∈ Tj )

‖Qa
ju−Qa

j−1u‖j,ω,U ≤ C

(

max
S′,S⊂U

√

ωS

ωS′

)

2−j ‖∇(Qa
ju−Qa

j−1u)‖j,ω,U .

Sketch of the proof: Using the duality technique of Aubin-Nitsche one has

‖vj‖j,ω,U = sup
g∈Lω(U)

|(g, ω · vj)U |
‖g‖j,ω,U

= sup
g∈Lω(U)

|(−∆ϕg, ω · vj)U |
‖g‖j,ω,U

.

where −∆ϕg = g̃ on Ũ ≥ U, ϕg|∂Ũ = 0 and ‖g̃‖Ũ ≤ C‖g‖U with some

absolute constant C̃. Partial integration on each S ⊂ U gives

|(−∆ϕg, ω · vj)U | ≤ |
∑

S⊂U

ωS

∫

S

(∇ϕg ,∇vj)| + |
∑

S⊂U

ωS

∫

∂S

vj(∇(ϕg − v), n∂S)|

The bound for the first term uses ‖∇ϕg‖Ũ ≤ C
√

µ(Ũ)‖g‖U . In the second

supremum one chooses v = v∗ ∈ Vj−1 with supp v∗ ⊂ U as interpolant of ϕg.
Then (cf. Ciarlet [1978])
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‖∇(ϕg − v∗)‖∞,T ≤ C diam T
∑

|α|=3

‖Dαϕg‖T , T ∈ Tj−1,

and by the special choice g = g∗ := vj the estimate of the theorem follows.
Summing with respect to U and inserting the result into (18) yields

Theorem 5. Under assumption A and for uniformly refined triangulations
there holds for a(u,u) the lower bound

J
∑

j=1

[

2j‖Qω
j u−Qω

j−1u‖j,ω

]2

≤ C

(

max
1≤j≤J

max
U∈Tj−1

max
S′,S⊂U

√

ωS

ωS′

)

a(u, u)

with C depending only on the shape of the triangles of the initial triangulation.

4 Application to preconditioning

Theorems 2 and 5 can be combined via Theorem 3 to the following

Theorem 6. Under assumption A assume further that ω(x) satisfies the as-
sumptions of Theorems 2 and 3. Then for uniformly refined triangulations
there holds for a(u, u) and j0 depending on ω(x)

C1 a(u, u) ≤ a(uj0 , uj0) +
J
∑

j=1

[

2j‖Qω
j u−Qω

j−1u‖ω

]2

≤ C2 Cω a(u, u)

where Cω := max1≤j≤J maxU∈Tj−1
maxS′,S⊂U

√
ωS/

√
ωS′ and C1, C2 inde-

pendent of J and ω(x).

It seems impossible to dispense with any condition starting from Assumption
A. The most restrictive conditions appear in Theorem 2 where the choice of
j0 depends on the decrease of the moduli of continuity Ej

ω in j. This has been
discussed in the remarks following it. A discussion of the further condition
(16) in Theorem 3 is given in Scherer [2003/4]. The weakest one is probably
that of Theorem 5 which requires the boundedness of the constant there. The
case of non-uniformly refined meshes can be reduced to that one of uniformly
refined meshes by the technique in Bornemann and Yserentant [1993].

For preconditioning we can proceed as in the BPX approach (cf.Bramble
et al. [1990]) taking

B−1 = (Qω
j0)

−1 +
J
∑

j=j0+1

4−j (Qω
j − Qω

j−1) ≈ (Qω
j0)

−1 +
J
∑

j=1

4−j Qω
j .

According to Yserentant [1990] this operator can be replaced by the cheaper
one
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C r := (Qω
j0)

−1 r +

J
∑

j=1

4−j Mjr, Mjv :=
∑

i∈Nj

(v, ψ
(j)
i )ω

(1, ψ
(j)
i )ω

ψ
(j)
i

provided the ‘quasi-interpolant’ Mjv is spectrally equivalent to Qω
j uniformly

in j. This property holds if the ψ
(j)
l form a Riesz-basis with respect to the

weighted norm, i.e.

‖
∑

l∈Nj

αlψ
(j)
l ‖2

ω ≈
∑

l∈Nj

|αl|2(1, ψ(j)
l )ω

The proof follows from the norm equivalence ‖ · ‖ω ≈ ‖ · ‖ω,j stated in (17).
Then the C can be taken as a discretized version of the operator C above.
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