
Preface

This volume contains a selection of 72 papers presented at the 15th Interna-
tional Conference on Domain Decomposition which was hosted by Freie Uni-
versität Berlin (FU) in cooperation with Zuse Institute Berlin (ZIB), Weier-
strass Institute Berlin (WIAS) and the DFG Research Center ‘Mathematics
for Key Technologies’ in Berlin, Germany, July 21 - 25, 2003. The attendance
of 167 scientists from 24 countries accentuates the relevance of this series of
almost annual meetings. In addition, an introductory tutorial by William D.
Gropp and David E. Keyes arranged in the run up to the conference attracted
31 participants from all parts of the world, most of which were students. The
conference itself included 15 plenary lectures delivered by leading experts in
the field, 12 Minisymposia, 37 contributed talks and a poster session. A total
of 144 presentations made this meeting one of the largest in the series of do-
main decomposition conferences. Since three parallel sessions were employed
in order to accommodate as many presenters as possible, attendees and non-
attendees alike may turn to this volume to keep up with future trends that
might be guessed from the diversity of subjects.

Domain decomposition conferences have become the most important mar-
ket place world wide for exchanging and discussing new ideas about the old
algorithmic paradigm of ‘divide and conquer’. Much of this reputation stems
from the close interaction of experts in numerical analysis and practitioners
from various fields of application concerning fast and reliable iterative methods
for discretized partial differential equations: Schwarz methods and substruc-
turing techniques form today’s basis for large scale parallel computing. The
unified view on the decomposition into subdomains and the decomposition
into frequencies in terms of abstract Schwarz methods or subspace correction
bridged the gap between domain decomposition and multigrid. Sophisticated
finite element tearing and interconnecting techniques opened new perspectives
(not only) in linear elasticity.

While classical domain decomposition concentrates on a given discretized
PDE, coupling/decoupling techniques have meanwhile been applied success-
fully to derive efficient solution procedures including the discretization itself:
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Mortar finite elements are most famous for their flexibility, e.g., with respect to
non-matching grids, a property which is particularly attractive in multi-body
contact. Other promising results concern the fast solution of time-dependent
problems by waveform relaxations with optimized coupling conditions or by
parareal algorithms.

The two latter approaches are motivated by parallel computation. On the
other hand, it is the underlying physical background that motivates, e.g., the
splitting of problems on an unbounded domain into a bounded and an un-
bounded part and gives rise to different discretizations in these subdomains
together with suitable coupling conditions. Many other physical problems
involve the localisation of the physics and their transient variability across
the geometric domain. For the mathematical description of such heteroge-
neous processes it is important to understand various options of coupling
subdomains in relation to the overall multi-physics problem. In this way, het-
erogeneous domain decomposition can be regarded as a new and promising
approach to the mathematical modeling of complex phenomena on multiple
scales.

This volume reviews recent developments in mathematical modeling, dis-
cretization, and fast and reliable solution by domain decomposition or related
techniques, including implementation issues. Applications comprise biocom-
puting, computational mechanics, combustion, electromagnetics, electronic
packaging, electrodynamics, fluid dynamics, medicine, metallurgy, microwave
technology, optimal control, porous media flow, and voice generation. For the
convenience of readers coming recently into the subject, a bibliography of
previous proceedings is provided below, along with some major recent review
articles and related special interest volumes. This list will inevitably be found
embarrassingly incomplete. (No attempt has been made to supplement this
list with the larger and closely related literature of multigrid and general it-
erative methods, except for the books by Hackbusch and Saad, which have
significant domain decomposition components.)
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We also recommend the homepage for domain decomposition on the World
Wide Web www.ddm.org maintained by Martin Gander. This site features
links to past and future conferences, a growing number of conference proceed-
ings together with updated bibliographic and personal information pertaining
to domain decomposition.
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tute Berlin (WIAS). We thank all members of the local organizing committee
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brina Nordt for perfectly taking care of all aspects of preparing and running
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Zdeněk Dostál, David Horák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Fast Solving of Contact Problems on Complicated Geometries
Rolf Krause, Oliver Sander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Part XIV Contributed Talks

Generalized Aitken-like Acceleration of the Schwarz Method
Jacques Baranger, Marc Garbey, Fabienne Oudin-Dardun . . . . . . . . . . . . . 505

The Fat Boundary Method: Semi-Discrete Scheme and Some
Numerical Experiments
Silvia Bertoluzza, Mourad Ismail, Bertrand Maury . . . . . . . . . . . . . . . . . . . 513

Modelling of an Underground Waste Disposal Site by
Upscaling and Simulation with Domain Decomposition
Method
I. Boursier, A. Bourgeat, D. Tromeur-Dervout . . . . . . . . . . . . . . . . . . . . . . . 521

Non-Overlapping DDMs to Solve Flow in Heterogeneous
Porous Media
Dan-Gabriel Calugaru, Damien Tromeur-Dervout . . . . . . . . . . . . . . . . . . . . 529



Contents xvii

Domain Embedding/Controllability Methods for the
Conjugate Gradient Solution of Wave Propagation Problems
H.Q. Chen, R. Glowinski, J. Periaux, J. Toivanen . . . . . . . . . . . . . . . . . . . 537

An Accelerated Block-Parallel Newton Method via
Overlapped Partitioning
Yurong Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Generation of Balanced Subdomain Clusters with Minimum
Interface for Distributed Domain Decomposition Applications
Dimos C. Charmpis and Manolis Papadrakakis . . . . . . . . . . . . . . . . . . . . . . 555

Iterative Methods for Stokes/Darcy Coupling
Marco Discacciati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Preconditioning Techniques for the Bidomain Equations
Rodrigo Weber Dos Santos, G. Plank, S. Bauer, E.J. Vigmond . . . . . . . . 571

Direct Schur Complement Method by Hierarchical Matrix
Techniques
Wolfgang Hackbusch, Boris N. Khoromskij, Ronald Kriemann . . . . . . . . . 581

Balancing Neumann-Neumann Methods for Elliptic Optimal
Control Problems
Matthias Heinkenschloss, Hoang Nguyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

Domain Decomposition Preconditioners for Spectral Nédélec
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Non-matching Grids and Lagrange Multipliers

S. Bertoluzza1, F. Brezzi1,2, L.D. Marini1,2, and G. Sangalli1

1 Istituto di Matematica Applicata e Tecnologie Informatiche del C.N.R., Pavia
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2 Università di Pavia, Dipartimento di Matematica

Summary. In this paper we introduce a variant of the three-field formulation where
we use only two sets of variables. Considering, to fix the ideas, the homogeneous
Dirichlet problem for −∆u = g in Ω, our variables are i) an approximation ψh of u
on the skeleton (the union of the interfaces of the sub-domains) on an independent
grid (that could often be uniform), and ii) the approximations us

h of u in each sub-
domain Ωs (each on its own grid). The novelty is in the way to derive, from ψh,
the values of each trace of us

h on the boundary of each Ωs. We do it by solving
an auxiliary problem on each ∂Ωs that resembles the mortar method but is more
flexible. Optimal error estimates are proved under suitable assumptions.

1 Introduction

Assume, for simplicity, that we have to solve the model problem

find u ∈ H1
0 (Ω) such that −∆u = g in Ω with u = 0 on ∂Ω (1)

on a polygonal or polyhedral domain Ω ⊂ Rn, n = 2, 3, where g is a given
function sufficiently regular in Ω. In order to apply a Domain Decomposition
technique we split Ω into sub-domains Ωs (s = 1, 2, ..., S) and we consider the
skeleton

Σ := ∪sΓ s, with Γ s ≡ ∂Ωs. (2)

For the sake of simplicity we will use a three-dimensional notation, and speak
therefore of faces, edges and vertices. The change of terminology in the polyg-
onal case is obvious and left to the reader. On Σ we consider

Φ := {ϕ ∈ L2(Σ) : ∃v ∈ H1
0 (Ω) with ϕ = v|Σ} ≡ H1

0 (Ω)|Σ ≡ H1/2(Σ). (3)

In each Ωs we consider instead

V s := {vs ∈ H1(Ωs) such that ∃v ∈ H1
0 (Ω) with vs = v|Ωs}, (4)
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that can also be seen as the set of functions in H1(Ωs) that vanish at the
intersection (if any) of Γ s with ∂Ω. In its turn, H1

0 (Ω) could be identified
with a subspace of

V := {u ∈ L2(Ω), u|Ωs ∈ V s}, (5)

and in particular, setting vs := v|Ωs we can write

H1
0 (Ω) ≃ {v ∈ V such that ∃ϕ ∈ Φ with vs = ϕ on Γ s, s = 1, ..., S}. (6)

For each s we will also introduce the trace space Θs = H1/2(Γ s), and we set
Θ =

∏
sΘ

s. For v ∈ V , θ = (θ1, . . . , θs) ∈ Θ we will write

v|Σ = θ to indicate that θs = vs|Γ s (with vs = v|Ωs), s = 1, . . . , S.

When discretizing the problem, we assume to be given a decomposition
T Σδ of Σ and a corresponding space Φδ ⊂ Φ of piecewise polynomials. We
also assume that in each Ωs we are given a decomposition T sh ≡ T Ω

s

h with a
corresponding space V sh ⊂ V s of piecewise polynomials, and we set

Vh := {v ∈ V such that v|Ωs ∈ V sh }. (7)

It is clear that each decomposition T sh will induce a decomposition T Γ s

h on
Γ s and a corresponding space of traces Θsh ⊂ Θs. On the other hand the
restriction of T Σδ to Γ s also induces a decomposition T Γ s

δ of Γ s and another
space of piecewise polynomials Φsδ made by the restrictions of the functions in
Φδ to Γ s. Hence, on each Γ s we have two decompositions (one coming from
T Σδ and one from T sh ) and two spaces of piecewise polynomial functions (one
from Φδ and one from V sh ). Note, incidentally, that on each face f belonging to
two different sub-domains we will have three decompositions and three spaces:
one from Σ and the other two from the two sub-domains.

The first basic idea of our method is to design for every sub-domain Ωs a
linear operator Gs (the generation operator) that maps every mother ϕδ ∈ Φδ
into an element (daughter) θsh = Gs(ϕδ) ∈ Θsh. Together with the individual
Gs we consider a global operator G defined as

G(ϕδ) = (θ1h, . . . , θ
S
h ) ∈ Θh with θs = Gs(ϕδ). (8)

The way to construct the operators Gs constitutes the second basic idea
of this paper, and will be described in a while.

Once we have the operators Gs we can consider the subspace Sh of Vh
made of sisters (that is, daughters of the same mother):

Sh := {vh ∈ Vh such that ∃ϕδ ∈ Φδ with vh|Σ = G(ϕδ)} ⊆ V. (9)

We point out that in our previous definitions we consider as daughter, at the
same time, an element θsh (= vsh|Γ s) of Θsh, and any function vsh ∈ V sh having
that same trace. It is clear, comparing (9) with (6), that Sh can be seen
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as a nonconforming approximation of H1
0 (Ω). This allows us to consider the

following discrete formulation. We set

as (u, v) :=

∫

Ωs

∇u · ∇vdx and a (u, v) :=

S∑

s=1

as (us, vs) (10)

and we look for uh ∈ Sh such that

a (uh, vh) =

∫

Ω

g vhdx ∀vh ∈ Sh. (11)

It is clear that, under reasonable assumptions on the subspaces Φδ and V sh
and on the generation operators Gs, problem (11) will have good stability and
accuracy properties.

The idea of imposing weak continuity by introducing the space Φδ and
define a nonconforming approximation of H1

0 (Ω) by taking the subset of Vh
whose elements take (in some weak sense) value ϕh ∈ Φδ is one of the main
ideas of the three field formulation (Brezzi and Marini [1994]). Following that
approach, for each sub-domain Ωs we could take a space M s

h of Lagrange
multipliers, and, for every ϕδ ∈ Φδ, we could define Gs(ϕδ) ∈ Θsh by

∫

Γ s

(ϕδ − Gs(ϕδ))µsh dx = 0 ∀µsh ∈M s
h. (12)

In general, however, equation (12) does not define Gs(ϕdelta) uniquely, even
when the spaces M s

h and Θsh satisfy the required inf-sup condition (see (24)).
Though this is not a problem in the definition and in the analysis of the
three field formulation, we would like to point out that having the trace of
the elements vsh on Γ s somehow uniquely determined by an element of Φδ
has some clear advantage from the point of view of implementation. In par-
ticular it allows to use standard Dirichlet solvers (which can easily be found
already implemented and whose optimization is well understood) as a brick
for treating the equation in the subdomain. In order for Gs(ϕδ) to be uniquely
determined by (12) the spaces M s

h and Θsh must have the same dimension. A
simple minded choice is M s

h ≡ Θsh, that guarantees existence and uniqueness
of the solution of (12) together with optimal stability and accuracy properties
of the projector Gs. This choice however is not the optimal one: in fact, during
the estimate of the error for problem (11), there seems to be no way to get
rid of a term like ∑

s

∫

Γ s

∂u

∂ns
(ϕδ − Gs(ϕδ)) dx. (13)

An obvious way to treat the term in (13) is to use the fact that ϕδ − Gs(ϕδ)
is orthogonal to all elements in M s

h, so that we can subtract from ∂u/∂ns
any element of M s

h. In particular we are interested in subtracting a suitable
approximation µsI ≃ ∂u/∂ns. It is then crucial to be able to find in M s

h a
µsI that approximates ∂u/∂ns with the needed order. However, ∂u/∂ns is
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discontinuous passing from one face to another of the same Ωs. And if the
spaceM s

h is made of continuous functions (as it would be with the choiceM s
h ≡

Θsh), then the order of approximation (say, in H−1/2(∂Ωs)) cannot be better
than O(h) (and actually with some additional logarithmic loss, as O(h|lg h|).
Hence, we do need an M s

h made of functions that can be discontinuous when
passing from one face to another of the same Ωs. The requirement to contain
a suitable amount of discontinuities and the one to have the same dimension
of Θsh seem very difficult to conciliate. Actually, a quite similar difficulty is
met in the mortar method, (see e.g. Bernardi et al. [1993], Belgacem and
Maday [1997], Hoppe et al. [1998], Wohlmuth [2001]), in particular in three
dimensions. There, the requirement that M s

h have the same dimension as Θsh
is relaxed as little as possible. The values of a “weakly continuous” function vsh
at nodes which are interior to the faces of Γ s on the slave sides are uniquely
determined by the weak continuity equation, while the degrees of freedom
corresponding to nodes on the edges of Γ s (whose union forms the so called
wirebasket) are free. We point out that the mortar method can be described
in the framework given here provided we relax the assumption Φδ ⊂ H1/2(Σ)
by allowing the functions φδ to be discontinuous across the “wirebasket”: Φδ
would correspond to the traces of vh on the “master sides” (or “mortars”) and
Gs being defined as the identity on master sides and to one of the available
mortar projections on “slave sides”.

The idea, here, is to give up the equality of the dimensions but still obtain
a well defined operator Gs, by changing (12) in a slightly more complicated
formulation, involving an additional Lagrange multiplier. Let us see the main
features of this path.

We choose first a space M s
h having in mind the fact that we must be able

to use it for approximating ∂u/∂ns with the right order. We also need its
dimension to be smaller than (or equal to) that of Θsh. Then we change (12)

in the following way. For every ϕδ ∈ Φδ we look for a pair (θ̃sh, µ̃
s
h) in Θsh×M s

h

such that ∫

Γ s

(ϕδ − θ̃sh)µsh dx = 0 ∀µsh ∈M s
h (14)

and

∑

T∈T Γ s

h

∫

T

h−1
T (ϕδ − θ̃sh) θsh dx+

∫

Γ s

µ̃sh θ
s
h dx = 0 ∀θsh ∈ Θsh. (15)

Then we set
Gs(ϕδ) := θ̃sh. (16)

It is clear that in (14)-(15) the number of equations will always be equal
to the number of unknowns. It is also clear that if (by shear luck) we have

ϕδ|Γ s ∈ Θsh then Gs(ϕδ) = ϕδ|Γ s (and µ̃sh = 0). This will, in the end, provide
for the new approach (14)-(16) an optimal order of accuracy (as we had for
the previous simple-minded (12)). It is, finally, also obvious that some sort of
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inf-sup condition will be needed in order to ensure existence and uniqueness
of the solution of (14)-(15), unless some suitable additional stabilization is
introduced. However, as we shall see, the possibility of escaping the cage
of the equal dimensionality of M s

h and Θsh opens a whole lot of interesting
possibilities.

In this paper we will follow the path indicated above. In the next section we
will make precise all the necessary assumptions, and in Section 3 we will derive
abstract error bounds for problem (11) when the operators Gs are constructed
as in (14)-(16). In Section 4 we will present some possible choices for the
finite element spaces and discuss their stability and accuracy properties. In
particular we will show that the simple choice of using totally discontinuous
functions forM s

h, stabilizing the problem with suitable boundary bubbles, leads
to a problem with optimal convergence properties and, at the same time, a
very simple implementation. This is reminiscent of what has been done for
instance in Baiocchi et al. [1992], Brezzi et al. [1997], Buffa [2002], and Brezzi
and Marini [2000], but simpler and more effective. Finally, in the last section
we briefly discuss some possible variants/extensions, in particular regarding
the possibility of using discontinuous mothers.

2 Assumptions on the decomposition and on the
discretizations

We consider now the assumptions to be made on the decomposition and on
the discretizations.

Assumptions on Ω and on the domain decomposition

We assume that Ω is an open polyhedron, that each Ωs, for s = 1, ..., S, is
also an open polyhedron, that the intersection of two different Ωs is empty,
and that the union of the closures of all Ωs is the closure of Ω. As in (2) the
skeleton Σ will be the union of the boundaries ∂Ωs. We do not assume that
this decomposition is compatible. This means that we do not assume that the
intersection of the closure of two different Ωs is either a common face, or a
common edge, or a common vertex. For simplicity we assume however that
the number S of subdomains is fixed once and for all, and we do not keep
track of the dependency of the various constants on S.

Assumptions on the decomposition T Σ
δ

We assume that we are given a sequence {T Σδ }δ of decompositions of Σ.
Each decomposition T Σδ is made of open triangles, in such a way that the
intersection of two different triangles is empty, and the union of the closures
of all triangles is Σ. We assume compatibility, that is we assume that the
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intersection of the closures of two different triangles is either empty, a common
edge or a common vertex. We also assume, as usual, shape regularity, for
instance by assuming that the ratio between the diameter of each triangle
and the radius of its biggest inscribed circle is ≤ κ0, with κ0 independent of δ.
Finally we assume quasi-uniformity: there exists a constant q, independent of
δ such that, if δminT and δmaxT are the minimum and the maximum diameters
(respectively) of the triangles in T Σδ , then δminT ≥ q δmaxT .

Assumptions on the decompositions T s
h (and T Γ s

h )

We assume that we are given, for each s = 1, ..., S, a sequence {T sh }h of
decompositions of Ωs. Each decomposition is made of open tetrahedra in
such a way that the intersection of two different tetrahedra is empty, and the
union of the closures of all tetrahedra is Ωs. We also assume compatibility:
the intersection of the closures of two different tetrahedra is either empty, a
common face, a common edge, or a common vertex. Finally we assume shape
regularity, for instance by assuming that the ratio between the diameter of
each tetrahedron and the radius of its biggest inscribed sphere is ≤ κ1, with
κ1 independent of h. We point out that we do not assume quasi-uniformity
for the meshes T sh . We recall that the triangulation T Γ s

h is the restriction on
Γ s of T sh .

Assumptions on the discretizations Φδ, V
s

h , and Ms
h

We assume that for each δ and for each T ∈ T Σδ we are given a space of
polynomials PT . The space Φδ will then be defined as

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ PT , T ∈ T Σδ }, (17)

where Φ is always given by (3). Similarly we assume that for each s, for each
h, and for each K ∈ T sh we are given a space of polynomials PK . The space
V sh will then be defined as

V sh := {vs ∈ V s such that vs|K ∈ PK , K ∈ T sh }, (18)

where V s is still given by (4).
The corresponding restrictions of the above spaces to each Γ s are defined

as in the previous section, namely

Φsδ := (Φδ)|Γ s and Θsh := (V sh )|Γ s , s = 1, ..., S. (19)

We assume that there exist bounded lifting operators from Θsh to V sh . More
precisely, for all s = 1, . . . , S, for all θsh ∈ Θsh there exists wsh ∈ V sh such that

wsh|Γ s = θsh and ‖wsh‖1,Ωs ≤ C‖θsh‖H1/2(Γ s). (20)
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Finally we assume that for each s, for each h, and for each T ∈ T Γ s

h we
are given a space of polynomials QT . The space M s

h will then be defined as

M s
h := {µ ∈ L2(Γ s) such that µ|T ∈ QT , T ∈ T Γ s

h }. (21)

If we like, we can also add some continuity requirements to (21). In view of
the discussion of the previous section, however, it would be unwise to force
continuity in the passage from one face to another. In order for the bilinear
form a to ve coercive in a suitable space, we make the following minimal
assumption on M s

h:

for every Ωs the space M s
h contains the constants on Γ s. (22)

Moreover, for simplicity, we assume that there exists an integer number κ
such that all the spaces PT , PK , and QT verify

PT ⊆ Pκ(T ), PK ⊆ Pκ(K), QT ⊆ Pκ(T ),

where Pκ(ω) is the space of polynomials of degree≤ κ on ω. Using the notation
of Brezzi and Fortin [1991a] for the usual Lagrange finite element spaces we
can then write

V sh ⊆ L1
κ(T sh ), Θsh ⊆ L1

κ(T Γ
s

h ), M s
h ⊆ L0

κ(T Γ
s

h ), Φδ ⊆ L1
κ(T Σδ ).

The operators Gs and the compatibility assumptions among the
discretizations

Having defined the spaces Θsh and M s
h we can now consider the operators

Gs (that will always be given by (14)-(16)) together with the global operator
G (still given by (8)). Once we have the operators Gs and G, we can define the
space of sisters Sh, always as in (9). In Sh we define:

|||vh|||2 :=

S∑

s=1

||∇vsh||20,Ωs (23)

We can now turn to the more important assumptions, that will require
some compatibility conditions among the spaces Φsδ, Θ

s
h and M s

h.
Our first assumption will deal with the well-posedness of the problem (14)-

(16). As this is a problem in classical mixed form, we have no real escape but
assuming an inf-sup condition on the spaces Θsh and M s

h:
∃β > 0 such that ∀s = 1, ..., S and ∀h > 0

inf
µs

h
∈Ms

h
\{0}

sup
θs

h∈Θs
h\{0}

∫
Γ s θ

s
h µ

s
h dx

||θsh||h, 12 ,Γ s ||µsh||h,− 1
2 ,Γ

s

> β, (24)

were the norms in the denominator of (24) are defined, for any real r, as
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||θsh||2h,r,Γ s :=
∑

T∈T Γ s

h

h−2r
T ||θsh||20,T (25)

and hT is the diameter of T . Condition (24) will be, in a sense, the only
nontrivial assumption that we have to take into account in the definition of
our spaces V sh and M s

h. However, in the next section, we are going to see some
families of elements where (24) can be checked rather easily.

Our last assumption will deal with the bound on the mother. We point out
that, so far, we did not assume that an element of the space of sisters Sh had
a unique mother. Indeed, we do not need it. Strictly speaking, we only need
that

∃γ > 0 such that: ∀vh ∈ Sh, ∃ϕδ ∈ Φδ with G(ϕδ) = vh|Σ and

||ϕ||2Φ :=

S∑

s=1

|ϕδ|2H1/2(Γ s) ≤ γ2|||vh|||2. (26)

We point out that || · ||Φ is indeed a norm on Φ, since the elements of Φ vanish
on ∂Ω (see Bertoluzza [2003]). One of the consequences of (26) is that the
seminorm ||| · ||| is indeed a norm. In fact, given vh ∈ Sh and letting ϕ ∈ Φδ
given by (26), provided (22) holds, it can be shown (see Bertoluzza [2003])
that

||vh||0,Ω ≤ C(|||vh|||+ ||ϕ||Φ) ≤ C|||vh|||. (27)

We shall discuss in the following sections whether and when this assump-
tion is satisfied. We anticipate however that this will be another easy condi-
tion, that could be roughly summarized by: on each face f of each ∂Ωs the
mesh T Γ s

δ (induced by T Σδ ) is coarser than the two meshes T Γ s

h (induced by
the two T sh relative to the sub-domains having f in common).

3 Basic Error Estimates

We are now ready to analyze the problem (11) and derive abstract error
estimates for it.

We start by looking in more detail to the operator Gs. Thanks to the
classical theory of mixed finite element (see Brezzi and Fortin [1991b]) we can
prove the following Lemma.

Lemma 1. Assume that the inf-sup condition (24) is satisfied, and let ϕ ∈
L2(Σ); then for every s = 1, ..., S

‖Gs(ϕ)‖h, 12 ,Γ s ≤ C‖ϕ‖h, 12 ,Γ s . (28)

We point out that the norm ‖ · ‖h, 12 ,Γ s , induced by the bilinear form

(u, v) → ∑
T∈T Γs

h

∫
T
h−1
T u v dx plays the role of a discrete H1/2(Γ s) norm.

Indeed we have the following lemma.
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Lemma 2. The following inverse inequality holds: for all θsh ∈ Θsh
‖θsh‖H1/2(Γ s) ≤ C‖θsh‖h, 12 ,Γ s (29)

Proof. We shall actually prove that (29) holds for all θsh ∈ L1
κ(T Γ

s

h ). It is
well known that a function in L1

κ(T sh ) is uniquely identified by its values
at a set {xi}i of nodes corresponding to the canonical Lagrange basis. Let
θsh ∈ L1

κ(T Γ
s

h ) and let wh ∈ L1
κ(T sh ) be its finite element lifting, i.e., the

function verifying wsh(xi) = θsh(xi) at all nodes on Γ s and wsh(xi) = 0 at
all other nodes. Clearly, ‖θsh‖H1/2(Γ s) ≤ C‖wsh‖H1(Ωs). Let us then bound

the H1(Ωs) norm of wsh. By definition wsh is different from 0 only on those
tetrahedra T ∈ T sh which are adjacent to the boundary. Let K be one of such
tetrahedra and let Ti ∈ T Γ

s

h , i = 1, . . . ,m be the triangles that share one or
more nodes with K. Thanks to usual arguments, we can write:

‖wsh‖2H1(K) ≤ Ch−1
K ‖wsh‖2L2(∂K) ≤ C

m∑

i=1

h−1
Ti
‖wsh‖2L2(Ti)

.

Adding with respect to all elements K adjacent to Γ s, we obtain that

‖wsh‖H1(Ωs) ≤ C‖θsh‖h, 12 ,Γ s ,

which implies (29).

Remark 1. Note that if we had assumed the quasi-uniformity of the triangula-
tion T Γ s

h , then (29) could easily be obtained by space interpolation, using the
standard inverse inequality between the H1 and the L2 norms. This is how-
ever not the case, and in the above proof we only made use of the regularity
of the mesh.

Lemma 2 trivially implies the continuity of Gs from L2(Γ s) (endowed with
the norm ‖ · ‖h, 12 ,Γ s), to H1/2(Γ s). However a stronger result holds, stated in
the following theorem

Theorem 1. Gs(·) is continuous from H1/2(Γ s) to H1/2(Γ s):

‖Gs(ϕ)‖H1/2(Γ s) ≤ C‖ϕ‖H1/2(Γ s). (30)

Proof. First, we introduce the Clément interpolant θsI ∈ Θsh of θs = ϕ|Γ s ,
which gives (see Clément [1975])

‖θsI‖H1/2(Γ s) ≤ C‖θs‖H1/2(Γ s)

‖θs − θsI‖h, 12 ,Γ s ≤ C‖θs‖H1/2(Γ s).
(31)

Since Gs(·) is linear and using the triangle inequality, we have

‖Gs(θs)‖H1/2(Γ s) ≤ ‖Gs(θs − θsI)‖H1/2(Γ s) + ‖Gs(θsI)‖H1/2(Γ s) = I + II.
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Making use of Lemma 2, Lemma 1 and (31), we get

I = ‖Gs(θ − θsI)‖H1/2(Γ s) ≤ C‖Gs(θ − θsI)‖h, 12 ,Γ s

≤ C‖θ − θsI‖h, 12 ,Γ s

≤ C‖θ‖H1/2(Γ s).

Moreover, since Gs(θsI) = θsI and using (31), we have

II = ‖Gs(θsI)‖H1/2(Γ s) ≤ C‖θ‖H1/2(Γ s),

giving (30).

We can now prove our error estimate. From the definition (10) and as-
sumption (27) we easily get that problem (11) has a unique solution. Let now
ψI be an interpolant of the exact solution u in Φδ. For every Ωs (s = 1, ..., S)
let usI ∈ V sh be defined as the unique solution of

{
usI = Gs(ψI) on Γ s

as (usI , v
s
h) =

∫
Ωs g v

s
h dx ∀vsh ∈ V sh ∩H1

0 (Ωs).
(32)

It is obvious that (32) has a unique solution. Let uI be equal to usI in each Ωs

(s = 1, ..., S). It is clear that uI ∈ Sh. We now set eh := uI − uh ∈ Sh. Using
the the definition (10) and adding and subtracting u we have:

|||eh|||2 = a (eh, eh) = a (uI − u, eh) + a (u− uh, eh) =: I + II. (33)

Using (11) and integrating a (u, eh) by parts in each Ωs we obtain

II = a (u− uh, eh) = −
S∑

s=1

∫

Ωs

g esh dx+
S∑

s=1

∫

Γ s

∂u

∂ns
esh dx−

S∑

s=1

∫

Ωs

g esh dx

=

S∑

s=1

∫

Γ s

∂u

∂ns
esh dx. (34)

As eh ∈ Sh, and using assumption (26) there will be a mother ηδ ∈ Φδ
with ‖ηδ‖Φ ≤ C|||eh|||, such that G(ηδ) = eh|Σ . Hence the continuity of ∂u/∂n,
and the fact that ηδ is single-valued on the skeleton Σ yield

II =

S∑

s=1

∫

Γ s

∂u

∂ns
(esh − ηδ) dx =

S∑

s=1

∫

Γ s

∂u

∂ns
(Gs(ηδ)− ηδ) dx. (35)

We can now use the definition of Gs (see (15)) and subtract from ∂u/∂n
its best approximation µsI , thus obtaining

II =

S∑

s=1

∫

Γ s

( ∂u
∂ns
− µsI

)
(Gs(ηδ)− ηδ) dx. (36)
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We remember now that Gs(ηδ) = esh on Γ s for all s. We also point out
that (thanks to (22)) we can assume that the mean value of ∂u/∂ns − µsI on
each Γ s is zero, so that we can use the H1/2-seminorm of es and ηδ instead
of the norm in the estimate. Then we use Cauchy-Schwarz inequality, we use
(26) for ηδ, and (27) standard trace inequality in each Ωs for es to obtain

II ≤
S∑

s=1

|| ∂u
∂ns
− µsI ||H−1/2(Γ s)

(
|es|H1/2(Γ s) + |ηδ|H1/2(Γ s)

)

≤
( S∑

s=1

|| ∂u
∂ns
− µsI ||2H−1/2(Γ s)

)1/2

|||eh|||. (37)

It remains to estimate I. After the obvious

I = a (uI − u, eh) ≤ |||uI − u||| |||eh||| (38)

we have to estimate |||u − uI |||. Using the definition (32) of usI we can apply
the usual theory for estimating the error for each Dirichlet problem in Ωs.
Thanks to (20) we have first

||u− usI ||1,Ωs ≤ C
(

inf
vs

h∈V s
h

||u − vsh||1,Ωs + ||u− usI ||H1/2(Γ s)

)
. (39)

It is then clear that the crucial step is to estimate ||u − usI ||H1/2(Γ s), for each
s.

To this aim let us introduce an interpolant χsI ∈ Θsh of u|Γ s . We can write

‖u− usI‖H1/2(Γ s) ≡ ‖u− Gs(ψI)‖H1/2(Γ s)

≤ ‖u− χsI‖H1/2(Γ s) + ‖χsI − Gs(u)‖H1/2(Γ s) (40)

+‖Gs(u)− Gs(ψI)‖H1/2(Γ s) (41)

Since χsI = Gs(χsI) and using Theorem 1, we easily get ‖χsI−Gs(u)‖H1/2(Γ s) =
‖Gs(χsI − u)‖H1/2(Γ s) ≤ C‖u− χsI‖H1/2(Γ s). By a similar argument we obtain
‖Gs(u − ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s).

We can then collect (33)-(38) and (39)–(41) in the following theorem.

Theorem 2. Assume that the assumptions of Section 2 on the decomposition
and on the discretizations are satisfied. Assume that the operators Gs are
constructed as in (14)-(16). Let u be the exact solution of (1) and uh be the
solution of (11). Then we have

|||u − uh|||2 ≤ C
S∑

s=1

(
inf

vs
h∈V s

h

||u − vsh||21,Ωs + inf
µs

h∈Ms
h

|| ∂u
∂ns
− µsh||2H−1/2(Γ s)

)

+ inf
ϕδ∈Φδ

||u− ϕδ||2H1/2(Σ). (42)
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4 Examples and Remarks

In this section we want to show an example of finite element discretizations
that satisfy the abstract assumptions of Section 2, and derive the correspond-
ing error bounds in terms of suitable powers of h.

We do not discuss the assumptions on the decomposition of Ω into the
Ωs. We just remark once more that it does not need to be compatible: for
instance, the intersection of the closures of two different Ωs can be a face of
one of them and only a piece of a face of the other.

We discuss instead the choice of the finite element spaces Φδ, V
s
h , and M s

h.
Assume that we are given an integer number k ≥ 1.
For every T in the triangulation T Σδ of the skeleton Σ we choose PT :=

Pk(T ), the space of polynomials of degree ≤ k on T . The space Φδ, according
to (17), becomes then

Φδ := {ϕ ∈ Φ such that ϕ|T ∈ Pk(T ), T ∈ T Σδ } = L1
k(T Σδ ) ∩ Φ (43)

(we recall that the elements of Φ have to vanish on ∂Ω so we need to take the
intersection of L1

k(T Σδ ) with Φ in order to properly define Φδ). For each s and
for every T in the triangulation T Γ s

h of Γ s we take instead as QT the space
QT := Pk−1(T ). According to (21) the space M s

h becomes then

M s
h := {µ ∈ L2(Γ s) : µ|T ∈ Pk−1(T ), T ∈ T Γ s

h } = L0
k(T Γ

s

h ). (44)

We point out that Φδ is made of continuous functions, while M s
h is made of

functions that are, a priori, totally discontinuous from one element to another.
The choice of each V sh will be slightly more elaborate. For each tetrahedron

K ∈ T sh with no faces belonging to Γ s we take PK := Pk. If instead K has a
face f on Γ s we consider the cubic function bf on K that vanishes on the three
remaining internal faces of K, and we augment the space Pk with the space
Bfk+2 obtained multiplying bf times the functions in Qf ≡ Pk−1(f) (that is
the space of polynomials of degree ≤ k − 1 on f : remember that the face f
will be one of the triangles T ∈ T Γ s

h ). If K has another face on Γ s we repeat
the operation, augmenting further the space Pk. In summary

PK := Pk(K) + {
⊕

f⊂Γ s

Bfk+2} ≡ Pk + {
⊕

f⊂Γ s

bfPk−1(f)}. (45)

We note that
⊕
bfPk−1(f) is a direct sum, but its sum with Pk(K) is not

direct whenever k ≥ 3. This however will not be a problem for the following
developments.

We can now discuss the various abstract assumptions that have been made
in Section 2. To start with, condition (22) is obviously satisfied. Similarly, (20)
holds as shown for instance in Bernardi et al. [to appear]. We consider then
the inf-sup condition (24).

Lemma 3. Let M s
h and Θsh be constructed as in (44) and in (19) with (45),

respectively. Then the inf-sup condition (24) holds true.
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Proof. For every µsh ∈M s
h we construct vsh ∈ V sh as

vsh =
∑

T∈T Γ s

h

hT bT µ
s
h (46)

where as before bT is the cubic function on K (the tetrahedron having T as
one of its faces) vanishing on the other three faces of K and having mean
value 1 on T . It is not too difficult to check that

||µsh||h,− 1
2 ,Γ

s ||vsh||h, 12 ,Γ s ≤ C
∫

T Γs

h

vshµ
s
h (47)

that is precisely the inf-sup condition (24) that we need.

We consider now the other inf-sup that is involved in the present scheme
(although we did not write it as an inf-sup), that is the bound on the mother
(26). By applying the technique of Babuska [1973] it is not difficult to realize
that if T Σδ is “coarse enough” on each face, compared with the meshes of the
two sub-domains having that face in common, then

inf
ϕδ∈L1

k(T Γs

δ )\{0}
sup

µs
h∈Ms

h\{0}

∫
Γ s ϕδ µ

s
h dx

||µsh||H−1/2(Γ s) ||ϕδ||H1/2(Γ s)

> γ0. (48)

It is now easy to see that (48) implies (26): let vsh ∈ Sh, then, by definition,
there exists ϕδ ∈ Φδ such that vsh|Σ = ϕδ. Letting ϕ̌s = (1/|Γ s|)

∫
Γ s ϕδdx we

have that ϕδ − ϕ̌s ∈ L1
k(T Γ

s

δ ). Let now µ∗h ∈M s
h be the element that realizes

the supremum in (48) for such an element of L1
k(T Γ

s

δ ). Using (48), and then
(14), we obtain

γ0||µ∗h||H−1/2(Γ s) ||ϕδ − ϕ̌s||H1/2(Γ s) ≤
∫

Γ s

µ∗h (ϕδ − ϕ̌s) dx (49)

=

∫

Γ s

µ∗h Gs(ϕδ − ϕ̌s) dx. (50)

Now, since ϕδ−ϕ̌s has zero mean value on Γ s, the same is true for Gs(ϕδ−ϕ̌s)
(see (14) and (22)). Then, denoting by v̌s = (1/|Γ s|)

∫
Γ s v

s
hdx the average of

vsh on Γ s, we have

∫

Γ s

µ∗h Gs(ϕδ − ϕ̌s) dx =

∫

Γ s

µ∗h (vsh − v̌s) dx

≤ ||µ∗h||H−1/2(Γ s) |vsh|H1/2(Γ s)

≤ ||µ∗h||H−1/2(Γ s) |vsh|1,Ωs

that, since |ϕδ|H1/2(Γ s) = |ϕδ − ϕ̌s|H1/2(Γ s) ≃ ‖ϕδ − ϕ̌s‖H1/2(Γ s), joined with
(49) immediately implies (26).

We can collect the previous results, together with the abstract error esti-
mates of the previous section, in the following theorem.
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Theorem 3. Assume that the assumptions on the decompositions T Σδ and
T sh of Section 2 are satisfied, and assume that the spaces Φδ, M

s
h and V sh are

defined as in (43), (44) and (18) with (45), respectively. Assume finally that
(48) holds. Then we have

|||uh − u||| ≤ C (|h|k + |δ|k)||u||k+1,Ω (51)

The proof follows immediately from Theorem 1, the results of this section,
and usual approximation estimates.

We end this section with some observations on the actual implementation
of the method when the bubble stabilization (45) is used.

Indeed, let us see how the computation of the generation operators Gs
can be performed in practice. Assume that we are given a function ϕ in, say,
L2(Γ s). We recall that, to compute θ̃sh = Gs(ϕ), we have to find the pair

(θ̃sh, µ̃
s
h) ∈ Θsh ×M s

h such that

∫

Γ s

(ϕ− θ̃sh)µsh dx = 0 ∀µsh ∈M s
h, (52)

∑

T∈T Γ s

h

∫

T

h−1
T (ϕ− θ̃sh) θsh dx+

∫

Γ s

µ̃sh θ
s
h dx = 0 ∀θsh ∈ Θsh. (53)

We also recall that, with the choice (45), the space Θsh can be written as Θsh =
L1
k(T Γ

s

h ) + Bk+2(T Γ
s

h ) where L1
k(T Γ

s

h ) is, as before, the space of continuous
piecewise polynomials of degree k on the mesh T Γ s

h , and Bk+2(T Γ
s

h ) is the
space of bubbles of degree k+2, always on T Γ s

h . In order to write is as a direct
sum we introduce the space

W s = {θsh ∈ Θsh such that

∫

Γ s

θsh µ
s
hdx = 0 ∀µsh ∈M s

h} (54)

We can then split in a unique way θ̃sh = w̃+b̃ with w̃ ∈ W s and b̃ inBk+2(T Γ
s

h ).

It is now clear that b̃ can be computed immediately from (52) that becomes:

∫

Γ s

(ϕ− b̃)µsh dx = 0 ∀µsh ∈M s
h. (55)

Once b̃ is known, one can compute w̃ from (53) that easily implies

∑

T∈T Γ s

h

∫

T

h−1
T (ϕ− w̃)w, dx =

∑

T∈T Γ s

h

∫

T

h−1
T b̃ w, dx ∀w ∈W s. (56)

In this way the saddle point problem (52)-(53) splits into two smaller sub-
problems, each with a symmetric and positive definite matrix. In particular
(55) can be solved element by element, so that (56) is the only true system to
be solved.
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5 Relaxing the continuity of the Mothers

One of the main advantages of the present method (and in general of all
non conforming domain decomposition methods) is the freedom given by the
possibility of meshing and treating each sub-domain independently of the
others. In our approach however, the discretization Φδ of H1/2(Σ) is required
to be continuous. Such request can be relaxed by defining Φδ face by face and
asking for continuity within each face but allowing the elements of Φδ to jump
across the boundary between two adjacent faces. More precisely, considering a
splitting of the skeleton Σ in disjoint faces Σ = ∪f (with f = Γ s∩Γ ℓ for some

s, ℓ = 1, . . . , S) we can introduce for each face a family of triangulations T fδ
and consider a corresponding space Φfδ ⊂ H1/2(f) of piecewise polynomials.
The global space Φδ could then be defined by

Φδ = {ϕδ ∈ L2(Σ) with ϕδ|f ∈ Φfδ for all faces f of Σ}.

Such a choice has several advantages, in particular from the point of view
of implementation. Each face can be meshed independently of the other faces.
Moreover, each node on Σ belongs to only one face f and therefore it only
“sees” two sub-domains. This greatly simplifies the data structure needed for
describing the elements of Φδ and the manipulations of such elements and of
their interaction with other elements.

The analysis presented in the previous section needs then to be modified
in order to take the discontinuity of the mothers into account. In particular,
if the elements of Φδ are discontinuous, the space Φδ is not a subspace of
H1/2(Σ), and therefore bounds like ‖Gs(u− ψI)‖H1/2(Γ s) ≤ ‖u− ψI‖H1/2(Γ s)

would not make sense. A completely revised analysis is carried out in a further
work in preparation, and results in an almost optimal estimate (with the loss
of a logarithmic factor). We just point out that the analysis of Section 3 could
still be applied if the space Φcδ = Φδ ∩H1/2(Σ) has good approximation prop-
erties. Such space is the one where one should choose the best approximation
ψI . This is indeed a very special case: in general such space does not provide a
good approximation. It may very well happen that it contains only the func-
tion ϕδ = 0. A case in which the space Φcδ does provide good approximation is
the case in which the meshes on two adjacent faces share a sufficiently fine set
of common nodes (in particular the case when, restricted to the common edge,
the nodes of the two (or more) meshes are one a subset of the other). Though
this is quite an heavy restriction to the freedom given by the possibility of us-
ing discontinuous mothers, such a case would still have many advantages from
the implementation point of view, while retaining the optimal error estimate.
Remark that the subspace Φcδ would only be used for analyzing the method,
while its implementation fully relies on the discontinuous space Φδ.
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Summary. The FETI-DP domain decomposition method is extended to address
the iterative solution of a class of indefinite problems of the form (K−σ2M)x = b,
and a class of complex problems of the form (K − σ2M + iσD)x = b, where K,
M, and D are three real symmetric positive semi-definite matrices arising from
the finite element discretization of either second-order elastodynamic problems or
fourth-order plate and shell dynamic problems, i is the imaginary complex number,
and σ is a positive real number.

1 Introduction

Real linear or linearized systems of equations of the form

(K− σ2M)x = b (1)

and complex linear or linearized systems of equations of the form

(K− σ2M + iσD)x = b (2)

are frequent in computational structural dynamics. Eq. (1) is encountered, for
example, in the finite element (FE) simulation of the forced response of an
undamped mechanical system to a periodic excitation . In that case, K and M
are the FE stiffness and mass matrices of the considered mechanical system,
respectively, σ is the circular frequency of the external periodic excitation, b
is its amplitude, (K− σ2M) is the impedance of the mechanical system, and
x is the amplitude of its forced response. Such problems also arise during the
solution by an inverse shifted method of the generalized symmetric eigenvalue
problem Kx = ω2Mx associated with an undamped mechanical system. In
that example, K and M have the same meaning as in the previous case, (ω2,
x) is a desired pair of eigenvalue and eigenvector representing the square of
a natural circular frequency and the corresponding natural vibration mode of
the undamped mechanical system, respectively, and the shift σ2 is introduced
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to obtain quickly the closest eigenvalues to σ2. In both examples mentioned
here, the matrices K and M are symmetric positive semi-definite, and there-
fore (K − σ2M) rapidly becomes indefinite when σ is increased. Eq. (2) is
encountered in similar problems when the mechanical system is damped, in
which case i denotes the pure imaginary number satisfying i2 = −1 and D
denotes the FE damping matrix and is also symmetric positive semi-definite.

Domain decomposition based preconditioned conjugate gradient (PCG)
methods have emerged as powerful equation solvers in this field on both se-
quential and parallel computing platforms. While most successful domain de-
composition methods (DDMs) have been designed for the solution of symmet-
ric positive (semi-) definite systems, some have targeted indefinite problems of
the form given in (1) (Cai and Widlund [1992]) . The objective of this paper
is to present an alternative DDM that addresses both classes of indefinite (1)
and complex (2) problems, that is based on the FETI-DP (Farhat, Lesoinne
and Pierson [2000], Farhat et al. [2001]) DDM, and that is scalable when K,
M, and D result from the FE discretization of second-order elastodynamic
problems and fourth-order plate and shell dynamic problems.

2 The FETI-DP method

The dual-primal finite element tearing and interconnecting method (FETI-
DP) (Farhat, Lesoinne and Pierson [2000], Farhat et al. [2001]) is a third-
generation FETI method (for example, see Farhat [1991], Farhat and Roux
[1991]) developed for the scalable and fast iterative solution of systems of
equations arising from the FE discretization of static, dynamic, second-order,
and fourth-order elliptic partial differential equations (PDEs). When equipped
with the Dirichlet preconditioner (Farhat, Mandel and Roux [1994]) and ap-
plied to fourth-order or two-dimensional second-order problems, the condition
number κ of its interface problem grows asymptotically as (Mandel and Tezaur
[2001])

κ = O (1 + logm
H

h
), m ≤ 2, (3)

where H and h denote the subdomain and mesh sizes, respectively. When
equipped with the same Dirichlet preconditioner and an auxiliary coarse prob-
lem constructed by enforcing some set of optional constraints at the subdo-
main interfaces (Farhat et al. [2001]), the condition number estimate (3) also
holds for second-order scalar elliptic problems (Klawonn, Widlund and Dryja
[2002]). The result (3) proves the numerical scalability of the FETI method-
ology with respect to all of the problem size, the subdomain size, and the
number of subdomains. More specifically, it suggests that one can expect
the FETI-DP method to solve small-scale and large-scale problems in similar
iteration counts. This in turn suggests that when the FETI-DP method is
well-implemented on a parallel processor, it should be capable of solving an
n-times larger problem using an n-times larger number of processors in almost
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a constant CPU time. This was demonstrated in practice for many complex
structural mechanics problems (for example, see Farhat, Lesoinne and Pierson
[2000] and Farhat et al. [2001] and the references cited therein).

Next, the FETI-DP method is overviewed in the context of the generic
symmetric positive semi-definite (static) problem

Kx = b, (4)

where K has the same meaning as in problems (1,2) and b is an arbitrary
vector, in order to keep this paper as self-contained as possible.

2.1 Non-overlapping domain decomposition and notation

Let Ω denote the computational support of a second- or fourth-order problem
whose discretization leads to problem (4), {Ω(s)}Ns

s=1 denote its decomposition
into Ns subdomains with matching interfaces Γ (s,q) = ∂Ω(s)

⋂
∂Ω(q), and let

Γ =

s=Ns⋃

s=1,q>s

Γ (s,q) denote the global interface of this decomposition. In the

remainder of this paper, each interface Γ (s,q) is referred to as an “edge”,
whether Ω is a two- or three-dimensional domain. Let also K(s) and b(s)

denote the contributions of subdomain Ω(s) to K and b, respectively, and let
x(s) denote the vector of dof associated with it.

Let Nc of the NI nodes lying on the global interface Γ be labeled “corner”
nodes (see Fig. 1), Γc denote the set of these corner nodes, and let Γ ′ = Γ\Γc.
If in each subdomain Ω(s) the unknowns are partitioned into global corner dof
designated by the subscript c, and “remaining” dof designated by the subscript
r, K(s), x(s) and b(s) can be partitioned as follows

K(s) =

[
K

(s)
rr K

(s)
rc

K
(s)T

rc K
(s)
cc

]
, x(s) =

[
x

(s)
r

x
(s)
c

]
and b(s) =

[
b

(s)
r

b
(s)
c

]
. (5)

The r-type dof can be further partitioned into “interior” dof designated by
the subscript i, and subdomain interface “boundary” dof designated by the

subscript b. Hence, x
(s)
r and b

(s)
r can be further partitioned as follows

x(s)
r =

[
x

(s)
i x

(s)
b

]T
and b(s)

r =
[
b

(s)
i b

(s)
b

]T
, (6)

where the superscript T designates the transpose.

Let xc denote the global vector of corner dof, and x
(s)
c denote its restriction

to Ω(s). Let also B
(s)
r and B

(s)
c be the two subdomain Boolean matrices defined

by

B(s)
r x(s)

r = ±x
(s)
b and B(s)

c xc = x(s)
c , (7)
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Fig. 1. Example of a definition of corner points.

where the ± sign is set by any convention that implies that
Ns∑
s=1

B
(s)
r x

(s)
r rep-

resents the jump of the solution x across the subdomain interfaces. Finally,
let

bc =

Ns∑

s=1

B(s)T

c b(s)
c . (8)

In Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001], it was
shown that solving problem (4) is equivalent to solving the following domain-
decomposed problem

K(s)
rr x(s)

r + K(s)
rc B(s)

c xc + B(s)T

r λ+ B(s)T

r Qb µ = b(s)
r , s = 1, ..., Ns (9)

Ns∑

s=1

B(s)T

c K(s)T

rc x(s)
r +

Ns∑

s=1

B(s)T

c K(s)
cc B(s)

c xc = bc, (10)

Ns∑

s=1

B(s)
r x(s)

r = 0, (11)

QT
b

Ns∑

s=1

B(s)
r x(s)

r = 0, (12)

where λ is an Nλ-long vector of Lagrange multipliers introduced on Γ ′ to
enforce the continuity (11) of the solution x, and µ is another vector of La-
grange multipliers introduced to enforce the optional linear constraints (12).
These optional constraints, a concept first developed in Farhat, Chen, Risler
and Roux [1998], are associated with a matrix Qb with NQ < Nλ columns
defined on Γ ′. The word “optional” refers to the fact that Eq. (12) and the
vector of Lagrange multipliers µ are not necessarily needed for formulating
the above domain-decomposed problem. Indeed, since the solution of problem
(4) is continuous across the subdomain interfaces, it satisfies Eq. (11) and
therefore satisfies Eq. (12) for any matrix Qb.

The domain-decomposed problem (9–12) was labeled “dual-primal” in
Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001] because it is
formulated in terms of two different types of global unknowns: the dual La-
grange multipliers represented by the vector λ, and the primal corner dof
represented by the vector xc.

In the remainder of this paper, the j-th column of Qb is denoted by qj .
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2.2 Interface and coarse problems

Let

K̃cc =

[
Kcc 0
0 0

]
, dr =

Ns∑

s=1

B(s)
r K(s)−1

rr b(s)
r ,

and b∗c = bc −
Ns∑

s=1

(K(s)
rc B(s)

c )TK(s)−1

rr b(s)
r . (13)

After some algebraic manipulations aimed at eliminating symbolically x
(s)
r ,

s = 1, ..., Ns, xc, and µ, the domain-decomposed problem (9–12) can be trans-
formed into the following symmetric positive semi-definite interface problem

(FIrr + F̃IrcK̃
∗−1

cc F̃TIrc
)λ = dr − F̃IrcK̃

∗−1

cc b̃∗c , (14)

where

FIrr =

Ns∑

s=1

B(s)
r K(s)−1

rr B(s)T

r , F̃Irc =

Ns∑

s=1

B(s)
r K(s)−1

rr K̃(s)
rc B(s)

c ,

K̃(s)
rc =

[
K(s)
rc B(s)

c B(s)T

r Qb

]
, b̃∗c =

[
b∗c

−QT
b dr

]
,

K̃∗cc = K̃cc −




Ns∑
s=1

(K
(s)
rc B

(s)
c )TK

(s)−1

rr (K
(s)
rc B

(s)
c )

Ns∑
s=1

(K
(s)
rc B

(s)
c )TK

(s)−1

rr (B
(s)T

r Qb)

Ns∑
s=1

(B
(s)T

r Qb)
TK

(s)−1

rr (K
(s)
rc B

(s)
c )

Ns∑
s=1

(B
(s)T

r Qb)
TK

(s)−1

rr (B
(s)T

r Qb)


 .

(15)

The FETI-DP method is a DDM which solves the original problem (4)
by applying a PCG algorithm to the solution of the corresponding dual in-
terface problem (14). At the n-th PCG iteration, the matrix-vector product

(FIrr + F̃IrcK̃
∗−1

cc F̃TIrc
)λn incurs the solution of an auxiliary problem of the

form
K̃∗ccz = F̃TIrc

λn. (16)

From the fifth of Eqs. (15), it follows that the size of this auxiliary problem
is equal to the sum of the number of corner dof, Ndof

c , and the number of
columns of the matrix Qb, NQ.

For NQ = 0 — that is, for Qb = 0, the auxiliary problem (16) is a coarse

problem, and K̃∗cc is a sparse matrix whose pattern is that of the stiffness
matrix obtained when each subdomain is treated as a “superelement” whose
nodes are its corner nodes. This coarse problem ensures that the FETI-DP
method equipped with the Dirichlet preconditioner (see Section 2.3) is numer-
ically scalable for fourth-order plate and shell problems, and two-dimensional
second-order elasticity problems (Farhat et al. [2001], Mandel and Tezaur
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[2001]). However, for Qb = 0, the FETI-DP method equipped with the Dirich-
let preconditioner is not numerically scalable for three-dimensional second-
order problems.

For any choice of Qb 6= 0, K̃∗cc remains a sparse matrix. If Qb is constructed
edge-wise — that is, if each column of Qb is constructed as the restriction of
some operator to a specific edge of Γ ′ — the sparsity pattern of K̃∗cc becomes
that of a stiffness matrix obtained by treating each subdomain as a superele-
ment whose nodes are its corner nodes augmented by virtual mid-side nodes.
The number of dof attached to each virtual mid-side node is equal to the
number of columns of Qb associated with the edge on which lies this mid-side
node. If NQ is kept relatively small, the auxiliary problem (16) remains a rel-
atively small coarse problem. This coarse problem was labeled “augmented”
coarse problem in Farhat, Lesoinne and Pierson [2000] in order to distinguish
it from the smaller coarse problem obtained with Qb = 0. Furthermore, each
column of Qb is referred to as an “augmentation coarse mode”. When these
augmentation coarse modes are chosen as the translational rigid body modes
of each edge of Γ ′, the FETI-DP method equipped with the Dirichlet pre-
conditioner becomes numerically scalable for three-dimensional second-order
problems (Klawonn, Widlund and Dryja [2002]).

2.3 Local preconditioning

Two local preconditioners have been developed so far for the FETI-DP
method:

1. The Dirichlet preconditioner which can be written as

F
D−1

Irr
=

Ns∑

s=1

W(s)B(s)
r

[
0 0

0 S
(s)
bb

]
B(s)T

r W(s),

where S
(s)
bb = K

(s)
bb −K

(s)T

ib K
(s)−1

ii K
(s)
ib , (17)

the subscripts i and b have the same meaning as in Section 2.1, and W(s)

is a subdomain diagonal scaling matrix that accounts for possible subdo-
main heterogeneities (Rixen and Farhat [1999]). This preconditioner is
mathematically optimal in the sense that it leads to the condition number
estimate (3).

2. The lumped preconditioner which can be written as

F
L−1

Irr
=

Ns∑

s=1

W(s)B(s)
r

[
0 0

0 K
(s)
bb

]
B(s)T

r W(s). (18)

This preconditioner is not mathematically optimal in the sense defined
above; however, it decreases the cost of each iteration in comparison with
the Dirichlet preconditioner often with a modest increase in the iteration
count.
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3 The FETI-DPH method

In the context of Eq. (1), K
(s)
rr becomes K

(s)
rr − σ2M

(s)
rr . Hence, the extension

of the FETI-DP method to problems of the form given in (1) or (2) requires
addressing the following issues:

1. K
(s)
rr − σ2M

(s)
rr is indefinite and therefore the dual interface problem (14)

is indefinite.
2. Independently of which interface points are chosen as corner points, K

(s)
rr −

σ2M
(s)
rr is in theory singular when σ2 coincides with an eigenvalue of the

pencil (K
(s)
rr ,M

(s)
rr ).

3. How to construct augmentation coarse modes and extended Dirichlet and
lumped preconditioners that address the specifics of problems (1,2).

For problems of the form given in (2), only the third issue is relevant.
The first issue can be addressed by solving the dual interface problem (14) by
a preconditioned generalized minimum residual (PGMRES) algorithm rather
than a PCG algorithm. The second and third issues were addressed in Farhat,
Macedo and Lesoinne [2000] in the context of the basic FETI method and
acoustic scattering applications — that is, for the exterior Helmholtz scalar
problem where σ2 = k2 and k denotes the wave number. More specifically, a
regularization procedure was developed in that reference to prevent all sub-
domain problems from being singular for any value of the wave number k,

without destroying the sparsity of the local matrices K
(s)
rr −k2M

(s)
rr and with-

out affecting the solution of the original problem (1). Furthermore, for the
scalar Helmholtz equation, the coarse modes were chosen in Farhat, Macedo

and Lesoinne [2000] as plane waves of the form eikθ
T
j Xb , j = 1, 2, · · · , where

θj denotes a direction of wave propagation and Xb the coordinates of a node
on Γ . The resulting DDM was named the FETI-H method (H for Helmholtz).

Unfortunately, the regularization procedure characterizing the FETI-H
method transforms each real subdomain problem associated with Eq. (1) into
a complex subdomain problem. For acoustic scattering applications, this is
not an issue because the Sommerfeld radiation condition causes the original
problem to be in the complex domain. However, for real-valued problems such
as those represented by Eq. (1), the regularization procedure of the FETI-H
method is unjustifiable from computational resource and performance view-
points.

In practice, experience reveals that K
(s)
rr −σ2M

(s)
rr is non-singular as long as

K
(s)
rr is non-singular. This observation is exploited here to design an extension

of the FETI-DP method for indefinite problems of the form given in (1) and
complex problems of the form given in (2) by:

1. Replacing the PCG solver by the PGMRES solver.
2. Adapting the Dirichlet and lumped preconditioners to exploit an interest-

ing characteristic of problems (1,2).
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3. Constructing a new augmentation coarse space that is effective for second-
order elastodynamic problems as well as fourth-order plate and shell dy-
namic problems.

The extension of FETI-DP outlined above is named here the FETI-DPH
method.

3.1 Adapted Dirichlet and lumped preconditioners

Consider the subdomain (impedance) matrix

Z(s)
rr = K(s)

rr − σ2M(s)
rr . (19)

For the applications outlined in the introduction, M
(s)
rr is a mass matrix;

hence, in three dimensions and at the element level, this matrix is propor-

tional to h3. On the other hand, for the same applications, K
(s)
rr is a stiffness

matrix; in three dimensions and at the element level, it is proportional to h
for second-order elasticity problems, and to 1/h2 for fourth-order plate and

shell problems. It follows that for a sufficiently fine mesh, Z
(s)
rr is dominated

by K
(s)
rr . These observations, the optimality of the Dirichlet preconditioner

and the computational efficiency of the lumped preconditioner established for

the solution of problem (4) suggest preconditioning the local matrices Z
(s)
rr by

Dirichlet and lumped constructs that are based on K
(s)
rr (see Section 2.3) and

not Z
(s)
rr . When Rayleigh damping is used,

D(s)
rr = cKK(s)

rr + cMM(s)
rr , (20)

where cK and cM are two real constants, and the same reasoning can be
invoked to advocate preconditioning the local matrices

Z(s)
rr = K(s)

rr − σ2M(s)
rr + iσD(s)

rr (21)

by Dirichlet and lumped constructs that are based on (1+ iσcK)K
(s)
rr and not

Z
(s)
rr .

Finally, it is pointed out that the ad-hoc reasoning outlined above can
be mathematically justified, at least in the context of the scalar Helmholtz
equation (for example, see Klawonn [1995] and the references cited therein).

3.2 Wavy augmented coarse problem

Let r denote the residual associated with the iterative solution of the dual
interface problem (14). From Eqs. (9–12) and Eq. (14), it follows that

r = dr − F̃IrcK̃
∗−1

cc b̃∗c − (FIrr + F̃IrcK̃
∗−1

cc F̃TIrc
)λ =

Ns∑

s=1

B(s)
r x(s)

r , (22)
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which shows that the residual r represents the jump of the iterate solution
across the subdomain interfaces.

From Eq. (12), Eq. (15), Eq. (14) and Eq. (11), it follows that at each
iteration of the PGMRES algorithm applied to the solution of problem (14),
FETI-DPH forces the jump of the solution across the subdomain interfaces
to be orthogonal to the subspace represented by the matrix Qb. This feature
is a strategy for designing an auxiliary coarse problem which, when Qb is
well chosen, accelerates the convergence of a DDM (Farhat, Chen, Risler and
Roux [1998]). In this work, the search for a suitable matrix Qb is driven by
the following reasoning. Suppose that the space of traces on Γ ′ of the desired
solution of problem (1) is spanned by a set of orthogonal vectors {vjE}Nλ

j=1,
where the subscript E indicates that vjE is non-zero only on edge E ∈ Γ ′.
Then, the residual r defined in Eq. (22) can be written as

r =

Nλ∑

j=1

αjvjE , (23)

where {αj}Nλ
j=1 is a set of real coefficients. If each augmentation coarse mode

is chosen as
qj = vjE , j = 1, · · · , NQ, (24)

Eq. (12) simplifies to

αj = 0, j = 1, · · · , NQ. (25)

In that case, Eq. (25) implies that at each iteration of the PGMRES algorithm,
the first NQ components of the residual r in the basis {vjE}Nλ

j=1 are zero. If

a few vectors {vjE}
NQ

j=1, NQ << Nλ, that dominate the expansion (23) can
be found, then choosing these vectors as coarse augmentation modes can be
expected to accelerate the convergence of the iterative solution of the dual
interface problem (14). Hence, it remains to exhibit such a set of orthogonal
vectors vjE and construct a computationally efficient matrix Qb.

A second-order elastodynamic problem is governed by Navier’s displace-
ment equations of motion

µ∆u+ (Λ + µ)∇(∇ · u) + b = ρ
∂2u

∂t2
, (26)

where u ∈ R3 denotes the displacement (vector) field of the elastodynamic
system, Λ and µ its Lamé moduli, b ∈ R3 its body forces, ρ its density, and t
denotes time. If a harmonic motion is assumed, — that is, if

u(X, t) = v(X)e−iωt, (27)

where X ∈ R3 denotes the spatial variables, and ω denotes a circular fre-
quency, the homogeneous form of Eq. (26) becomes
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µ∆v + (Λ + µ)∇(∇ · v) + ρω2v = 0. (28)

The free-space solutions of the above vector equation are

v = ap sin(kpθ ·X), v = ap cos(kpθ ·X), (29)

v = as1 sin(ksθ ·X), v = as1 cos(ksθ ·X), (30)

v = as2 sin(ksθ ·X), v = as2 cos(ksθ ·X), (31)

where θ ∈ R3 is an arbitrary vector of unit length (‖θ‖2 = 1), ap ∈ R3 is a
vector that is parallel to θ, (as1 , as2) ∈ R3 × R3 are two independent vectors
in the plane orthogonal to θ,

kp =

√
ρω2

Λ+ 2µ
, and ks =

√
ρω2

µ
. (32)

The free-space solutions (29) are known as the elastic pressure or longitudinal
waves, and the free-space solutions (30) and (31) are known as the elastic
shear or transverse waves.

Consider next the following fourth-order PDE associated with a given
elastic body

∆2u− m

D
ω2u = 0, where m = ρτ, D =

Eτ3

12(1− ν2)
, (33)

E denotes the Young modulus of the elastic body, ν its Poisson ratio, τ its
thickness, and all other variables have the same meaning as before. The reader
can check that the free-space solutions (29,30,31) with

kp = ks =4

√
m

D
ω2 (34)

are also free-space solutions of Eq. (33). The PDE (33) can model the har-
monic transverse motion of a plate. In that case, u is a scalar representing
the transverse displacement field. However, for the purpose of constructing
an augmented coarse problem for the FETI-DPH method, and only for this
purpose, it is assumed here that when u ∈ R3, Eq. (33) models the harmonic
motion of a shell in all three dimensions.

Hence, a general solution of either Eq. (28) or Eq. (33) can be written as

v =

∞∑

j=1

{
apj

(
c1j sin(kpθj ·X) + c2j cos(kpθj ·X)

)}

+

∞∑

j=1

{
as1j

(
c3j sin(ksθj ·X) + c4j cos(ksθj ·X)

)}

+
∞∑

j=1

{
as2j

(
c5j sin(ksθj ·X) + c6j cos(ksθj ·X)

)}
, (35)
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where θj ∈ R3 is an arbitrary vector of unit length defining the direction of
propagation of an elastic pressure or shear wave, c1j , c2j , c3j , c4j , c5j , and
c6j are real coefficients, and kp and ks are given by Eq. (32) for a second-
order elastodynamic problem and by Eq. (34) for a fourth-order plate or shell
dynamic problem. From Eq. (35) and Eq. (24), it follows that the desired
matrix Qb is composed of blocks of six columns. The columns of each block
are associated with one direction of propagation θj and one edge E of the
mesh partition, and can be written as

qbl




3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3


 = apj sin(kpθj ·Xm), qbl+1




3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3


 = apj cos(kpθj ·Xm),

· · · · · · (36)

qbl+4




3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3


 = as2j

sin(ksθj ·Xm), qbl+5




3(m− 1) + 1
3(m− 1) + 2
3(m− 1) + 3


 = as2j

cos(ksθj ·Xm),

l = 6(j − 1) + 1, m = 1, · · · , NI −Nc,

where qb[3(m − 1) + 1] designates the entry of qb associated with the dof
in the x-direction attached to the m-th node on an edge E ∈ Γ ′, qb[3(m −
1) + 2] designates the entry associated with the dof along the y-direction,
qb[3(m − 1) + 3] designates the entry associated with the dof along the z-
direction, and Xm ∈ R3 denotes the coordinates of this m-th node. Hence, if
NE denotes the number of edges of the mesh partition, and Nθ the number of
considered directions of wave propagation, the total number of augmentation
coarse modes is given in general by NQ = 6NENθ. To these modes can be
added the edge-based translational rigid body modes as these are free-space
solutions of Eq. (28) when ω = 0.

In this paper, the number of directions is limited by Nmax
θ = 13, and

the directions θj are generated as follows. A generic cube is discretized into
3 × 3 × 3 points. A direction θj is defined by connecting the center point to
any of the other 26 points lying on a face of the cube. Since each direction
θj is used to define both a cosine and a sine mode, only one direction θj is
retained for each pair of opposite directions, which results in a maximum of
13 directions.

4 Performance studies and preliminary conclusions

Here, the FETI-DPH method is applied to the solution of various problems
of the form given in (1) or (2) and associated with: (a) the discretization
by quadratic tetrahedral elements (10 nodes per element) of a wheel carrier
fixed at a few of its nodes, and (b) the discretization by linear triangular shell
elements of an alloy wheel clamped at a few center points (Fig. 2). When the
structure is assumed to be damped, Eq. (20) is used to construct D and cK
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and cM are determined by requiring that the critical damping ratio of the
first 10 modes of the structure be equal in a least-squares sense to a specified
value, ξ. In all problems, the shift is set to σ2 = ω2 = 4π2f2, where ω2

is the square of a (possibly natural) circular frequency of the structure and
f is the corresponding frequency in Hz. To help the reader appreciate the
magnitude of a chosen shift value, the natural frequencies of both structures
are characterized in Table 1. In order to investigate the performance, potential,
and various scalability properties of the FETI-DPH method, various values of
σ2 are considered, three meshes with different resolutions are employed for the
wheel carrier second-order problem (504,375 dof, 1,317,123 dof, and 2,091,495
dof), and one mesh with 936,102 dof is employed for the alloy wheel fourth-
order shell problem. In all cases, the right-sides of problems (1,2) are generated
by a distributed load, the computations are performed on a Silicon Graphics
Origin 3800 system with 40 R12000 400 MHz processors, and convergence is
declared when the relative residual satisfies

REn =
‖(K− σ2M + iσD) xn − b‖2

‖b‖2
≤ 10−6. (37)

Fig. 2. FE discretizations of a wheel carrier (left) and an alloy wheel (right).

First, attention is directed to the wheel carrier undamped problem, and
for each generated mesh, Ns is chosen to keep the subdomain problem size
constant. Two frequencies, 500 KHz and 2 MHz, are considered: the latter
value of the shift σ2 arises, for example, when exciting the structure by its
200−th natural frequency, or shifting around it during the solution of an
eigenvalue problem. The number of wave directions is set to Nθ = 2, and the
three translational rigid body modes are included in the construction of the
augmentation matrix Qb. The performance results of the FETI-DPH solver
obtained on Np = 12 processors are reported in Table 2 where Nitr records
the iteration count. For each considered frequency, the iteration count asso-
ciated with the chosen number of subdomains and chosen preconditioner is
almost independent of the mesh size, which highlights the numerical scalabil-
ity of the FETI-DPH method with respect to both the subdomain problem
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Table 1. Eigenvalue/Frequency partial spectrum of the pencil (K,M).

Wheel Carrier (2nd-order) Alloy Wheel (4th-order)

Mode Number Eigenvalue (ω2) Frequency Eigenvalue (ω2) Frequency

1 2.6e+11 8.2e+04 Hz 7.6e+05 1.4e+02 Hz
100 5.2e+13 1.1e+06 Hz 1.0e+09 5.1e+03 Hz
200 1.6e+14 2.0e+06 Hz 3.0e+09 8.7e+03 Hz
300 2.8e+14 2.6e+06 Hz 5.7e+09 1.2e+04 Hz
400 4.0e+14 3.2e+06 Hz 9.5e+09 1.5e+04 Hz
500 5.1e+14 3.5e+06 Hz
600 6.0e+14 3.9e+06 Hz

size and the total problem size. For this second-order problem, the lumped
and Dirichlet preconditioners deliver similar CPU performances; hence, the
lumped preconditioner is preferable since it requires less memory.

Table 2. Performance of the FETI-DPH solver: wheel carrier, undamped, 2nd-order
problem; fixed subdomain problem size; Nθ = 2 (+ the three translational rigid body
modes); Np = 12.

Frequency Shift (σ2) Mesh size Ns Nitr CPU Nitr CPU
Lumped Lumped Dirichlet Dirichlet

504,375 dof 250 63 64 s. 45 60 s.
5 × 105 Hz 9.8e+12 1,317,123 dof 600 70 207 s. 53 206 s.

2,091,495 dof 950 60 364 s. 45 358 s.

504,375 dof 250 137 123 s. 105 119 s.
2 × 106 Hz 1.6e+14 1,317,123 dof 600 174 483 s. 140 491 s.

2,091,495 dof 950 151 901 s. 118 887 s.

To illustrate the performance of the FETI-DPH solver for problems of
the form given in (2), the wheel carrier is next assumed to have a Rayleigh
damping. The mesh with Ndof = 1, 317, 123 is considered, the number of
subdomains is set to Ns = 600, the shift is set to σ2 = 105 Hz, the number
of wave directions is set to Nθ = 2, the three translational rigid body modes
are included in the construction of the augmentation matrix Qb, and the
number of processors is set to Np = 16. For these parameters, the performance
results of FETI-DPH equipped with the lumped preconditioner are reported
in Table 3 for the undamped case (ξ = 0), and for realistic damping scenarios
(ξ = 1%, ξ = 2%, and ξ = 5%). These results suggest that the intrinsic
performance of FETI-DPH improves with the amount of damping. For the
undamped case, FETI-DPH operates in the real domain. This explains why
in that case, each iteration is 2.7 times faster than in the damped case where
FETI-DPH operates in the complex plane.
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Table 3. Performance of the FETI-DPH solver: wheel carrier, damped, 2nd-order
problem; Ndof = 1, 317, 123; Ns = 600; σ2 = 105 Hz; lumped preconditioner; Nθ = 2
(+ the three translational rigid body modes); Np = 16.

ξ cK cM Nitr CPU

0% 0 0 62 182 s.

1% 3.42e-6 17.9 51 403 s.

2% 6.85e-6 35.8 49 394 s.

5% 1.71e-5 89.5 48 384 s.

Next, attention is directed to the undamped alloy wheel problem to in-
vestigate the performance for a fourth-order shell problem of the FETI-DPH
solver equipped with the Dirichlet preconditioner. Two different frequencies,
5 KHz and 20 KHz, are considered: the upper value of the shift σ2 arises,
for example, when exciting the considered alloy wheel by a frequency that is
higher than its 400−th natural frequency, or shifting around that frequency
during the solution of an eigenvalue problem. The number of subdomains is
varied between Ns = 100 and Ns = 400 and the number of processors is fixed
to Np = 8. Table 4, where Ncoarse denotes the total size of the augmented
coarse problem, contrasts for each value of Ns the performance of FETI-DP
(with PGMRES as a solver) and the best performance of FETI-DPH obtained
by varying Nθ. The reported performance results suggest that the FETI-DPH
solver is numerically scalable for dynamic shell problems of the form given in
(1). They also highlight the superiority of FETI-DPH over FETI-DP which
fails to converge in a reasonable iteration count for large values of the shift
σ2.

Table 4. FETI-DPH vs. FETI-DP: alloy wheel, undamped, 4th-order problem;
Ndof = 936, 102; Dirichlet preconditioner; Np = 8.

Frequency Shift (σ2) Ns Nθ Ncoarse Nitr CPU

100 0 3,258 347 534 s.
100 3 7,275 122 265 s.
200 0 6,372 236 301 s.

5× 103 Hz 9.8e+8 200 2 11,853 116 200 s.
400 0 12,129 226 317 s.
400 2 21,924 123 271 s.

100 0 3,258 >400 –
100 5 9,512 330 680 s.
200 0 6,372 >400 –

2× 104 Hz 1.6e+10 200 5 17,581 261 564 s.
400 0 12,129 >400 –
400 3 27,270 265 706 s.
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Summary. The performance of multigrid methods for the standard Poisson prob-
lem and for the consistent Poisson problem arising in spectral element discretizations
of the Navier-Stokes equations is investigated. It is demonstrated that overlapping
additive Schwarz methods are effective smoothers, provided that the solution in the
overlap region is weighted by the inverse counting matrix. It is also shown that
spectral element based smoothers are superior to those based upon finite element
discretizations. Results for several large 3D Navier-Stokes applications are presented.

1 Introduction

The spectral element method (SEM) is a high-order weighted residual tech-
nique that combines the geometric flexibility of finite elements with the rapid
convergence properties and tensor-product efficiencies of global spectral meth-
ods. Globally, elements are coupled in an unstructured framework with in-
terelement coupling enforced through standard matching of nodal interface
values. Locally, functions are represented as tensor products of stable Nth-
order Lagrangian interpolants based on Gauss-Lobatto (GL) or Gauss (G)
quadrature points. For problems having smooth solutions, such as the incom-
pressible Navier-Stokes equations, the SEM converges exponentially fast with
the local approximation order N . Because of its minimal numerical dissipa-
tion and dispersion, the SEM is particularly well suited for the simulation of
flows at transitional Reynolds numbers, where physical dissipation is small
and turbulence-model dissipation is absent.

The two-level hierarchy of the spectral element discretization provides a
natural route to domain decomposition with several benefits. The loose C0

interelement coupling implies that the stencil depth does not increase with ap-
proximation order, so that interprocessor communication is minimal. The local
tensor-product structure allows matrix-vector products to be recast as cache-
efficient matrix-matrix products and also allows local subdomain problems to
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be solved efficiently with fast tensor-product solvers. Finally, the high-order
polynomial expansions provide a readily available sequence of nested grids
(obtained through successive reductions in polynomial degree) for use in mul-
tilevel solvers.

This paper presents recent developments in spectral element multigrid
(SEMG) methods. Our point of departure is the original work of Rønquist
and Patera [1987] and Maday and Muñoz [1988], who developed variational
SEMG for the two-dimensional Poisson problem using intra-element prolon-
gation/restriction operators coupled with Jacobi smoothing. The high-aspect-
ratio cells present in the tensor-product GL grid are a well-known source of
difficulty in spectral multigrid methods and have drawn much attention over
the past decade. We have developed multigrid smoothers in Lottes and Fis-
cher [2004] based on the overlapping additive Schwarz method of Dryja and
Widlund [1987] and Fischer et al. [2000]. We bypass the high-aspect-ratio
cell difficulty by solving the local problems directly using fast tensor-product
solvers; this approach ensures that the smoother cost does not exceed the
cost of residual evaluation. Here, we extend our SEMG approach from the
two-dimensional Laplacian to the more difficult consistent Poisson operator
that governs the pressure in the mixed IPN– IPN−2 spectral element formula-
tion of Maday and Patera [1989].

In the next section, we introduce the SE discretization for a model Pois-
son problem. The basic elements of our multilevel iterative procedures are
presented in Section 3, along with results for the Poisson problem. Extensions
to unsteady Navier-Stokes applications are described in Section 4.

2 Discretization of the Poisson Problem

The spectral element discretization of the Poisson problem in IRd is based on
the weighted residual formulation: Find u ∈ XN such that

(∇v,∇u)GL = (v, f)GL ∀v ∈ XN . (1)

The inner product (., .)GL refers to the Gauss-Lobatto-Legendre (GL) quadra-
ture associated with the space XN := [ZN ∩ H1

0 (Ω)], where ZN := {v ∈
L2(Ω)|v|Ωe ∈ IPN (Ωe)}. Here, L2 is the space of square integrable functions
on Ω; H1

0 is the space of functions in L2 that vanish on the boundary and
whose first derivative is also in L2; and IPN (Ωe) is the space of functions on
Ωe whose image is a tensor-product polynomial of degree ≤ N in the reference
domain, Ω̂ := [−1, 1]d. For d = 2, a typical element in XN is written

u(xe(r, s))|Ωe =

N∑

i=0

N∑

j=0

ueijh
N
i (r)hNj (s) , (2)

where ueij is the nodal basis coefficient; hNi ∈ IPN is the Lagrange polynomial

satisfying hNi (ξj) = δij , where ξj , j = 0, . . . , N are the the GL quadrature
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Fig. 1. Spectral element configuration (E = 9, N = 8) showing Lagrange interpola-
tion points for functions in XN (left) and Y N (right). The shaded regions illustrate
the “minimal overlap” domain extension for the overlapping Schwarz smoothers.

points (the zeros of (1−ξ2)L′N (ξ), where LN is the Legendre polynomial of de-
gree N) and δij is the Kronecker delta function; and xe(r, s) is the coordinate

mapping from Ω̂ to Ωe. We assume Ω = ∪Ee=1Ω
e and that the intersection of

two subdomains (spectral elements) is an entire edge, a single vertex, or void.
Function continuity (u ∈ H1) is enforced by ensuring that nodal values on
element boundaries coincide with those on adjacent elements. Figure 1 illus-
trates a spectral element decomposition of the square using E = 9 elements.
The Gauss-Lobatto-based mesh on the left shows the nodal distribution for
XN . The Gauss-based mesh on the right is used for functions in YN , which
will be introduced in the context of the Stokes discretization in Section 4.

Computational Preliminaries. Because we employ iterative solvers, we
need an efficient procedure for evaluating matrix-vector products associated
with the bilinear forms in (1). As noted by Orszag [1980], tensor-product bases
play a key role in this respect, particularly for large N (i.e., N ≥ 8). Here,
we introduce several points that are central to our element-based solution
strategy.

As with standard finite element methods, we assume availability of both
local element-based and global mesh-based node numberings, with the local-
to-global map given by q(i1, . . . , id, e) ∈ {1, . . . , n̄}, for ik ∈ {0, . . . , N}, k ∈
{1, . . . , d}, and e ∈ {1, . . . , E}, where n̄ is the number of distinct global nodes.
LetQT be the n̄×E(N+1)d matrix with columns êq(i1,...,id,e), where êq denotes
the qth column of the n̄× n̄ identity matrix. Then the matrix-vector product
uL = Qu represents a global-to-local mapping for any function u(x) ∈ XN ,
and the bilinear form on the left of (1) can be written

(∇v,∇u) = vTQTALQu, (3)
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where AL=block-diag(Ae)Ee=1 is the unassembled stiffness matrix comprising
the local stiffness matrices, Ae, and QT and Q correspond to respective gather
and scatter operations. In practice the global stiffness matrix, A := QTALQ,
is never formed. One simply effects the action of A by applying each matrix
to a vector through appropriate subroutine calls.

In the SEM, computational efficiency dictates that local stiffness matrices
should also be applied in matrix-free form. The local contributions to (3) are

(∇v,∇u)eGL = (ve)TAeue = (ve)T
(
D1

D2

)T(
Ge11 G

e
12

Ge12 G
e
22

)(
D1

D2

)
ue, (4)

with respective geometric factors and derivative operators,

Geij :=
(
B̂ ⊗ B̂

)[ d∑

k=1

∂ri
∂xk

∂rj
∂xk

]e
Je, D1 := (I ⊗ D̂), D2 := (D̂ ⊗ I). (5)

Here, ve and ue are vectors containing the lexicographically ordered nodal
basis coefficients {veij} and {ueij}, respectively; B̂=diag(ρk)

N
k=0 is the one-

dimensional mass matrix composed of the GL quadrature weights; and D̂ is
the one-dimensional derivative matrix with entries

D̂ij =
dhj
dr

∣∣∣∣
ξi

, i, j ∈ {0, . . . , N}2.

The Jacobian, Je, and metric terms (in brackets in (5)) are evaluated pointwise
at each GL quadrature point, (ξp, ξq), so that each of the composite geometric
matrices, Geij , is diagonal.

The presence of the cross terms, Ge12, implies that Ae is full and requires
storage of (N + 1)4 nonzeros for each spectral element if explicitly formed.
In the spectral element method, this excessive storage and work overhead is
avoided by retaining the factored form (5), which requires (to leading order)
storage of only 3E(N + 1)2 nonzeros and work of ≈ 8E(N + 1)3 per matrix-
vector product. The savings is more significant in 3D, where the respective
storage and work complexities are 6E(N + 1)3 and ≈ 12E(N + 1)4 for the
factored form, versus O(EN6) if A is explicitly formed. Moreover, the leading
order work terms for the factored form can be cast as efficient matrix-matrix
products, as discussed in detail by Deville et al. [2002]. These complexity
savings can be extended to all system matrices and are the basis for efficient
realizations of high-order weighted residual techniques.

If Ωe is a regular parallelepiped, the local stiffness matrix simplifies to a
separable form. For example, for an Lex × Ley rectangle, one would have

Ae =
Ley
Lex
B̂ ⊗ Â +

Ley
Lex
Â ⊗ B̂, Â := D̂T B̂D̂. (6)

This form has a readily computable (pseudo-) inverse given by the fast diag-
onalization method (FDM) of Lynch et al. [1964],
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A−1
e = (S ⊗ S)

[
Ley
Lex
I ⊗ Λ +

Ley
Lex

Λ⊗ I
]−1

(ST ⊗ ST ), (7)

where S is the matrix of eigenvectors and Λ the matrix of eigenvalues satisfying
ÂS = B̂SΛ and ST B̂S = I. The bracketed term in (7) is diagonal, and its
pseudo-inverse is computed by inverting nonzero elements and retaining zeros
elsewhere. For arbitrarily deformed elements, the discrete Laplacian cannot be
expressed in the tensor-product form (6), and the FDM cannot be used. For
the purposes of a preconditioner, however, it suffices to apply the FDM to a
regular parallelepiped of equivalent size, as demonstrated in Couzy [1995] and
Fischer et al. [2000]. Similar strategies for the case of nonconstant coefficients
are discussed by Shen [1996].

3 Multilevel Solvers

We are interested in methods for solving the global system Au = g. To intro-
duce notation, we consider the two-level multigrid sweep.

Procedure Two-Level: (8)

i) uk+1 = uk + σM(g −Auk), k = 0, . . . ,md − 1

ii) r = g −Aumd

iii) ẽ = σCPA
−1
C PT r

iv) ũ0 = umd + ẽ

v) ũk+1 = ũk + σM(g −Aũk), k = 0, . . . ,mu − 1

vi) If ||Aũmu − g|| < tol, set u := ũmu , quit.

Else, u0 := ũmu , go to (i).

Here M is the smoother, σ and σC are relaxation parameters, and md and mu

are the number of smoothing steps on the downward and upward legs of the
cycle, respectively. Steps (i) and (v) are designed to eliminate high-frequency
error components that cannot be represented on the coarse grid. The idea is
that the error after (ii), e := A−1r, should be well approximated by ẽ, which
lies in the coarse-grid space represented by the columns of P . The coarse-grid
problem, A−1

C , is solved directly, if AC is sufficiently sparse, or approximated
by recursively applying the two-level procedure to the AC system, giving rise
to the multigrid “V” cycle. The prolongation matrix P interpolates from the
coarse space to the fine nodes using the local tensor-product basis functions
for the coarse space.

If the two-level procedure is used as a preconditioner, we take u0 = 0,
md = 1, and mu = 0, and the procedure simplifies to the following.

Procedure Preconditioner: (9)
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i) u1 = σMg,

ii) r = g −Au1

iii) ẽ = σCPA
−1
C PT r

iv) u = u1 + ẽ, return.

The preconditioner can be viewed either as an application of the multigrid
V-cycle or as a two-level multiplicative Schwarz method (Smith et al. [1996]).
By simply replacing (ii) with r = g, we obtain a two-level additive Schwarz
method, which has the advantage of avoiding an additional multiplication
by A. This savings is important in the Navier-Stokes applications that we
consider in Section 4.

Smoothers for the Poisson Problem. Here, we review the SEMG smooth-
ing strategies considered for the Poisson problem in Lottes and Fischer [2004].
Our original intent was to base the smoother, M , on the additive overlapping
Schwarz method of Dryja and Widlund [1987], with local subdomain prob-
lems discretized by finite elements (FEs) having nodes coincident with the GL
nodes, as considered by Casarin [1997], Fischer [1997], and Pahl [1993]. By
using the fast diagonalization method to solve the local problems, however, we
are freed from the constraint of using FE-based preconditioners because the
cost depends only on the use of tensor-product forms and not on the sparsity
of the originating operator. Hence, we are able to consider subdomain prob-
lems derived as restrictions of the originating spectral element matrix, A, as
first suggested by Casarin [1997].

The use of Schwarz-based smoothing, which is arguably more expensive
than traditional smoothers, is motivated by several factors. First, it is not
practical to apply Gauss-Seidel smoothing in the SEM because the matrix en-
tries are not available (see (4)). The alternative of pointwise-Jacobi smoothing
was shown by Rønquist [1988] and Maday et al. [1992] not to scale for d > 1.
Specifically, the authors demonstrated a convergence factor of ρ = 0.75 for
d = 1, but only ρ = 1−c/N logN for d = 2. Second, while one can exploit the
SE-FE spectral equivalence established by Orszag [1980] to ostensibly convert
the SE problem into a FE problem and then apply traditional multigrid, the
FE problem inherits the difficulties of its SE counterpart, namely, the high-
aspect ratio cells that arise from the tensor-product of the one-dimensional
Gauss-Lobatto grids. Moreover, even if the GL-based FE problem could be
solved with low work, the iteration count would still be higher than what is
observed for the Schwarz-based approach. Third, to minimize cost, it is reason-
able to have a smoother whose cost is on par with that of residual evaluation
if it can substantially reduce the iteration count.

We illustrate the problem of high-aspect ratio cells by considering appli-
cation of the two-level procedure (8) to the model Poisson problem (1) dis-
cretized on the unit square with an 8N×8N array of bilinear finite elements.
Iteration counts for four different smoothing strategies are shown in Table 1.
Jacobi implies M−1:=diag(A); GSRB is a Gauss-Seidel sweep with the nodes
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Table 1. MG method on FE problem.

FE Smoother/ Coarse Iterations, 10−11 Reduction
Spacing No. Preconditioner Space N = 4 N = 8 N = 12 N = 16

Uniform a Jacobi N/2 39 38 38 38
b GSRB N/2 9 9 9 9
c H Schwarz N/2 40 41 42 42
d H Schwarz (W ) N/2 7 7 6 6

SE e Jacobi N/2 41 84 148 219
f GSRB N/2 11 28 46 65
g H Schwarz N/2 40 43 47 52
h H Schwarz (W ) N/2 6 7 7 9

ordered into two maximally independent (“red-back”) subsets; and H Schwarz
and H Schwarz(W ) correspond to the hybrid Schwarz-based smoothers intro-
duced below. In all cases, σ is chosen such that the maximum eigenvalue of
σMA is unity, and σC = 1. The coarse system is solved directly and is based
on the same FE discretization, save that, in each direction, every other nodal
point is discarded. The first set of results is for uniformly sized elements of
length 1/8N on each side. Resolution-independent convergence is obtained
for each of the smoothing strategies, with GSRB and H Schwarz(W ) being
the most competitive. Although H Schwarz(W ) has a lower iteration count,
GSRB requires less work per iteration, and the two are roughly equal in com-
putational cost. The second set of results is for an 8N×8N array of bilinear
elements whose vertices coincide with the GL node spacing associated with an
8×8 array of spectral elements of order N . In this case, the pointwise Jacobi
and GSRB smoothers break down as N is increased. Only H Schwarz(W )
retains performance comparable to the uniform grid case. We note that line-
based relaxation strategies proposed by Shen et al. [2000] and Beuchler [2002]
also compensate for the high-aspect-ratio cell difficulty. For the values of N
considered here, however, the hybrid Schwarz approach is likely to be faster, at
least on cache-based architectures, where the matrix-matrix product-oriented
fast-diagonalization method is very effective.

Our hybrid Schwarz strategy is based on a multiplicative combination of
an additive Schwarz smoother at the fine scale and a coarse-grid correction.
The smoother, originally due to Dryja and Widlund [1987], is written as

M :=

E∑

e=1

RTe A
−1
e Re. (10)

Here, Re is the standard Boolean restriction matrix that extracts from a global
nodal vector those values associated with the interior of the extended sub-
domain Ω̄e. In all cases, Ω̄e is an extension of Ωe that includes a single row
(or plane, in 3D) of nodal values in each of 2d directions. as illustrated in
Fig. 1 (left). RTe extends by zero the vector of nodal values interior to Ω̄e
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Fig. 2. Error plots for the hybrid Schwarz preconditioner and coarse solve, with
NC = N/2 and (E,N) = (4, 16), applied to a random initial guess.

to a full length vector. Multiplication by A−1
e is effected by using the fast

diagonalization method similar to (7). In a preprocessing step, one assembles
one-dimensional stiffness and mass matrices, A∗ and B∗ (∗ = x, y or z), for
each space dimension, 1, . . . , d; restricts these to the relevant ranges using a
one-dimensional restriction matrixRe∗; and solves an eigenvalue problem of the
form ((Re∗)

TA∗R
e
∗)S

e
∗ = ((Re∗)

TB∗R
e
∗)S

e
∗Λ

e
∗ to obtain the requisite eigenpairs

(Se∗ , Λ
e
∗). Because the spectral elements are compactly supported, the prepro-

cessing step requires knowledge only of the size of the elements on either side
of Ωe, in each of the d directions. For subdomains that are not rectilinear, Ae
is based on average lengths in each direction.

We have found it important to weight the solutions in the overlap region
by the inverse of the diagonal counting matrix

C :=
E∑

e=1

RTe Re. (11)

The entries of C enumerate the number of subdomains that share a particu-
lar vertex. Setting W = C−1 gives rise to the weighted overlapping Schwarz
smoother MW := WM . Although convergence theory for the weighted
Schwarz method is yet to be developed, the methodology of Frommer and
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Szyld [2001] should be applicable to this setting as well. In addition to reduc-
ing the maximum eigenvalue of MA (which, by simple counting arguments, is
maxCii; see Smith et al. [1996]), multiplication by W significantly improves
the smoothing performance of the additive Schwarz step. This latter point is
illustrated in Fig. 2, which shows the error when the two-level preconditioner
(9) is applied to random right-hand-side vector for a 2×2 array of spectral
elements with N=16. Figure 2(a) shows the error after a single application of
the additive Schwarz smoother (10), with σ=1. While the solution is smooth
in the interior, there is significant undamped error along the interface, par-
ticularly at the cross point. As noted by Lottes and Fischer [2004], the error
along the interface can be reduced by choosing σ = 1/4, but the overall error
is no longer smooth. In either case, the subsequent coarse-grid correction does
not yield a significant error reduction. By contrast, the error after application
of MW , seen in Fig. 2(c), is relatively smooth, and the coarse-grid correction
is very effective. Comparing the magnitudes in Figs. 2(b) and 2(d), one sees
a tenfold reduction in the error through the introduction of W .

Table 2 presents convergence results for the Poisson problem on the square
discretized with an 8×8 array of spectral elements. Case 2(a) shows results for
the unweighted additive Schwarz preconditioner using an FE-based smoother.
This scheme is the Poisson equivalent to the method developed by Fischer
et al. [2000] for the pressure subproblem considered in the next section. For
all the other cases, Ae is based on a restriction of A rather than on an FE
discretization. Case 2(b) shows that this simple change considerably reduces
the iteration count. Enriching the coarse space from NC = 1 to N/2 and
incorporating the weight matrix W yields further reductions in iteration count
and work. (Because of symmetry requirements, W is applied as a pre- and
postmultiplication by W 1/2 for the preconditioned conjugate gradient, PCG,
cases). The work shown in the last column of Table 2 is an estimate of the
number of equivalent matrix-vector products required to reduce the error by
10−11. Rather than attempting to symmetrize the hybrid Schwarz method
(9), we simply switched to GMRES, which allowed W to be applied directly
during the summation of the overlapping solutions. Comparison of cases 2(f)
and 2(h) underscores the importance of weighting.

4 Extension to Navier-Stokes

Efficient solution of the incompressible Navier-Stokes equations in complex
domains depends on the availability of fast solvers for sparse linear systems.
For unsteady flows, the pressure operator is the leading contributor to stiff-
ness, as the characteristic propagation speed is infinite. Our pressure solution
procedure involves two stages. First, we exploit the fact that we solve similar
problems from one step to the next by projecting the current solution onto
a subspace of previous solutions to generate a high-quality initial approxima-
tion, as outlined in Fischer [1998]. We then compute the correction to this
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Table 2. Iteration count for E=8×8 SE problem.

Smoother/ Coarse Iterations, 10−11 Reduction Work
Method No. Preconditioner Space N = 4 N = 8 N = 12 N = 16 N = 16

PCG a A Schwarz (FE) 1 28 35 46 58 116
b A Schwarz 1 25 27 35 43 86
c A Schwarz N/2 26 26 26 27 81
d A Schwarz (W ) 1 17 24 33 43 86
e A Schwarz (W ) N/2 16 21 22 24 72

MG/ f H Schwarz N/2 21 23 24 25 100
GMRES g H Schwarz (W ) 1 14 20 29 36 108

h H Schwarz (W ) N/2 13 12 12 13 52

approximation using a scalable iterative solver. Here, we extend the multigrid
methods presented in the preceding sections to computation of the pressure
in SE-based simulations of incompressible flows.

To introduce notation, we review the Navier-Stokes discretization pre-
sented in detail in Fischer [1997]. The temporal discretization is based on
a semi-implicit scheme in which the nonlinear term is treated explicitly and
the remaining unsteady Stokes problem is solved implicitly. Our spatial dis-
cretization is based on the IPN − IPN−2 spectral element method of Maday
and Patera [1989]. Assuming fn incorporates all terms explicitly known at
time tn, the IPN − IPN−2 formulation of the Navier-Stokes problem reads:
Find (un, pn) ∈ XN × YN such that

1

Re
(∇v,∇un)GL +

1

∆t
(v,un)GL − (∇ · v, pn)G = (v, fn)GL, (12)

(q,∇ · un)G = 0,

∀ (v, q) ∈ XN ×YN . The inner products (., .)GL and (., .)G refer to the Gauss-
Lobatto-Legendre (GL) and Gauss-Legendre (G) quadratures associated with
the spaces XN := [ZN ∩ H1

0 (Ω)]d and YN := ZN−2, respectively, and ZN is
the space introduced in conjunction with (1). The local velocity basis is given,
componentwise, by the form (2). The pressure is similar, save that the nodal
interpolants are based on the N -1 Gauss points, ηi ∈ (−1, 1), as illustrated in
Fig. 1 (right).

Insertion of the SEM bases into (12) yields a discrete Stokes system to be
solved at each step:

Hun −DT pn = Bfn, Dun = 0. (13)

H = 1
ReA + 1

∆tB is the discrete equivalent of the Helmholtz operator, (
− 1
Re∇2 + 1

∆t ); −A is the discrete Laplacian; B is the (diagonal) mass matrix
associated with the velocity mesh; D is the discrete divergence operator, and
fn accounts for the explicit treatment of the nonlinear terms. Note that the
Galerkin approach implies that the governing system in (13) is symmetric and
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that the matrices H, A, and B are all symmetric positive definite. We have
used bold capital letters to indicate matrices that interact with vector fields.

The Stokes system (13) is advanced by using the operator splitting ap-
proach presented by Maday et al. [1990] and Perot [1993]. One first solves

Hû = Bfn + DT pn−1, (14)

which is followed by a pressure correction step

E δpn = − 1

∆t
Dû, un = û +∆tB−1DT δpn, pn = pn−1 + δpn, (15)

where E := DB−1DT is the Stokes Schur complement governing the pressure
in the absence of the viscous term.

E is the consistent Poisson operator for the pressure and is spectrally
equivalent to A. Through a series of tests that will be reported elsewhere,
we have found the following to be an effective multilevel strategy for solving
E. We employ (9) to precondition GMRES with a weighted additive Schwarz
smoother. The local problems are based on Ee := R̃eER̃

T
e , where the sub-

domains defined by the restriction matrices R̃e correspond to the minimal-
overlap extension illustrated in Fig. 1 (right). The coarse-grid problem, AC ,
is based on A with NC = N/2 (typically), which was found not only to be
cheaper but also better at removing errors along the element interfaces. At
all intermediate levels, A−1

C is approximated with a single V-cycle (8).
The local problems are solved using the fast diagonalization method, which

requires that Ee (and therefore E) be separable. In two dimensions, we need
to cast E in the form

E = Jy ⊗ Ex + Ey ⊗ Jx. (16)

For simplicity, we assume that we have a single element with Ω = Ω̂ and
ignore the details of boundary conditions. From the definition of E, we have

E = DxB
−1DT

x + DyB
−1DT

y . (17)

The divergence and inverse mass matrices have the tensor-product forms

Dx = (B̃ ⊗ B̃)(J̃ ⊗ D̃), Dy = (B̃ ⊗ B̃)(D̃ ⊗ J̃), B−1 = (B̂−1 ⊗ B̂−1).(18)

Here, B̃=diag(ρ̃i)
N−1
i=1 consists of the Gauss-Legendre quadrature weights, and

J̃ and D̃ are respective interpolation and derivative matrices mapping from
the GL points to the G points,

J̃ij = hNj (ηi), D̃ij =
dhNj
dr

∣∣∣∣∣
r=ηi

. (19)

Inserting (18) into (17) yields the desired form (16) with
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(a)

(b)

(c) (d) (e)

Fig. 3. SE Navier-Stokes examples: (a) E = 1021 mesh, inlet profile, and vorticity
contours for roughness element; (b) E = 1536 mesh and (c) temperature contours
for buoyancy driven convection; (d) E = 2544 mesh and (e) coherent structures for
flow in a diseased carotid artery.

Jx = Jy = B̃J̃ B̂−1J̃T B̃T , Ex = Ey = B̃D̃B̂−1D̃T B̃T . (20)

The extension to multiple elements follows by recognizing that the gather-
scatter operator used to assemble the local matrices can be written as Q =
Qy⊗Qx for a tensor-product array of elements. Following our element-centric
solution strategy, we thus generate Ee by viewing Ωe as being embedded in
a 3d array of rectilinear elements of known dimensions. Unlike Ae, the entries
of Ee are also influenced by the “neighbors of neighbors.” This influence,
however, is small and is neglected.

Navier-Stokes Results. We turn now to application of spectral element
multigrid (SEMG) to the simulation of unsteady incompressible flows. In nu-
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Fig. 4. Iteration histories for FE-based two-level (std), weighted SE-based two-
level (wgt), additive multilevel (add), and multiplicative multilevel (hyb) schemes
for spectral elements simulations of order N=9: (a) hairpin vortex, E=1021; (b)
hemispherical convection, E=1536; and (c) carotid artery simulation, E=2544.

merous 2D and 3D Navier-Stokes test problems, we have found the additive
variant of the procedure outlined in the preceding section to be roughly two
to three times faster than the two-level additive Schwarz method developed
in Fischer et al. [2000]. A sample of these results is presented below.

We consider the three test cases shown in Fig. 3. The first case, Fig. 3(a),
is boundary-layer flow past a hemispherical roughness element at Reynolds
number Re=1000 (based on roughness height). The flow generates a pre-
transitional chain of hairpin vortices evidenced by the spanwise vorticity con-
tours shown in the symmetry plane. The second example, Fig. 3(b)-(c), is
buoyancy-driven convection in a rotating hemispherical shell having inner
radius 2.402 and outer radius 3.3. The Rayleigh number (based on shell thick-
ness) is Ra=20,000 and the Taylor number is Ta=160,000. The third case,
Fig. 3(d)-(e), simulates transitional flow in a diseased carotid artery. The se-
vere stenosis in the internal (right) branch results in high flow velocities and,
ultimately, transition to turbulence. Figure 3(e) shows the coherent structures
that arise just before peak systole.

Figure 4 shows the pressure iteration history for the first 85 timesteps of
the three examples, using the initial conditions of Fig. 3. For all cases, N=9
and the coarse problem is based on linear elements whose vertices are derived
from an oct-refinement of the SE mesh. Four methods are considered: std

refers to the two-level additive Schwarz method of Fischer et al. [2000]; wgt

is the same as std, save that Ee is based on a restriction of E, rather than an
FE-based discretization of the Poisson problem, and that the weight matrix
W is included; add is the same as wgt, save that three levels are employed,
with Nmid=5; hyb is the same as add, save that the multiplicative variant of
(9) is used. PCG is used for std and wgt, whereas GMRES is used for add

and hyb. Although hyb requires fewer iterations, add is the fastest method
because it requires only one product in E per iteration. The prominent spikes
in Fig. 4(b) result from resetting the projection basis set (Fischer [1998]).
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Table 3. add Avg. Iteration Count for Navier-Stokes Examples

Problem N=5 N=7 N=9 N=11 N=13 N=15 N=17

Hairpin Vortex 9.8 11.1 15.1 17.5 20.4 23.5 26.1

Spherical Conv. 8.2 7.8 8.3 8.9 9.9 10.9 11.6

Carotid Artery 18.5 20.6 23.7 26.0 29.3 32.5 36.0

Carotid (wgt) 16.5 22.2 30.0 39.5 48.4 59.4 65.8

The scalability of the three-level add method is illustrated in Table 3,
which shows the average iteration count over the last 20 steps for varying
N with Nmid=N/2. Order-independence is not assured in complex domains,
particularly if the mesh contains high aspect-ratio elements (Fischer [1997]).
The performance of add is nonetheless quite reasonable when one considers
that the number of pressure nodes varies by a factor of 64 in moving from N =
5 to 17. For purposes of comparison, results for the wgt method are shown
for the carotid. The additional level of add clearly reduces order dependence.
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Dirichlet-to-Neumann Mapping and its

Application to Voice Generation Problem
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The University of Electro-Communications, Department of Computer Science
(http://www.im.uec.ac.jp/~kako/EngIntro.html)

Summary. In this paper, we treat the numerical method for the Helmholtz equa-
tion in unbounded region with simple cylindrical or spherical shape outside some
bounded region and apply the method to voice generation problem. The numerical
method for the Helmholtz equation in unbounded region is based on the domain
decomposition technique to divide the region into a bounded region and the rest un-
bounded one. We then treat the approximation of the artificial boundary condition
given through the DtN mapping on the artificial boundary. We apply the finite ele-
ment approximation to discretize the problem. In applying the method to the voice
generation problem, it is essential to compute the frequency response function or
the formant curve. We give variational formulas for the resolvent poles with respect
to the variation of vocal tract boundary which determine the peaks of frequency re-
sponse function known as formants, and we propose the use of variational formulas
to design the location of formants.

1 Numerical Method for Exterior Helmholtz Problem

1.1 Formulation of Exterior Helmholtz Problem

We consider the following 2-dimensional exterior Helmholtz equation with un-
known function u as the mathematical model for the time stationary problem
of outgoing or radiation sound wave propagation in unbounded region outside
an obstacle:

−∆u− k2u = 0 in Ω = R2\O, (1)

∂u

∂n
= g on ∂Ω, (2)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, i =

√
−1, (3)

where Ω is the interior of the complement of a bounded obstacle O in R2

with smooth boundary ∂Ω on which the Neumann boundary condition (2) is
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imposed with an inhomogeneous data g. A real constant k is called a wave
number and the condition (3) is the Sommerfeld radiation condition at infin-
ity which excludes any unphysical incoming wave. In the case with tubular
cylindrical outside region, a similar formulation is possible with necessary
modification of boundary condition and radiation condition (see Section 2.2).

Related to this problem in unbounded region, we introduce a circular ar-
tificial boundary ΓR with radius R and decompose the original domain into
two sub-domains. We then consider the boundary value problem in the part
of bounded sub-domain given as

−∆u− k2u = 0 in ΩR ≡ Ω ∩BR, (4)

∂u

∂n
= g on ∂Ω, (5)

∂u

∂r
= Mu on ΓR, (6)

where BR ⊃⊃ O is a circular domain with radius R bounded by an artificial
circular boundary ΓR: BR = {(x, y) | r ≡

√
x2 + y2 < R} , and M is a

differential or pseudo-differential operator which we construct as a function
of the operator ∂2/∂θ2 of angular variable θ in order to make the problem
exactly or approximately equivalent to the original problem.

The exact solution u(r, θ) for (1)-(3) inBcR is given by the following formula
with the Hankel function of the first kind of order n which we will denote in
this paper by H(1)(· ; n)(= H

(1)
n (·)):

u(r, θ) =
1

2π

∞∑

n=−∞

H(1)(kr;n)

H(1)(kR;n)

∫ 2π

0

u(R, φ)ein(θ−φ)dφ.

Using this expression, we introduce the exact Dirichlet-to-Neumann (DtN)
mapping as:

Mexactu(θ) ≡
k

2π

∞∑

n=−∞

H(1)′(kR;n)

H(1)(kR;n)

∫ 2π

0

u(R, φ)ein(θ−φ)dφ, (7)

which relates the Dirichlet data of the solution u on the artificial boundary
ΓR to the Neumann data on the same boundary. If we put M = Mexact in
(6), the problem (4)-(6) is equivalent to the original problem (1)-(3). The DtN
mapping can also be expressed as the function of the elliptic operator D2 as:

Mexact = MDtN (D2) = k
H(1)′(kR;

√
D2)

H(1)(kR;
√
D2)

, D ≡ −i∂/∂θ. (8)

1.2 Radiation Boundary Conditions

There have been many studies related to the analytical as well as numeri-
cal approximations of the DtN mapping. Among them, Engquist and Majda
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[1977], Engquist and Majda [1979] introduced a series of non-local approxi-
mate radiation boundary condition such as:

M1(D
2) =

i

R

√
k2R2 −D2,

M2(D
2) = M1(D

2)− 1

2R

k2R2

(k2R2 −D2)

and so forth. Some local approximate radiation boundary conditions are well
used and they are given as

M1,1(D
2) = ik,

M2,1(D
2) = ik − 1

2R
.

Those are derived directly from the Sommerfeld radiation condition. Feng
[1983] introduced a series of local type operators such as

F3(D
2) = ik − 1

2R
+

i

8kR2
− i

2kR2
D2,

F4(D
2) = ik − 1

2R
+

i

8kR2
+

1

8k2R3
−
(

i

2kR2
+

1

2k2R3

)
D2.

Bayliss and Turkel [1980] also introduced in a systematic way a hierarchy of
local operators:

Ln =
n∏

j=1

(
∂

∂r
− ik +

4j − 3

2r

)
, n ≥ 1.

On the other hand, related to the finite element method, Kako and Kano
[1999] proposed a non-local approximation by a bounded operator as a higher
order correction:

MLK(D2) = ik − 3

2R
+

1

R

[
1 +

1

2ikR

(
1

4
−D2

)]−1

.

According to our numerical experiments, the exact DtN operator is the best
one when it is combined with the appropriate discrete approximation. In the
next subsection, we will briefly review the recent results of Nasir et al. [2003]
based on a mixed method approximation.

1.3 Finite Element Approximation

To formulate the finite element method for the Helmholtz problem, we in-
troduce a function spaces V ≡ H1(ΩR). Then the weak formulation of the
problem is to find u ∈ V such that
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a(u, v)− 〈u, v〉M = (g, v)∂Ω ∀v ∈ V (9)

with

a(u, v) =

∫

ΩR

(
∂u

∂r

∂v̄

∂r
+

1

r2
∂u

∂θ

∂v̄

∂θ
− k2uv̄

)
rdrdθ,

〈u, v〉M =

∫ 2π

0

(Mu)v̄ Rdθ, (f, g)∂Ω =

∫

∂Ω

f ḡdσ,

where M is one of the operators appeared in the previous section. Let us
introduce a finite dimensional subspace Vh of V . Then the finite element ap-
proximation is to find uh ∈ Vh such that

a(uh, vh)− 〈uh, vh〉M = (g, vh)∂Ω, ∀vh ∈ Vh. (10)

In the following, we will introduce the fictitious domain method combined
with a fast direct method. For this purpose, we firstly treat a special problem
with annulus region.

1.4 Fast Direct Method

In case that ΩR is an annulus region, we can make a separation of variables
with respect to the radial and angular coordinates, and by dividing the inter-
vals into nr subintervals in radial direction and into nθ in angular direction,
the finite element method gives a linear system:

BU = F (11)

with a separable matrix B = (bIJ ), a given vector f = (fI) and a solution
vector u = (uJ) where bIJ = a(ΦJ , ΦI)− 〈ΦJ , ΦI〉M and fI = (g, ΦI)∂Ω . The
matrix B is given by a tensor product form:

B = R2 ⊗T1 + R1 ⊗T2 − k2R1 ⊗T1 − enr
nr

enrT
nr
⊗M

with a tri-diagonal matrices Ri ∈ Cnr×nr (i = 1, 2) and circulant matrices
Ti (i = 1, 2) and M ∈ Cnθ×nθ . The matrix M corresponds to the radiation
boundary condition and enj denotes the usual jth canonical basis vector of Rn.
Explicit forms for the matrices for Ri,Ti and M can be found, for example,
in Ernst [1996].

To solve the system (11), a fast direct solution method based on separation
of variables can be used by diagonalizing the circulant matrices. This leads to

(Inr ⊗QH)(R2 ⊗Λ1 + R1 ⊗Λ2 − k2R1 ⊗Λ1

−enr
nr

enrT
nr
⊗ΛM )(Inr ⊗Q)u = f ,

where Λi, i = 1, 2 and ΛM are diagonal matrices consisting of eigenvalues
of the corresponding circulant matrices and Q is the Fourier matrix with
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ijth component given by e2πiij/nθ . QH is the Hermitian conjugate of Q. The
column vectors of Q are the eigenvectors of the circulant matrices and Inr is
the identity matrix of size nr. Then, the system reduces to nθ independent
tri-diagonal systems

(λj1R2 + λj2R1 − k2λj1R1 − λjMenr
nr

enrT
nr

)ûj = f̂ j ,

j = 0, 1, · · · , nθ − 1

where ûj and f̂ j are the vectors composed of the jth components from the nr
blocks of the discrete Fourier transform of u and f respectively. The discrete
Fourier transforms can be performed efficiently by using FFT and the solution
vector u is obtained by inverse FFT. Here, one needs only the knowledge of the
eigenvalues of the matrices Ti, i = 1, 2 and M. These are circulant matrices
for which simple analytical expressions of the eigenvalues can be obtained.
For example, for a circulant matrix of the form [c0, c1, · · · , cn−1], the jth

eigenvalue is given by λj =
∑n−1

k=0 cke
−2πijk/n.

For a general non-circular obstacle, we use the fictitious domain method
to solve the original problem where the matrix B in this subsection is used as
a preconditioner (see for details Heikkola et al. [1998] and Nasir [2003]).

1.5 A Mixed-Type Method

As we will see later, to apply the standard finite element method to the exact
DtN mapping, we need to compute an infinite sum which should be truncated
in some way. In this section, we introduce an alternative way to approximate
the DtN mapping by the idea of mixed method.

Let a(., .) be a bounded V -elliptic sesqui-linear form defined in a Hilbert
space V with inner-product (., .)V and let A be a corresponding operator from
V into V given as a(u, v) = (Au, v)V . Let b(u, v) be another bounded sesqui-
linear form in V and let B be defines as b(u, v) = (Bu, v)V . Assume that B is
one-to-one and positive. Let L be L = B−1A with D(L) = {u | Au ∈ R(B)}.
Consider the problem to find u ∈ V for a given f ∈ V such that

Lnu = f, (12)

where n is a non-negative integer. By introducing intermediate unknowns
pj , j = 1, 2, · · · , n− 1, the problem (12) can be equivalently written as

Apn−1 = Bf, Apn−2 −Bpn−1 = 0, · · · , Ap1 −Bp2 = 0, Au−Bp1 = 0.

The weak formulation of this problem is to find pj ∈ V, j = 0, 1, · · · , n − 1
such that for each j = 0, 1, · · · , n− 1,

a(pj, qj)− b(pj+1, qj) = 0, ∀qj ∈ V, (13)

where u = p0 ∈ V and pn = f ∈ V . When we pose the problem in a finite
dimensional subspace Vh of V and use a given basis {ψi}Nh

0 , the approximate
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problem is given by the block matrix equation in CNh , Nh = dimVh of the
form

[A]hPj − [B]hPj+1 = 0, j = 0, 1, · · · , n− 1, (14)

where the matrices [A]h and [B]h are given by

([A]h)mn = a(ψn, ψm), ([B]h)mn = b(ψn, ψm)

and Pj = [Pj1, · · · , PjNh
]T are the vector of coefficients in the representation

of pj,h ∈ Vh with respect to the basis: pj,h =
∑Nh

k=0 Pjkψk.
Eliminating the block components Pj , j = 1, 2, . . . n− 1, we have

[A]h([B]−1
h [A]h)

n−1U = ([A]h[B]−1
h )n[B]hU = F

where U = P0 and F = Pn. The mixed-type approximation matrix of Ln is
then given by ([A]h[B]−1

h )n[B]h.
From these observations, we introduce a mixed-type approximation for a

function M(L) of operator L as follows.

Definition (A Mixed-Type Method) Let Vh be a finite dimensional
subspace of V . Then, a mixed-type approximation matrix for the sesqui-linear
form 〈u, v〉M = b(M(L)u, v), denoted by [M(L)]h, with respect to a given basis
of Vh is defined as

[M(L)]h = M([A]h[B]−1
h )[B]h. (15)

1.6 Application to Radiation Boundary Condition

Let S be the unit circle. We choose the space V = H1(S) with the inner-
product (u, v)V ≡ (u′, v′) + (u, v) where (.,.) is the L2-inner-product: (u, v) ≡∫ 2π

0
uv̄dθ. Let us define sesqui-linear forms as

a(u, v) ≡ (u′, v′) and b(u, v) ≡ (u, v).

Then the operator L becomes D2.
We denote by Circ(a, b, c) a circulant matrix for which the main diagonal is

formed by b and lower and upper diagonals are formed by a and c respectively.
For the mixed-type approximation matrix given by piecewise linear continuous
Lagrangian basis functions defined on a uniform partition with interval size
hθ = 2π/nθ, we have

[A]h =
1

hθ
Circ(−1, 2,−1) and [B]h =

hθ
6

Circ(1, 4, 1).

The eigenvalues of [B]h and [A]h are then given by

λjB =
hθ
3

(2 + cos jhθ) and λjA =
2

hθ
(1− cos jhθ).
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The eigenvalues of [M(L)]h = [M(D2)]h is hence given as

λjM = M(ν2
j )λ

j
B with ν2

j =
λjA
λjB

=
1

h2
θ

6(1− cos jhθ)

2 + cos jhθ
. (16)

For the exact DtN mapping (8) and the corresponding bilinear form 〈u, v〉M ,
the eigenvalues of the mixed-type approximation matrix is

λjDtN = kR
H ′(kR; νj)

H(kR; νj)
λjB. (17)

This can be directly computed without the Hankel function and its derivative
by using the continued fraction( see Nasir [2003])

x
H(1)′(x; ν)

H(1)(x; ν)
= ix− 1

2
+ i

(1/2)2 − ν2

2(x+ i)+

(3/2)2 − ν2

2(x+ 2i)+
.... (18)

where x = kR.
We can prove the theoretical convergence and the practical computational

efficiency of this type of mixed method in the case of the DtN mapping (see
Nasir et al. [2003]).

Here we remark the standard finite element method for the DtN map-
ping (see for details Nasir [2003]). When we use piecewise linear continuous
functions {φi}nθ−1

0 as the basis for the finite element approximation, the ijth
entry in the finite element matrix is given by

〈φj , φi〉M =
1

2π

∞∑

n=−∞
RM(n2)(φj , en)(φi, en)

=
RM(0)h2

θ

2π
+

1

π

∞∑

n=1

RM(n2)
4(1− cosnhθ)

2

n4h2
θ

cosnhθ(j − i).

One advantage of the mixed method is that there is no infinite sum in the
method and hence there is no ambiguity how to truncate the infinite series
which exists in the standard finite element method. Furthermore, the compu-
tational cost of the mixed method is smaller than the one for the standard
finite element method, although the performance is similar to the standard
one which is known to be the best among all the methods using artificial
boundary conditions.

2 Numerical Simulation of Voice Generation

The basic mathematical models of voice generation are the standard wave
equation in unbounded domain and the corresponding Helmholtz equation
for the frequency response problem.
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As for the boundary conditions of the problem, we impose the inhomo-
geneous Dirichlet or Neumann boundary condition on the vocal cord part as
the sound source and the homogeneous Neumann condition on the rest part
of the vocal tract surface which can be modeled as the rigid wall. Imposing
the artificial Dirichlet to Neumann type boundary condition on the common
artificial boundary between the interior and exterior regions, we can reduce
the problem into the one inside the artificial boundary.

In the voice generation process of vowels, vocal cord vibrates nonlinearly
and makes a (linear) sound wave with a fixed pitch (or a basic time frequency)
having a characteristic Fourier spectrum. Articulation organs like tongue and
jaw make a modification of the Fourier spectrum as a kind filter and produce
different kind of vowels depending on different shapes of oral cavities (see
Figure 1 for the two-dimensional model shape of Japanese and also Russian
vowel /i/).

Formants are the peaks of the frequency response function. The cognition
of different vowels are made by detecting the position of formants accord-
ing to the experiments. Especially the lowest two or three formants are very
important for the cognition.

For the general background of the voice generation problem in human
speech, see Flanagan [1972] and Furui [1989].
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Fig. 1. Two-dimensional shape of vocal tract for vowel /i/

2.1 Mathematical Model of Voice Generation

Let Ω be a domain in Rn consisting of the bounded part Ωi which corresponds
to the vocal tract and the exterior unbounded part Ωe:
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Ω = Ωi ∪Ωe.

The sound pressure u(t, x) in Ω with the source terms f, g satisfies the fol-
lowing wave equation:

(
∂2

∂t2
− c2∆)u(t, x) = f(t, x) in R×Ω, ∆ =

2∑

i=1

∂2

∂x2
i

, (19)

∂u

∂n
(t, x) = g(t, x) on R× ∂Ω, (20)

with sound velocity c, and ∂/∂n denotes the outward unit normal on the
boundary ∂Ω of Ω.

The time harmonic problem associated with this equation with the time
frequency ω is formulated as the reduced wave equation or the Helmholtz
equation for the stationary pressure u(x):

(−∆− k2)u(x) = f(x) in Ω, k = ω/c (21)

∂u

∂n
(x) = g(x) on ∂Ω. (22)

We have to impose an appropriate radiation condition at infinity that exclude
unphysical incoming waves. In the following, we treat the problem in one or
two dimensional case.

2.2 One and Two Dimensional Vocal Tract Models and DtN
Mapping

To reduce the problem in unbounded domain into the one in a bounded domain
Ωi, we introduce an artificial boundary condition on the common boundary
Γ of the exterior and the interior domains: Γ ≡ Ωi ∩Ωe.

For this purpose, we firstly give the Dirichlet data u|Γ on Γ and solve
the exterior problem, then we have the directional derivative ∂u/∂n of the
solution along the exterior normal. This mapping form u|Γ to ∂u/∂n ≡Mu|Γ
is the Dirichlet to Neumann mapping in this case.

The original problem then becomes equivalent to boundary value problem
in the interior domain:

(−∆− k2)u = 0 in Ωi (23)

∂u

∂n
= g on ∂Ω ∩Ωi (24)

∂u

∂n
= Mu|Γ on Γ.

In the tubular exterior infinite domain case (see Kako and Kano [1999]),
we have
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Mu|Γ =
∞∑

n=0

ζnCn(u|Γ )cn(y),

Cn(u|Γ ) =

∫ y0

0

u(L, y)cn(y) dy (n ≥ 0),

cn(y) =





√
1
y0

(n = 0)
√

2
y0

cos(nπy0 y) (n ≥ 1),

ζn =

{
iξn, ξn = {k2 − (nπy0 )2}1/2, 0 ≤ n < y0

π k

−ηn, ηn = {(nπy0 )2 − k2}1/2, y0
π k ≤ n.

On the other hand, the following one dimensional simpler mathematical model
is also used for the voice simulation problem and it is called the Webster’s
horn equation which is derived from the conservation law:

−∂v
∂t

=
A(x)

ρ

∂u

∂x
, −∂u

∂t
=

ρc2

A(x)

∂v

∂x
,

as
∂2u

∂t2
− 1

A(x)
c2
∂

∂x
(A(x)

∂u

∂x
) = 0,

here A(x) denotes the cross sectional area of the vocal tract. The correspond-
ing time harmonic problem for each wave number k = ω/c is given as

− 1

A(x)

d

dx
(A(x)

du

dx
)− k2u = 0,

du

dx
(0) = 1,

du

dx
(L) = iku(L).

The finite element method can be applied in the similar way as in the case of
obstacle problem presented in Section 1, and we can obtain some theoretical
results for the convergence of the numerical solution to the exact one in case
of the standard method (see Kako and Kano [1999] ). We can also use the
mixed type method in this case.

2.3 Complex Resonance Eigenvalue and Variational Formula

For the numerical simulation of voice generation, we change the frequency ω
and hence the wave number k, and calculate the amplification factor computed
as the sound pressure at some observation point for the given unit volume
velocity of sound at the vocal cord position where the sound originates. The
observation point should be located outside of the vocal tract region, and, in
the following examples, we choose the point just on the artificial boundary.

This correspondence between the frequency and the amplification factor
is the frequency response function or the formant curve. The peaks of this
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curve are called formants. A typical example of the frequency response func-
tion is shown in Figure 2 in the case of vowel /i/ for one and two dimensional
cases. In two-dimensional computation based on DtN mapping, we used the
shape in Figure 1, and applied the finite element method with 392×196 back-
ground rectangular mesh and corresponding triangulation. We used the usual
piecewise linear continuous basis functions for discretization. One-dimensional
computation is performed similarly for the area function A(x) corresponding
to Figure 1. We plotted the results for the frequency range from 0 to 4.7 KHz
and the pressure u is shown in the logarithmic scale.
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Fig. 2. Frequency response function for vowel /i/

If we change the shape of the vocal tract or the cross section area, the
frequency response varies (see Kent and Read [1992] for the heuristic per-
turbation theory for vocal tract shape and formant curve). The frequency
response curve is determined through the complex eigenvalues and its eigen-
function of the Helmholtz equation with the complex frequency ω extended
into the lower half complex plane.

We show one-dimensional numerical example for this correspondence be-
tween the complex poles and the frequency response function in Figure 3
where we moved the shape of vocal tract from the neutral shape with con-
stant cross sectional area to the one of /i/ as is illustrated in Figure 4. These
complex poles are calculated by the iteration process of line search in real and
imaginary directions alternatively. We took the starting values of the iteration
to be the eigenvalues for the previous shape.

As shown in Figure 4, the formants are closely related to the resonant com-
plex eigenvalues. Especially, if the real part of a resonance complex eigenvalue
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moves, the position of the formant moves correspondingly to the same direc-
tion. Furthermore, the imaginary part of the complex eigenvalue corresponds
to the strength of the formant. Hence, to control the positions of formants, it
would be an efficient way to vary the positions of the resonant complex eigen-
values. As for the mathematical treatments of resonance poles and related
topics, refer the works by Lenoir et al. [1992] and Poisson [1995].

In this respect, the variational formula for the resonant complex eigenval-
ues will be useful to design the format curve to simulate the natural formant
curve of human beings. Under the assumption that the eigenvalues and the
eigenfunctions move smoothly with respect to the variation of shape of the
vocal tract, we can obtain the variational formula as follows.

In one-dimensional case, let k and u(x; k) satisfy the one-dimensional ho-
mogeneous Webster’s horn equation which is the complex eigenvalue problem
for k and u:

− d

dx
(A(x)

du

dx
)− k2A(x)u(x) = 0,

du

dx
(0) = 0,

du

dx
(L) = iku(L).

Then the variational formula is given as follows with respect to the variation
(δA)(x) of the cross section area A(x) of the vocal tract:
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Fig. 3. Correspondence between complex eigenvalues and frequency response
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Fig. 4. Changing of area from the neutral shape to /i/

δk =

∫ L

0

(δA)(x){(du
dx

(x))2 − k2u(x)2}dx− ik(δA)(L)u(L)2

2k

∫ L

0

A(x)u(x)2dx+ iA(L)u(L)2
.

We can prove this formula multiplying the equation by the solution and doing
the integration by parts.

We show in Figure 5 a numerical example which corresponds to the third
formants and the variational formula for the corresponding complex eigen-
value. There is a good coincidence between the tangent directions and the
values computed by the variational formula which are illustrated by the vec-
tors with arrow on the eigenvalue trajectory.
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Fig. 5. Complex vectors by variational formula on eigenvalue trajectory
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For two dimensional problem, let n be the outward normal and ψ(x) be
a function on the boundary, and move the boundary to the direction of the
normal as ǫψn.

Firstly we consider the case of completely elastic boundary: u = 0 on ∂Ω.
The variational derivative of the resonant complex eigenvalue is then given as

δk

δψ
=

−
∫

∂Ω

(
∂u

∂n
)2ψ dσ

2k

∫

Ω

u(x)2 dx+

∫

Γ

((
δM

δk
)u) u dθ

.

Next we consider the case of rigid boundary: ∂u/∂n = on ∂Ω. In this case
the variational formula is given as:

δk

δψ
=

∫

∂Ω

{n2
1

∂2u

∂x2
1

+ 2n1n2
∂2u

∂x1∂x2
+ n2

2

∂2u

∂x2
2

} ψ u dσ

2k

∫

Ω

u(x)2 dx+

∫

Γ

((δM/δk)u) u dθ

=

∫

∂Ω

{(∂u
∂σ

)2 − k2u2} ψ u dσ +

∫

∂Ω

∂φ

∂σ
u
∂u

∂σ
dσ

2k

∫

Ω

u(x)2 dx+

∫

Γ

((δM/δk)u) u dθ
.

Now, we modify the Dirichlet to Neumann mapping on the radiation
boundary rather artificially multiplying the homotopy parameter α ∈ [0, 1]:
∂u
∂n = αMu. Then, if α = 0, the boundary condition becomes the homoge-
neous Neumann condition, and hence the eigenvalues are all real and discrete.
If we move α from 0 to 1, we may establish the relationship between real
eigenvalues and the resonant complex eigenvalues. In the case of α = 0, the
variation becomes pure imaginary, and resonance pole moves into the lower
complex plane vertically to the real line.

3 Concluding Remarks

We formulated the stationary wave propagation phenomena in unbounded re-
gion outside an obstacle via the Helmholtz equation with appropriate bound-
ary conditions. We introduced two kinds of finite element approximation based
on the standard method and a mixed type one. The later has better numeri-
cal performance in the sense that it needs less computational cost and smaller
memory requirement. From the theoretical error analysis, we can conclude the
convergence of the numerical solution to the exact one.

We computed one dimensional as well as two dimensional voice generation
problem which give reasonable frequency response curves. We then introduced
variational formulas for the complex eigenvalues or the resonance poles for two
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dimensional as well as one dimensional problems. We suggested a procedure
to design the frequency response curves based on the variational formula and
presented a numerical example to show the validity of our method.
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Summary. Iterative substructuring methods with Lagrange multipliers for the el-
liptic system of linear elasticity are considered. The algorithms belong to the family
of dual-primal FETI methods which was introduced for linear elasticity problems in
the plane by Farhat et al. [2001] and then extended to three dimensional elasticity
problems by Farhat et al. [2000]. In dual-primal FETI methods, some continuity
constraints on primal displacement variables are required to hold throughout the it-
erations, as in primal iterative substructuring methods, while most of the constraints
are enforced by the use of dual Lagrange multipliers, as in the older one-level FETI
algorithms. The primal constraints should be chosen so that the local problems be-
come invertible. They also provide a coarse problem and they should be chosen so
that the iterative method converges rapidly.

Recently, the family of algorithms for scalar elliptic problems in three dimen-
sions was extended and a theory was provided in Klawonn et al. [2002a,b]. It was
shown that the condition number of the dual-primal FETI methods can be bounded
polylogarithmically as a function of the dimension of the individual subregion prob-
lems and that the bounds can otherwise be made independent of the number of
subdomains, the mesh size, and jumps in the coefficients.

In the case of the elliptic system of partial differential equations arising from
linear elasticity, essential changes in the selection of the primal constraints have to
be made in order to obtain the same quality bounds for elasticity problems as in the
scalar case. Special emphasis is given to developing robust condition number esti-
mates with bounds which are independent of arbitrarily large jumps of the material
coefficients. For benign coefficients, without large jumps, selecting an appropriate set
of edge averages as primal constraints are sufficient to obtain good bounds, whereas
for arbitrary coefficient distributions, additional primal first order moments are also
required.

1 The equations of linear elasticity

The equations of linear elasticity model the displacement of a linear elastic
material under the action of external and internal forces. The elastic body
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occupies a domain Ω ⊂ IR3, which we assume to be bounded and polyhe-
dral. We denote its boundary by ∂Ω and assume that one part of it, ∂ΩD, is
clamped, i.e., with homogeneous Dirichlet boundary conditions, and that the
rest, ∂ΩN := ∂Ω\∂ΩD, is subject to a surface force g, i.e., a natural boundary
condition. We can also introduce a body force f , e.g., gravity. Using the nota-
tion H1(Ω) := (H1(Ω))3, the appropriate space for a variational formulation
is then the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The
linear elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD)
of the elastic body Ω, such that

a(u,v) = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD) (1)

where 〈F,v〉 :=
∫
Ω fTv dx +

∫
∂ΩN

gTv dσ and

a(u,v) =

∫

Ω

G(x)ε(u) : ε(v)dx +

∫

Ω

G(x)β(x) div u div v dx. (2)

Here G and β are material parameters which depend on Young’s modulus
E > 0 and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and
β = ν/(1−2ν). In this contribution, we only consider the case of compressible
elasticity, which means that the Poisson ratio ν is bounded away from 1/2.

Furthermore, εij(u) := 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the linearized strain tensor, and

ε(u) : ε(v) =

3∑

i,j=1

εij(u)εij(v).

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=

∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (Gβ div,u, div,v)L2(Ω).

We will also use the standard Sobolev space norm

‖u‖H1(Ω) :=
(
|u|2H1(Ω) + ‖u‖2L2(Ω)

)1/2

with ‖u‖2L2(Ω) :=
3∑

i=1

∫

Ω

|ui|2dx, and |u|2H1(Ω) :=
3∑

i=1

‖∇ui‖2L2(Ω). It is clear

that the bilinear form a(·, ·) is continuous with respect to ‖ · ‖H1(Ω), although
the bound depends on the Lamé parameters. Proving ellipticity is far less
trivial but it can be established from a Korn inequality; see, e.g., [Ciarlet, 1988,
pp. 292-295]. The wellposedness of the linear system (1) follows immediately
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from the continuity and ellipticity of the bilinear form a(·, ·). This makes it
possible to use many technical tools, previously developed for scalar second
order elliptic problems, in the analysis of domain decomposition methods for
the system of linear elasticity.

The null space ker (ε) is the space of rigid body motions. Thus, the lin-
earized strain tensor of u and its divergence vanish only for the elements of
the space spanned by the three translations

r1 :=




1
0
0


 , r2 :=




0
1
0


 , r3 :=




0
0
1


 ,

and the three rotations

r4 :=
1

H



x2 − x̂2

−x1 + x̂1

0


 , r5 :=

1

H



−x3 + x̂3

0
x1 − x̂1


 , r6 :=

1

H




0
x3 − x̂3

−x2 + x̂2


 ,

where x̂ ∈ Ω̂ and H denotes the diameter of an appropriate region Ω̂. The
scaling and shifting of the rotational rigid body modes make the L2(Ω̂)−norms
of these six functions scale similarly with H.

2 Finite elements and geometry

We will only consider compressible elastic materials. Since the problem is well
posed in H1(Ω), it is sufficient to discretize our elliptic problem (1) by low
order, conforming finite elements, e.g., linear or trilinear elements.

We introduce a triangulation τh of Ω which is shape regular and has a
typical diameter of h. We denote by Wh := Wh(Ω) ⊂ H1

0(Ω, ∂ΩD) the
corresponding conforming finite element space of finite element functions. The
corresponding discrete problem is finding uh ∈Wh such that,

a(uh,vh) = 〈F,vh〉 ∀vh ∈Wh. (3)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains

Ωi, i = 1, . . . , N , each of which is the union of finite elements with matching
finite element nodes, on the boundaries of neighboring subdomains, across
the interface Γ. The interface Γ is the union of subdomain faces, edges, and
vertices, all of them regarded as open sets. We denote the faces of Ωi by F ij ,
its edges by E ik, and its vertices by V il. Faces are sets which are shared by two
subregions, edges by more than two subregions, and vertices are endpoints of
edges. Subdomain vertices that lie on ∂ΩN are part of Γ , while subdomain
faces that are part of ∂ΩN are not; the nodes on those faces will always
be treated as interior. If Γ intersects ∂ΩN along an edge common to the
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boundaries of only two subdomains, we will regard it as part of the face
common to this pair of subdomains; otherwise it will be regarded as an edge
of Γ . We note that any subdomain that does not intersect ∂ΩD is a floating
subdomain, i.e., a subdomain on which only natural boundary conditions are
imposed.

Let us denote the sets of nodes on ∂Ω, ∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh,
respectively. For any interface point x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj},

i.e., Nx is the index set of all subdomains with x on their boundaries. We note
that we can characterize individual faces, edges, and vertices of the interface
in terms of an equivalence relation defined in terms of these index sets.

In our theoretical analysis, we assume that each subregion Ωi is the union
of a number of shape regular tetrahedral coarse elements and that the number
of such tetrahedra is uniformly bounded for each subdomain. Therefore, the
subregions are not very thin and we can also easily show that the diameters
of any pair of neighboring subdomains are comparable. We also assume that
the material parameters are constant in each subdomain.

We denote the standard finite element space of continuous, piecewise linear
functions on Ωi by Wh(Ωi); we always assume that these functions vanish on
∂Ωi ∩ ∂ΩD. To simplify the theory, we will assume that the triangulation of
each subdomain is quasi uniform. The diameter of Ωi is Hi, or generically,
H . We denote the corresponding trace spaces by W(i) := Wh(∂Ωi ∩ Γ ), i =

1, . . . , N, and by W :=
∏N
i=1 W(i) the associated product space. We will often

consider elements of W which are discontinuous across the interface.
For each subdomain Ωi, we define the local stiffness matrix K(i) which

we view as an operator on Wh(Ωi). On the product space
∏N
i=1 Wh(Ωi), we

define the operator K as the direct sum of the local stiffness operators K(i),
i.e.,

K :=
N⊕

i=1

K(i). (4)

In an implementation, K corresponds to a block diagonal matrix since, so far,
there is no coupling across the interface. The finite element approximation of
the elliptic problem is continuous across Γ and we denote the corresponding

subspace of W by Ŵ. We note that while the stiffness matrix K and its
Schur complement, which corresponds to the product space W, generally are

singular, restricted to Ŵ they are not.
In the present study, as in others on dual-primal FETI methods, we also

work with subspaces W̃ ⊂ W for which sufficiently many constraints are
enforced so that the resulting leading diagonal block matrix of the FETI saddle
point problem, to be introduced in (10), though no longer block diagonal,
is strictly positive definite. These constraints are called primal and usually
consist of certain edge averages and moments, which have common values
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across the interface of neighboring subdomains, and possibly of well chosen
subdomain vertices (or other nodes), for which a partial subassembly is carried

out. One of the benefits of working in W̃, rather than in W, is that certain
related Schur complements, S̃ε and Sε, are strictly positive definite; cf. (6)
and (8).

We further introduce two subspaces, ŴΠ ⊂ Ŵ and W̃∆, corresponding to

a primal and a dual part of the space W̃. These subspaces play an important
role in the description and analysis of our iterative method. The direct sum

of these spaces equals W̃, i.e.,

W̃ = ŴΠ ⊕ W̃∆. (5)

The second subspace, W̃∆, is the direct sum of local subspaces W̃
(i)
∆ of W̃,

where each subdomain Ωi contributes a subspace W̃
(i)
∆ ; only its i-th compo-

nent in the sense of the product space W̃ is non trivial.
We note that the dual subspaces will be associated with Lagrange mul-

tipliers to control jumps across the interface, jumps which will only vanish
at convergence of our iterative methods. The constraints associated with the
degrees of freedom of the primal subspace, on the other hand, will be satisfied
throughout the iteration.

We now define certain Schur complements by using a variational formula-

tion. We first define Schur complements S
(i)
ε , i = 1, . . . , N , operating on W(i)

by
〈S(i)
ε w(i),w(i)〉 = min〈K(i)v(i),v(i)〉, ∀w(i) ∈W(i), (6)

where we take the minimum over all v(i) ∈Wh(Ωi) with v(i)|∂Ωi∩Γ = w(i).
We can now define the Schur complement Sε operating on W by the direct
sum of the local Schur complements

Sε :=

N⊕

i=1

S(i)
ε . (7)

We next introduce a Schur complement S̃ε, operating on W̃∆, by a variational

problem: for all w∆ ∈ W̃∆,

〈S̃εw∆,w∆〉 = min
wΠ∈cWΠ

〈Sε(w∆ + wΠ),w∆ + wΠ〉. (8)

We will always assume that we have enough primal constraints, i.e., a large

enough primal subspace ŴΠ , to make S̃ε invertible. We note that any Schur
complement of a positive semi-definite, symmetric matrix is always associated
with such a variational problem. We also obtain, analogously, a reduced right
hand side f̃∆, from the load vectors associated with the individual subdo-
mains.
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3 The dual-primal FETI method

We reformulate the original finite element problem, reduced to the degrees of

freedom of the second subspace W̃∆, as a minimization problem with con-

straints given by the requirement of continuity across all of Γh: find u∆ ∈ W̃∆,
such that

J(u∆) := 1
2 〈S̃εu∆,u∆〉 − 〈̃f∆,u∆〉 → min

B∆u∆ = 0

}
. (9)

The jump operator B∆, with elements from {0, 1,−1}, operates on W̃ and
enforces pointwise continuity at the dual displacement degrees of freedom. At
possible primal vertices, continuity is already enforced by subassembly and

the jump operator applied to a function from W̃ is automatically zero at
these special degrees of freedom.

By introducing a set of Lagrange multipliers λ ∈ V := range (B∆), to
enforce the constraints B∆u∆ = 0, we obtain a saddle point formulation of
(9) [

S̃ε BT∆
B∆ O

] [
u∆
λ

]
=

[
f̃∆
0

]
. (10)

We note that we can add any element from ker (BT∆) to λ without changing
the displacement solution u∆.

Since S̃ε is invertible, we can eliminate u∆ and obtain the following system
for the Lagrange multiplier variables:

Fλ = d. (11)

Here, our new system matrix F is defined by

F := B∆S̃
−1
ε BT∆ (12)

and the new right hand side by d := B∆S̃
−1
ε f̃∆. Algorithmically, S̃ε is only

needed in terms of S̃−1
ε times a vector w∆ ∈ W̃∆ and such a product can

be computed relatively inexpensively although it involves a small subproblem
that is global. The operator F will obviously depend on the choice of the

subspaces ŴΠ and W̃∆.
The dual-primal FETI Dirichlet preconditioner is defined in terms of cer-

tain scale factors δ†j(x). They depend on one of the Lamé parameters. We first
define a set of functions δj(x), one for each ∂Ωj , by

δj(x) :=

∑
i∈Nx

Gγi (x)

Gγj (x)
, x ∈ ∂Ωj,h ∩ Γh, (13)

where γ ∈ [1/2,∞). Here, as before, Nx is the set of indices of the subregions
which have x on its boundary; any x ∈ Γh belongs to at least two subdomains.
The pseudo inverses δ†j are defined as
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δ†j (x) = δ−1
j (x), x ∈ ∂Ωj,h ∩ Γh. (14)

The scaled jump operators for the dual-primal FETI Dirichlet preconditioner
is defined by

BD,∆ := [B
(1)
D,∆, . . . , B

(N)
D,∆].

Here, the B
(i)
D,∆ are defined as follows: each row of B

(i)
∆ with a nonzero entry

corresponds to a Lagrange multiplier connecting the subdomain Ωi with a
neighboring subdomain Ωj at a point x ∈ ∂Ωi,h ∩∂Ωj,h. Multiplying this row

with δ†j (x) and doing so for all rows with nonzero entries gives us B
(i)
D,∆.

As in [Klawonn and Widlund, 2001, section 5], we solve the dual system
(11) using the preconditioned conjugate gradient algorithm with the precon-
ditioner

M−1 := PBD,∆SεB
T
D,∆P

T , (15)

where P is the ℓ2-orthogonal projection from range (BD,∆) onto V =
range (B∆), i.e., P removes the component from ker (BT∆) of any element
in range (BD,∆). We note that, in the present context, P and PT are only
needed for the theoretical analysis to guarantee that the preconditioned resid-
uals will belong to V; they can be dropped in the implementation.

The dual-primal FETI method is the standard preconditioned conjugate
gradient algorithm for solving the preconditioned system

M−1Fλ = M−1d.

We can see that we can drop the projection operator P and its transpose by
the following argument. Applying BD,∆SεB

T
D,∆ to an element from V results

in a vector µ which can be written as a sum µ = µ0 + µ1 of components
µ0 ∈ ker (BT∆) and µ1 ∈ V = range (B∆). When F is applied to µ, the
component Fµ0 disappears and we also have Fµ ∈ V. Examining the standard
pcg algorithm, we see that dropping P and PT only affects the computed
Lagrange multiplier solution but not the computed displacements.

Our definition of M−1 clearly depends on the choice of the subspaces ŴΠ

and W̃∆. We can show that M−1 is invertible if S̃ is, i.e., if the subspace ŴΠ

is large enough; cf. Klawonn and Widlund [2004]

4 Selection of constraints

In order to control the rigid body modes of a subregion, we need at least six
constraints. To get an understanding of the type of primal constraints that
are required for our preconditioner, it is useful to examine two special cases.

In the first, we assume that we have two subdomains made of the same
material, which have a face in common and are surrounded by subdomains
made of a material with much smaller coefficients. Such a problem will clearly
have six low energy modes corresponding to the rigid body modes of the
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union of the two special subdomains. Any preconditioner that has less than
six linearly independent primal constraints across that face will have at least
seven low energy modes and is likely to be poor.

In the second case, we again consider two subdomains surrounded by sub-
domains with much smaller coefficients. We now assume that the two special
subdomains share only an edge. In this case, there are seven low energy modes
of the finite element model corresponding to the same rigid body modes as
before and an additional one. The new mode corresponds to a relative rotation
of the two subdomains around their common edge. We conclude that in such a
case, we should introduce five linearly independent primal constraints related
to the special edge. Such edges will be called fully primal in our discussion.

In the convergence theory presented in Section 5, we will assume that the
requirement of the first special case is met for each face; we will select at least
six linearly independent edge constraints for each face of the interface. We
note that such a constraint will serve as a constraint for every face adjacent
to the edge in question. Nevertheless, it is likely that in many cases we will
be able to use fewer constraints and still maintain a good rate of convergence
of our algorithm; we plan to return to these questions in future work. We also
note that using only face constraints can be inadequate; see Klawonn et al.
[2002b, 2003].

For coefficient distributions with only modest jumps across the interface Γ
and for some special decompositions, we are able to exclusively work with edge
averages; cf. Section 5.1. To be able to treat general coefficient distributions
with arbitrarily large jumps, we also need first order moments in addition to
the averages on certain edges as in the second special case discussed above.
We will also introduce the concept of an acceptable path; cf. Section 5.3.

In our theory, we will work with sets of constraints associated with all the
faces of the interface and with the edges designated as fully primal. For a
fully primal edge only five constraints are required; cf. the discussion above
of the second special case. This is related to the fact that one rotational rigid
body mode is invisible on the edge. This can be easily seen by a change of
coordinates such that the chosen edge coincides with an axis of the Cartesian
coordinate system. Without restriction of generality, we assume that it is the
third rotation r6. This motivates the following definition, where p = 6 relates
to the case of pure edge averages and p = 5 to edge averages and first order
moments used on a single edge.

Definition 1. Let F ij be a face and 5 ≤ p ≤ 6. A set fm,m = 1, . . . , p,
of linearly independent linear functionals on W(i) is called a set of primal
constraint functionals if it has the following properties:

1. |fm(w(i))|2 ≤ C H−1
i (1 + log(Hi/hi)){|w(i)|2

H1/2(Fij)
+ 1

Hi
‖w(i)‖2L2(Fij)}

2. fm(rl) = δml ∀m, l = 1, . . . , p, rl ∈ ker (ε).

We note that these bounds will allow us to prove almost uniform bounds for
the condition number of our algorithms. If point constraints were to replace
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the edge constraints, this would not be possible. We note that while we will
work with functionals which are not uniformly bounded, the growth of these
bounds is quite modest when H/h grows. These growth factors will appear in
the main theorem as is customary for many domain decomposition methods.
We also note that the logarithmic factors cannot be eliminated if we wish to
obtain a result which is uniform with respect to arbitrary variations of the
Lamé parameters.

Let us now first consider the case of six functionals, i.e., p = 6. As an ex-
ample of functionals fm, we can use appropriately chosen linear combinations
of certain edge averages, of components of the displacement,

gm(w(i)) :=

∫
Eik w

(i)
ℓ dx∫

Eik 1dx

for a function w(i) ∈W(i). Using a Cauchy-Schwarz inequality, we obtain

|gm(w(i))|2 ≤ C H−1
i ‖w(i)‖2L2(Eik).

We can show, by using standard tools, that

‖w(i)‖2L2(Eik) ≤ C (1 + log(Hi/hi)) (|w(i)|2H1/2(Fij) +
1

Hi
‖w(i)‖2L2(Fij)).

Thus, the first requirement of Definition 1 is satisfied. In order to obtain six
linearly independent linear functionals associated with a face F ij , we have to
choose a total of six averages on at least three different edges E ik.

The functionals g1, . . . , g6, provide a basis of the dual space (ker (ε))′.
There always exists a dual basis of (ker (ε))′, which we denote by f1, . . . , f6,
defined by fm(rl) = δml,m, l = 1, . . . , 6. Obviously, there exist βlk ∈ IR, l, k =
1, . . . , 6, such that for w ∈ ker (ε), we have

fm(w) =

6∑

n=1

βmngn(w), m = 1, . . . , 6.

We next consider the case of p = 5 in Definition 1. Let us introduce the
following definition.

Definition 2. An edge is said to be fully primal if we use five linearly inde-
pendent constraints, the averages over the three displacement components and
two first order moments.

Thus, we can define the functionals fm as

fm(w(i)) :=
(w(i), rm)L2(Eik)

(rm, rm)L2(Eik)

, m ∈ {1, . . . , 5}. (16)

Obviously, the second requirement of Definition 1 is satisfied.
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Using a Cauchy-Schwarz inequality, we obtain

|fm(w(i))|2 ≤
‖w(i)‖2L2(Eik)

‖rm‖2L2(Eik)

and the first requirement of Definition 1 follows again by using standard tools.
We also need to introduce the concept of acceptable paths.

Definition 3. Let us first consider an arbitrary pair of subdomains (Ωi, Ωk)
which has a face or an edge in common. An acceptable path is a path
{Ωi, Ωj1 , . . . , Ωjn , Ωk} from Ωi to Ωk, possibly via a uniformly bounded num-
ber of other subdomains Ωjq , q = 1, . . . , n, such that the associated coefficients
Gjq satisfy the condition

TOL ∗Gjq ≥ min(Gi, Gk) q = 1, . . . , n, (17)

for some tolerance TOL. We can pass from one subdomain to another either
through a face or through a fully primal edge, if the next subdomain has a
coefficient satisfying (17); cf. Figure 1. We also need to consider all vertices
and all pairs of substructures which only have a vertex, but not a face or an
edge in common. Then, if the vertex is not primal, there must be an acceptable
path, of the same nature as before, with the only difference that here we can
be more lenient and only insist on

TOL ∗Gjq ≥
hi
Hi

min(Gi, Gk) q = 1, . . . , n. (18)
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Fig. 1. Acceptable paths, through edges and faces, left, and only through edges,
right, (planar cut).

We will assume that for each pair (Ωi, Ωk), which has a face, an edge, or a
vertex in common, there exists an acceptable path as defined in Definition 3
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with a modest tolerance TOL and that the path does not exceed a prescribed
length. If TOL becomes too large for a certain edge or vertex or if the length
of the acceptable path exceeds a given uniform bound, we can make the edge
fully primal or the vertex primal; cf. Figure 2 for an example where certain
vertices should be made primal.
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Fig. 2. Example of a decomposition where no acceptable path exists for the vertices
which connect the black subdomains, which have much larger coefficients than those
of the white. These vertices should be made primal.

Finally, we define the spaces ŴΠ and W̃∆ =
⊕N

i=1 W̃
(i)
∆ . The first space,

ŴΠ , is spanned by the nodal finite element functions which are associated
with primal vertices and by averages and possibly first order moments, which
belong to primal and fully primal edges, respectively. Each such primal con-

straint is associated with a basis element of ŴΠ ; all these functions are con-
tinuous across the interface Γ . For each subdomain Ωi, we then define a sub-

space W̃
(i)
∆ by those functions in W(i) which are zero at primal vertices and

have zero averages or first order moments on primal and fully primal edges,
respectively.

5 Convergence analysis

As in Klawonn et al. [2002a], the two different Schur complements, S̃ε and Sε,
introduced in section 3, play an important role in the analysis of the dual–

primal iterative algorithm. Both operate on the second subspace W̃∆ and we
also recall that S̃ε represents a global problem while Sε does not.

We recall that V := range (B∆) is the space of Lagrange multipliers. As
in [Klawonn and Widlund, 2001, section 5], we introduce a projection

P∆ := BTD,∆B∆.

A simple computation shows, see [Klawonn and Widlund, 2001, Lemma 4.2],

that P∆ preserves the jump of any function u∆ ∈ W̃∆, i.e.,
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B∆P∆u∆ = B∆u∆ (19)

and we therefore have P∆u = 0 ∀u ∈ Ŵ.
In our proof of Theorem 1, we will use representation formulas for F and

M which allow us to carry out our analysis in the space of displacement
variables. The representation formula for F is given in the next lemma; see
also [Klawonn et al., 2002a, p. 175] or Mandel and Tezaur [2001].

Lemma 1. For any λ ∈ V, we have

〈Fλ,λ〉 = sup
06=v∈fW

〈λ, B∆v〉2
|v|2Sε

.

A similar formula holds for M ; it only differs in the denominator from the one
for F . For a proof, see Klawonn and Widlund [2004].

Lemma 2. For any λ ∈ V, we have

〈Mλ,λ〉 = sup
06=v∈fW

〈λ, B∆v〉2
|P∆v|2Sε

.

For a proof of the lower bound in our main theorem, we will use the following
lemma; cf. Klawonn and Widlund [2004].

Lemma 3. For any µ ∈ V, there exists a w∆ ∈ W̃∆ such that µ = B∆w∆

and (I − P∆)w∆ ∈ ŴΠ . In addition, zw = P∆w∆ ∈ W̃ and µ = B∆zw.

We now require P∆ to satisfy a stability condition which is discussed for
different cases in subsections 5.1, 5.2, and 5.3 and, with full details, in Klawonn
and Widlund [2004].

Condition 1 For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.

We note that this bound can be developed for individual subdomains and
their next neighbors, one by one. Using Condition 1 and the three previous
lemmas, we can now prove our condition number estimate.

Theorem 1. Assume that Condition 1 holds. Then, the condition number
satisfies

κ(M−1F ) ≤ C max(1, TOL) (1 + log(H/h))2.

Here, C is independent of h,H, γ, and the values of the Gi.

Proof. We have to estimate the smallest eigenvalue λmin(M−1F ) from below
and the largest eigenvalue λmax(M

−1F ) from above. We will show that

〈Mλ,λ〉 ≤ 〈Fλ,λ〉 ≤ C max(1, TOL) (1+log(H/h))2〈Mλ,λ〉 ∀λ ∈ V. (20)
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Lower bound: The lower bound follows by using Lemmas 1, 2, and 3: for
all λ ∈ V, we have

〈Mλ,λ〉 = sup
w∈fW

〈λ, B∆w〉2
|P∆w|2Sε

= sup
w∈fW

〈λ, B∆zw〉2
|zw|2Sε

≤ sup
z∈fW

〈λ, B∆z〉2
|z|2Sε

= 〈Fλ,λ〉

Upper bound: Using Condition 1 and Lemmas 1 and 2, we obtain for all
λ ∈ V

〈Fλ,λ〉 = sup
06=w∈fW

〈λ, B∆w〉2
|w|2Sε

≤ C max(1, TOL) (1 + log(H/h))2 sup
06=w∈fW

〈λ, B∆w〉2
|P∆w|2Sε

= C max(1, TOL) (1 + log(H/h))2〈Mλ,λ〉.

We will now discuss Condition 1 successively for different cases.

5.1 First case

Let us first consider a decomposition of Ω, where no more than three subdo-
mains are common to any edge and where each of the subdomains shares a
face with each of the other two. We further assume that all vertices are primal
and that for each face F ij which is shared by two subdomains Ωi and Ωj , we
have six linear functionals fm(·) which satisfy Definition 1 and the property

fm(w(i)) = fm(w(j)) ∀w(i) ∈ W̃
(i)
,w(j) ∈ W̃

(j)
. As mentioned before, cf.

the first example after Definition 1, we can define our functionals fi as prop-
erly chosen linear combinations of certain edge averages, over components of
the displacement, of the form

gm(w(i)) =

∫
Eik w

(i)
ℓ dx∫

Eik 1dx
,

where the E ik ⊂ ∂F ij are appropriately chosen edges. Let us note that for
a square face, we would have to work with three different edges to satisfy
Definition 1.ii. For this case, we are able to prove Condition 1 with TOL = 1;
see Klawonn and Widlund [2004] for a proof.

Lemma 4. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

Remark 1. The result of Lemma 4 still holds with an additional factor of
max(1, TOL) for decompositions where more than three subdomains have a
single edge in common and an acceptable path through the faces of those
subdomains exists; cf. Definition 3. This is the case, e.g., if four subdomains
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Ωi, Ωj , Ωk, and Ωl have an edge in common as in Figure 3 (left) and the
corresponding coefficients Gi, Gj , Gk, and Gl satisfy the condition

min(Gi, Gk) ≤ TOL max(Gj , Gl)

min(Gj , Gl) ≤ TOL max(Gi, Gk)

with a modest constant TOL > 0 independent of H,h, and the values of the
Gi. This condition can be easily generalized to more than four subdomains
meeting at an edge. Assuming that ε can become arbitrarily large or small,
then this condition still rules out a checkerboard distribution as in Figure 3
(middle), but allows coefficient distributions as in Figure 3 (right).
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Fig. 3. Planar cut of four subdomains meeting at an edge.

5.2 Second case

We again assume that all vertices are primal and also that any edge which is
common to more than three subdomains is fully primal; cf. Definition 2. For
such an edge, we have five linear functionals fm(·) which satisfy Definition
1 and have the property fm(w(i)) = fm(w(k)) ∀w(i) ∈ W(i),w(k) ∈ W(k).
Here, Ωi and Ωk is any arbitrary pair of subdomains with such an edge E ik
in common. The functionals fm(·),m = 1, . . . , 5, are defined in (16). For this
case, as in Subsection 5.1, we are able to establish Condition 1 with TOL = 1;
see Klawonn and Widlund [2004] for a proof.

Lemma 5. For all w ∈ W̃, we have

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

5.3 Third case

Finally, we show that it is often possible to use a smaller number of fully
primal edges and to have fewer primal vertices. The next lemma is proven in
Klawonn and Widlund [2004] under the assumptions that there are at least
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six linearly independent edge constraints across any face of the interface and
that there is an acceptable path for each pair of subdomains that share an
edge or vertex. We have,

Lemma 6. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.
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Summary. We have recently introduced the Boundary Element Tearing and In-
terconnecting (BETI) methods as boundary element counterparts of the well-
established Finite Element Tearing and Interconnecting (FETI) methods. Since Fi-
nite Element Methods (FEM) and Boundary Element Methods (BEM) have certain
complementary properties, it is sometimes very useful to couple these discretization
techniques and to benefit from both worlds. Combining our BETI techniques with
the FETI methods gives new, quite attractive tearing and interconnecting parallel
solvers for large scale coupled boundary and finite element equations. There is an
unified framework for coupling, handling, and analyzing both methods. In partic-
ular, the FETI methods can benefit from preconditioning components constructed
by boundary element techniques. This is especially true for sparse versions of the
boundary element method such as the fast multipole method which avoid fully pop-
ulated matrices arising in classical boundary element methods.

1 Introduction

In Langer and Steinbach [2003] we have recently introduced the Boundary
Element Tearing and Interconnecting (BETI) methods as boundary element
counterparts of the well-established Finite Element Tearing and Interconnect-
ing (FETI) methods. The first FETI methods were introduced by Farhat and
Roux [1991] (see also Farhat and Roux [1994] for a more detailed descrip-
tion by the same authors). Since then the FETI methods have successfully
been applied to different engineering problems, new FETI versions have been
proposed (see Farhat et al. [2000]), and the analysis has been developed as
well (see Mandel and Tezaur [1996, 2001], Klawonn and Widlund [2001], Kla-
wonn et al. [2002], Brenner [2003]). Nowadays, the FETI method is one of
the most widely used domain decomposition (DD) methods in parallel codes
including commercial codes. This success of the FETI methods is certainly
related to the wide applicability of the FETI methods, the possibility of the
use of standard components in the solution process, the moderate dependence
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of the iteration number on the complexity of the problem (see Mandel and
Tezaur [1996], Klawonn and Widlund [2001], Brenner [2003]), the scalability
(see, e.g., Stefanica [2001]) and, last but not least, the robustness (see Kla-
wonn and Widlund [2001], Klawonn et al. [2002], Brenner [2003]). These facts
are true for the BETI methods as well (see Langer and Steinbach [2003]).

In this paper we generalize the tearing and interconnecting technique to
symmetric coupled boundary and finite element equations. Since Finite Ele-
ment Methods (FEM) and Boundary Element Methods (BEM) have certain
complementary properties, it is sometimes very useful to couple these dis-
cretization techniques and to benefit from the advantages of both worlds.
This concerns not only the treatment of unbounded domains (BEM), but also
the right handling of singularities (BEM), moving parts (BEM), air regions
in electromagnetics (BEM), source terms (FEM), non-linearities (FEM) etc.
The symmetric coupling of BEM and FEM goes back to Costabel [1987].
During the last decade iterative substructuring solvers for symmetric coupled
boundary and finite element equations have been developed by Langer [1994],
Haase et al. [1998], Hsiao et al. [2000], Steinbach [2003] for elliptic bound-
ary value problems in bounded and unbounded, two and three-dimensional
domains, and have been successfully applied to real-life problems. Parallel
implementations showed high performance on several platforms (see Haase
et al. [1998]). Especially in 3D, the preconditioning of the global (assembled)
boundary and finite element Schur complement, living on the skeleton of the
domain decomposition, is the crucial point for constructing an efficient it-
erative substructuring method. This weak point of iterative substructuring
methods can be avoided by the dual approach. Indeed, combining our BETI
techniques with the FETI methods gives new, quite attractive tearing and
interconnecting parallel solvers for large scale coupled boundary and finite
element equations. Moreover, there is an unified framework for coupling, han-
dling, and analyzing both methods. In particular, the FETI methods can
benefit from preconditioning components constructed by boundary element
techniques. This is especially true for sparse versions of the boundary element
method. Sparse approximation techniques such as the fast multipole method
(see Greengard and Rokhlin [1987]) avoid fully populated matrices arising in
classical boundary element methods. Our sparse hypersingular BETI/FETI-
preconditioner that is based on symmetry and kernel preserving fast multipole
techniques requires only O((H/h)d−1(log(H/h))2) arithmetical operations in
a parallel regime, where d is the dimension of our computational domain
(d = 2, or 3), and H and h denote the usual scaling of the subdomains and
the elements, respectively. Similar to the FETI methods, the relative spectral
condition number grows only like O((1 + log(H/h))2) and is independent of
the jumps in the coefficients of the partial differential equation.

The rest of the paper is organized as follows. In Section 2, we introduce the
coupled BETI/FETI techniques for solving large scale coupled boundary and
finite element DD equations, and discuss some algorithmical aspects. Section 3
is devoted to the preconditioning and analysis of the combined BETI/FETI
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solver. Finally, in Section 4, we draw some conclusions for using and developing
the tearing and interconnecting technique in both the boundary and finite
element worlds.

2 Formulation of BETI/FETI

For a bounded domain Ω ⊂ IRd (d = 2, 3) with Lipschitz boundary Γ = ∂Ω
we consider the Dirichlet boundary value problem

−div [α(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = g(x) for x ∈ Γ. (1)

We assume that there is given a non–overlapping quasi regular domain de-
composition,

Ω =

p⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γij = Γi ∩ Γj , ΓS =

p⋃

i=1

Γi.

Moreover, we assume that the coefficient function α is piecewise constant,

α(x) = αi for x ∈ Ωi, i = 1, . . . , p.

Instead of the global boundary value problem (1) we now consider the local
problems

−αi∆ui(x) = f(x) for x ∈ Ωi, ui(x) = g(x) for x ∈ Γi ∩ Γ (2)

together with the transmission conditions

ui(x) = uj(x), αi
∂

∂ni
ui(x) + αj

∂

∂nj
uj(x) = 0 for x ∈ Γij . (3)

The solution of the local Dirichlet boundary value problems

−αi∆ui(x) = f(x) for x ∈ Ωi, ui(x) = gi(x) for x ∈ Γi (4)

defines the Dirichlet–Neumann map

ti(x) := αi
∂

∂ni
ui(x) = (Siui)(x) − (Nif)(x) for x ∈ Γi (5)

with the Steklov–Poincaré operator Si : H1/2(Γi)→ H−1/2(Γi) and with some

Newton potential Ni : H̃−1(Ωi) → H−1/2(Γi), see, e.g., Steinbach [2003].
The coupled boundary value problem (2)–(3) is therefore equivalent to find
(ui, ti) ∈ H1/2(Γi)×H−1/2(Γi) for i = 1, . . . , p such that

ti(x) = (Siui)(x) − (Nif)(x) for x ∈ Γi,
ui(x) = g(x) for x ∈ Γi ∩ Γ,
ui(x) = uj(x) for x ∈ Γij ,

0 = ti(x) + tj(x) for x ∈ Γij .
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Let g̃ ∈ H1(Ω) be some arbitrary but fixed bounded extension of the given
Dirichlet data g ∈ H1/2(Γ ). Introducing the trace space H1/2(ΓS) on the
skeleton ΓS and the subspace

H
1/2
0 (ΓS , Γ ) :=

{
v ∈ H1/2(ΓS) : v(x) = 0 for x ∈ Γ

}
,

we arrive at the skeleton problem: find a function u0 ∈ H1/2
0 (ΓS , Γ ) such that

(Siui)(x) + (Sjuj)(x) = (Nif)(x) + (Njf)(x) for x ∈ Γij

is satisfied on all local coupling boundaries Γij and where ui(x) := u0(x)+g̃(x)

for x ∈ Γi. The resulting variational problem is to find u0 ∈ H1/2
0 (ΓS , Γ ) such

that

p∑

i=1

∫

Γi

(Siu0)(x)v(x)dsx =

p∑

i=1

∫

Γi

[(Nif)(x)− (Sig̃)(x)]v(x)dsx (6)

is satisfied for all v ∈ H1/2
0 (ΓS , Γ ).

Let
S1
h(ΓS) = span{ϕ1

k}Mk=1 ⊂ H1/2
0 (ΓS , Γ )

be a conformal finite dimensional trial space of piecewise linear continuous
basis functions ϕ1

k. By

S1
h(Γi) := S1

h(ΓS)|Γi
= span{ϕ1

k,i}Mi

k=1 ⊂ H
1/2
0 (Γi, Γ )

we denote the restriction of the global trial space S1
h(ΓS) onto the local subdo-

main boundaries Γi. For a global vector v ∈ IRM and the corresponding finite
element function vh ∈ S1

h(ΓS) (v ∈ IRM ↔ vh ∈ S1
h(ΓS)), we consider the

restriction vh,i := vh|Γi
∈ S1

h(Γi) ↔ vi ∈ IRMi . Using connectivity matrices

Ai ∈ IRMi×M this can be written as vi = Aiv. Due to the implicit defini-
tion of the local Dirichlet–Neumann map (5) it is in general not possible to
discretize the variational problem (6) in an exact manner. Hence we have to
approximate the local Dirichlet problems which are involved in the definition
of the local Dirichlet to Neumann map. This can be done either by finite or
boundary elements, see Steinbach [2003].

We start to consider a finite element approximation of the local Steklov–
Poincaré operators Si to realize the Dirichlet to Neumann map in the subdo-
mains Ωi, i = 1, . . . , q ≤ p. Let

S1
h(Ωi) := span{φ1

κ,i}M̄i
κ=1 ⊂ H1

0 (Ωi)

be the local finite element spaces of piecewise linear and continuous basis
functions φ1

κ,i which vanish on the subdomain boundary Γi. The finite element
discretization of the local Dirichlet boundary value problems (4) for given
Dirichlet data uC,i then leads to the linear systems
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(
KII,i KCI,i

K⊤CI,i KCC,i

)(
uI,i
uC,i

)
=

(
f
I,i

f
C,i

)
(7)

with block matrices defined by

KCC,i[ℓ, k] :=

∫

Ωi

αi∇ϕ1
k,i(x)∇ϕ1

ℓ,1(x)dx,

KII,i[λ, κ] :=

∫

Ωi

αi∇φ1
κ,i(x)∇φ1

λ,i(x)dx,

KCI [λ, k] :=

∫

Ωi

αi∇ϕ1
k,i(x)∇φ1

λ,i(x)dx

and the right-hand side

fI,i,λ :=

∫

Ωi

f(x)φ1
λ,i(x)dx −

∫

Ωi

αi∇g̃(x)∇φ1
λ,i(x)dx,

fC,i,ℓ :=

∫

Ωi

f(x)ϕ1
ℓ,i(x)dx −

∫

Ωi

αi∇g̃(x)∇ϕ1
ℓ,i(x)dx

for all k, ℓ = 1, . . . ,Mi and κ, λ = 1, . . . , M̄i. Eliminating uI,i, we now obtain
the finite element approximation

SFEM

i,h uC,i =
[
KCC,i −K⊤CI,iK−1

II,iKCI,i

]
uC,i = f

C,i
−K⊤CI,iK−1

II,ifI,i = fFEM

i

of the local Dirichlet to Neumann map (5). In the finite element subdomains
the coefficients αi can, of course, depend on x, but should not vary too much
on Ωi for i = 1, . . . , q.
In the remaining subdomains Ωi, i = q + 1, . . . , p we assume f(x) = 0 for
x ∈ Ωi. Hence we may use a symmetric boundary element method to approx-
imate the local Steklov–Poincaré operators Si. The fundamental solution of
the Laplace operator is given by

U∗(x, y) =





− 1

2π
log |x− y| for d = 2,

1

4π

1

|x− y| for d = 3.

The relation between the local Cauchy data [ti, ui] can then be described by
the system of boundary integral equations (Calderón projection),

(
ui

ti

)
=

(
1
2I −Ki Vi

Di
1
2I +K ′i

)(
ui

ti

)
,
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where we used the standard notations for the single layer potential operator
Vi, for the double layer potential operator Ki and its adjoint K ′i and for the
hypersingular integral operator Di defined by

(Viti)(x) := αi

∫

Γi

U∗(x, y)ti(y)dsy for x ∈ Γi,

(Kiui)(x) := αi

∫

Γi

∂

∂ny
U∗(x, y)ui(y)dsy for x ∈ Γi,

(K ′iti)(x) := αi

∫

Γi

∂

∂nx
U∗(x, y)ti(y)dsy for x ∈ Γi,

(Diui)(x) := −αi
∂

∂nx

∫

Γi

∂

∂ny
U∗(x, y)ui(y)dsy for x ∈ Γi,

respectively. The mapping properties of all of these boundary integral op-
erators are well known (see Costabel [1988]), in particular, the local single
layer potential Vi : H−1/2(Γi)→ H1/2(Γi) is H−1/2(Γi)–elliptic and therefore
invertible (Hsiao and Wendland [1977]); for d = 2 we assume diamΩi < 1
that can be always obtained by scaling the computational domain. Then we
obtain a symmetric boundary integral operator representation of the Steklov–
Poincaré operator Si : H1/2(Γi)→ H−1/2(Γi),

(Siui)(x) =

[
Di + (

1

2
I +K ′i)V

−1
i (

1

2
I +Ki)

]
ui(x) for x ∈ Γi.

Let
S0
h(Γi) = span{ψ0

κ,i}Ni
κ=1 ⊂ H−1/2(Γi) (8)

be the trial space of piecewise constant basis functions ψ0
κ,i to approximate

the local Neumann data ti ∈ H−1/2(Γi). This Galerkin approximation of the
local Steklov–Poincaré operator Si gives the matrix representation

SBEM

i,h := Di,h + (
1

2
M⊤i,h +K⊤i,h)V

−1
i,h (

1

2
Mi,h +Ki,h)

with

Di,h[ℓ, k] = 〈Diϕ
1
k,i, ϕ

1
ℓ,i〉L2(Γi),

Vi,h[λ, κ] = 〈Viψ0
κ,i, ψ

0
λ,i〉L2(Γi),

Ki,h[λ, k] = 〈Kiϕ
1
k,i, ψ

0
λ,i〉L2(Γi),

Mi,h[λ, k] = 〈ϕ1
k,i, ψ

0
λ,i〉L2(Γi)

for all k, ℓ = 1, . . . ,Mi and κ, λ = 1, . . . , Ni.



BETI/FETI 89

Note that both finite and boundary element approximations SBEM/FEM

i,h of
the local Steklov–Poincaré operators Si are symmetric and spectrally equiv-
alent to the exact Galerkin matrices Si,h. This holds true for an almost ar-
bitrary choice of the local trial spaces S1

h(Ωi) and S0
h(Γi), respectively, see

Steinbach [2003]. Moreover, the error Si,h − SBEM/FEM

i,h of the approximate
Steklov–Poincaré operators can be controlled by the approximation proper-
ties of the local trial spaces S1

h(Ωi) and S0
h(Γi), respectively.

The Galerkin discretization of the variational problem (6) with the bound-
ary and finite element approximations of the local Dirichlet problems discussed
above leads now to the linear system

q∑

i=1

A⊤i S
FEM

i,h Aiu+

p∑

i=q+1

A⊤i S
BEM

i,h Aiu =

q∑

i=1

A⊤i f
FEM

i
−

p∑

i=q+1

A⊤i S
BEM

i,h Aig (9)

which is uniquely solvable due to the positive definiteness of the assembled
stiffness matrix. Discretization error estimates are given in Steinbach [2003].
The aim of tearing and interconnecting domain decomposition methods is to
design efficient solution strategies to solve the global linear system (9). When
introducing local vectors ui = Aiu the continuity of the primal variables across
the interfaces can be written by the constraint

p∑

i=1

Biui = 0

where Bi ∈ IRM×Mi . Each row of the matrix B = (B1, . . . , Bp) is connected
with a pair of matching nodes across the interface. The entries of such a
row are 1 and −1 for the indices corresponding to the matching nodes and 0
otherwise. By introducing the Lagrange multiplier λ ∈ IRM we have to solve
the linear system




SFEM

1,h B⊤1
. . .

...
SFEM

q,h B⊤q
SBEM

q+1,h B⊤q+1

. . .
...

SBEM

p,h B⊤p
B1 · · · Bq Bq+1 · · · Bp 0







u1
...
uq
uq+1

...
up
λ




=




fFEM

1
...

fFEM

q

fBEM

q+1
...

fBEM

p

0




(10)

with fBEM

i
:= −SBEM

i,h Aig for i = q+ 1, . . . , p. For i = 1, . . . , p we now consider
the solvability of the local systems

SFEM/BEM

i,h ui = fFEM/BEM

i
−B⊤i λ. (11)

For a unique framework we define the modified matrices
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S̃BEM/FEM

i,h := SBEM/FEM

i,h + βieie
⊤
i

with βi = 0 for non–floating subdomains Ωi, i.e., the subdomain boundary
Γi = ∂Ωi contains some part of the Dirichlet boundary Γ = ∂Ω, and some
suitable chosen βi > 0 for floating subdomains Ωi with Γi ∩ Γ = ∅. When
requiring the solvability condition

e⊤i
[
fBEM/FEM

i
−B⊤i λ

]
= 0, (12)

the local linear systems (11) are equivalent to the modified systems

S̃FEM/BEM

i,h ui = fFEM/BEM

i
−B⊤i λ (13)

which are now unique solvable. However, for floating subdomains we have
to incorporate the rigid body motions. Hence the general solutions of the
modified linear systems (13) are given by

ui =
[
S̃BEM/FEM

i,h

]−1 [
fBEM/FEM

i
−B⊤i λ

]
+ γiei (14)

with γi = 0 for all non–floating subdomains. Inserting these local solutions
into the last equation of (10) we obtain the Schur complement system

p∑

i=1

Bi

[
S̃BEM/FEM

i,h

]−1

B⊤i λ−
p∑

i=1

γiBiei =

p∑

i=1

Bi

[
S̃BEM/FEM

i,h

]−1

fBEM/FEM

i

where the compatibility condition (12) is to be assumed for all floating sub-
domains. Hence we have to solve the linear system

(
F −G
G⊤

)(
λ

γ

)
=

(
d

e

)
(15)

with

F :=

p∑

i=1

Bi

[
S̃BEM/FEM

i,h

]−1

B⊤i , G := (Biei)i:Γi∩Γ=∅

and

d :=

p∑

i=1

Bi

[
S̃BEM/FEM

i,h

]−1

fBEM/FEM

i
, e :=

(
e⊤i f

FEM/BEM

i

)
i:Γi∩Γ=∅

.

Defining now the orthogonal projection

P := I −G(G⊤G)−1G⊤ : Λ := IRM → Λ0 := kerG⊤ = (rangeG)⊥

with respect to the Euclidean scalar product, we can split the computation
of λ from the definition of γ. Indeed, applying P to the first equation in (15)
gives the equation
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PFλ = P d (16)

since PGγ = 0. Once λ is determined by solving (16), we obtain

γ := (G⊤G)−1G⊤(Fλ− d).

Finally, we get the vectors ui from (14). Let us mention that in the case of
jumping coefficients the scalar product in Λ has to be changed according to
the proposal made by Klawonn and Widlund [2001] on pages 63 and 75 (see
also Brenner [2003]).

The dual problem (16) is solved by a preconditioned conjugate gradi-
ent subspace iteration. The matrix-by-vector multiplication with the stiffness
matrix F involves the application of the inverse modified discrete Steklov–
Poincaré operators [S̃BEM/FEM

i,h ]−1 to some vector B⊤i λ resulting in some

wi = [S̃BEM/FEM

i,h ]−1B⊤i λ. This can be done by solving directly extended sys-
tems for the local boundary and finite element Neumann problems. This is the
standard technique in the FETI methods (see Langer and Steinbach [2003] for
BETI). Khoromskij et al. [2004] propose the application of the H-matrix tech-
nique for an approximate inversion of the boundary and finite element Schur
complements resulting in a sparse representation of the approximate inverse
Schur complements in H-matrix formate. This representation allows us to
perform this matrix-by-vector multiplication with almost optimal complexity.
Other approaches are discussed by Langer and Steinbach [2003].

3 Preconditioners and Analysis

In this section we will describe and analyze an efficient solution of the linear
system (16) by some projected preconditioned conjugate gradient method.
The preconditioning matrix C to be used in the PCG algorithm should be
spectrally equivalent to the matrix F on the subspace Λ0 = kerG⊤, i.e.

c1 (Cλ, λ) ≤ (Fλ, λ) ≤ c2 (Cλ, λ) for all λ ∈ Λ0 (17)

with positive spectral equivalence constants c1 and c2 such that the relative
spectral condition number κ(PC−1P⊤P⊤FP ) respectively its bound c2/c1 is
as small as possible and the application of the preconditioner is as cheap as
possible.

Following the FETI approach a first preconditioner is built from the local
Schur complements SFEM/BEM

i,h ,

C−1
FETI

:= (BC−1
α B⊤)−1BC−1

α

[
p∑

i=1

BiS
FEM/BEM

i,h B⊤i

]
C−1
α B⊤(BC−1

α B⊤)−1

where Cα = diag(Cα,i)i=1:p and Cα,i = diag(ciℓ)ℓ=1:Mi are diagonal matri-
ces with appropriately chosen weights ciℓ, e.g. as proposed in Klawonn and
Widlund [2001], see also Brenner [2003].
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The proof of the spectral equivalence inequalities (17) is essentially based
on the spectral equivalence inequalities of the approximated Steklov–Poincaré
operators SFEM/BEM

i,h with the exact Galerkin approximation Si,h. The appli-

cation C−1
FETI of the preconditioning matrix CFETI mainly consists in the ap-

plication of the local approximate Steklov–Poincaré operators SFEM/BEM

i,h , i.e.
the solution of local Dirichlet boundary value problems by either finite or
boundary element methods. Here we will propose a more efficient precondi-
tioning strategy when replacing the approximate Steklov–Poincaré operators
SFEM/BEM

i,h by discrete hypersingular integral operators Di,h which are defined
with respect to all subdomain boundaries Γi and i = 1, . . . , p.

Lemma 1. The local boundary element Schur complement matrix SBEM

i,h and
the local finite element Schur complement matrix SFEM

i,h are spectrally equivalent
to the exact Galerkin matrix Si,h of the local Steklov–Poincaré operator Si
and to the boundary element matrix Di,h of the local hypersingular boundary
integral operator Di, i.e.

SBEM

i,h ≃ SFEM

i,h ≃ Si,h ≃ Di,h

for all i = 1, . . . , p, where A ≃ B means that the matrices A and B are
spectrally equivalent.

Proof. It is well known (see, e.g., theorem 3.5, p. 64 in Steinbach [2003]), that
the finite element Schur complement is spectrally equivalent to theH−1/2(Γi)–
semi–norm squared, i.e., there exist universal positive constants c1 and c2 such
that

c1 |vi,h|2H1/2(Γi)
≤ (SFEM

i,h vi, vi) ≤ c2 |vi,h|2H1/2(Γi)

is satisfied for all vi,h ∈ S1
h(Γi) ↔ vi ∈ IRMi . On the other hand, the bound-

ary element Schur complement SBEM

i,h is spectrally equivalent to the Galerkin
matrix Di,h of the local hypersingular boundary integral operator Di,h see
lemma 3.1 in Langer and Steinbach [2003]. Since the energy of the local hy-
persingular integral operator Di is also equivalent to the H1/2(Γi)–semi–norm
squared, the proof is completed. ⊓⊔

The resulting scaled hypersingular BETI preconditioner is now given by

C−1
BETI := (BC−1

α B⊤)−1BC−1
α

[
p∑

i=1

BiDi,hB
⊤
i

]
C−1
α B⊤(BC−1

α B⊤)−1. (18)

Theorem 1 (Theorem 3.1 in Langer and Steinbach [2003]). For the
scaled hypersingular BETI preconditioner (18), the condition estimate

κ(PC−1
BETI

P⊤P⊤FP ) ≤ c

(
1 + log

H

h

)2

holds, where the positive constant c is independent of the local mesh size h, the
average subdomain size H, the number p of subdomains and of the coefficients
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αi (coefficient jumps). The matrix by vector operation Di,hvi that is the most
expensive operation in the preconditioning step costs ops(Di,hvi) = O((H/h)2)
and ops(Di,hvi) = O((H/h)4) arithmetical operations for d = 2 and for d = 3,
respectively.

To obtain a more efficient preconditioning strategy we may use some fast
boundary element method such as the fast multipole method to realize the
local matrix by vector multiplication with Di,h. The resulting sparse version
of the scaled hypersingular BETI preconditioner then reads

C−1
sBETI := (BC−1

α B⊤)−1BC−1
α

[
p∑

i=1

BiD̃i,hB
⊤
i

]
C−1
α B⊤(BC−1

α B⊤)−1. (19)

We start the analysis of the sparse hypersingular BETI preconditioner (19)

with some considerations of the local sparse approximations D̃i,h. Using inte-
gration by parts (see Nédélec [1982]) the bilinear form of the local hypersin-
gular boundary integral operator Di can be rewritten as

〈Diui, vi〉L2(Γi) = − αi
2π

∫

Γi

v̇(x)

∫

Γi

log |x− y|u̇(y)dsydsx

for d = 2 where u̇ means the derivative with respect to the arc length. Simi-
larly, for d = 3 we have

〈Diui, vi〉L2(Γi) =
αi
4π

∫

Γi

∫

Γi

curlΓiui(y) · curlΓivi(x)

|x− y| dsydsx,

where
curlΓiui(x) := ni(x)×∇xu∗i (x) for x ∈ Γi

is the surface curl and u∗i is an extension of ui into a neighborhood of Γi.
When using an interface triangulation of plane triangles and piecewise linear
continuous basis functions ϕ1

k, curlΓiϕ
1
k ∈ IR3 is piecewise constant. Then the

local Galerkin matrix Di,h can be represented in the form (d = 3)

Di,h = C⊤i,h



Vi,h

Vi,h
Vi,h


Ci,h,

where Vi,h is the local Galerkin matrix of the related single layer potential with
piecewise constant basis functions. Moreover, Ci,h is an appropriate 3Ni × Mi

matrix which describes the transformation of the coefficient vector vi ∈ IRMi

of vh,i ∈ S1
h(Γi) to the piecewise constant vector–valued result in IR3Ni of

curlΓivh,i. A fast realization D̃i,h of the discrete hypersingular integral oper-

ator is now reduced to three fast applications Ṽi,h of the discrete single layer
potential,
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D̃i,h = C⊤i,h



Ṽi,h

Ṽi,h
Ṽi,h


Ci,h. (20)

Since the curl of a constant function vanishes we conclude Ci,hei = 0 and

therefore ker D̃i,h = kerDi,h, i.e., this approach is kernel–preserving for any

possible fast application Ṽi,h of the approximate discrete single layer potential.
Let Vi,h be the Galerkin matrix of the local single layer potential operator Vi
when using piecewise constant basis functions ψ0

κ,i ∈ S0
h(Γi). The matrix by

vector product vi = Vi,hwi then reads (d = 3)

vi,λ =

Ni∑

κ=1

Vi,h[λ, κ]wi,κ =
αi
4π

Ni∑

κ=1

wi,κ

∫

τλ

∫

τκ

1

|x− y|dsydsx.

For a fixed boundary element τλ we consider the collection of all boundary
elements τκ, which are in farfield of τλ satisfying the admissibility condition

dist(τκ, τλ) ≥ η max {diam τκ, diam τλ}

with some appropriately chosen parameter η > 1. The remaining boundary
elements τκ are called to be in the nearfield of τλ. Using some numerical inte-
gration scheme in the farfield, the matrix by vector product can be rewritten
as

vi,λ =
∑

nearfield

Vi,h[λ, κ]wi,κ +
∑

farfield

wi,κ

NG,κ∑

m=1

NG,λ∑

n=1

ωκ,mωλ,n
|xκ,m − xλ,n|

where xκ,m are suitable chosen integration nodes and ωκ,m are related inte-
gration weights, respectively. The evaluation of

vi,λ,n =
∑

farfield

wi,κ

NG,κ∑

m=1

ωκ,m
|xκ,m − xλ,n|

corresponds exactly to the fast multiple particle simulation algorithm as de-
scribed in Greengard and Rokhlin [1987] and can be implemented efficiently

(Of [2001]). This defines a fast multipole approximation Ṽi,h of the discrete
local single layer potential Vi,h. In fact, the matrix by vector multiplication
with the discrete single layer potential by means of the fast multipole method
costs ops(Ṽi,hwi) = O(Ni log2Ni) arithmetical operations (d = 3). Choos-
ing both the numerical integration scheme in the farfield and the multipole
parameters in an appropriate way, we obtain corresponding error estimates
for the perturbed single layer potential Ṽi,h (Of et al. [2004]). In fact, the

approximated single layer potential Ṽi,h turns out to be H−1/2(Γi)–elliptic,
i.e.
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(Ṽi,hwi, wi) ≥
1

2
cV1 ‖wi,h‖2H−1/2(Γi)

(21)

for all wi,h ∈ S0
h(Γi) ↔ wi ∈ IRNi where cV1 is the ellipticity constant of the

local single layer potential operator Vi. Combining the discrete ellipticity of
the approximated single layer potential Ṽi,h with the representation (20) of
the discrete hypersingular integral operator we get the following result.

Lemma 2. The sparse representation D̃i,h as given in (20) is symmetric and
spectrally equivalent to the Galerkin matrix Di,h of the local hypersingular
integral operator, i.e., there hold the spectral equivalence inequalities

c1 (Di,hvi, vi) ≤ (D̃i,hvi, vi) ≤ c2 (Di,hvi, vi) for all vi ∈ IRMi .

Let us mention that the numerical integration in the farfield and the mul-
tipole approximation of the single layer potential only have to ensure corre-
sponding spectral equivalence inequalities, that means basically the discrete
ellipticity estimate (21) of Ṽi,h. In fact this cost much less than the stronger
requirement of meeting the accuracy given by the discretization error of the
Galerkin scheme.

From Lemma 1 and Lemma 2 we now conclude the spectral equivalence of
the finite and boundary element Schur complements SFEM/BEM

i,h with the sparse

representation D̃i,h of the local hypersingular integral operator Di. Hence we
can reformulate Theorem 1 for the sparse version of the scaled hypersingular
BETI preconditioners as defined in (19).

Theorem 2. For the sparse version of the scaled hypersingular BETI precon-
ditioner (19), the condition estimate

κ(PC−1
sBETI

P⊤P⊤FP ) ≤ c

(
1 + log

H

h

)2

holds, where the positive constant c is independent of the local mesh size h,
the average subdomain size H, the number p of subdomains and of the co-
efficients αi (coefficient jumps). The matrix by vector operation D̃i,hvi costs
ops(Di,hvi) = O((H/h)2 log2(H/h)) arithmetical operations (d = 3).

4 Concluding Remarks

In this paper we presented the BETI/FETI technique for solving large
scale coupled boundary and finite element equations arising from the non-
overlapping domain decomposition. Our BETI/FETI preconditioner was con-
structed from the discrete hypersingular operator that is especially efficient
in its sparse version. In the latter case the complexity of the precondition-
ing operation is almost proportional to the number of unknowns living on
the skeleton of our domain decomposition. Our analysis showed that the
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BETI/FETI method has the same nice numerical and practical properties
as they are known from the well-established FETI methods. In Langer and
Steinbach [2003] we report on the first numerical experiments with our BETI
solver that shows the same numerical behaviour as it is typical for the FETI
methods.

Klawonn and Widlund [2000] proposed a FETI version with inexact
solvers. This technique avoids the exact solution of the local Neumann and
Dirichlet problems in the FETI methods and works only with the correspond-
ing preconditioners. In a forthcoming paper we will develop sparse inexact
BETI versions the total complexity of which is basically proportional to the
number of the subdomain boundary unknowns. The coupling of both inexact
techniques will lead to sparse inexact BETI/FETI methods of almost optimal
total complexity.
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Summary. The simulation of flow in porous media is a computationally demand-
ing task. Thermodynamical equilibrium calculations and complex, heterogeneous
geological structures normally gives a multiphysics/multidomain problem to solve.
Thus, efficient solution methods are needed. The research simulator Athena is a
3D, multiphase, multicomponent, porous media flow simulator. A parallel version
of the simulator was developed based on a non-overlapping domain decomposition
strategy, where the domains are defined a-priori from e.g. geological data. Selected
domains are refined with locally matching grids, giving a globally non-matching,
unstructured grid. In addition to the space domain, novel algorithms for parallel
processing in time based on a predictor-corrector strategy has been successfully
implemented.

We discuss how the domain decomposition framework can be used to include
different physical and numerical models in selected sub-domains. Also we comment
on how the two-level solver relates to multiphase upscaling techniques.

Adding communication functionality enables the original serial version to run on
each sub-domain in parallel. Motivated by the need for larger time steps, an implicit
formulation of the mass transport equations has been formulated and implemented
in the existing parallel framework. Further, as the Message Passing Interface (MPI)
is used for communication, the simulator is highly portable. Through benchmark
experiments, we test the new formulation on platforms ranging from commercial
super-computers to heterogeneous networks of workstations.

1 Introduction

The simulation of flow in porous media is a computationally demanding task.
Thermodynamical equilibrium calculations and complex, heterogeneous ge-
ological structures normally gives a multiphysics/multidomain problem to
solve. When studying e.g. various faulted and fractured porous media, im-
portant features that can have a large impact on the flow characteristics are
localized in space and exist on a much smaller scale than the characteristic
length scale of the domain of interest.
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In order to give a full three dimensional description of geometrical and
physical properties of such a case, efficient numerical tools are necessary. A
natural approach to resolve the geometrical details, are local grid refinement
(LGR) techniques. The goal of such methods is to reduce the overall size of the
problem while retaining a fairly good numerical resolution. A domain decom-
position based LGR technique was implemented in an in-house, 3D, research
simulator for porous media flow called Athena, see Reme and Øye [1999]. By
adding communication functionality, the original serial version was extended
to run on each sub-domain in parallel, see Øye and Reme [1999]. The commu-
nication is enabled through an object oriented, C++ library called OOMPI.
This library is based on the Message Passing Interface (MPI) standard.

The framework included in the Athena simulator allows various aspects
of domain decomposition strategies to be explored. In the space domain dif-
ferent models and discretizations can be used within the total domain. In
a similar way, the time domain can be split and solved in parallel. This is
achieved through a predictor-corrector strategy in which a coarse time step
simulation (predictor) provides initial values for solving fine sub-intervals in
parallel (corrector).

As an application, we will show how the domain decomposition framework
can be used for modeling flow in fractured porous media. Specifically, we
suggest applying a discrete fracture network model in selected domains. Such
a model is a flexible and accurate tool to describe the complex geometries of
fractures, but at the cost of larger systems of equations. This problem can be
solved by using parallel computations and upscaling.

The mathematical model describing multiphase porous media flow includes
equations for the mass transport. Previously, these equations were solved by
a forward Euler time stepping scheme. Motivated by the need for larger time
steps, an implicit formulation of the mass transport equations was formu-
lated. Here we will describe how the implicit formulation is included in the
framework of a parallel version of the Athena simulator.

We compare the implicit formulation on platforms ranging from commer-
cial super-computers to heterogeneous networks of PC workstations.

In Sect. 2 we recall the mathematical model of porous media flow with
multiple phases and thermal effects. Then, in Sect. 3, we present the domain
decomposition and local grid refinement framework. The approach which com-
bines fracture modeling and domain decomposition is given in Sect. 4 and a
parallel implementation of implicit mass transport formulation in Sect. 5. Sec-
tion 6 includes an example that combines aspects of the framework presented
above. We end with a summary and conclusion in Sect. 7.

2 Mathematical Model

The mathematical model describing multiphase flow in porous media with
multiple components and thermal effects constitutes a complex set of coupled
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equations. These equations involve a set of primary variables and additional
constraints imposed by secondary variables. Since the model we use has al-
ready been described in detail in e.g. Reme et al. [2000], we will only briefly
present the equations for the primary variables. The 2 +nc primary variables
are the temperature, T , the water pressure, pw, and the molar masses, Nν , of
each component. Here ν = 1, 2, . . . , nc, is the component index, and nc is the
number of components. Further, we let V denote a finite control volume of a
porous medium having the closed surface, S. In order to simplify notation we
leave the summation index unspecified when summing over phases, i.e.

∑

ℓ

≡
∑

ℓ=w,o,g

.

The temperature within a control volume, V, is governed by a heat flow
equation. This equation expresses conservation of energy by relating the tem-
perature gradient, ∇T , the heat capacity, ρu, convective flux, hρu, and heat
sinks/sources q:

∂

∂t

∫

V

(ρu)dV −
∫

S

(
k
˜
∇T − hρu

)
· dS =

∫

V

qdV. (1)

An equation for the water pressure is derived by requiring that the pores
are totally filled, i.e. that the residual pore volume, R(t) = 0, ∀t. A Taylor’s
expansion of R(t+∆t) then gives:

∂R

∂pw
∂pw

∂t
+

nc∑

ν=1

∂R

∂Nν

∂Nν
∂t

= − R

∆t
− ∂R

∂W

∂W

∂t
. (2)

The overburden pressure W = σ + p is the sum of effective stress, σ, and
pore pressure, p. This derivation of the pressure equation gives a sequential
formulation of the mathematical model.

Finally, we have nc equations expressing conservation of the molar mass
of component ν:

∂

∂t

∫

V

(
φp
∑

ℓ

Cℓνξ
ℓSℓ
)
dV = −

∫

S

(∑

ℓ

Cℓνξ
ℓvℓ
)
· dS +

∫

V

qνdV. (3)

Here, φp is the rock porosity, Cℓν is the fraction of component ν in phase ℓ,
and ξℓ, Sℓ and vℓ are the corresponding molar density, phase saturation and
generalized Darcy velocity respectively.

In order to solve these equations numerically, we use a standard, cell cen-
tered, piecewise constant finite volume discretization in space. Details on how
the resulting systems of equations are solved in each time step are given in
the next section.
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3 A Two-level Solver

Here we present an iterative solver which we use to solve the linear systems.
The solver is equivalent to the so called Fast Adaptive Composite method, see
e.g. Teigland [1998], Briggs et al. [2000]. It can also be viewed as a two-level
domain decomposition method, see Smith et al. [1996] and references therein.

Assume that a matching, but possibly non-regular, coarse grid, Ω̂ is de-
fined. Further, let a subset, Ωf , of coarse cells be refined. Each of the coarse
cells in this subset defines a sub-domain, Ωfi , that is refined independently of
the other sub-domains with a locally matching, non-regular grid. The result-
ing composite grid, Ω, is generally non-regular and non-matching and consists
of some (or no) true coarse cells, Ωc, and several (or all) refined sub-domains

Ωf =

p⋃

i=1

Ωfi , (4)

where p is the number of refined sub-domains.
Let the number of composite grid cells in the composite grid be N . The

underlying coarse grid has N̂ cells. The index set of fine cells within coarse
cell number î is denoted Mî. Further, we associate to this cell a basis vector
ψî ∈ RN defined as

ψî = {ψîk}. (5)

The vector components, ψîk, have value one for refinement cell, k, in coarse

cell/sub-domain number î, i.e.

ψîk =

{
1, ∀ k ∈Mî,

0, otherwise.
(6)

Then, let RT ∈ RN×N̂ be the matrix representation of interpolation from the
coarse grid, Ω̂, to the composite grid, Ω. The columns of this operator consist
of the basis vectors ψî. Thus representing constant interpolation. Correspond-

ingly, the restriction operator is R ∈ RN̂×N . Further, the restriction operator
Si ∈ RNi×N , returns the vector coefficients defined on sub-domain Ωi, i.e.

xΩi = Six, xΩi ∈ RNi , x ∈ RN . (7)

Finally, the combination of RT and Si provides a mapping RTi ∈RNi×N̂ from
the coarse grid to sub-domain Ωi:

RTi = SiRT . (8)

The numerical solution of the equations in the preceding section entails solving
linear systems of the form Ax = b. This can be written in block matrix form,
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[
Acc Acf
Afc Aff

] [
xc
xf

]
=

[
bc
bf

]
(9)

where the system matrix is decomposed according to the domains of the grid.
We use the various transfer operators defined above to define a two-level
solution algorithm for the system in Eq. (9) defined on the composite grid.

We proceed by introducing the two-level iterated solution x(s) of Eq. (9).
Let an updated/improved solution be defined by

x(s+1/2) = x(s) +RT d̂(s), (10)

where d̂(s) ∈ RN̂ is a coarse grid correction. Substituting x(s) for the update
x(s+1/2) and restricting to the coarse grid, we get

RART d̂(s) = R
(
b−Ax(s)

)
. (11)

The solution of this equation gives the next step, iterated solution for the
non-refined coarse cells, and an intermediate update of the refined sub-domain
solutions defined by

x(s+1)
c = x(s+1/2)

c = x(s)
c +RTc d̂(s), (12)

x(s+1/2)
r = x(s)

r +RTr d̂(s), r = 1, . . . , p. (13)

The intermediate solutions x
(s+1/2)
r enable the composite problem in Eq. (9)

to be split into independent sub-domain problems for all the sub-domains
q = 1, . . . , p

Aqqx(s+1)
q = bq −

∑

r 6=q
Aqrx(s+1/2)

r , (14)

where summation index r also includes the set of true coarse cells. The itera-
tion proceeds until the scaled difference between two consecutive iterations is
below some prescribed tolerance.

Our group is also working on applying the two-level scheme above to the
time domain, following a parallel technique proposed in Baffico et al. [2002]. A
coarse time step solution acts as a predictor by providing boundary values for
each sub time interval of the coarse step. Then, each sub time step problem
is solved, determining a correction to the coarse solution for the next step of
the iteration, see Garrido et al..

4 Using the Domain Decomposition Framework

The domain decomposition based local grid refinement strategy we have im-
plemented is similar to what is know as multiblock reservoir simulation, see
e.g. Lee et al. [2002] and Lu et al. [2002]. Multiblock grids allows different
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gridding in each block, i.e. coarse domain, with possibly non-matching grid-
lines at block boundaries, Lee et al. [2003]. The two-level solver for composite
grids in Sect. 3 can be described as a multiblock method. An important advan-
tage of this approach is that it combines the simplicity of globally structured
grids with the flexibility of fully unstructured discretizations. Further, since
the coarse (Galerkin) operator of Eq. (11) is defined simply as a summation
of the fine scale operators, it can be constructed independently of the type of
mathematical model which is used on each sub-domain.

A basic requirement in the cell centered finite volume method, is that flux
is continuous across interfaces of the grid. In our case, we want the mass to
be conserved, i.e. we want continuity of mass flux. For composite interfaces,
we introduce ghost cells and calculate the composite interface fluxes by inter-
polating real cell pressure (potential) values onto the ghost cells. Currently,
we only use a constant interpolation.

The so called mortar methods provide a general framework that treats
composite interfaces in a systematic way, see e.g. Ewing et al. [2000] et al. for
a finite volume element variant and references therein.

Due to our relatively crude composite interface approximation, we cur-
rently require that the coarse block interfaces are located away from large gra-
dients and boundaries between regions of different physical properties/models.
This implies that the transition zone between e.g. a single phase and a multi-
phase flow region should be included within a multiphase model coarse block.
Another case is flow through faulted porous media. We use such an example
to illustrate the use of our framework in Sect. 6 below.

4.1 Discrete Fracture Network Model

As an application of the multiblock/multiphysics and parallel processing ca-
pabilities of our simulator, we consider flow in fractured porous media. In
particular, we are working on combining structured, Cartesian discretizations
with discrete network models in selected domains, Øian [2004]. This applies
to fractured porous media simulations, where the fractures occur in localized
swarms and the traditional dual continuum approach might not be appropri-
ate. In Karimi-Fard et al. [2003] and Karimi-Fard and Firoozabadi [2003] a
discrete fracture model is presented. It is based on unstructured grids and
allows for both two and three-dimensional systems. An important aspect of
this method is that control volumes at the intersection of fractures can be
removed, thus relaxing the restrictions on the stable time step in the simula-
tions. Due to the flexibility of this method in modeling complex geometries,
fine scale effects are resolved accurately. This method might easily introduce
too many details, though, if it is used on the global domain. The multiblock
framework enables us to localize this method to selected domains based on the
geological description. In the rest of the domain, we can use traditional, less
expensive discretizations. This is illustrated in Fig. 1, where only the upper
right domain is discretized with the discrete fracture network model.
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Fig. 1. The figure illustrates using a discrete fracture model in a single domain.

4.2 Upscaling Issues

Since geological models of porous media are highly detailed, direct simulations
on such models are typically not efficient or feasible. The standard approach to
tackle this scale discrepancy problem, is to use various methods of coarsening
or upscaling. For single phase flow simulations it is common to calculate an
upscaled, effective absolute permeability through either analytical averaging
techniques or local numerical methods. Such (quasi-)local methods, may not
be adequate in many situations. Typically, these methods can be sensitive to
the boundary conditions used. In contrast, global methods use full fine scale
simulations to determine the coarse scale parameters and are thus better at
capturing coarse scale flow features, but at the expense of more computations.
These methods all focus on upscaling of the permeability. Other variants cal-
culate transmissibilities directly.

When we turn to multiphase flow problems, the effect of relative perme-
abilities and capillary pressures must also be considered. It is common to
upscale the various parameters independently. The problem, though, is that
combining these upscaled parameters might not give a coarse model which
captures the coarse scale features of the flow. Several authors have suggested
that due to the complexity and uncertainty in such an approach, upscaling of
the solution variables directly should be considered.

The coarse solver found in many preconditioning techniques/multilevel it-
erative methods directly incorporates all the fine scale information. Multigrid-
upscaling methods are based on the idea/observation that these coarse oper-
ators might be good approximations of the coarse scale effect of the fine scale
differential operator. Various work on upscaling within a multigrid context
are given in e.g. Moulton et al. [1998] and Knapek [1998, 1999].

The two level multigrid solver that is implemented in the Athena simu-
lator fits this framework. In Aarnes et al. and Reme et al. [2002] a Galerkin-
based upscaling procedure was presented. The main idea is to use existing
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information on the fine scale in the coarse averaging system, i.e. to capture
some of the fine grid flow internal to each coarse grid block without solving the
full fine grid problem. It is important to note that by using piecewise constant
interpolation we ensure that mass is conserved. By solving an inverse problem
based on the coarse solution, effective parameters can be calculated. In the
single phase case, using Darcy’s law on the coarse scale with volume averaged
velocities and pressures provides a set of equations for the components of the
permeability tensor.

Based on some upscaled parameters, a coarse solve is performed. The
coarse solution provides boundary conditions for local fine scale simulations
in order to determine domains for further refinement. As this process is only
performed once (or a few times) during the course of a simulation, the overhead
of the fine scale simulations is permissible. We propose an algorithm which
includes both a local simulation approach and multigrid upscaling. The local
solve includes improved boundary conditions stemming form a global coarse
solve. This is similar to the coupled local-global approach in Chen et al. [2003].
This could serve as a background permeability for a full multiphase simulation.
But, more research is needed in order to fully understand the implications of
such an approach.

5 Implicit Molar Mass Formulation

Discretizing e.g. fractured domains using locally refined grids, leads to small
spatial scales. Previously the mass transport equations were integrated using
an explicit, forward Euler scheme. To avoid the severe time step restrictions
given by the CFL-condition, an implicit formulation using a backward Euler
scheme has been formulated, see Chaib et al. [2002], Øian et al. [2003], Garrido
et al..

We start by noting that the molar mass of component ν is equal to the
integral on the left hand side of Eq. (3). We let V ℓ denote the volume of phase
ℓ and introduce the volume factor aℓ = 1/V ℓ. Further, we define the molar
mass of component ν in phase ℓ as N ℓ

ν = CℓνN
ℓ = CℓνV

ℓξℓ. Then, integrating
Eq. (3) over a control volume Vi, with surface Si in a numerical grid and using
up-stream weighting, we get

∂Nνi

∂t
+
∑

is∈Si

(∑

ℓ

(
aℓN ℓ

ν

)
in
θℓis

)
= Qνi , (15)

where θℓis = vℓis · nisAis is the Darcy volume flux. Here nis and Ais is the
outward normal and area of subsurface “is” of Si respectively. Subscript “in”
indicates evaluation in the upstream cell and is phase dependent.

After a Newton-Raphson linearization step, we get

δN (t+1)
νi

∆t
+
∑

is∈Si

∑

ℓ

[(
aℓ

n∑

µ

(
∂N ℓ

ν

∂Nµ

)(t)

δN (t+1)

µ

)

in

θℓ
n

is

]
= β(t)

νi
. (16)
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The right hand side is given by

β(t)

νi
= Qn

νi
− N (t)

νi
−Nn

νi

∆t
−
∑

is∈Si

∑

ℓ

[(
aℓ

n

N ℓ(t)

ν

)
in
θℓ

n

is

]
.

In matrix notation the molar mass equation for component ν can be expressed
as

∑

µ

J (t)
ν,µδN

(t+1)
µ = b(t)

ν , ν, µ = w, o, g. (17)

As a simplifying step, we continue by neglecting off-diagonal blocks represent-
ing coupling between different components, i.e.

∂N ℓ
ν

∂Nµ
= 0, ν 6= µ. (18)

We get then the following decoupled systems for each component (we drop
the ·ν,ν sub-script on the Jacobian matrix)

J (t)δN(t+1)

ν = b(t). (19)

In order to solve the linear system in Eq. (19) we use the domain decomposi-
tion based iterative method presented in Sect. 3. Thus, the two-level iterated
solution is now N(s)(t)

ν and the incremented solution is defined as

δN(s)(t)

ν = N(s)(t)

ν −N(t)

ν . (20)

Following Eq. (10) the updated/improved solution is then

N(s+1/2)(t)

ν = N(s)(t)

ν +RT d̂(s), (21)

and the coarse grid equation for the molar mass is

RJ (t)RT d̂(s) = R
(
b(t) − J (t)δN(s)(t)

ν

)
. (22)

The independent equations for the sub-domains q = 1, . . . , p, are

J (t)

qq δN
(s+1)(t)

νq
= b(t)

νq
−
∑

r 6=q
J (t)

qr δN
(s+1/2)(t)

νr
, (23)

where summation index r includes the set of true coarse cells. The right hand
side terms involving intermediate solutions N(s+1/2)(t)

νr
are given by

N(s+1)(t)

νc
= N(s+1/2)(t)

νc
= N(s)(t)

νc
+RTc d̂(s), (24)

N(s+1/2)(t)

νr
= N(s)(t)

νr
+RTr d̂(s), r = 1, . . . , p. (25)
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5.1 Parallel Implementation

The parallel version of the Athena code is based on the concept of a “sim-
ulator parallel model”. The idea is that the original serial simulator is used
on each sub-domain. To incorporate the solver described in Sect. 3, the main
modifications consist of adding functionality for communicating between the
domains. This is implemented through a Communicator class, which has the
various objects to be communicated as member classes. We use the object
oriented MPI library OOMPI, Squyres et al. [2003], to achieve this. OOMPI
is a thin layer on top of the MPI, see e.g. Snir et al. [1996], which enables
easy creation and communication of user defined objects. Since OOMPI is
a fairly lightweight library and introduces little overhead, we have chosen
to continue with this in the implementation of the implicit mass transport
solver. In Skjellum et al. [2001] a comparison of different design strategies
for an object oriented interface to MPI is given. Due to the success of MPI
in defining a standard for distributed, parallel programming, the simulator is
highly portable.

Following the existing framework and based on the mathematical model,
we have introduced two classes inherited from OOMPI Datatype. These are the
RefinedMM class, which contains the values needed for upstream evaluation
of the Jacobian matrix terms

aℓ
n

(
∂N ℓ

ν

∂Nν

)(t)

and aℓ
n

N ℓ(t)

ν , (26)

and the CoarseMM class, which contains the sub-domain terms contributing
to the system Jacobian and right hand side given in Eq. (11).

Communicator

RefinedMM CoarseMM

Fig. 2. The figure shows the collaboration of the Communicator class and the
classes storing data between refinements, RefinedMM, and data for the coarse solve,
CoarseMM.

5.2 Numerical Experiments

We perform a numerical experiment using the implicit mass transport for-
mulation. The main goal of the experiment is to evaluate the parallel perfor-
mance on various platforms. At the current stage of implementation, we map



Parallel Simulation of Multiphase/Multicomponent Flow Models 109

domains onto CPUs in a one-to-one fashion. In the case where other consid-
erations than just getting an even number of grid cells dictate the choice of
domain decomposition, this approach is not optimal. Work on allowing a more
flexible load balancing of the simulator is in progress.

We use SGI and IBM SP2 super computers, a dedicated IBM Linux cluster
and on a network of PC workstations running Linux. Even though high-speed
super computers are an important target platform for the simulator, it is
also interesting to see how the code performs on lower bandwidth networks
of regular workstations, as this is available to a lot of users. Consequently,
we have run the simulations on three super-computing platforms and on two
commodity off-the-shelf hardware platforms, see Table 1. To avoid the com-

Table 1. The table lists various hardware platforms and compilers.

index platform C++ compiler MPI implementation

I SGI Origin 3800 MIPSpro Irix
II IBM p690 AIX IBM
III IBM Linux cluster Intel LAM
IV Linux cluster GNU MPICH
V Linux workst. netw. GNU MPICH

plicating effect of calculating equilibrium in the beginning of the simulation,
we do our experiments using restarts at times when equilibrium (hydrostatic)
is established.

The test case domain is depicted in Fig. 3. In this case the porous medium
is initially saturated with water. The simulation domain is 366m × 671m ×
52m in x-, y- and z-direction respectively and is decomposed into six domains
with an equal number of fine cells. Oil and gas phases migrate from one corner
of the domain. For a fixed simulation time interval, we have measured the

Fig. 3. The figure shows the domain decomposition (left) and gas saturation at a
given time (right).
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Table 2. Timing (seconds) of simulations on various platforms.

platform I platform II platform III platform IV platform V

total 2908 764 2472 1056 1801
pressure 711 195 502 252 489
mass 2081 497 1778 725 1194

total CPU time and CPU times for pressure solution and molar mass solve
separately. The results are given in Table 2. More detailed timing results,
including a conceptual fault zone case, will be presented in Øian [2004].

6 A Geometrically Complex Case

We demonstrate the simulator framework in use through a multiphase flow
case in a faulted porous medium, see Fig. 4. Oil and gas phases migrate
through a water saturated layer and into a high permeable fault zone. The

Fig. 4. The top part of the figure shows the domain decomposition including hori-
zontal and vertical flow regions. Red color indicates high permeability. Oil and gas
saturations are plotted at the same time level in the bottom left and right parts of
the figure respectively, where only a middle section of the grid is visualized.
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background lithology is a low permeable shale. Due to the density differences
of water, oil and gas, a segregation process occurs in the vertical fault zone
accompanied by much higher flow rates than in the horizontal layers.

As mentioned in Sect. 4 above, we place the transition between the hor-
izontal and vertical flow regions inside the coarse blocks. The implicit mass
transport formulation improves the allowed time step within the vertical flow
region. Also, the two-level solver enables the mass transport equations to be
solved in parallel, which is important if we want to make a more refined dis-
cretization. In Øian [2004] further computational results will be given.

7 Conclusion

We have presented a domain decomposition framework which is implemented
in a parallel version of the flow simulator Athena. The two-level, iterative
solver allows multiblock/multiphysics domains to be built. This is because the
coarse operator is based on an algebraic combination of the fine scale operators
(Galerkin) rather than an explicit coarse scale discretization. Consequently,
by defining the domain decomposition a-priori, we can allow different models
or discretizations in different domains. Work is in progress on applying this
method on modeling flow in fractured porous media.

Another issue is that the Galerkin coarse scale operator can be viewed as
an upscaled model. Traditional upscaling methods typically treat each param-
eter separately. Combining these into an upscaled model might be incorrect.
In the multiphase case, the Galerkin operator gives a combined averaged rep-
resentation by directly incorporating the fine scale, nonlinear processes caused
by changes in absolute and relative permeability and capillary forces.

A sequential, implicit formulation of the mass transport equations has been
implemented within the existing object oriented parallel framework. A timing
experiment illustrated that the code performs better on high performance,
shared memory supercomputers than distributed memory systems. This is
the typical behavior for domain decomposition based methods. As we have a
sequential, i.e. decoupled, solution procedure for solving the pressure and mo-
lar mass equations, the number of iterations to achieve convergence in either,
depend on the time steps. The implicit molar mass equations allows larger
time steps, but might introduce more iterations in the pressure solve. This
will have an effect on the observed parallel efficiency since communication is
involved in each iteration. Work is in progress to implement the simultaneous
solution of pressure and masses, i.e. fully implicit.

A flexible load balancing scheme has not yet been implemented in the
simulator. The effect of this is apparent on networks with low bandwidth
connections and will also influence the scaling properties on supercomputers.
With a queue system, e.g. running parallel jobs at night time, a network of
workstations would still be a valuable parallel platform. Specially for devel-
opment purposes and setting up simulation cases, this opportunity is useful.
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Summary. We shortly review the uncoupling-coupling method, a Markov chain
Monte Carlo based approach to compute statistical properties of systems like
medium-sized biomolecules. This technique has recently been proposed for the ef-
ficient computation of biomolecular conformations. One crucial step of UC is the
decomposition of reversible nearly uncoupled Markov chains into rapidly mixing
subchains. We show how the underlying scheme of uncoupling-coupling can also be
applied to stochastic differential equations where it can be translated into a domain
decomposition technique for partial differential equations.
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1 Introduction

Application of Markov chain Monte Carlo (MCMC) to biomolecular systems
has to tackle the trapping problem, i.e., the Markov chain remains for a very
long time in one part of the state space before it moves on to another part.
Such undesirable behavior of the Markov chain is caused by metastable sets
(also called modes or conformations) in the state space, between which tran-
sitions are extremely rare. There exists a huge body of literature addressing
this notoriously difficult problem (Ferguson et al. [1999], Liu [2001]).

We herein review a novel approach to overcome the trapping problem, the
uncoupling-coupling scheme (UC), which has recently been introduced by one
of the authors (AF) (Fischer [2003], Fischer et al. [2002]). UC combines sta-
tistical reweighting techniques with a hierarchical decomposition of the state

⋆ Supported by the DFG research center ”Mathematics for key technologies” (FZT
86) in Berlin.
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space into metastable sets. The key idea is to regard metastable sets as almost
invariant sets w.r.t. the Markov chain.

It has been shown recently that these metastable sets are strongly con-
nected to the spectral structure of the Markov propagation operator associ-
ated with the Markov chain (Schütte et al. [1999]), and that it is even possible
for a wide range of problem classes to identify metastable sets by computing
dominant eigenvalues of this operator (Deuflhard et al. [2000]). Once n dom-
inant metastable sets are identified, significantly improved convergence prop-
erties are achieved by uncoupling, i.e., by parallel simulation of n independent
chains, each one restricted to one of the metastable sets. Subsequently, infor-
mation lost in the uncoupling step, i.e., the weighting factors between the n
metastable sets, is reconstructed by means of the stationary distribution of an
appropriate (n × n) coupling matrix. We present the uncoupling step in the
context of MCMC in Sect. 2, and the underlying uncoupling-coupling scheme
in its simplest form in Sect. 3.

In its final section this article is devoted to the demonstration that the UC
idea can be translated into a domain decomposition technique for eigenvalue
problems of specific partial differential operators. The translation is possible
since Markov propagation operators of specific Markov processes (e.g., those
governed by stochastic differential equations) are generated by partial differen-
tial operators. In such cases the decomposition of state space into metastable
sets is strongly connected to the dominant eigenmodes of the generator, and
the UC scheme for the propagation operator can be translated into an anal-
ogous scheme for the generator. This relation may make uncoupling-coupling
techniques as used in biomolecular simulations accessible for research in the
direction of domain decomposition.

2 Uncoupling-Coupling Markov Chain Monte Carlo

For biomolecular simulations, MCMC is the method of choice for the task of
drawing samples from the canonical distribution. In the presence of strong
metastabilities slow convergence can be avoided by uncoupling-coupling,
where the state space is decomposed into metastable sets.

Metropolis Algorithm

The Metropolis (or Metropolis-Hastings) algorithm is the most widely used
form of MCMC and essentially builds upon Markov chain theory (Brémaud
[1999], Liu [2001]).

Suppose that we are interested in a distribution given by a density function
f > 0 with values in Ω ⊆ IRd, from which it is practically impossible to
draw independent samples (e.g., the canonical distribution of medium-sized
biomolecules, where d is in the range of 50 to 500). Usually, f is defined in

terms of an unnormalized density f̂ via
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f(x) =
f̂(x)

Zf̂
with Zf̂ =

∫

Ω

f̂(x) dx, (1)

where Zf̂ denotes the normalizing constant of f̂ . In most applications f̂ is the

canonical or Boltzmann density f̂ = exp(−βV ) with inverse temperature β
for some potential energy function V : Ω → IR.

The goal is to obtain expectations of some function g with respect to f ,
i.e., computing the expectation

If (g) =

∫
g(x)f(x) dx.

The Metropolis algorithm realizes a Markov chain X = X(1), X(2), X(3), . . .
having f as its invariant density. A sample x = (x(1), . . . , x(n)) of X is obtained

by accepting a proposal step x
(k+1)
prop with a probability that only depends on

the ratio of f(x
(k+1)
prop )/f(x(k)), thereby avoiding a computation of the unknown

normalizing constant (which in its integral representation is typically hard to
evaluate). The generated (dependent) random sample x then enables us to
estimate the integral If by

Îf (g) =
1

n

n∑

k=1

g(x(k)). (2)

The evolution of a Markov chain X = (Xk) with state space Ω is defined
by a stochastic transition function K : Ω × Ω → IR, where K(x,A) is the
probability density to move from x to the set A in one step (Meyn and Tweedie
[1993]). We call f an invariant density of the Markov chain given by K, if

f(y) =

∫

Ω

K(x, y)f(x) dx (3)

holds for all y ∈ Ω.
In the Metropolis-Hastings algorithm a transition function K which sat-

isfies (3) is realized by first defining an arbitrary but irreducible transition
kernel q(x, y) together with the acceptance function

α(x, y) =

{
min

(
1, q(y,x) f(y)

q(x,y) f(x)

)
for q(x, y) > 0

1 otherwise
. (4)

The computation of α requires ratios of the form f(y)/f(x) only, which is
feasible even if the normalizing constant Zf̂ is unknown.

Based on q and α we define K as the sum of two contributions,

K(x, y) = k(x, y) + r(x)δ(x − y),

where the absolutely continuous part k is given by
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k(x, y) =

{
q(x, y)α(x, y) if x 6= y

0 otherwise

and the singular component by r(x) = 1−
∫
k(x, y) dy.

With this K one step in the realization of the Markov chain from the state
Xk = x consists of: a) propose some y distributed according to q(x, y), b)
accept this step by setting Xk+1 = y with probability α(x, y) or c) reject the
proposal leaving Xk+1 = x.

The construction of K guarantees that the associated Markov chain X
is irreducible—provided that q is irreducible—and that for all x, y ∈ Ω the
detailed balance condition

f(x) k(x, y) = f(y) k(y, x) (5)

holds (for details, see e.g.( Tierney [1994])). Due to (5) K is called reversible
w.r.t. f . If we further assume that X is aperiodic—which is guaranteed when-
ever r > 0—we can state that f is the unique invariant density of X .

Markov Operator

In the following we want to understand the global behavior of a Markov chain
via the eigenmodes of its associated Markov operator P . This operator is
defined in terms of the transition function K by

Pu(y) =

∫

Ω

k(x, y)u(x) dx + r(y)u(y). (6)

P describes the propagation of a phase space density with one step of the
Markov chain. One can show that the reversibility of K w.r.t. f implies that
its spectrum σ(P ) is real-valued. More exactly, we have σ(P ) ⊆ [−1, 1], and
the largest eigenvalue is λ1 = 1. We have Pf = f , and under some ergodicity
conditions f is the unique eigenfunction associated with λ1 = 1 (up to normal-
ization). Some additional ergodicity typically is sufficient to guarantee that
the essential spectrum σess(P ) of P is bounded such that σess(P ) ⊂ [−r, r]
(see Schütte and Huisinga [2003]) and one typically can assume that there are
several discrete eigenvalues λ with |λ| > r. If this is the case then these eigen-
values subsequently are assumed to be ordered due to their absolute value,
i.e., such that λ1 > λ2 ≥ λ3 ≥ . . ..

Discretization

Identification and restricted sampling is carried out by discretizing the oper-
ator in essential degrees of freedom. To that end, let for two sets A,B ⊆ Ω
the transition probability between A and B within an ensemble distributed
w.r.t. the density f and during one step of the Markov chain be given by
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κ(A,B) =
1∫

A
f(x) dx

∫

A

∫

B

K(x, y)f(x) dx dy. (7)

Then, discretization is done by coarse graining with an arbitrary box de-
composition of the phase space Ω into m disjoint sets B1, . . . , Bm ⊂ Ω with⋃
Bj = Ω. Based on this box decomposition, we introduce the new finite state

space S = {B1, . . . , Bm} and define the transition function K̃ on S via

K̃(Bk, Bl) = κ(Bk, Bl). (8)

The finite dimensional Markov chain defined by K̃ again is reversible w.r.t.
its invariant density f̃ given by f̃(Bk) =

∫
Bk
f(x)dx. Whenever f is unique

for K, f̃ is also unique for K̃. Then the phase space is finite and the Markov
operator P becomes an (m × m)-transition matrix P which simply is the
stochastic matrix with entries pkl = K̃(Bk, Bl) = κ(Bk, Bl).

Metastability

If λ2 is close to λ1 = 1, we often find that the reason for the undesirably slow
convergence is that the Markov chain remains for a long time in a metastable
set (or conformation) of the state space, before it moves on to another one.
We will call a set A metastable under our Markov chain, if the transition
probability from A to itself is close to one, i.e., if κ(A,A) ≈ 1.

For an algorithmic exploitation of metastability the following observation
is of importance: If there are n eigenvalues close to λ1 = 1 (including λ1 itself)
and a significant spectral gap to all remaining eigenvalues, then there also
are n disjoint metastable subsets and vice versa (Meyer [1989], Schütte et al.
[2001]). If this is the case, the chain is rapidly mixing within the corresponding
metastable subsets and the undesirably slow overall convergence results from
the rareness of transitions between these metastable sets.

The close connection between a separated cluster of dominant eigenvalues
and the existence of metastable subsets has another very important algorith-
mic consequence: it has been shown that one can identify the n metastable
subsets only on basis of the eigenvectors associated with the n dominant
eigenvalues (Schütte et al. [1999, 2001]). This insight leads to a significantly
general identification algorithm (Deuflhard et al. [2000]) used for the detection
of biomolecular conformations.

Restriction

Assume that we know the n disjoint metastable sets A1, . . . , An of our Markov
chain, and that we now want to sample separately in each Al, for l = 1, . . . , n.
Then, for each l we define a restricted Markov kernel Kl from K on Al by
setting

Kl(x, y) = kl(x, y) + rl(x)δ(x − y) (9)
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with

kl(x, y) =

{
q(x, y)α(x, y) if x 6= y and y ∈ Al
0 otherwise

and

rl(x) = 1−
∫
kl(x, y) dy.

Clearly, detailed balance still holds, so that Kl is again a reversible Markov
kernel. Now, let f̂l = 1Al

f̂ be the restricted unnormalized density on Al,
with 1A denoting the indicator function on A, i.e., 1A(x) = 1 if x ∈ A and
1A(x) = 0 otherwise. Then, under the assumption, that Kl is irreducible,

fl = f̂l/Zf̂l
is the unique invariant density of Kl.

We denote by Pl the corresponding propagator of Kl. If we assume that
Al is metastable and that it cannot be subdivided further into two or more
almost invariant sets, then we can state the following: The second largest
eigenvalue λ2 of Pl is substantially less than 1, otherwise there would exist a
decomposition into two or more metastable subsets. As a consequence, due to
λ2 ≪ 1, the corresponding Markov chain Xl is rapidly mixing.

For the restricted Markov kernel Kl the detailed balance condition (5)
still holds for all x, y ∈ Al; therefore the density fl is a scalar multiple of the
correct global density f of the unrestricted Markov chain. Thus, we can regain
the global density via

f =

n∑

l=1

ξlfl (10)

in terms of the local densities fl. Only the scalar coupling factors ξl, l =
1, . . . , n, are unknowns which represent the neglected coupling between the
sets Al. Apparently, the coupling factors need to be ratios of normalizing
constants of the form ξl = Zf̂l

/Zf̂ , since then we can reconstruct f from the
fl’s:

n∑

l=0

ξl fl =

n∑

l=0

Zf̂l

Zf̂

f̂k
Zf̂k

=
f̂

Zf̂
= f. (11)

Hierarchical Uncoupling-Coupling

Restricted sampling alone does not directly provide the necessary coupling
vector ξ = (ξ1, . . . , ξk) and also raises the question of how to decompose
the state space. Yet, it is possible to overcome these problems by embedding
some Metropolis sampler into a hierarchical annealing structure. For a detailed
presentation of this approach we refer to the Uncoupling-coupling Monte Carlo
method presented in Fischer [2003], Fischer et al. [2002].

The hierarchical annealing structure is a crucial part for the algorithmic
concept in the context of biomolecular simulations with far reaching conse-
quences for the coupling step. However, since it is of lesser importance in
the PDE context, we focus on the basic uncoupling-coupling scheme in the
following.
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3 Basic Uncoupling-Coupling Scheme

We provide some theoretical aspects of uncoupling-coupling, especially the im-
pact of uncoupling on the spectra of restricted Markov operators. Throughout
this section we consider a finite state space. Therefore, let P be an irreducible,
aperiodic and reversible stochastic (m×m)-matrix, which might be obtained
by a box discretization of a Markov operator P as defined in (8). In this case
the state space Ω reduces to S = {B1, . . . , Bm}, the entries pij of P are tran-
sition probabilities κ(Bk, Bl) of the Markov operator between the boxes Bi
and Bj , and the global density f becomes a stochastic vector π.

P is called a nearly uncoupled Markov chain, if there is a permutation of
the state space such that P becomes diagonal block-dominant, i.e.

P = P̃ + E =




P11 E12 · · · E1n

E21 P22
. . .

...
...

. . .
. . . En−1,n

En1 · · · En,n−1 Pnn


 , (12)

where each sub-matrix is quadratic and entries in E are small. In the context of
metastability this corresponds to the existence of nmetastable sets S1, . . . , Sn.
Computation of an appropriate permutation is by no means trivial, but can
be done by the identification algorithm already mentioned in the previous
section (Deuflhard et al. [2000]). There are different ways to measure the
smallness of E, e.g. by the maximum row sum norm ‖ · ‖∞ or by some π-
weighted norm.

Reversibility of P is equivalent to the detailed balance condition

πipij = πjpji (13)

for all 1 ≤ i, j ≤ m. From (13) it easily follows, that P is self-adjoint w.r.t.
the weighted inner product

〈x,y〉π = x1y1π1 + . . .+ xmymπm. (14)

Therefore all eigenvalues of P are real and contained in the interval (0, 1]. Since
the diagonal blocks in (12) are nearly stochastic, continuity of the eigenvalues
guarantees the existence of n eigenvalues close to 1. We assume that the other
eigenvalues are reasonable bounded away from 1, which corresponds to the
assumption that the Markov chain is fast-mixing within each metastable set.

The matrix

Prest =




R11 0 · · · 0

0 R22
. . .

...
...

. . .
. . . 0

0 · · · 0 Rnn


 , (15)
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where Rii = Pii + diag(ei −Piiei) and ei = (1, . . . , 1) is a vector of size |Si|,
is called the restriction matrix of P along a given partition. Prest is obtained
from P by setting all off-diagonal blocks in P to zero and adding the sum of
the deleted entries of the i-th row to pii, which is the discrete counterpart of
(9).

Since the diagonal blocks of Prest are stochastic we can conclude that the
dominant eigenvalue 1 is n-fold, while due to continuity all other eigenvalues
should be well separated from 1. If the smallness of E is measured by the
∞-norm, we can state a quantitative bound on this phenomena (Meerbach
et al. [2003]):

Theorem 1. Let P be a reversible stochastic matrix partitioned according
to (12) and Prest the restricted matrix, as in (15). Then

λj(P
rest) ≤ λj(P) + 2‖E‖∞ (16)

holds for each j = 1, . . . ,m.

Therefore, by transition from P to Prest, we obtain n uncoupled Markov chains
restricted to the sets S1, . . . , Sn, whereby for a metastable decomposition each
chain is fast mixing.

The following theorem summarizes some facts about R and reveals that
the behavior of the uncoupled chains is closely related to that of the original
chain (Meerbach et al. [2003], Meyer [1989]).

Theorem 2. Let P be an irreducible and reversible stochastic matrix parti-
tioned as in (12). Furthermore, let all Pii be irreducible (substochastic) ma-
trices. Then,

(a) all Rii are irreducible,
(b) R is stochastic with an n-fold dominant eigenvalue 1,
(c) if the (unique) stationary distribution π of P is partitioned according to

P,
π = (π(1),π(2), . . . ,π(n)),

then for each i = 1, . . . , n the unique stationary distribution r(i) of the

restriction Rii is identical to ξ−1
i π(i), where ξi =

∑
h π

(i)
h is a constant

factor,
(d) the coupling vector ξ = (ξ1, . . . , ξn) is the unique stationary distribution

of the irreducible and stochastic coupling matrix C = (cij), with

cij := r(i)Pije. (17)

Theorem 2 states that coupling factors, which are needed to reweight the
restricted stationary distributions of the Rii’s in order to obtain the stationary
distribution of P, can be derived via the coupling matrix C containing the
transition probabilities between the metastable sets.
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Fig. 1. Left: The trialanine molecule shown in ball-and-stick representation. The
overall structure of trialanine is primarily determined by the two torsion angles Φ
and Ψ . Right: Plotting Φ versus Ψ results in a so-called Ramachandran plot. The
discretization boxes are plotted with different edge lines indicating the different
metastable sets they were allocated to.

Theorem 1 is closely related to the theory of stochastic complementa-
tion (Meyer [1989]), where an analogous result is stated for the general case
of non-reversible matrices. Associated with stochastic complementation are so-
called aggregation/disaggregation techniques (Cho and Meyer [1999], Stewart
and Wu [1992]), which aim for a given stochastic matrix at a fast computation
of the stationary distribution by decomposing the state space into stochastic
complements. Yet, due to non-reversibility the setup of stochastic comple-
ments is much more intricate than restriction. This is also the reason why for
biomolecular simulations, the technique of stochastic complementation does
not enable to set up restricted Markov operators for MCMC sampling on a
continuous state space. However, for reversible problems, we can utilize ag-
gregation/disaggregation techniques combined with restriction in Section 4 to
solve eigenvector problems for discretized differential operators.

Note that, since we do not treat the embedding into a hierarchical anneal-
ing structure here, the coupling matrix C in Theorem 2, although it shares
the same characteristics, is different from the one actually employed in the
UC algorithm.

3.1 Trialanine Simulation

As an example how UC is employed in biomolecular simulations we consider
trialanine, a small peptide composed of three alanine amino acid residues.
Although the continuous state space Ω is high-dimensional, the structural
and dynamical properties of trialanine are primarily determined by the two
torsion angles Φ and Ψ , as shown in Fig. 1. We herein only illustrate the
initial uncoupling step of UC, which starts with a high-temperature MCMC
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Fig. 2. Left: The permuted transition matrix P clearly has a block dominant
structure. Right: In the resulting restricted matrix R all off-diagonal entries are set
to zero. The intensity of the boxes is chosen due to the logarithmic scale on the far
right.

simulation. More precisely, we used the Hybrid Monte Carlo method (Brass
et al. [1993]) to sample at a temperature of 650 K and stored the torsion
angles for each simulation step. Discretization of each torsion angle domain
D = (−180 ◦, 180 ◦] into 7 equidistant intervals resulted in 26 non-empty boxes
(B1, . . . , B26) in D2, see Fig. 1. On these boxes we set up a transition matrix
P = (pij) (i.e., the discretized Markov operator), where transition probabili-
ties pij are obtained by counting the number of transitions between boxes Bi
and Bj during simulation.

The first eigenvalues of the resulting (26× 26)-transition matrix are

j 1 2 3 4 5
λj(P) 1 0.9952 0.9941 0.5692 0.1425

· · · ,

indicating a slow mixing Markov chain with three metastable sets. For the
identification of these metastable sets we used the previously mentioned spec-
tral approach (Deuflhard et al. [2000], Weber [2003], Deuflhard and Weber
[2003]). In Fig. 1 the identified metastable sets are indicated by different
line styles. A corresponding permutation of the transition matrix confirms
the computation in that it reveals an obvious block dominant structure, see
Fig. 2. Calculating the subdominant eigenvalues of the restrictions Rii for
i = 1, 2, 3 results in

λ2(R11) λ2(R22) λ2(R33)
0.1376 0.1482 0.5855

,

which shows that this metastable decomposition in fact leads to three fast
mixing restricted Markov chains.
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4 UC and Domain Decomposition

In this section, we will pursue the goal of connecting the UC scheme for
computing canonical distributions with the world of PDEs. In order to do
so, we will first introduce a reversible Markov process in continuous time and
discuss its biomolecular background and then will focus on its connection to
domain decomposition for PDEs.

Molecular Dynamics

In order to specify what we herein consider as molecular dynamics let q denote
the position and p the momenta of a single molecular system consisting of N
atoms in state x = (q, p) ∈ R3N × R3N . V = V (q) : R3N → R describes
the potential energy, which we assume to be differentiable. The statistics of
molecular systems in state space is given by the well-known canonical density
f = 1

Z exp(−βV (x)). Let µ be the measure induced by f (for a more detailed
description of the biophysical background, cf. Schütte and Huisinga [2003]).

There exist several models of molecular dynamics; we will focus on the
Smoluchowski equation

q̇ = − 1

γ
∇qV (q) +

σ

γ
Ẇ , (18)

which is an approximation of the well-known Langevin equation in case of high
friction γ, where Ẇ is given by a standard 3N -dimensional Brownian motion
W . The continuous time Markov process (Xt)t≥0 defined by (18) leaves the
canonical measure µ invariant and is reversible. Furthermore, (Xt)t≥0 defines
an absolutely continuous stochastic transition function p(t, x, y) that describes
the probability that the process if started in x at time t = 0 is being found in
y at time t (for details see Schütte and Huisinga [2003]).

Markov Operator and Generator

The family of Markov operators (Pt)t≥0 associated with (Xt)t≥0 is defined
analogously to (6) for every t > 0 with k(x, y) = p(t, x, y) and r ≡ 0. The
family (Pt)t≥0 forms a strongly continuous semigroup such that the infinites-
imal generator

Ay = lim
t→0

Pty − y
t

is defined and acts on the domain dom(A) = {y ∈ Y : limt→0(Pty − y)/t exists}.
In the following we will simply express the relation between Pt and A by
Pt = exp(tA) (for details see Huisinga et al. [to appear 2004]).

The reversibility of the underlying Markov process (Xt)t≥0 has the ad-
ditional implication that all Pt and the generator A are self-adjoint opera-
tors on the Hilbert space L2(µ) equipped with the scalar product 〈u, v〉µ =∫
u(x)v̄(x)µ(dx), cf. Schütte and Huisinga [2003].
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More insight into the process and into the form of the generator is available
if we consider the evolution of a function under the dynamics given by (Xt)t≥0.
This evolution is governed by the Fokker-Planck equation

∂t u =



σ2

2γ2
∆q +

1

γ
∇qV (q) · ∇q +

1

γ
∆qV (q)

︸ ︷︷ ︸
A


 u (19)

on some suitable subspace of L1(dq). In this formula A is the infinitesimal
generator of the semigroup Pt :L

1(dq) → L1(dq). That is, for twice differen-
tiable functions u the generator A is the elliptic partial differential operator
given by the RHS of (19).

Finally, the invariance of canonical density µ under the process (Xt)t≥0

gives us
Ptf = f and Af = 0. (20)

Therefore, the computation of the canonical density f can be reduced to the
computation of the dominant eigenvector of the generator A. If the potential
V satisfies some growth and regularity conditions then, both, the spectra
of Pt and A are discrete in L2(µ) and satisfy σ(Pt) = exp(tσ(A)). Then,
metastability can be discussed via the dominant eigenvalues of A (i.e., those
close to the largest one λ1 = 0).

Discretization and Uncoupling-Coupling

Discretizing the operator Pt in position and time, one obtains a Markov chain
with transition matrix P(t). Due to the reversibility, one can apply the UC
scheme which was presented in section 3. Yet another way is to work with the
generator A instead. In the remaining part of this section, it will be shown
to what extent the operator A is related to Pt and how one can extract the
required information from A in almost the same manner as from Pt. For
simplicity in what follows we consider a bounded system: The potential V is
smooth and takes infinite values at the boundary and outside of a compact
domain Ω with sufficiently smooth boundary ∂Ω.

The discretization of A, acting on L1(dq), by means of Finite Elements
or Finite Differences is well known and produces a large sparse matrix A
with row sum 0 at the interior nodes. Due to the condition on V , we have
Dirichlet boundary conditions equal 0 on ∂Ω and thus at the boundary nodes.
If we assume that there is a Perron cluster of eigenvalues of A close to its
largest eigenvalue λ = 0 then we have the same spectral property for A
(if the discretization grid is fine enough). If the number of nodes is large
efficient numerical solution of the eigenvalue problem for A will therefore
have to apply advanced numerical techniques like subspace oriented multigrid
solvers (Friese et al. [1999]), appropriate domain decomposition techniques,
or suitably preconditioned linear algebra solvers. Alternatively, we can exploit
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that the connection between the discretized operators A and (P(t)) is rather
close (Forster [2003]). This allows us to transfer the idea of UC to the generator
A. More precisely: decompose the state space into the metastable subsets,
restrict A to these subsets, solve the eigenvector problem locally, and couple
the local solutions with weighting factors obtained by some coupling matrix.

The restriction step is based on the restricted discretized generator (cp. (15))

Arest =




Arest
(11) 0 · · · 0

0 Arest
(22)

. . .
...

...
. . .

. . . 0
0 · · · 0 Arest

(nn)




(21)

with Arest
(ii) = A(ii) + diag(

∑
j,j 6=iA

(ij)ej) and blocks A(ii) of A according
to a decomposition in metastable subsets Si. This Neumann-like boundary
condition is imposed directly on the discretization level. Neumann boundary
conditions make sense since the invariant measure should have local minima at
the boundaries between the metastable sets. However, these boundary condi-
tions have no simple continuous analogue. Nonetheless, Arest is the requested
object, since the local solutions of Arest

(ii)µ
(i) = 0 form—apart from the weight-

ing factors (ξi)—the canonical density f . That follows from the fact that the
detailed balance condition µkAkl = µlAlk (which holds since A is self-adjoint)
implies µTArest = µTA = 0 as follows:

(µTArest)j = µjA
rest
jj +

∑

k 6∈Si

µkA
rest
kj +

∑

k∈Si,k 6=j
µkA

rest
kj

= µj


Ajj +

∑

k 6∈Si

Ajk


+

∑

k∈Si,k 6=j
µkAkj

= µjAjj +
∑

k 6∈Si

µkAkj +
∑

k∈Si,k 6=j
µkAkj = (µTA)j ,

where j is a node in Si and furthermore µk and Akj denote the entries of the
large vector µ = (µ(1), . . . , µ(n)) and the matrix A, respectively. The restricted
operator Arest is not the generator of P(t)rest, since (P(t)rest)t≥0 does no
longer form a semigroup; for the same reason, in general it is (etA)rest 6=
etA

rest

.
In the coupling step the weighting factors can be obtained (Forster [2003])

by the coupling matrix C = (cij) with entries

cij = 〈µi,ATµj〉2.

The matrix C arises from a Galerkin discretization of A on the ansatz space
V = span{µ1, µ2, . . . , µn} and inherits the structure of A. The factors ξ =
(ξi) are the solution of the low-dimensional equation Cξ = 0. Even more
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can be achieved: under certain conditions, it is also possible to generate the
eigenvectors v2, . . . , vn of the other dominant eigenvalues λ2, . . . , λn close to 1
by means of (µi) and C. More precisely: the solutions ν(i) of (CD)ν(i) = λ̂iν

(i)

with D = diag(ξ1, . . . , ξn) allow to define approximations
∑

k ν
(i)
k µk for the

eigenvectors vi. For a detailed description see Forster [2003].
The efficiency of the entire approach critically depends on the underlying

decomposition of state space into metastable subsets. If the dynamics given
by (18) is rapidly mixing within each of these metastable subsets then the
second eigenvalues of all the diagonal blocks Arest

(ii) of the discretized restricted

generator matrix Arest will be separated from the largest eigenvalues λ = 0
by some significant gap such that iterative eigenvalue solvers can be used to
compute the eigenvectors µi to λ = 0 for all blocks Arest

(ii) efficiently. Thus,
in order to construct a fully efficient algorithm one has to integrate anneal-
ing strategies and grid refinement into some carefully controlled hierarchical
approach. This is still under investigation.
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Summary. The construction of accurate generalized impedance boundary condi-
tions for the three-dimensional acoustic scattering problem by a homogeneous dissi-
pative medium is analyzed. The technique relies on an explicit computation of the
symbolic asymptotic expansion of the exact impedance operator in the interior do-
main. An efficient pseudolocalization of this operator based on Padé approximants is
then proposed. The condition can be easily integrated in an iterative finite element
solver without modifying its performances since the pseudolocal implementation
preserves the sparse structure of the linear system. Numerical results are given to
illustrate the method.

1 Introduction

The penetration of an acoustic field into a given medium can be approximately
modeled through a Fourier-Robin-type (also called impedance) boundary con-
dition (see for instance Senior and Volakis [1995]). To have both a larger
application range and a gain of accuracy of the model, a possible approach
consists in designing higher-order generalized impedance boundary conditions.
These conditions are often defined by a differential operator which describes
with some finer informations the behaviour of the transmitted acoustic field.
We present some new generalized impedance boundary conditions which ex-
tend the validity domain of the usual differential conditions for the scattering
problem of an acoustic wave by a three-dimensional homogeneous isotropic
scatterer. The proposed conditions have also the interest of not increasing the
total cost of a resolution by an iterative finite element solver (or possibly an
integral equation procedure). All these points are developed below.
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2 The acoustic transmission boundary value problem

Let Ω1 be a regular bounded domain embedded in R3 with a C∞ boundary
Γ . We set Ω2 as the associated infinite domain defined by Ω1 = R3/Ω2. We
assume that both media Ωj , j = 1, 2, are homogeneous and isotropic. Each
one is characterized by two positive real constants: the density ρj and the
sound velocity cj . We moreover suppose that Ω1 may be dissipative. This
aspect is modeled by the introduction of a damping parameter δ ≥ 0.

Consider now an incident wave u0 defined in the vicinity of Γ and which
satisfies the Helmholtz equation: ∆u0 + k2

2u0 = 0. We make the assumption
that the solution has a time-harmonic dependence of the form e−ik2t, where
k2 = ̟/c2 is the wave number in the unbounded domain of propagation,
setting ̟ as the frequency of the signal. We can then define the (possibly
complex) wave number k1 in Ω1 by: k2

1 = ̟2/c−2
1 (1+ iδ/̟). Two parameters

are usually introduced: the complex refraction index N = c−1
r (1 + iδ/̟)1/2

and the complex contrast coefficient α = ρ−1
r (1 + iδ/̟)−1, where cr and

ρr designate respectively the relative velocity and density. Finally, if z is a
complex number, we set z1/2 as the principal determination of the square
root with branch cut along the negative real axis.

We consider now the scattering problem of the wave u0 by Ω1 which con-
sists in computing the field v solution to the transmission problem





∆v2 + k2
2v2 = 0, in Ω2,

∆v1 + k2
1v1 = k2

2(1−N2)u0, in Ω1,

[v] = 0 and [χ∂nv] = −[χ∂nu0], on Γ,

lim
|x|→+∞

|x|(∇v2 ·
x

|x| − ik2v2) = 0,

(1)

where χ is the piecewise constant function defined by χ = 1 in Ω2 and χ = α
in Ω1. The vector n stands for the outward unit normal vector to Ω1. The
restriction of the field v to Ωj , j = 1, 2, is denoted by vj = v|Ωj

; the jump
between the exterior and interior traces is given by: [v] = v1|Γ − v2|Γ . The

inner product of two complex vector fields a and b of C3 is: a ·b =
∑3

j=1 ajbj.
The operator ∇ is the gradient operator of a complex-valued vector field and
the Laplacian operator is defined by: ∆ = ∇2. The last equation of (1) is
the so-called Sommerfeld radiation condition at infinity which leads to the
uniqueness of the solution to the boundary value problem. We denote by SRC
the associated operator. The existence and uniqueness of the solution to (1)
can be proved in an adequate functional setting.

3 Generalized impedance boundary conditions

When the interior wave number has a sufficiently large modulus |k1|, a reduc-
tion of the computational complexity in the practical solution of the boundary
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value problem (1) can be achieved by approximately modeling the penetra-
tion of the wave into the interior domain by a boundary condition set on Γ .
This approach is well-known in electromagnetism under the name of general-
ized impedance boundary condition method. The ideas have been introduced
during the second world war for modeling the interaction of an electromag-
netic field with an irregular terrain (see e.g. Senior and Volakis [1995]). The
resulting boundary condition for a given problem takes the form of a general-
ized mixed boundary condition defined by a differential or a pseudodifferential
operator. We give here an outline of the application of the theory of pseudod-
ifferential operators to derive a family of accurate boundary conditions for the
transmission problem.

The first point consists in considering the total field formulation of system
(1) setting u = v + u0. Therefore, we are led to compute u such that





∆u2 + k2
2u2 = −f, in Ω2,

∆u1 + k2
2N

2u1 = 0, in Ω1,

[u] = 0 and [χ∂nu] = 0, on Γ,

SRC(u2 − u0) = 0,

for an explicit source term f . Let us now assume that we can construct the
Dirichlet-Neumann (DN) operator for the interior problem

{
Z̃− : H1/2(Γ )→ H−1/2(Γ )

u1 7→ ∂nu1 = Z̃−u1

.

This operator, also called the Steklov-Poincaré operator, is a first-order pseu-
dodifferential operator. The determination of this operator yields an a priori
integro-differential computation of the internal solution from its Cauchy data.
Using the transmission conditions at the interface and considering the scat-
tered field formulation, we have to solve the exterior non-standard impedance
boundary value problem: find v2 such that





∆v2 + k2
2v2 = 0, in Ω2,

(∂n − αZ̃−)v2 = g, on Γ ,

SRC(v2) = 0,

with g = −(∂n−αZ̃−)u0. In the above system, the operator αZ̃− is generally
called the Exact Impedance Boundary Operator (EIBO).

To achieve an explicit computation of a non-local approximation of the DN
operator for an arbitrarily-shaped surface, we rewrite the Helmholtz equation
in a generalized coordinates system associated to the surface and next we com-
pute the two first terms of its asymptotic expansion in homogeneous complex
symbols. To this end, let us define the wave operator in the interior domain:
L1 = (∆ − ∂2

t ), where the exponential time dependence of the solution is
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e−ik1t. As a consequence, the multiplication by k1 must be understood as the
action of the first-order time derivative where we take the attenuation effects
into account. A calculation in the one-dimensional case in space naturally im-
poses the choice of k1. Furthermore, we can notice that we consider the same
asymptotic parameter as Senior and Volakis [1995] but without assuming a
particular analytical asymptotic form of the interior field. This hypothesis is
unnecessary here and yields some more accurate pseudodifferential approxi-
mations of the EIBO.

Let us express the operator L1 in a tubular neighborhood of Γ . Since Γ is
a compact submanifold of R3, we can choose a local coordinates system at any
point x0 of Γ . Let us designate by s = (s1, s2) the tangential variable and by r
the radial variable along the unit normal vector n at x0. Then, a point x near
the surface can be locally rewritten under the form: x = x0 + rn(x0), with
x0 ∈ Γ . Let us introduce Γr as the surface defined for a fixed value of r and let
us choose an orthogonal coordinates system on Γ . The covariant basis (τ 1, τ 2)
of the tangent plane Tx0(Γ ) which is compatible with the orientation of n(x0)
is better known as the principal basis. Vectors τ 1 and τ 2 are the principal
directions of the curvatures to the surface. If we set R as the curvature tensor
of the tangent plane at a given point of the surface, then the diagonalization
of R yields the determination of the principal curvatures κ1 and κ2 of Γ which
fulfill: Rτ β = κβτ β for β = 1, 2, and the mean curvature H = (κ1 + κ2)/2.
Let hβ = 1 + rκβ , β = 1, 2. After a few calculations, we find the expression of
the Helmholtz operator in generalized coordinates

L1 = ∂2
r + 2Hr∂r + h−1

1 h−1
2 ∂s · (h2h

−1
1 ∂s1 , h1h

−1
2 ∂s2)− ∂2

t ,

setting Hr = (h−2
1 κ1 + h−2

2 κ2)/2.
To construct the approximation of the EIBO, we have to introduce some

tools available from the theory of pseudodifferential operators. Let A =
A(x,Dx) be a pseudodifferential operator of OPSj , j ∈ Z, σ(A) = σ(A)(x, η)
its symbol and σj(A) its principal symbol. A symbol σ(A) admits a symbolic
asymptotic expansion in homogeneous symbols if it can be written on the form
σ(A) ∼ ∑+∞

m=−j σ−m(A), where functions σ−m(A) are some homogeneous
functions of degree −m with respect to η, with m ≥ −j, which continuously
depend on x. The above equality holds in the sense of pseudodifferential opera-
tors (see Treves [1980]). The partial symbol L1 of L1, according to s = (s1, s2)
and t and their respective covariables ξ = (ξ1, ξ2) and Nω, smoothly depends
on r. This symbol can be expressed as

L1 = ∂2
r + 2Hr∂r − |ξ|2 + ih−1

1 h−1
2 (∂s1h2h

−1
1 , ∂s2h1h

−1
2 ) · ξ +N2ω2,

where the length of ξ is defined by: |ξ| = (
∑2

β=1 h
−2
β ξ2β)

1/2. Since N is a
complex number, L1 is a complex symbol. Therefore, the operator L1 can be
factorized since its characteristic equation: z2 + N2ω2 − |ξ|2 = 0 admits two
distinct complex conjugate roots. These two solutions z±1 = ±i(N2ω2−|ξ|2)1/2
are first-order homogeneous complex functions according to (ξ,Nω). For a
dissipative medium, we remark that: ℜz−1 > 0 and ℜz+

1 < 0.
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According to Antoine et al. [2001], the following proposition holds.

Proposition 1. There exist two classical pseudodifferential operators Z− and
Z+ of OPS1, which continuously depend on r and such that

L1 = (∂r − Z+)(∂r − Z−) mod C∞,

with σ1(Z
±) = z±1 . Moreover, the uniqueness of the decomposition is satis-

fied by the following characterization. Let z± be the symbol of Z±. From the
definition of pseudodifferential operators in OPS1, symbols z± are some el-
ements of the symbol class S1 and admit the following asymptotic expansion
z± ∼∑+∞

j=−1 z
±
−j, where z±−j are some homogeneous complex valued functions

of degree −j with respect to (ξ,Nω).

In the case of a non-dissipative medium with ℑN = 0, it can be proved that
the factorization is only valid in the cone of propagation {(ξ,Nω), z+

1 z
−
1 > 0}.

Using the calculus rules of classical pseudodifferential operators, one can
obtain an explicit recursive and constructive algorithm to compute each ho-
mogeneous symbol. We refer to Antoine et al. [2001] for further details. We
restrict ourselves to the presentation of the effect of the first two terms of the
asymptotic expansion (m = 0), taking more terms leading to more complicate
formulations. The first symbol z−1 = −i(N2ω2−|ξ|2)1/2 has already been com-
puted. Concerning the zeroth-order symbol, one gets the explicit expression
z−0 = −H−∑2

l=1 κlξ
2
l /(2(z−1 )2). From the analysis developed in Antoine et al.

[2001], the EIBO can be suitably approximated by the following generalized
Fourier-Robin boundary condition

(∂n − α
m∑

j=−1

Z̃−−j)v2 = g̃ ≡ −(∂n − α
m∑

j=−1

Z̃−−j)u0, (2)

with the classical pseudodifferential operator: Z̃−−j = Op(z−−j|r=0).

The resulting approximate boundary condition (2) is not yet completely
satisfactory for a numerical treatment. Indeed, the condition is still defined by
a non-local pseudodifferential operator. If we approach the numerical solution
by a volume finite element method, then we have to consider the following
variational formulation: find v2 ∈ H1(Ωb) such that

∫

Ωb

∇v2 · ∇ϕ− k2
2v2ϕdΩb +

∫

Σ

Mv2ϕdΣ + α

∫

Γ

0∑

j=−1

Z̃−−jv2ϕdΓ

= −
∫

Γ

g̃ϕdΓ.

(3)

In the above formulation, the unbounded domain has been truncated by the
introduction of a non-reflecting boundary condition of the form: ∂nv2+Mv2 =
0, whereM is a local differential operator defined on a fictitious boundary Σ
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enclosing the scatterer. The resulting finite domain of computation is denoted
here by Ωb with a boundary ∂Ωb := Γ ∪ Σ. Generally, such a linear system
is solved by an iterative solver (see e.g. Tezaur et al. [2002]). Therefore, we
can assume that v2 is a given entry at the k-th step of the algorithm and we
want to evaluate the action of the operator defined by the left-hand side of
Eq.(3). The first two terms are actually classical to compute (Antoine [2001],
Tezaur et al. [2002]). This is not the case of the third one which involves two
pseudodifferential operators leading to a high computational cost similar to
the one involved in an integral equation approach. If we stop at this level,
the method is inefficient. However, one can overcome this problem using some
suitable Padé approximants. To fix the ideas, let us consider the first-order
homogeneous pseudodifferential operator and let us introduce the classical
Padé approximants of the square root with branch cut along the negative
real line from z = −1:

√
1 + z ≈ RM (z) = c0 +

∑M
j=1 ajz(1 + bjz)

−1. The
coefficients c0 and (aj , bj)j=1,...,M are expressed as c0 = 1, aj = 2/(2M +
1) sin2(jπ/(2M + 1)) and bj = cos2(jπ/(2M + 1)), for j = 1, ...,M . Then,

the evaluation of Z̃−1 applied to a given surface field v2 is realized by first
computing the solution φj to the surface PDE

∫

Γ

bj∇Γφj · ∇Γψ − k2
1φjψdΓ =

∫

Γ

v2ψdΓ, for j = 1, ...,M,

and then evaluating

∫

Γ

Z̃−1 v2ψdΓ = −ik1

∫

Γ

v2ψdΓ + ik1

M∑

j=1

aj

∫

Γ

∇Γφj · ∇ΓψdΓ,

for any test function ψ in H1(Γ ). The operator ∇Γ is the surfacic gradient
operator of a scalar surface field. If the interior medium is weakly dissipative or
non-dissipative, the approximation of the square root can require a large num-
ber M of PDEs to solve. A modified version of the square root approximation
should be preferred as for instance by using the rotating branch cut approxi-
mation of Milinazzo et al. [1997]. This new approximation has been introduced
within the context of underwater acoustic wave propagation problems resolved
by the wide-angle parabolic equations approach. The technique consists of
replacing the usual coefficients by the new ones C0 = eiθ/2RM (e−iθ − 1),
Aj = e−iθ/2aj((1 + bj(e

−iθ − 1))−2 and Bj = e−iθbj(1 + bj(e
−iθ − 1))−1,for

j = 1, ...,M . An optimal experimental value for the free rotation angle is
θ = π/4 and M = 4 for the number of equations (to a priori choose with
respect to the interior frequency).

4 Numerical performance

To evaluate the efficiency of the pseudolocal impedance boundary condition,
we represent both the surface field and the far field pattern which is given by
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RCS(ϑ) = 10 log10(limr→+∞ 2πr|v2(r, ϑ)|2) (db). We compare it to the local
impedance boundary condition developed in Antoine et al. [2001] using some
second-order Taylor expansions of the first four symbols. This latter condi-
tion has a wider validity domain than the usual Fourier-Robin condition. We
consider an incident plane wave of frequency k2 = 25 and with a null inci-
dence angle illuminating the unit circular cylinder. The physical parameters
are ρr = 1.3, cr = 1.05 and δ = 5 (|N | = 0.96 and ℑk1 = 2.3). As it can be
seen on Fig. 1, the surface field is accurately computed with the new condi-
tion compared to the second-order condition. This remark also holds for the
bistatic RCS. A more complete analysis shows that it is always preferable to
use the Padé approximation than the second-order Taylor expansion without
affecting the total computational cost of the iterative procedure.
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Fig. 1. Surface fields and bistatic RCS computations for the proposed test case.
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Summary. We present a way to efficiently treat the well-known transparent bound-
ary conditions for the Schrödinger equation. Our approach is based on two ideas:
firstly, to derive a discrete transparent boundary condition (DTBC) based on the
Crank-Nicolson finite difference scheme for the governing equation. And, secondly,
to approximate the discrete convolution kernel of DTBC by sum-of-exponentials for
a rapid recursive calculation of the convolution. We illustrate the efficiency of the
proposed method on several examples.

A much more detailed version of this article can be found in Arnold et al. [2003].

1 Introduction

Discrete transparent boundary conditions for the discrete 1D–Schrödinger
equation

−iR(ψj,n+1 − ψj,n) = ∆2 (ψj,n+1 + ψj,n)− wVj,n+ 1
2

(ψj,n+1 + ψj,n) , (1)

where ∆2ψj = ψj+1 − 2ψj + ψj−1, R = 4∆x2/∆t, w = 2∆x2, Vj,n+ 1
2

:=

V (xj , tn+ 1
2
), xj = j∆x, j ∈ ZZ; and V (x, t) = V− = const. for x ≤ 0; V (x, t) =

V+ = const. for x ≥ X , t ≥ 0, ψ(x, 0) = ψI(x), with supp ψI ⊂ [0, X ], were
introduced in Arnold [1998]. The DTBC at e.g. the left boundary point j = 0
reads, cf. Thm. 3.8 in Ehrhardt and Arnold [2001]:

ψ1,n − s0ψ0,n =
∑n−1
k=1 sn−kψ0,k − ψ1,n−1, n ≥ 1. (2)

The convolution kernel {sn} can be obtained by explicitly calculating the

inverse Z–transform of the function ŝ(z) := z+1
z ℓ̂0(z), where ℓ̂0(z) = 1− iζ ±√

−ζ(ζ + 2i), ζ = R
2
z−1
z+1 + i∆x2V− (choose sign such that |ℓ̂0(z)| > 1).
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Using (2) in numerical simulations permits to avoid any boundary reflec-
tions and it renders the fully discrete scheme unconditionally stable, like the
Crank-Nicolson scheme (1) for the whole-space problem. However, the numer-
ical effort to evaluate the DTBC increases linearly in t and it can sharply raise
the total computational costs. A strategy to overcome this drawback is the
key issue of this paper.

2 Approximation by Sums of Exponentials

The convolution coefficients sn appearing in the DTBC (2) can either be
obtained from (lengthy) explicit formulas or evaluated numerically: sn ≈
ρnN−1

∑N−1
k=0 ŝ(ρeiϕk) einϕk , n = 0, 1, . . . , N − 1. Here ϕk = 2πk/N , and

ρ > 1 is a regularization parameter. For the question of choosing ρ we refer
the reader to Arnold et al. [2003] and the references therein.

Our fast method to calculate the discrete convolution in (2) is based on
approximating these coefficients sn by the following ansatz (sum of exponen-
tials):

sn ≈ s̃n :=

{
sn, n = 0, . . . , ν − 1,∑L
l=1 blq

−n
l , n = ν, ν + 1, . . . ,

(3)

where L, ν ∈ IN are fixed numbers. In order to find the appropriate constants
{bl, ql}, we fix L and ν in (3) (e.g. ν = 2), and consider the Padé approximation
PL−1(x)
QL(x) for the formal power series: f(x) := sν + sν+1x + sν+2x

2 + . . . ,

|x| ≤ 1.

Theorem 1. Let the polynomial QL(x) have L simple roots ql with |ql| > 1,
l = 1, . . . , L. Then

s̃n =
L∑

l=1

blq
−n
l , n = ν, ν + 1, . . . , (4)

where

bl := −PL−1(ql)

Q′L(ql)
qν−1
l 6= 0, l = 1, . . . , L. (5)

Remark 1. All our practical calculations confirm that the assumption of The-
orem 1 holds for any desired L, although we cannot prove this.

Remark 2. According to the definition of the Padé algorithm the first 2L+ν−1
coefficients are reproduced exactly: s̃n = sn for n = ν, ν + 1, . . . , 2L+ ν − 1.
For the remaining s̃n with n > 2L + ν − 1, the following estimate holds:
|sn− s̃n| = O(n−

3
2 ). A typical graph of |sn| and |sn− s̃n| versus n for L = 20

is shown in Fig. 1 (note the different scaling for both graphs).
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Fig. 1. Convolution coefficients sn (left axis, dashed line) and error |sn − s̃n| of the
convolution coefficients (right axis); ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0 (L = 20).

3 The Transformation Rule

A nice property of the considered approach consists of the following: once the
approximate convolution coefficients {s̃n} are calculated for particular dis-
cretization parameters {∆x, ∆t, V }, it is easy to transform them into appro-
priate coefficients for any other discretization. We shall confine this discussion
to the case ν = 2:

Transformation rule 3.1 For ν = 2, let the rational function

ˆ̃s(z) = s0 +
s1
z

+
L∑

l=1

bl
qlz − 1

1

qlz
(6)

be the Z–transform of the convolution kernel {s̃n}∞n=0 from (3), where {s̃n} is
assumed to be an approximation to a DTBC for the equation (1) with a given
set {∆x, ∆t, V }.
Then, for another set {∆x⋆, ∆t⋆, V⋆}, one can take the approximation

ˆ̃s⋆(z) := s⋆0 +
s⋆1
z

+
L∑

l=1

b⋆l
q⋆l z − 1

1

q⋆l z
, (7)

where

q⋆l :=
qlā− b̄
a− qlb

, b⋆l := blql
aā− bb̄

(a− qlb)(qlā− b̄)
1 + q⋆l
1 + ql

, (8)
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a := 2
∆x2

∆t
+ 2

∆x2
⋆

∆t⋆
+ i(∆x2V −∆x2

⋆V⋆), (9)

b := 2
∆x2

∆t
− 2

∆x2
⋆

∆t⋆
− i(∆x2V −∆x2

⋆V⋆). (10)

s⋆0, s
⋆
1 are the exact convolution coefficients for the parameters {∆x⋆, ∆t⋆, V⋆}.

While the Padé–algorithm provides a method to calculate approximate
convolution coefficients s̃n for fixed parameters {∆x, ∆t, V }, the Transforma-
tion rule yields the natural link between different parameter sets {∆x⋆, ∆t⋆,
V⋆} (and L fixed).

Example 1. For L = 10 we calculated the coefficients {bl, ql} with the parame-
ters ∆x = 1, ∆t = 1, V = 0 and then used the Transformation 3.1 to calculate
the coefficients {b∗l , q∗l } for the parameters ∆x∗ = 1/160, ∆t∗ = 2 · 10−5, V∗ =
4500. Fig. 2 shows that the resulting convolution coefficients s̃∗n are in this
example even better approximations to the exact coefficients sn than the co-
efficients s̃n, which are obtained directly from the Padé algorithm discussed in
Theorem 1. Hence, the numerical solution of the corresponding Schrödinger
equation is also more accurate (cf. Fig. 5).

The Maple code that was used to calculate the coefficients ql, bl in the
approximation (3) including the explicit formulas in Transformation rule 3.1
can be downloaded from the authors’ homepages.
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Fig. 2. Approximation error of the approximate convolution coefficients for ν = 2,
∆x = 1/160, ∆t = 2·10−5, V = 4500: The error of s̃∗n (- - -) obtained from the trans-
formation rule and the error of s̃n (—) obtained from a direct Padé approximation
of the exact coefficients sn.
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4 Fast Evaluation of the Discrete Convolution

Given the approximation (3) of the discrete convolution kernel appearing in
the DTBC (2), the convolution

C(n)(u) :=

n−ν∑

k=1

uks̃n−k, s̃n =

L∑

l=1

blq
−n
l , |ql| > 1, (11)

of a discrete function uk, k = 1, 2, . . . , can be calculated efficiently by recur-
rence formulas, cf. Sofronov [1998]:

Theorem 2. The function C(n)(u) from (11) for n ≥ ν + 1 is represented by

C(n)(u) =

L∑

l=1

C
(n)
l (u), (12)

where

C
(n)
l (u) = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν for n ≥ ν + 1, C

(ν)
l (u) ≡ 0. (13)

This recursion drastically reduces the computational effort of evaluating DT-
BCs for long–time computations (n≫ 1):O(L∗n) instead ofO(n2) arithmetic
operations.

5 Numerical Examples

In this section we shall present two examples to compare the numerical results
from using our approach of the approximated DTBC, i.e. the sum-of-expo-
nentials-ansatz (3) (with ν = 2) to the solution using the exact DTBC (2).

Example 2. As an example, we consider (1) on 0 ≤ x ≤ 1 with V− = V+ =
0, and initial data ψI(x) = exp(i50x − 30(x − 0.5)2). The time evolution
of the approximate solution |ψa(x, t)| using the approximated DTBC with
convolution coefficients {s̃n} and L = 10, L = 20, respectively, is shown in
Fig. 3 (observe the viewing angle).

While one can observe some reflected wave when using the approximated
DTBC with L = 10, there are almost no reflections visible when using the
approximated DTBC with L = 20.

The goal is to investigate the long–time stability behaviour of the approx-
imated DTBC with the sum-of-exponentials ansatz. The reference solution
ψref with ∆x = 1/400, ∆t = 2 · 10−5 is obtained by using exact DTBCs (2)
at the ends x = 0 and x = 1. We vary the parameter L = 10, 20, 30, 40 in
(3), find the corresponding approximate DTBCs, and show the relative error

of the approximate solution, i.e.
||ψa−ψref ||L2(t)

||ψI ||L2
. The result up to n = 15000
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Fig. 3. Time evolution of |ψa(x, t)|: The approximate convolution coefficients con-
sisting of L = 10 discrete exponentials give rise to a reflected wave (upper figure).
Using L = 20 discrete exponentials make reflections almost invisible (lower figure).

is shown in Fig. 4. Larger values of L clearly yield more accurate coefficients
and hence a more accurate solution ψa. Fig. 4 also shows the discretization

error, i.e.
‖ψref−ψan‖L2(t)

‖ψI‖L2
, where ψan, the analytic solution of this example is

explicitly computable.

Example 3. The second example considers (1) on [0, 2] with zero potential in
the interior (V (x) ≡ 0 for 0 < x < 2) and V (x) ≡ 4500 outside the computa-
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Fig. 4. Error of the approximate solution ψa(t) with approximate convolution coef-
ficients consisting of L = 10, 20, 30, 40 discrete exponentials and discretization error.
ψref is the relative error of ψref . The error-peak between t = 0.01 and t = 0.02
corresponds to the first reflected wave.

tional domain. The initial data is taken as [ψI(x) = exp(i100x− 30(x− 1)2)],
and this wave packet is partially reflected at the boundaries. We use the
rather coarse space discretization ∆x = 1/160, the time step ∆t = 2 · 10−5,
and the exact DTBC (2). The value of the potential is chosen such that at time
t = 0.08, i.e. after 4000 time steps 75% of the mass (‖ψ(., t)‖22) has left the
domain. Fig. 5 shows the time decay of the discrete ℓ2-norm ‖ψ(., t)‖2 and the
temporal evolution of the error ‖eL(., t)‖2 := ‖ψa(., t) − ψref (., t)‖2/||ψI ||L2

when using an approximated DTBC with L = 20, 30, 40. Additionally, we cal-
culated for L = 20 the coefficients {bl, ql} for the “normalized parameters”
∆x = 1, ∆t = 1, V = 0 and then used the Transformation rule 3.1 to calculate
the coefficients {b∗l , q∗l } for the desired parameters.

6 Conclusion

For numerical simulations of the Schrödinger equation one has to introduce
artificial (preferable transparent) boundary conditions in order to confine the
calculation to a finite region. Such TBCs are non-local in time (of convolu-
tion form). Hence, the numerical costs (just) for evaluating these BCs grow
quadratically in time. And for long-time calculations it can easily outweigh
the costs for solving the PDE inside the computational domain.

Here, we presented an efficient method to overcome this problem. We con-
struct approximate DTBCs that are of a sum-of-exponential form and hence
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Fig. 5. Time evolution within the potential well (V = 4500) of ‖ψ(., t)‖2 and of the
errors ‖eL(., t)‖2 that are due to approximated DTBCs with L = 20, 30, 40. “L = 20
(trafo)” uses coefficients calculated by the Transformation rule 3.1.

only involve a linearly growing numerical effort. Moreover, these BCs yield
very accurate solutions, and it was shown in Arnold et al. [2003] that the
resulting initial-boundary value scheme is conditionally ℓ2-stable on [0, T ] as
∆t→ 0 (e.g. for 0 < ∆t < ∆t0 and ∆x = ∆x0 = const.).
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Domain Decomposition and Additive Schwarz
Techniques in the Solution of a TE Model of

the Scattering by an Electrically Deep Cavity
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Summary. Two techniques are coupled to solve a model problem relative to the
scattering of a 2D time-harmonic electromagnetic wave by an obstacle including an
electrically deep cavity. Both of them are based on a boundary element method. The
first technique uses a domain decomposition procedure to reduce the contribution
of the cavity to a set of equations supported by the aperture. The second one is an
additive Schwarz procedure to solve the problem after the reduction of the cavity.
Numerical results are reported to give an insight into the approach.

Key words: Scattering, cavity, boundary elements, Schwarz additive method.

1 Introduction

It is a well-known fact for experts in stealth technology that a cavity residing
in a scatterer can significantly contribute to the Radar Cross Section (RCS).
Because of several difficulties, standard methods cannot be applied to solve
this type of problem. Indeed, the size of the problem and the complexity of the
involved phenomena (diffraction, resonance, etc.) prevent the use of available
methods either direct or fast (like the fast multipole method) or asymptotic
(like physical optics or geometrical theory of diffraction).

Several approaches, based on domain decomposition (DD) or hybrid meth-
ods have already been proposed: finite element-boundary integral (FE-BI) for-
mulations (Jin [1993], Liu and Jin [2003]), multi-methods (Barka et al. [2000])
based on generalized scattering matrices, etc. However, in our opinion, none
of these approaches can be considered as completely satisfactory in general.
Some well-known dispersion deficiencies of FE methods can seriously dam-
age the accuracy of the solution. Similarly, the determination of scattering
matrices can rapidly become unwieldy.

We have investigated two new directions based on BI formulations to en-
hance the solution procedure. The first technique consists in exploiting the
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geometry of the cavity as in (Liu and Jin [2003]) to reduce its contribution
to a set of equations supported only by the aperture. However, to avoid the
dispersion flaws present in FE schemes, we use a BI formulation as well as a
DD method to reduce the computing time and the memory storage. The sec-
ond one is an additive overlapping Schwarz method for solving the equations
on the aperture of the cavity and the rest of the boundary.

2 Nonoverlapping Domain Decomposition Method

2.1 The full problem

The geometrical data of the scattering problem are depicted in Fig. 1. They
are related to a 2D model for the scattering of an electromagnetic wave by
an open-ended thick cavity, indeed a time-harmonic Hz-wave. The scatterer
is endowed with the perfect conducting boundary condition on Γ. The sur-
rounding medium Ω is assumed to be the free-space. The unit normal to Γ
inwardly directed to Ω is denoted by n.

Assuming an implicit time dependence in e−iωt, we are led to solve the
following boundary-value problem (see e.g., Jin [1993])





∆u+ k2u = 0 in IR2,
∂nu = 0 on Γ,

lim
|x|→+∞

|x|1/2
(
∂|x|(u − uinc)− ik(u− uinc)

)
= 0.

(1)

u

Γ

inc

Ω

Ω
Σ 1

1
ΩΩ 2

Ω
Σ 2

N

Σ 3

3

Σ N

ΩN+1

Fig. 1. The full problem. Fig. 2. The decomposition of
the cavity.

2.2 Domain decomposition and problem formulation

The cavity is sliced into N domains Ωi (i = 1, . . . , N) as shown in Fig. 2. The
unbounded part ΩN+1 of this DD of Ω lies outside the cavity. The interfaces
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Σi between the subdomains are sectional surfaces of the cavity. Finally, the
unit normal to the boundary ∂Ωi of Ωi outwardly directed to Ωi is denoted
by ni.

Denoting by ui := u|Ωi and by Γi the part of ∂Ωi on Γ, we are led to the
following equivalent formulation of problem (1)




∆ui + k2ui = 0 in Ωi,
∂nui = 0 on Γi,

}
for i = 1, . . . , N+1,

lim|x|→+∞ |x|1/2
(
∂|x|

(
uN+1 − uinc

)
− ik

(
uN+1 − uinc

))
(x) = 0,

(2)

subject to the following matching conditions

ui = ui+1 and ∂niui + ∂ni+1
ui+1 = 0 on Σi, for i = 1, . . . , N. (3)

The most used BI formulations reduce the determination of ui in Ωi to its
Cauchy data λi := ui|∂Ωi and pi := ∂ni

ui|∂Ωi (e.g. Jin [1993]). Denoting the
restriction of these Cauchy data to some part of ∂Ωi in an obvious way, we
directly obtain the following relations from the above boundary and matching
conditions

pΓi

i = 0, (4)

λΣi

i = λΣi

i+1 and pΣi

i + pΣi

i+1 = 0. (5)

We use Rumsey’s reactions principle to express the boundary and matching
conditions variationally with testing functions λ′i and p′i subject to the same
conditions as Cauchy data (4) and (5):

N+1∑

i=1

∫

∂Ωi

(∂niuiλ
′
i − uip′i) ds = 0. (6)

Expressing ui|∂Ωi and ∂niui|∂Ωi through their integral representation in
terms of λi and pi, we obtain the following integral equations in a straight-
forward way

N+1∑

i=1

{
λ

′ T

i p
′ T

i

}
Zi

{
λi
pi

}
=
{
λ

′ T

N+1 p
′ T

N+1

}
U inc. (7)

The integrodifferential operator Zi becomes a complex dense matrix repre-
senting the interactions between the unknowns related to subdomain Ωi once
λi, λ

′

i, pi and p
′

i have been discretized as in (Bendali and Souilah [1994]) for
instance.

Clearly, this variational system has the same structure as the usual ones
associated with a substructuring procedure in FE methods. It yields a linear
system of the type depicted in Fig. 3. A Schur complement procedure, dealing
with one subdomain at a time, can hence be used to reduce the equations rela-
tive to the cavity to a matrix coupling the Cauchy data on the aperture λΣN

N+1

and pΣN

N+1. The procedure saves computing time and storage in a significant
way.
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2.3 Numerical results

To give an insight into the performance of the method, we consider the CO-
BRA JINA test case. To examine the effect of the exterior structure, we add
a thickness (see Fig. 1) and fix the frequency at 8 GHz.

Figure 4 represents the CPU time necessary to compute the monostatic
RCS for 361 incidences and for several decompositions of the cavity. Splitting
the domain Ω into only two subdomains reduces this CPU time by a quite
good factor of 65%, the optimal number of subdomains being 4 for the case
at hand. Meanwhile the memory storage is reduced by a factor of 60%.
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Fig. 5. Error (L2-norm) on the cur-
rents (dashed line) and RCS (solid
line)

The currents on the external boundary ΓN+1 and the RCS (in m) are
compared to those obtained using the direct solution (Fig. 5). Although the
introduction of Cauchy data on the interfaces induces an error on the currents,
they remain small and do not increase in a significant way with the number
of subdomains.



DD and AS Techniques in the Scattering by a Deep Cavity 153

3 Additive Overlapping Schwarz Method

3.1 Introduction

The Schwarz methods (Lions [1988]) are efficient iterative processes for solv-
ing usual boundary value problems. The principle is to solve only small size
problems in each subdomain in each iteration. We give an adaptation of the
additive version of the Schwarz algorithm (Frommer and Szyld [1999] for ex-
ample) for the problem set on the boundary of ΩN+1, obtained once the cavity
has been reduced, to efficiently deal with its solution.

3.2 Boundary decomposition

We start from a generic problem like the following one

X
′T

BX = X
′T

U (8)

assuming that this system is related to the nodal values X and X
′

of re-
spectively unknown and test functions defined on the boundary Γ. For the
subsequent description, it will be more meaningful to denote the components
of X and X

′

as X(x) and X
′

(x) respectively, x being a node on Γ.
We consider Γi (i = 1, . . . , N) an overlapping decomposition of Γ (Fig. 6)

as well as a partition of unity αi associated with this covering of Γ.

α α α1 3 42α

Overlapping areas

Γ

Partition of unity

Γ Γ

Γ

Exclusive areas

Γ

3

4

2

1

Fig. 6. Domain decomposition and partition of unity

Starting from this decomposition of the boundary, we can decompose X
as follows
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X(x) =

N∑

j=1

αj(x)Xj(x), for all node x, Xj = IjX. (9)

Ij is the matrix obtained from the identity matrix I with the same size than
B by removing all the rows corresponding to a node x where αj(x) = 0. Now
expressing the vector with the same size as Xj and whose components are
αj(x)Xj(x) by means of a diagonal matrix still denoted by αj as αjXj, we
can write (9) in the form of a matrix product as follows

X =

N∑

j=1

ITj αjXj. (10)

Inserting (9) in (8) and testing by X
′ T

i αiIi, we are led to

X
′ T

i Bii Xi = X
′ T

i Ui −X
′ T

i

N∑

j=1
j 6=i

Bij Xj (11)

where
Bij = αiIiBITj αj , Ui = αiIiU. (12)

We can then reconstruct X to show that it solves the following fixed point
problem

X =

N∑

i=1

αiXi =

N∑

i=1

αi


B−1

ii

(
Ui −

∑

j 6=i
BijXj

)

 . (13)

This system corresponds to the classical form of the additive Schwarz
algorithm (Frommer and Szyld [1999]). Once derived for a linear system CX =
D, it can be solved by the GMRES algorithm.

3.3 Numerical results

This method has been tested on the COBRA cavity with thin walls at a fre-
quency of 30 GHz. This is known to be a difficult problem for the convergence
of iterative methods.

Distribution of the eigenvalues

Figure 7 depicts the eigenvalues of the matrix of the initial system and those
of the matrix obtained by the Schwarz procedure using a decomposition of
the boundary into 75 patches. All the eigenvalues of the new matrix lie in
the right half plane whereas the initial matrix has an important number of
eigenvalues almost uniformly distributed in a circle centered at zero. It is well-
known that distributions of the eigenvalues of the latter type are the worst
cases relatively to the convergence of iterative methods whereas the former is
much more adapted to this convergence.
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(a) (b)

Fig. 7. Eigenvalues repartition: (a) initial matrix; (b) matrix resulting from the
Schwarz method

Convergence

The results of this method have been compared to those obtained by a SParse
Approximate Inverse (SPAI) preconditioning technique. The Krylov method
which has been used is the GMRES algorithm with a restart every 20 itera-
tions.

Figure 8 represents the norms of the residuals relative to the initial ma-
trix, without any preconditioning and with a SPAI preconditioner and for
the Schwarz procedure. As expected, the Schwarz technique shows a better
convergence rate than the method without the preconditioner. Furthermore,
the convergence rate is almost the same as that one of the SPAI method. It
is worth noting that we have considered a cavity with thin walls, correspond-
ing in fact to an open surface, which is the most unfavourable case for the
convergence of the iterative process, to check its robustness.
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4 Conclusion and forthcoming studies

The solution procedure proposed here has been fully validated in the 2D case
and has efficiently handled several deep cavity problems. Work on extensions
to 3D is currently going on. We have been inspired to do so by a prospective
work in 3D case by M. Fares. The authors would like to acknowledge this
invaluable information as well as the support of CINES which has provided the
possibility in terms of massively parallel platforms to deal with such problems
of really huge size.
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A Model for Parallel Adaptive Finite Element
Software

Krzysztof Banaś

Cracow University of Technology, Section of Applied Mathematics ICM

Summary. The paper presents a conceptual model and details of an implementa-
tion for parallel adaptive finite element systems, particularly their computational
kernels. The whole methodology is based on domain decomposition while message
passing is used as a model of programming. The proposed finite element architec-
ture consist of independent modules, most of them taken from sequential codes. The
sequential modules are only slightly modified for parallel execution and three new
modules, explicitly aimed at handling parallelism, are added. The most important
new module is the domain decomposition manager that performs most tasks related
to parallel execution. An example implementation that utilizes 3D prismatic meshes
and discontinuous Galerkin approximation is presented. Two numerical examples,
the first in which Laplace’s equation is approximated using GMRES with multi-grid
preconditioning and the second where dynamic adaptivity with load balancing is
utilized for simulating linear convection, illustrate capabilities of the approach.

1 Introduction

Parallelization of adaptive finite element systems is a complex and complicated
task. There are only few systems (Bastian et al. [1997], Beall and Shephard
[1999], Bangerth and Kanschat [1999]) combining adaptivity and parallelism
within a comprehensive finite element environment. Comprehensive is under-
stood as offering such capabilities as 2D and 3D meshes of various types,
continuous, discontinuous and higher order approximations, multi-level iter-
ative solvers for linear systems, handling of coupled, possibly multi-physics,
non-linear problems. On the other hand there is a growing interest in using
principles of software engineering and object orientedness for design of scien-
tific codes (Bruaset and Langtangen [1997], Beck et al. [1997]). The goal of
the research is to combine flexibility and maintainability of object oriented
codes with efficiency of monolithic Fortran or C programs.

The stress in the present paper is put on the modular structure of codes, de-
sign of modules’ interfaces and fundamental principles for parallelizing adap-
tive finite element codes. The starting point is a modular finite element frame-
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work for sequential computations, designed for extendibility, reusability and
efficiency. The goal of the parallelization process is to preserve the modular
structure of the framework and add efficient mechanisms for parallel execu-
tion. Additionally parallelization is designed to change sequential modules as
little as possible and to be conceptually simple. The aim of these last features
is to offer an easy way for parallelizing existing legacy finite element programs.

2 A model architecture

It is assumed that the whole code is built of independent modules having
their own data structures and communicating through interfaces accessible
using the main programming languages of scientific computing (Fortran90, C,
C++) (Banaś [2002]). There are four fundamental sequential modules:

• mesh manipulation module - that provides the other modules with all
topological data concerning elements and other entities (faces, edges, ver-
tices) present in the mesh; mesh manipulation module performs refine-
ments/derefinements of individual mesh entities

• approximation module - that performs all tasks related to approximation
fields defined for finite element meshes; main tasks include numerical in-
tegration, finite element interpolation and different kinds of projections

• linear solver module - the module may form a solver itself or serve as an
interface for some external solver

• problem dependent module - the rest of the code that includes, among
others, submodules specifying the solved PDE problem and driving the
process of adaptation (the latter involves error estimation)

The mesh manipulation module is the simplest to design. It possess its
own data structure and is organized as a set of services, a library of functions
returning data concerning mesh entities. It does not use data from other fi-
nite element modules, although it can, and sometimes should, interact with
external modules for mesh generation and geometry modeling.

The approximation module handles all tasks related to approximation
fields that are defined in terms of finite element shape functions. Since defini-
tions of shape functions are specific to different types of elements, approxima-
tion modules are strongly related to particular mesh manipulation modules.
Besides the dependence on a specific mesh, the approximation module is also
strongly coupled with the problem dependent module. The problem of effi-
cient realization of numerical integration in flexible, multi-purpose codes is
solved using an interface with few well defined call-backs (Banaś [2002]).

The mechanism of call-backs is also utilized in the design of the interface
between the problem dependent module and the linear solver module. It is
assumed that the problem dependent module calls the linear solver to perform
basic steps of the solution procedure, but it is the linear solver that gathers
all data (on mesh entities, approximation fields and particular entries to the
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system matrix and the load vector) necessary to perform multi-level solution
of linear equations.

2.1 Parallel execution modules

The proposed model of parallelization is based on domain decomposition as
an algorithmic foundation and message passing as a programming technique.
One of reasons for such a choice is the possibility of reusing much of sequential
modules for parallel codes.

It is assumed that sequential modules are included into parallel codes
without substantial modifications. There are three new modules added to
handle parallel execution. The two first are simple interface modules. The
first, named parallel execution interface, gathers the main calls related to
parallel execution within the problem dependent module. These calls are then
passed to the main parallel module, the domain decomposition manager, or
left with no effect in case of sequential runs.

The second simple module connects the finite element program to a parallel
execution environment. It consist of a set of generic send/receive and group
operations, that have to be implemented for various communication libraries.

The domain decomposition manager performs the following tasks:

• interfacing an external mesh partitioner (and, possibly different, reparti-
tioner)

• distributing the mesh among processors
• creating necessary overlap and managing all requests related to overlap

entities
• implementing domain decomposition algorithm
• adapting mesh in parallel
• load balancing and data transfer

The domain decomposition manager is composed of several submodules,
responsible for parallel execution of different tasks. In such a way it is possible
to parallelize only parts of the code (e.g. linear solver) while the rest remains
sequential.

3 Implementation

Based on the proposed architecture (see Fig. 1) a prototype implementation
has been created that uses 3D prismatic meshes and discontinuous Galerkin
approximation.

The basis for implementation of the domain decomposition manager is
formed by the assumption that every mesh entity and every set of approxi-
mation data present in the data structure is equipped with a global (inter-
processor) identifier (IPID). This identifier can be understood as a substitute
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for a global address space used in sequential codes and is composed of a pro-
cessor (subdomain) number and a local (to a given processor) identifier. IPIDs
are not known to sequential modules of the code and all situation where the
access to non-local data is necessary are handled by the domain decomposition
manager.

4 Numerical examples

Two numerical examples showing capabilities of the described approach and
the prototype implementation are presented in this section. The example prob-
lems are very simple from mathematical point of view. However, they show
the effect of practical realization of two important and technically difficult,
from implementation point of view, phases of simulation: parallel multilevel
solution of linear equations and parallel adaptivity combined with transfer of
mesh entities to maintain load balance.

The computational environment for both examples consist of a set of Linux
workstations connected using a standard 100 Mbit Ethernet network. The
results in tables have been obtained using computers equipped with 1.6 GHz
Pentium IV processor and 1 GByte memory.

4.1 Simulating diffusion

The first example is Laplace’s equation

∆u = ∆uex

where uex is the known exact solution:

uex = exp (−x2−y2−z2)

The computational domain consist of the box [0, 0.1] × [0, 1] × [0, 10] and
boundary conditions are chosen to match the exact solution. Discontinuous
Galerkin approximation (Oden et al. [1998]) and the preconditioned GMRES
method are used for solving the problem.

Table 1 presents results for a series of computations corresponding to the
described problem. Two preconditioners are employed, both use the combi-
nation of additive Schwarz preconditioning for the whole problem and multi-
plicative Schwarz within subdomains. The first is single level preconditioner
and the second uses three consecutive mesh levels to achieve multigrid precon-
ditioning. For each preconditioner problems of different sizes, corresponding
to subsequently uniformly refined meshes, are considered. For each combina-
tion preconditioner/problem size results of computations using 1, 2, 4 and 8
workstations are shown. For the largest problem the reference number of pro-
cessors to compute speed up and efficiency is two, since the problem did not
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Fig. 1. Diagram of the proposed modular architecture for computational kernels of
parallel adaptive finite element codes

fit into a memory of a single computer. For the smallest problem the number
of mesh levels was equal two and the only possible preconditioner was single
level.

Results are reported for 10 iterations of the preconditioned GMRES
method to focus on the efficiency of parallel implementation, not considering
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the influence of parallelization on the convergence of GMRES (nevertheless
the latter is reported for completeness). Subsequent meshes are obtained by
uniform refinements and for each mesh NDOF is the number of degrees of free-
dom. Nproc is the number of workstations solving the problem. Error is the
norm of residual after 10 GMRES iterations (within a single restart) and Rate
is the total GMRES convergence rate during solution. Execution time T ime
is a wall clock time. Speed-up and efficiency are computed in the standard
way.

Table 1. Results for 10 iterations of the preconditioned GMRES method and dis-
continuous Galerkin approximation used for solving Laplace’s equation in a box
domain (description in the text).

Single level preconditioner

NDOF Nproc Error*109 Conv. rate Exec. time Speed up Efficiency

48 896 1 0.288 0.443 2.26 1.00 100%
2 0.328 0.448 1.16 1.94 97%
4 0.340 0.450 0.61 3.70 92%
8 0.361 0.452 0.36 6.28 78%

391 168 1 9.313 0.626 17.85 1.00 100%
2 10.173 0.632 8.93 1.99 100%
4 10.252 0.633 4.53 3.94 98%
8 11.183 0.638 2.34 7.63 95%

3 129 344 2 48.041 0.738 70.76 1.00 100%
4 47.950 0.738 35.63 1.98 99%
8 48.748 0.739 17.71 3.99 100%

Three level preconditioner

NDOF Nproc Error*109 Conv. rate Exec. time Speed up Efficiency

391 168 1 0.018 0.335 26.18 1.00 100%
2 0.017 0.334 14.18 1.85 92%
4 0.018 0.335 9.08 2.88 72%
8 0.024 0.346 7.60 3.44 43%

3 129 344 2 0.027 0.350 111.16 1.00 100%
4 0.027 0.350 57.76 1.92 96%
8 0.027 0.348 33.15 3.35 84%

4.2 Simulating convection

The second example is a simple convection problem in the box [0, 38] ×
[0..1000]× [0..18]. A rectangular pattern is traveling from left to right (along
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the y-axis). GMRES with single level Schwarz preconditioning is used, once
again with discontinuous Galerkin approximation. The only interesting pro-
cess for this example, that will be described in more detail, are the subsequent
parallel mesh adaptations and load balancing achieved through transfer of
mesh entities. There are four workstations used for simulation and the com-
putational domain is divided into four subdomains. Subdomains have two
element overlap to enable mesh adaptations and overlapping Schwarz precon-
ditioning. After each time step (in the example run there were 120 time steps)
the mesh is adapted in parallel.

After each mesh adaptation, the number of degrees of freedom in each
subdomain is checked against the average (it is assumed that processors are
of the same speed). If imbalance larger than 10% is encountered, mesh repar-
titioner is called, to provide new domain decomposition. According to the new
assignment of elements to processors and two element overlap requirements,
mesh entities are marked respectively, and the transfer between subdomains
takes place. To enable clustering, mesh transfers consider always whole ele-
ment families - initial elements that are marked for a transfer and all their
antecedents.

Table 2 presents characteristics of mesh transfers for five subsequent time
steps, from 100 to 104. The average number of DOFs in a subdomain remains
constant since the same number of elements appears due to refinements and
disappears due to derefinements. Since refinements and derefinements takes
place in different regions the difference between the subdomain with the great-
est number of DOFs and the subdomain with the smallest number of DOFs
grows after each time step. The numbers of mesh entities reported in the ta-
ble concern the total number of entities effectively transferred between all the
subdomains. The numbers do not include entities for which IPIDs only are
exchanged.

For the whole simulation, the speed up obtained using 4 processors was
equal to 2.67, giving the efficiency of 67%. For the overhead that includes
mesh repartitioning, mesh transfers and the fact that, according to the overall
strategy, the load for processors is not perfectly balanced, the results appear
to be reasonable.

5 Conclusions

The new architecture proposed for parallel adaptive finite element codes ful-
fills the requirement of combining execution efficiency and code modularity.
Further improvements of the prototype implementation concerning efficiency
and the creation of new specialized modules that would increase code’s flexi-
bility are under way.

Acknowledgement. This work has been supported by the Polish State Committee
for Scientific Research under grant 7 T11F 014 20
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Table 2. Characteristics of mesh transfers during parallel simulation for the con-
vection problem.

Time step number

100 101 102 103 104

Average number of DOFs 5086 5086 5086 5086 5086

Maximal number of DOFs 5636 5120 5372 5596 5120

Minimal number of DOFs 4468 5012 4732 4508 4996

Number of transferred vertices 300 0 0 390 0

Number of transferred edges 1212 0 0 1671 0

Number of transferred faces 1284 0 0 1863 0

Number of transferred elements 438 0 0 657 0
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Summary. Most finite element, or finite volume software is built around a fixed
mesh data structure. Therefore, each software package can only be used efficiently for
a relatively narrow class of applications. For example, implementations supporting
unstructured meshes allow the approximation of complex geometries but are in gen-
eral much slower and require more memory than implementations using structured
meshes. In this paper we show how a generic mesh interface can be defined such that
one algorithm, e. g. a discretization scheme, works on different mesh implementa-
tions. For a cell centered finite volume scheme we show that the same algorithm
runs thirty times faster on a structured mesh implementation than on an unstruc-
tured mesh and is only four times slower than a non-generic version for a structured
mesh. The generic mesh interface is realized within the Distributed Unified Numerics
Environment DUNE.

1 Introduction

There exist many simulation packages for the numerical solution of partial
differential equations ranging from small codes for particular applications or
teaching purposes up to large ones developed over many years which can solve
a variety of problems. Each of these packages has a set of features which the de-
signers decided to need to solve their problems. In particular, the codes differ
in the kind of meshes they support: (block) structured meshes, unstructured
meshes, simplicial meshes, multi-element type meshes, hierarchical meshes, bi-
section and red-green type refinement, conforming or non-conforming meshes,
sequential or parallel mesh data structures are possible.

Using one particular code it may be impossible to have a particular feature
(e. g. local mesh refinement in a structured mesh code) or a feature may be
very inefficient to use (e. g. structured mesh in unstructured mesh code). If
efficiency matters, there will never be one optimal code because the goals
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Fig. 1. Encapsulation of data structures with abstract interfaces.

are conflicting. Extension of the set of features of a code is often very hard.
The reason for this is that most codes are built upon a particular mesh data
structure. This fact is well known in computer science (Brooks [1975]).

A solution to this problem is to separate data structures and algorithms
by an abstract interface, i. e.

• one writes algorithms based on an abstract interface and
• uses exactly the data structure that fits best to the problem.

Figure 1 shows the application of this concept to two different places in a
finite element code: A discretization scheme accesses the mesh data structure
through an abstract interface. The interface can be implemented in different
ways, each offering a different set of features efficiently. In the second example
an algebraic multigrid method accesses a sparse matrix data structure through
an abstract interface.

Of course, this principle also has its implications: The set of supported
features is built into the abstract interface. Again, it is in general very difficult
to change the interface. However, not all implementations need to support the
whole interface (efficiently). Therefore, the interface can be made very general.
At run-time the user pays only for functionality needed in the particular
application.

The paper is organized as follows: The next section describes the Dis-
tributed Unified Numerics Environment (DUNE) which is based on abstract
interfaces and shows how these interfaces can be implemented very efficiently
using generic programming in C++. Then, in Section 3, we describe in more
detail the abstract interface for a general finite element or finite volume mesh
and in Section 4 we evaluate the concept on the basis of a cell centered finite
volume scheme for various implementations of the mesh interface.

2 The DUNE Library

Writing algorithms based on abstract interfaces is not a new concept. Classical
implementations of this concept in procedural languages use function calls. As
an example consider the basic linear algebra subroutines BLAST [2001]. In
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object oriented languages one uses abstract base classes and inheritance to
implement polymorphism. E. g., C++ offers virtual functions to implement
dynamic polymorphism. The function call itself poses a serious performance
penalty in case a function/method in the interface consists only of a few
instructions. Therefore, function calls and virtual method invocation can only
be used efficiently for interfaces with sufficiently coarse granularity.

However, to utilize the concept of abstract interfaces to full extent one
needs interfaces with fine granularity. E. g., in the case of a mesh interface
one needs to access coordinates of nodes, normals of faces or evaluate ele-
ment transformations at individual quadrature points. Generic programming,
implemented in the C++ language through templates, offers a possibility to
implement interfaces without performance penalty. The abstract algorithm
is parameterized by an implementation of the interface (a concrete class) at
compile-time. The compiler will then be able to inline small functions and to
employ all code optimizations. Basically, the interface is removed completely
at compile-time. This technique is also called static (or compile-time) poly-
morphism and is used extensively in the well-known standard template library
STL, see Musser et al. [2001]. Many C++ programming techniques we use are
described in Barton and Nackman [1994] and Veldhuizen [2000].

DUNE is a template library for all software components required for the nu-
merical solution of partial differential equations. Figure 2 shows the high level
design. User code written in C++ will access geometries, grids, sparse linear
algebra, visualization and the finite element functionality through abstract
interfaces. Many implementations of one interface are possible and particular
implementations are selected at compile-time. It is very important that incor-
poration of existing codes is very natural within this concept. Moreover, the
design can also be used to couple different existing codes in one application.

In the rest of this paper we concentrate on the design of the abstract
interface for finite element and finite volume meshes.
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3 Design of the Sequential Grid Interface

There are many different types of finite element or finite volume grids. We
have selected the features of our grid interface according to the needs of our
applications. In particular, we wanted to support grids that

• discretize unions of manifolds (e. g. fracture networks, shell elements),
• consist of elements of different geometric shapes (e. g tetrahedra, prisms,

pyramids and hexahedra),
• support local, hierarchical mesh refinement.

In the following we define a grid T in mathematical terms. It is supposed to
discretize a domain Ω ⊂ IRn, n ∈ IN, n > 0, with piecewise smooth boundary
∂Ω. A grid T consists of L+ 1 grid levels

T = {T0, T1, . . . , TL} .

Each grid level Tl consists of sets of grid entities Ecl of codimension c ∈
{0, 1, . . . , d} where d ≤ n is the dimensionality of the grid:

Tl =
{
E0
l , . . . , Edl

}
.

Each entity set consists of individual grid entities which are denoted by Ωcl,i:

Ecl =
{
Ωcl,0, Ω

c
l,1, . . . , Ω

c
l,N(l,c)−1

}
.

The number of entities of codimension c on level l is N(l, c) and we define a
corresponding index set

Icl = {0, 1, . . . , N(l, c)− 1}.

Definition 1. T is called a grid if the following conditions hold:

1. (Partitioning). The entities of codimension 0 on level 0 define a partition-
ing of the whole domain:

⋃

i∈I00

Ω0
0,i = Ω, ∀i 6= j : Ω0

0,i ∩Ω0
0,j = ∅.

2. (Nestedness). Entities of codimension 0 on different levels form a tree
structure. We require:

∀l > 0, i ∈ I0
l : ∃!j ∈ I0

l−1 : Ω0
l,i ⊂ Ω0

l−1,j .

This Ω0
l−1,j is called father of Ω0

l,i. For entities with at least one side on the
boundary this condition can be relaxed. We define the set of all descendant
entities of codimension 0 and level l ≤ L of an entity Ω0

k,i as

CL(Ω0
k,i) = {Ω0

l,j| Ω0
l,j ⊂ Ω0

k,i, l ≤ L}.
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3. (Recursion over codimension). The boundary of a grid entity is composed
of grid entities of the next higher codimension, i. e. for c < d we have

∂Ωcl,i =
⋃

j∈Ic+1
l,i ⊂I

c+1
l

Ωc+1
l,j .

Grid entities Ωdl,j of codimension d are points in IRn.
4. (Reference elements and dimension). For each grid entity Ωcl,i there is a

reference element ωcl,i ⊂ IRd−c and a sufficiently smooth map

mc
l,i : ωcl,i → Ωcl,i

from the reference element to the actual element. Reference elements are
convex polyhedrons in IRd−c. The dimension of the grid d is the dimension
of the reference elements corresponding to grid entities of codimension 0.
For c = d the map md

l,i simply returns the corresponding point in IRn.
5. (Nonconformity). Note that we do not require the mesh to be conforming

in the sense that the intersection of the closure of two grid entities of
codimension c is either zero or a grid entity with codimension greater
than c. However, we require that all grid entities in Ecl are distinct, i. e. :

∀i, j, c, l : Ωcl,i = Ωcl,j ⇒ i = j.

The set of all neighbors of an entity Ω0
l,i is represented by the set of all

non empty intersections with that entity:

I(Ω0
l,i) = {Ω0

l,i ∩Ω0
l,j | Ω0

l,i ∩Ω0
l,j 6= ∅, i 6= j}.

Classes in the DUNE grid interface

According to the description in Definition 1, the grid interface consists of the
following abstract classes:

1. Grid〈dim, dimworld, ...〉
This class corresponds to the whole grid T . It is parametrized by the grid
dimension d = dim and the space dimension n = dimworld. The grid
class provides iterators for the access to its entities.

2. Entity〈codim, dim, dimworld, ...〉, Element〈dim, dimworld, ...〉
Grid entities Ωcl,i of codimension c = codim are realized by the classes En-
tity and Element. The Entity class contains all topological information,
while geometrical specifications are provided by the Element class.

3. LevelIterator〈codim, dim, dimworld, ...〉
The level iterator gives access to all grid entities on a specified level l.
This allows a traversal of the set Ecl .
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Fig. 3. DUNE Grid walk-trough of an 3 dimensional Grid.

4. HierarchicIterator〈dim, dimworld, ...〉
Another possibility to access grid entities is provided by the hierarchic
iterator. This iterator runs over all descendant entities with level l ≤ L of
a given entity Ω0

k,i. Therefore, it traverses the set CL(Ω0
k,i).

5. IntersectionIterator〈dim, dimworld, ...〉
Part of the topological information provided by the Entity class of codi-
mension 0 is realized by the intersection iterator. For a given entity Ω0

l,i

the iterator traverses the set I(Ω0
l,i).

A specific grid is realized by an implementation of derived classes of these
abstract interface classes. The efficiency of the specific implementations is
guaranteed by using static polymorphism (see Barton and Nackman [1994]).
Figure 3 gives a sketch of the functionality of the grid interface. It shows the
access of the grid entities via level, or hierarchic iterators and displays the
recursive definition of entities via codimension.

4 Example and Performance Evaluation

In order to assess the performance of the proposed concept we compare dif-
ferent implementations for the numerical solution of the following linear hy-
perbolic equation:

∂u

∂t
+∇ · (vu) = 0 in Ω, u = g on Γin = {x ∈ ∂Ω | v(x) · n ≤ 0}.

We discretize this equation with a cell-centered finite volume scheme using
full upwind and an implicit Euler scheme in time. We note that this is not
a particularly good scheme. However, it is very well suited to compare run-
times since it is simple but contains all essential features of more complicated
schemes as far as the mesh interface is concerned.

Table 1 shows the run-time for assembling the system matrix using various
implementations. Implementation A is for a structured mesh. In implementa-
tions B and C the discretization is based on the DUNE mesh interface, thus it
can be used for any dimension and element type. B uses simplegrid, an imple-
mentation of the mesh interface supporting structured meshes of variable di-
mension with entities of codimension d and 0. C uses an implementation of the
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Table 1. Run-time for matrix assembly in a cell-centered finite volume scheme. We
used a Pentium IV computer (2.4 GHz) with the Intel C++ compiler icc 7.0.

Key Implementation Grid Run-time [s]

A structured grid 1283 hex 0.37
B DUNE/simplegrid 1283 hex 1.59
C DUNE/albertgrid 6 · 643 tet 4.20
D Albert 6 · 643 tet 3.13
E UG 6 · 643 tet 2.64
F UG 1283 hex 45.60

mesh interface based on the PDE toolbox ALBERT, see Schmidt and Siebert
[2000], D is the same test using ALBERT directly without going through the
interface. ALBERT supports simplicial elements in two and three space di-
mensions with bisection refinement. Finally, in E and F, we implemented the
discretization scheme within the PDE framework UG (Bastian et al. [1997])
using hexahedral and tetrahedral meshes. Increase of run-time per element
from E to F is due to the more costly element transformation for hexahe-
dra. We are currently implementing the DUNE mesh interface based on UG.
Run-times of cases E and F can be considered as preliminary results for a
DUNE/UG mesh module.

From Table 1 we conclude that performance can be increased by a factor
of 30 when we replace the unstructured hexahedral mesh (F) by a struc-
tured mesh (B). Memory requirements are reduced by a factor 10. These
improvements are achieved without changes in the application code (here the
discretization). Additional savings by a factor 4 in run-time (A) are only possi-
ble at the cost of reduced functionality of the user code. Memory requirements
of the DUNE/simplegrid and structured mesh variants are the same.

Fig. 4. Large scale parallel three-dimensional simulations. Contaminant transport
in a heterogeneous medium (higher order Godunov scheme, 5 ·108 cells, left), density
driven flow in a porous medium (8 · 108 cells in three dimensions, right).
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5 Conclusion and Future Prospects

In this paper we presented a new framework for the numerical solution of
partial differential equations. The concept consequently separates data struc-
tures and algorithms. Algorithms are written in terms of abstract interfaces,
the interfaces are implemented efficiently using static polymorphism in C++.
We evaluated the performance of this approach for a simple discretization
scheme. The run-time can be improved by up to a factor 30 by replacing an
unstructured mesh implementation with a structured mesh implementation.
The improvement is possible without any changes in the application code.

Currently we are extending the mesh interface by a general parallel data
distribution model which will allow the formulation of overlapping and non
overlapping domain decomposition methods as well as parallel multigrid meth-
ods on the same interface. First results of the parallel implementation are
shown in Figure 4. Large scale computations with up to 1010 grid cells are
possible on a 500 processor Linux cluster with a structured mesh implemen-
tation.

For data visualization, DUNE will be linked to the graphics packages
GRAPE, Geßner et al. [1999], and AMIRA, Amira [2002].
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Summary. We present a new concept for the realization of finite element compu-
tations on parallel machines with distributed memory. The parallel programming
model is based on a dynamic data structure addressed by points. All geometric ob-
jects (cells, faces, edges) are referenced by their midpoints, and all algebraic data
structures (vectors and matrices) are tied to the nodal points of the finite elements.
The parallel distribution of all objects is determined by processor lists assigned to
the reference points.
Based on this new model for Distributed Point Objects (DPO) a first application
to a geotechnical application with Taylor-Hood elements on hexahedra has been
presented in Wieners et al. [2004]. Here, we consider the extension to parallel refine-
ment, curved boundaries, and multigrid preconditioners. Finally, we present parallel
results for a nonlinear model problem with isoparametric cubic elements.

1 Introduction

Many finite element applications require a fine mesh resolution or a huge num-
ber of time steps. Together with the increasing complexity of the considered
models, the solution of such problems is only possible with elaborated solvers
such as domain decomposition methods or multigrid preconditioners. In order
to obtain a reasonable computing time, very often this can be realized only
on a parallel machine.

For this purpose, large software developments are available, e. g., PLTMG
(Bank [1998]), PETSc (Balay et al. [2001]), and UG (Bastian et al. [1997]).
Now, a discussion starts, how such developments can be unified and combined
by a general framework Bastian et al. [2004], so that one is not fixed to the
underlying programming model of the software.

Here, we introduce a new parallel programming model which is specially
designed for the support of nonlinear engineering finite element applications,
and which provides a platform for the development of modern solvers and
their adaptation to such problems. The main features of the concept are flex-
ibility, transparence, and extensibility. It allows the realization of complex
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algorithms in a very compact form, and it reduces the implementation time
for new applications. In particular, this make the code attractive for educa-
tional purposes.

Our concept is based on long experiences with parallel software devel-
opment and parallel simulations for partial differential equations, cf. Bastian
et al. [1998, 1999, 2000], Lang et al. [2002]. It can be understood as an abstrac-
tion and simplification of our previous code. In terms of software engineering
this study describes the underlying structure of a prototype implementation
which provides optimal support for numerical experiments and numerical anal-
ysis in the investigation of new models, discretizations, and solvers.

This contribution is organized as follows. In Section 2, we introduce the
programming model for Point Objects, which is enhanced in Section 3 to par-
allel distributed objects. In addition, we define a parallel refinement process
leading to a hierarchical mesh structure. This is coupled in Section 4 with a
multilevel parallel linear algebra, where parallel multigrid methods can be de-
fined. In Section 5 this is combined with an abstract model for finite elements
(including the requirements for isoparametric elements). Finally, in Section 6
the application to a nonlinear model problem is presented.

2 Point Objects

Our geometry model is based on a finite set of points P ⊂ Rd. We consider
different types of points: corner points, edge midpoints, face midpoints, cell
midpoints, and the exception point P = ∞. A cell C = (P1, ..., PN ) is deter-
mined by a vector of N different corner points Pj ∈ P , and the convex hull of
the corner points is denoted by conv(C) ⊂ Rd. A face F = (Pleft, Pright) ∈ P2

is determined by a pair of points representing the midpoints of the cells Cleft

and Cright of the common face conv(Cleft) ∩ conv(Cright); boundary faces are
characterized by Pright = ∞. An edge E = (Pleft, Pright) ∈ P2 represents the
line from Pleft to Pright. Now, a meshM = (C,F , E ,V ,B,G) is given by

• a cell mapping C : P −→ ⋃
N

PN , which assigns every cell midpoint PC the

cell C = C(PC) represented by the vector of N corner points;
• a face mapping F : P −→ P2, which assigns every face midpoint PF the

two adjacent element midpoints;
• an edge mapping E : P −→ P2, which assigns every edge midpoint PE the

two adjacent vertices;
• a vertex mapping V representing a list of vertices;
• a boundary mapping B representing a list of boundary faces for the as-

signment of segment numbers specifying boundary conditions;
• a geometry mapping G : P −→ Rd, which assigns points P on the polyg-

onal boundary of
⋃
C conv(C) the projection onto the (possibly) curved

boundary of the computational domain Ω.
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All mappings return an empty object for points of wrong type. We use the
notation C ∈ C if C ∈ C(P), and P ∈ PC for the cell midpoints, etc.

We consider only consistent meshes with admissible triangulations, i. e., we
assume that the cells define a polygonal approximation Ω̄C =

⋃
C∈C conv(C)

of a domain Ω ⊂ Rd, such that conv(C) ∩ conv(C′) = conv(C ∩ C′) for two
cells C,C′ ∈ C, i. e., the intersection is empty, a common vertex in V , a
common edge in E , or a common face in F . In general, we assume G(P ) = P
for the boundary vertices P ∈ PV ∩∂Ω, and G(P ) ∈ ∂Ω for the P ∈ PE ∩∂ΩC
and P ∈ PF ∩ ∂ΩC . The geometry mapping is used for the realization of
isoparametric elements and for the refinement algorithm (see below).

Example We illustrate the data structure for a mesh with two triangles
in R2. Inserting the first triangle C1 = (P1, P2, P3) in M results in the point
set P = {P1, P2, P3, P12 = 1

2 (P1 + P2), P13 = 1
2 (P1 + P3), P23 = 1

2 (P2 +
P3), P123 = 1

3 (P1 +P2 +P3)}, the edges E(P12) = (P1, P2), E(P23) = (P2, P3),
E(P13) = (P1, P3), and the faces F(P12) = (P123,∞), F(P23) = (P123,∞),
F(P13) = (P123,∞).

P3

P2

P1

P13

P12

P123
P23

Now, the second triangle C2 = (P2, P4, P3) is inserted, which adds the new
points P24 = 1

2 (P2 + P4), P34 = 1
2 (P3 + P4), P234 = 1

3 (P2 + P3 + P4) to the
points set P , new edges E(P24) = (P2, P4), E(P34) = (P3, P4), and the new
faces F(P24) = (P234,∞), F(P34) = (P234,∞); the face F(P23) := (P123, P234)
is now updated. P3

P2

P34

P1 P4

P24

P13

P12

P123
P23

P234

After inserting all cells, we can identify the neighborhood relationship by the
faces, where a boundary face can be identified by testing for Pright = ∞.
Then, for curved boundaries the projection of edge midpoints and face mid-
points onto the boundary can be computed. In general, this requires an ad-
ditional data structure for the boundary definition. In our application, where
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the boundary is defined by a periodic cubic spline which is uniquely defined by
the corner vertices, this can be realized without further geometry information.

3 Distributed Objects

A parallel distribution is determined by a partition map

π : P −→ 2{1,2,...,Nprocs}

assigning to every point P ∈ P the subset π(P ) ⊂ {1, 2, ..., Nprocs} of pro-
cessors, where this point is represented. This defines also a unique master
processor µ(P ) = minπ(P ) for every point, and it determines an overlapping
partition

P = P1 ∪ · · · ∪ PNprocs , Pq = {P ∈ P : q ∈ π(P )}.

We obtain the local mesh Mq = (Cq,Fq, Eq,Vq,Bq, πq) on processor q by
restricting all mappings to Pq. Then, the parallel distribution is completely
determined by the partition map π. An admissible parallel distribution re-
quires that every cell can be represented at least on one processor q, i. e., for
C = (P1, ..., PN ) ∈ Cq we require P ∈ Pq. Moreover, for every face F ∈ F we
require F ∈ ⋃

p,q∈π(PF )

Pp × Pq.

For the determination of an admissible distribution of the mesh M onto
Nprocs processors, we assign a destination processor dest(C) ∈ {1, 2, ..., Nprocs}
to every cell C ∈ C, defining a disjoint partition

C = C1 ∪ · · · ∪ CNprocs , Cq = {C ∈ C : dest(C) = q}

and a domain decomposition

Ω̄C = Ω̄1 ∪ · · · ∪ Ω̄Nprocs , Ω̄q =
⋃

C∈Cq

conv(C).

A corresponding compatible partition map is defined by

π(PC) = {dest(C)}, C ∈ C,
π(PF ) = {dest(C) : PC ∈ F}, F ∈ F ,
π(PE) = {dest(C) : E ⊂ C}, E ∈ E ,
π(P ) = {dest(C) : P ∈ C}, P ∈ V .

Thus, the partition map can be computed in advance before the realization
of the parallel distribution.

Example (continued) The parallel distribution with dest(C1) = 1 and
dest(C2) = 2 results in π(P1) = π(P12) = π(P13) = π(P123) = {1}, π(P2) =
π(P3) = π(P23) = {1, 2}, and π(P4) = π(P24) = π(P34) = π(P234) = {2}.
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Parallel Refinement

A uniform refinement of a cell C = (P1, ..., PN ) inM is defined by a refinement
rule R = {rij : i = 1, ..., N, j = 1, ..., 2d}: let (P1, ..., PM ) = (VC , EC ,FC , PC)
be the vector of cell vertices, edge midpoints, face midpoints, and the cell
midpoint. Then, insert the cells Cj = (G(Pr1j ), ....,G(PrNj )), j = 1, ..., 2d in
the new mesh N .

The new partition map is determined independently and can be computed
in advance before the refinement of the cells is realized:

πN (P ) = πM(P ) for all P ∈ PM,
πN (1

2
Pleft + 1

2
G(PE)) = πN (1

2
G(PE) + 1

2
Pright) = πM(PE)

for E = (Pleft, Pright) ∈ EM,
πN (G(PFj )) = πM(PF ) for F ∈ FM, j = 1, .., 2d−1

πN (PCj ) = πN (PEk
) = πM(PC) for C ∈ CM, j = 1, .., 2d and inner edges,

where PFj and PCj are the midpoints of the refined face F or cell C.

Example (continued) The cell (P1, P2, P3) is refined (in case of no
boundary projections) to four cells C1 = (P1, P12, P31), C2 = (P2, P23, P12),
C3 = (P3, P31, P23), C4 = (P12, P23, P31), and we set πN (Pj) = πM(Pj),

πN (Pjk) = πN (1

2
Pj + 1

2
Pjk) = πN (1

2
Pjk + 1

2
Pk) = πM(Pjk), and finally

πN (PC1) = πN (PC2) = πN (PC3) = πN (PC4) = πN (1

2
Pij + 1

2
Pjk) = πM(PC).

4 Parallel Linear Algebra

We assign to every point P ∈ P the number of degrees of freedom NP ≥ 0,
where the point set P may be extended by nodal points of the finite element
discretization. Let NP =

∑
P∈P

NP be the total number of unknowns.

A vector u ∈ RNP ≃ ∏
P∈P

RNP maps a point P to the vector u[P ] ∈ RNP of

unknowns associated to the point P ∈ P .
We use two different representation of distributed vectors (cf. Bastian [1996]):

• Solution vectors and correction vectors u are represented consistently in

V [M] :=
{
(u1, ..., uNprocs

) ∈ ∏RNPq : up[P ] = uq[P ], p, q ∈ π(P )
}
.

This defines a global vector u by u[P ] = uq[P ] for any q ∈ π(P ).
• Right-hand side vectors and residual vectors r are represented additively,

i. e., any additive vector (rq) ∈
∏

RNPq represents at P ∈ P the value
r[P ] =

∑
q∈π(P )

rq[P ]. Collecting the distributed values at the master points
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and replacing (rq) by rq [P ] = r[P ] for q = µ(P ) and rq[P ] = 0 else results
in a unique representation in

V (M) :=
{
(r1, ..., rNprocs

) ∈ ∏RNPq : rq[P ] = 0, q 6= µ(P )
}
.

This allows for the parallel evaluation of the norm
√
rT r =

√∑
rTq rq.

In our programming model we define the following parallel operators:

• The stiffness matrix corresponds to an operator A : V [M] −→ V (M). In
particular, for the solution vector (uq) ∈ V [M] and the right-hand side
(bq) ∈ V (M) the parallel residual (bq − Aquq) ∈ V (M) is independent

of the distribution. For any additive matrix (Aq) ∈
∏

RNPq ×RNPq the
application of the parallel operator consists of two steps: compute an addi-
tive representation (Aquq) ∈

∏
RNPq by local matrix-vector multiplication

without parallel communication, and then collect the values on π(P ) for
all points P to obtain a vector in V (M).

• A parallel preconditioner corresponds to an operator B : V (M) −→ V [M].

E. g., B[P, P ] =
( ∑
q∈π(P )

Aq[P, P ] ∈ RNP×NP

)−1

defines the block-Jacobi

preconditioner. For the application, in the first step the local computation
results in an additive result (Bqrq) without parallel communication. Then,
this is accumulated on all processors in π(P ) to obtain a vector in V [M].

• We consider transfer operators I = INM : V [M] −→ V [N ] prolongating
values on a coarse mesh M to a fine mesh N . For the application, in the
first step the local application results in (Iquq) without parallel commu-
nication. For conforming discretizations and uniform parallel refinement
described in the previous section, the result is consistent in V [N ]; in gen-
eral, this requires local communication.
The adjoined operator IT : V (N ) −→ V (M) restricts values by first com-
puting an additive result (ITq rq) without parallel communication and then
collecting the values on π(P ) for all points P to obtain a vector in V (M).

Together with the dual pairing in V [M]×V (M), this allows for a general for-
mulation of parallel iterative solvers such as Krylov methods with multigrid
preconditioner, where global communication is restricted to the inner prod-
ucts and the application of the parallel operators.

5 Parallel Finite Elements

Corresponding to cell based finite element discretizations we define the cell
nodal points by PC := {P ∈ P ∩ conv(C) : NP > 0}, the cell vector
u[C] =

(
x[P ]

)
P∈PC

∈ RNC with NC =
∑

P∈PC

NP , and the cell matrix

A[C] =
(
A[P,Q]

)
P,Q∈PC

∈ RNC ,NC . In the case of cubic triangular elements

we have NC = 10. Again, the isoparametric transformation is determined by
the application of the geometry mapping G to the nodal points.
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A nonlinear finite element problem is given by the following assembling
routines DC , RC , JC , running in parallel over all cells C ∈ Cq of a mesh M:

• Essential boundary conditions are assigned by a Dirichlet routineDC(u[C])
to the corresponding indices i = 1, ..., NP , P ∈ PC ; after the assembling
it has to be guaranteed that this results in parallel consistent Dirichlet
values respecting (uq) ∈ V [M].

• The additive residual r[C] = RC(u[C]) is computed depending on the
actual solution vector u[C]; after the assembling the residual values at
the distributed points P have to be collected on µ(P ) to obtain a unique
additive representation in V (M).

• If the residual norm is not small enough, the Jacobian A[C] = JC(u[C]) is
assembled additively; in every nonlinear step a consistent correction vector
c ∈ V [M] is computed by solving the linear equation Ac = r iteratively
up to a given accuracy, and the solution vector is updated by u := u+ c.

6 A Numerical Experiment

We present a numerical approximation of the quasi-linear model problem

u ∈ H1
0 (Ω) : −∆u = λ exp(u)

(Gelfand-Bratu problem) with cubic isoparametric finite elements. It is well
known that this equation admits at least two solutions for λ ∈ (0, λ∗), with a
turning point at the critical parameter λ∗ (see, e. g., Lions [1982]).

Fig. 1. A nonconvex domain Ω,
where the boundary ∂Ω is of class
C2,1 (represented by a cubic spline).

While analytical tools provide the existence of only two solutions, it could
be shown by a computer assisted existence proof in Plum and Wieners [2002]
for a special nonconvex domain, that a further (symmetry breaking) solution
branch exists. Such a solution is illustrated in Fig. 2. For this method (show-
ing the existence of a continuous solution via Schauders fixpoint theorem),
extremely smooth and accurate approximations are required.

Fig. 2. Symmetry breaking solution
of the Gelfand problem for λ = 0.45,
computed in parallel with isopara-
metric cubic elements after 6 geome-
try preserving refinement steps of the
mesh in Fig. 1.

This example is realized (by the extended use of the standard template
library) within ca. 10000 lines of code (and ca. 100 lines for the definition of
the boundary value problem). The solution is computed on a Linux cluster
with 36 processors in less than 5 minutes.
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Local Defect Correction Techniques Applied to
a Combustion Problem

Martijn Anthonissen
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Summary. The standard local defect correction (LDC) method has been extended
to include multilevel adaptive gridding, domain decomposition, and regridding. The
domain decomposition algorithm provides a natural route for parallelization by em-
ploying many small tensor-product grids, rather than a single large unstructured
grid. The algorithm is applied to a laminar Bunsen flame with one-step chemistry.

1 Introduction

Partial differential equations (PDEs) with solutions that have highly localized
properties appear in many application areas, e.g. combustion, shock hydro-
dynamics, and transport in porous media. Such problems require a fine grid
only in the region(s) of high activity, whereas elsewhere a coarser grid suffices.
We consider a discretization method for elliptic boundary value problems in-
troduced by Hackbusch [1984]. In this technique, the local defect correction
(LDC) method, the discretization on the composite grid is based on a com-
bination of standard discretizations on uniform grids with different spacings
that cover different parts of the domain. The coarse grid must cover the entire
domain, and its spacing is chosen in agreement with the relatively smooth be-
havior of the solution outside the high activity areas. Apart from this global
coarse grid, one or more local fine grids are used that are also uniform, each
of which covers only a (small) part of the domain and contains a high activity
region. The grid spacings of the local grids are chosen in agreement with the
behavior of the continuous solution in that part of the domain.

The LDC method is closely related to the fast adaptive composite grid
(FAC) method (McCormick [1984a], McCormick and Thomas [1986]). An im-
portant difference with LDC is that an explicit discretization scheme for the
composite grid is proposed, in which special difference stars near the grid inter-
faces are used. The resulting discrete system is solved by an iterative method
which may take advantage of the composite grid structure. This is a crucial
difference with the LDC method, which combines standard discretizations on
uniform grids only and does not use an a priori given composite grid dis-
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cretization. For the FAC method in a variational setting, convergence results
have been given by McCormick [1984b]. The variational theory is extended to
the finite volume element method in McCormick and Rüde [1994]. Xu [1992]
presents an abstract framework and general convergence theory for a wide
range of iterative methods, among which domain decomposition, multigrid
and multilevel methods. He groups the algorithms in parallel and successive
subspace correction methods. Xu shows in particular that FAC is equivalent
to classic multigrid with smoothing in the area of refinement only.

The idea to approximate low frequency components on a coarse grid and
high frequency components on a (local) fine grid forms the basis of multigrid.
McCormick and Ruge [1986] present unigrid, an algorithm based on these
principles and especially suited for testing the feasibility of using multigrid
in a given application. Xu and Zhou [1999, 2000, 2001] use the fact that the
global behavior is dominated by low frequencies and the local behavior by
high frequencies to design discretization schemes in a finite element context.
They study elliptic boundary value problems and prove error estimates for
the finite element solution. Based on these estimates, they develop several
algorithms. The simplest one is to solve a global problem on a locally refined
grid. This algorithm is improved by using a residual correction technique,
in which a global coarse grid problem is solved first. Next the coarse grid
residual is corrected by solving the problem on one or more locally refined
grids that cover the whole domain but are very coarse outside the area of
refinement. Note that the global coarse grid problem needs to be solved only
once and is not coupled with the local problems. This is different from the
LDC method, in which the local problems take artificial boundary conditions
from the coarse grid solution and cover part of the domain only. Xu and Zhou
[1999, 2000] present parallel versions of their algorithms by subdividing the
domain in disjoint subdomains. In Xu and Zhou [2000], further algorithms are
developed by ignoring the lower order terms of the PDE on the local grids,
which can be done because the symmetric positive definite part dominates the
high frequency components. Xu and Zhou [2001] study a solution technique
for nonlinear elliptic PDEs. The full nonlinear problem is first discretized by
a standard finite element technique on a global coarse grid. Next, the residual
is corrected using linearized discretizations on fine grids.

This paper deals with some extensions to the standard LDC method; we
add adaptivity, multilevel refinement, domain decomposition and regridding.
We apply the new algorithm to a Bunsen flame problem previously treated
by Bennett and Smooke [1998].

2 Formulation of the LDC method

Before presenting our extensions to the LDC method, we begin by describing
the standard LDC method. We consider the elliptic boundary value problem

{
Lu = f, in Ω,
u = g, on ∂Ω.

(1)
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In (1), L is a linear elliptic differential operator, and f and g are the source
term and Dirichlet boundary condition, respectively. Other types of boundary
conditions can be used as well, but for ease of presentation we formulate the
method for (1). To discretize (1), we first choose a global coarse grid (grid
spacing H), which we denote by ΩH . An initial approximation uH0 on ΩH can
be found by solving the system

LHuH0 = fH , (2)

which is a discretization of (1). In (2), the right-hand side fH incorporates
the source term f as well as the Dirichlet boundary condition g. We assume
LH to be invertible.

Assume that the continuous solution u of (1) has a high activity region in
some (small) part of the domain. We select a subdomain Ωl ⊂ Ω such that
the high activity region of u is contained in Ωl. In Ωl, we choose a local fine
grid (grid spacing h), which we denote by Ωhl , such that grid points of the
global coarse grid that lie in the area of refinement also belong to the local
fine grid. In order to formulate a discrete problem on Ωhl , we define artificial
boundary conditions on Γ , the interface between Ωl and Ω \Ωl. We apply an
interpolation operator P h,H that maps function values at coarse grid points
on the interface to function values at fine grid points on the interface. In the
numerical simulations we use linear interpolation. In this way, we find the
following approximation uhl,i, iteration i = 0, on Ωhl :

Lhl u
h
l,i = fhl −Bhl,ΓP h,H

(
uHi |Γ

)
. (3)

In (3), matrix Lhl (assumed to be invertible) is a discrete approximation to L
on the subdomain Ωl. The first term on the right-hand side incorporates the
source term f as well as the Dirichlet boundary condition g on ∂Ωl \ Γ given
in (1). In the second term, the operator Bhl,Γ represents the dependence of the
fine grid points on the coarse grid solution at the artificial boundary Γ .

We will now use the local fine grid solution to update the coarse grid
approximation. If we were able to substitute the projection on ΩH of the ex-
act solution u of boundary value problem (1) into the coarse grid discretiza-
tion (2), we would find the local discretization error or local defect dH , given
by LH

(
u|ΩH

)
= fH + dH . We could then use dH within the right-hand side

of (2) to find a better approximation on the coarse grid. However, as we do
not know u, we instead use the fine grid approximation uhl,0 to estimate dH at

the coarse grid points inside the area of refinement (x, y) ∈ ΩHl := ΩH ∩ Ωl.
We define wH0 as the global coarse grid function of best approximations so far:

wH0 (x, y) :=

{
uhl,0(x, y), (x, y) ∈ ΩHl ,
uH0 (x, y), (x, y) ∈ ΩH \ΩHl ,

and estimate the defect by dH = LH
(
u|ΩH

)
− fH ≈ LHwH0 − fH =: dH0 .

Assuming that the stencil at grid point (x, y) involves (at most) function
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values at (x + iH, y + jH) with i, j ∈ {−1, 0, 1}, dH0 provides an estimate
of the local discretization error of the coarse grid discretization at all points
of ΩHl . We apply the coarse grid correction step to find uHi , i = 1:

LHuHi+1 =

{
fH(x, y) + dHi (x, y), (x, y) ∈ ΩHl ,
fH(x, y), (x, y) ∈ ΩH \ΩHl .

(4)

Because (4) incorporates estimates of the local discretization error of the
coarse grid discretization, uH1 is assumed to be more accurate than uH0 . Hence
it provides a better boundary condition on Γ , and a better solution on the
local fine grid can be found by solving (3) with i = 1. This leads to an iterative
method: we can solve a new updated coarse grid problem.

Often one or two LDC iterations will suffice to obtain a satisfactory ap-
proximation on the composite grid due to the high rate of convergence of the
method. Typically, iteration errors are reduced by a factor of 10 to 1, 000 in
each iteration step (cf. Ferket and Reusken [1996], Hackbusch [1984], Nefedov
and Mattheij [2002], Anthonissen [2001]). A detailed analysis of the conver-
gence behavior for diffusion equations is given in Anthonissen et al. [2003b].

3 Extensions to the LDC method

We now extend the LDC algorithm by adding adaptivity, multilevel refine-
ment, domain decomposition, and regridding. The result will be a technique
for discretizing and solving (1) on a composite grid found by adaptive grid
refinement, given a code for solving boundary value problem (1) on a tensor-
product grid in a rectangular domain.

Adaptive multilevel refinement
We assume that the continuous solution u has one area of high activity; it is
straightforward to generalize the algorithm to the case where there is more
than one area of high activity. We assume that the initial coarse grid is given
by its x- and y-coordinates xi, yj , and define the boxes Bij formed by grid
points and points on the boundary, viz. Bij = (xi, xi+1) × (yj , yj+1). In or-
der to determine which boxes require refinement, we introduce the positive
weight function of Bennett and Smooke [1998, 1999] as an indicator for solu-
tion roughness. As detailed in Anthonissen et al. [2003a], the weight function
assigns a value to each box Bij and points will be added in regions where
the weight function is large, so it should measure the rapidity of change of u.
Xu and Zhou [2000] give theoretical justification why we may use a global
a posteriori error estimate for equi-distribution of the error, as we do here.
Apart from high activity boxes, we also flag their neighbors for refinement
in order to prevent the solution from being artificially trapped at interfaces
between coarse and fine grids, which can happen if high activity areas move
during recalculation on the finer grid.

For the area of refinement Ωl, we choose the smallest rectangle that en-
closes all flagged boxes; more efficient choices are discussed in the next section.



Local Defect Correction Techniques Applied to a Combustion Problem 189

In Ωl, we choose a local fine grid Ωhl by uniform refinement. The integer re-
finement factor σ is typically set to 2. Ideally, σ should be chosen largest at
places where the weight function is largest. However, this approach would lead
to an unstructured composite grid, which we want to avoid. Therefore, we will
use multiple refinement levels.

After adding successive levels of refinement, the fine grid approximations
are used to improve the coarse grid approximations via coarse grid correction
steps. Once we have returned to the base grid, we will solve discrete problems
on finer levels again.

Domain decomposition
In the previous section, we determined the smallest rectangle enclosing all
flagged boxes and chose to refine this rectangle entirely. However, this ap-
proach may refine many boxes that have not been flagged for refinement, es-
pecially when an area of high activity is not aligned with the grid directions.
To remedy this inefficiency as well as to prevent the grids from becoming too
large, we combine the multilevel LDC algorithm with domain decomposition,
in which we use a set of rectangles to cover all flagged boxes. We require
each flagged box to be enclosed in at least one rectangle, and we want the
rectangles to be overlapping. The overlap of the rectangles is necessary in
situations where interfaces between rectangles intersect high activity zones.
We remedy large errors at these interfaces by performing a number of domain
decomposition iterations via a standard multiplicative Schwarz procedure.

To find a set of rectangles satisfying the conditions just stated, a cost func-
tion is defined that states how expensive using a certain set is. The algorithm
evaluates the cost of using a single rectangle (as we did in the previous section),
splitting it horizontally in two smaller rectangles or splitting vertically. This
procedure is performed recursively on the smaller rectangles if splitting has
occurred; see Anthonissen et al. [2003a] for details. The algorithm, including
the Schwarz alternating procedure, is shown in Figure 1.

Level 0

i = 0 i = 1

Level 1

Level 2

create subgrids
interpolation

interpolationinterpolation

interpolation

correction solvesolve

DD solve

DD solve DD solve

create subgrids
interpolation

calculate
defect

calculate
defect

correction
solve

DD
correction
solve

DD

Fig. 1. Solution procedure with domain decomposition.

Regridding
Refining a grid and solving the boundary value problem on the new composite
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grid may cause the region(s) of high solution activity to move. Therefore,
we apply the regridding procedure from Bennett and Smooke [1998] before
proceeding from Level l to Level l + 1.

4 Application to a combustion problem

We now turn our attention to the axisymmetric laminar Bunsen flame with
one-step chemistry. This problem was previously presented by Bennett and
Smooke [1998]. Because almost all of the dependent variables in the Bunsen
flame problem have large gradients in a very small region of the computational
domain, adaptive gridding is a must for this simulation. The physical config-
uration for the Bunsen flame is shown in Figure 2. A mixture of methane and
air flows up from a central jet, which is surrounded by a coflowing air stream.
A steady conical flame forms at the mouth of the cylindrical burner.

r1 r2 r3

z

Lf

r

air

methane/air

mixture

air

Fig. 2. Physical configuration for the axisymmetric Bunsen flame.

The chemical model we consider has five species: methane, oxygen, water,
carbon dioxide, and the abundant inert, nitrogen. There are nine dependent
variables in the Bunsen flame problem: radial velocity, axial velocity, vorticity,
temperature, and five mass fractions. These variables satisfy a set of strongly
coupled nonlinear PDEs, see Anthonissen et al. [2003a] for details. The initial
coarse grid is chosen to be more finely spaced in the region above the inner
jet, because it is known that the flame forms in that area. The exact r- and
z-coordinates of the initial grid are given in Anthonissen et al. [2003a].

Due to the nature of the LDC method, the PDEs need only be discretized
on tensor-product grids. We apply standard finite difference stencils at inte-
rior points. First-order upwinding is used on convective terms. Details can
be found in Anthonissen et al. [2003a]. The discretized governing equations
and boundary conditions form a system of equations, that is linearized by a
damped, modified Newton’s method (Deuflhard [1974], Smooke [1983]) with
a nested Bi-CGSTAB linear algebra solver; the latter is preconditioned using
a block Gauss-Seidel preconditioner.
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(a) lmax = 0. (b) lmax = 1. (c) lmax = 2. (d) lmax = 3.

Fig. 3. Plots of the methane mass fraction on the finest level for the LDC simulations
with various values of the maximum level of refinement lmax.

Four different LDC simulations have been carried out on a 175 MHz SGI
Octane with 1 GB of RAM. Each simulation starts from an already converged
solution on the base tensor-product grid. For each first solve on a local fine
grid, we use as an initial guess the approximation found by interpolating the
approximation on the parent grid. At each level with more than one grid, five
domain decomposition iterations are done to improve the boundary conditions
at the internal interfaces. The flagging of high activity boxes is based on the
methane mass fraction. The refinement factor is 2.

Figure 3 shows the projection of the methane mass fraction on LDC com-
posite grids with increasingly fine resolution. Although the flame structure is
similar in each plot, the flame length increases, with the largest increase occur-
ring when the first refinement level is added. In Anthonissen et al. [2003a], the
LDC results are shown to have excellent agreement with both the local rect-
angular refinement (LRR) results for the same problem as well as with results
found on equivalent tensor-product (ETP) grids with the same resolution pre-
sented by Bennett and Smooke [1998]. In the LRR method, an unstructured
grid is constructed from an initial tensor-product grid by flagging and refining
high activity boxes individually. Unlike tensor-product grids, grid lines in an
LRR grid are not required to extend from one domain boundary to the other.
A Newton solver is subsequently applied to the discretized PDE system on
the complete unstructured grid.

In the LDC simulations, however, the Newton solver is applied to many
small grids individually rather than to one large grid. In the LDC simulation
for lmax = 3, the composite grid consists of the initial tensor-product grid
with three additional refinement levels, that have two, four, and eight subgrids,
respectively. The biggest tensor-product grid in this hierarchy has only 16, 653
points — a substantial memory savings over the ETP grid of 312, 872 points.

5 Conclusions
In this paper, we have extended the standard LDC method by including multi-
level adaptive gridding, domain decomposition, and regridding. We have suc-
cessfully applied this method to a lean axisymmetric laminar Bunsen flame
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with one-step chemistry. In the future, we would like to investigate the in-
clusion of more sophisticated domain decomposition techniques within the
method, so that fewer iterations will be required among grids at a given level.
We would also be interested in the possibility to solve different problems on
the global coarse and local fine grid, using e.g. chemical equilibrium; cf. Xu
and Zhou [2000, 2001] in which only the symmetric positive definite part or a
linearized discretization is solved locally. As there are virtually no conceptual
hurdles in expanding the approach to higher dimensions, our ultimate goal is
to apply the extended LDC method to three-dimensional combustion prob-
lems, for which its low memory usage and parallelization opportunities will
play an important role.
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editors, Defect Correction Methods: Theory and Applications, pages 115–121. Computing
Supplementum 5, Springer-Verlag, Wien, 1984b.
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Summary. The domain decomposition method is directed to electronic packaging
simulation in this article. The objective is to address the entire simulation process
chain, to alleviate user interactions where they are heavy to mechanization by com-
ponent approach to streamline the model simulation process.

1 Introduction

Small is exquisite and cool to the consumers of electronic products, but it
has enormous technical challenges that need to be overcome by designers and
engineers. Elements such as health and safety compliance, power and heat
management, and usability are commonly top on the list of issues. The pri-
mary technical challenges (Chow and Addison [2002]) are: 1) High density of
components leads to an increase of model complexity that needs to address,
including any interactions and interferences between the processes. 2) Cre-
ating highly intricate and detailed geometry and mesh models with parts of
dissimilar scales in appropriate time, for examples, the entire electronic com-
ponents in a laptop computer and exposure analysis of electronic devices on
an entire human body and tissues. 3) Size of computational demands million
plus cells/elements models are common in industrial simulations and models
with tens of millions of elements are becoming more frequent. 4) The market
demands add to the ever-increasing pressures on engineers to speed up the
modelling and design cycles.

Whilst domain decomposition has been widely applied to areas such as
parallel solvers and preconditioners, coupling of different numerical methods
and physical models, it has not been considered for the entire simulation
process chain in order to achieve a comprehensive reduction in modelling time.
An early concept of using domain decomposition methods in the reduction of
modelling time can be found in Chow and Addison [2002]. This paper gives a
rigorous approach of the concept and uses the framework of a defect equation
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in the coupling (C.-H. Lai and Pericleous [1997]). Algorithms developed in
sections below concentrate on problems with geometrical multi-scale at the
macroscopic mathematical models. Numerical experiments, including mono-
phase and multi-phase, are examined with efficiency of the algorithm being
linked to the overall modelling time.

2 Component Approach and Concept

A basic conventional simulation process chain would look something like:
Geometry-Meshing-Analysis-Visualization. An alteration to the model at any
stage means going back to the Geometry stage and repeating the procedure.
For large and complex models re-do it all is time consuming. A smart way is to
take a component based approach where only the altered components are be-
ing re-done and thus significantly more efficient. This is generally not possible
due to conformal mesh constraint, one continuous volume mesh, in mesh gen-
eration and analysis stages. In instances where it is possible, it is frequently
for special purposes and non-standard in nature. While in user interaction
intensity, geometry creation and meshing are the most user intensive stages,
whereas analysis stage is the least, and visualization is interpreting the solu-
tion for specific requirements. The concept detailed below is component based
with each component independently created, meshed and solved. The model
solution is reached when interface conditions between components agrees, this
is attained by iterations with the domain decomposition method.

The component meshing and gluing (CMG) approach(Chow and Addison
[2002]), takes an approach the same as manufacturing products are assembled
A product is a collection of assembled components or parts, connected and
bonded together, and commonly, the parts themselves are products produced
and marketed by others. This component nesting is the base of CMG and let
existing models to be reused for other models. This kind of model assembly
is probably most suited to applications where models are constructed from a
few basic shapes such as multi-chip module models in electronic packaging.
Here, it can be realized by a database of components with simple tools that
uses parametric to define basic objects relative to parameters such as length,
thickness, mesh density, etc., for rapid primitive component creation.

The model of assembled components is then glue together by either merg-
ing components to create a single knitted mesh model or collaborating compo-
nents using an iterative domain decomposition method. The former method-
ology requires unstructured meshes or the use of polyhedral type elements to
combine into one mesh model, and we will refer to this as the CMG-Knitted
strategy in this paper. One disadvantage of the knitted strategy is that it does
not apply to all solvers, for example, structured mesh solvers. Only solvers
with polyhedral element capability can be considered. The latter method-
ology requires the domain decomposition method (DDM) method to attain
the model solution through the exchange of boundary conditions between
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common interfaces that the components shared. We will refer to this as the
CMG-DDM strategy in this paper. The solution of each component may be
obtained by means of existing fast solvers. This is more universally applicable
to all types of solvers, but one known disadvantage is that the computing time
to achieved a converged solution is longer. Fast iterative methods in domain
decomposition can significantly shorten the time to solution but it is unlikely
to match the knitted mesh case. For appropriate solvers, a combination of the
two gluing strategies is possible.

The significant benefit of CMG is it virtually removes all the difficulties
commonly associated with model creation and mesh generation which made
the two processes extremely manpower intensive in the process chain. And
with the volume-mesh generation element no longer called, a considerable
saving in time and computing resources. Perhaps the only meshing related
element that may need some manpower input are the interface regions where
the component meets. This is not envisage, but if needed, it is a surface
meshing problem and not a volume one which is one-degree of dimension less in
complexity and requires significantly less computing to do. This gain needs to
be summed with the increase computing times in the analysis stage expected
in the CMG-DDM strategy to give an account of profit or lost balance. When
the balance is at a significant lost we do have the parallel processing option
to address the problem. Compared to model creation and mesh generation,
parallel processing has drastically cut the time for the analysis element and
the trend is still downward.

3 Numerical Algorithms

Provided that the solvers can take polyhedral elements, the CMG-Knitted
strategy does not require extra effort to put into the solvers. It is the mesh-
model that needs to be knitted at the finite-element mesh topology level, glu-
ing the interfaces of the mesh components. In the CMG-DDM strategy, the
domain decomposition method (DDM) (Chow and Addison [2002]) is ideally
suited for the assembled-component model, with the non-overlapping class
the most appropriate. A non-overlapping approach allows flexibility in the
mesh processing, the methods of numerical solution, the handling of different
physics, and the adoption of numerical solvers in each of the model compo-
nents. This choice also makes the defect equation technique as developed in
C.-H. Lai and Pericleous [1997] an ideal method for CMG-DDM.

Let Lu = f be defined in the domainΩ and u = g on ∂Ω, where Lmay be a
nonlinear operator that depends on u, and g is a known function. The domain
Ω is partitioned into M non-overlapped sub-domains such that

⋃M
i=1Ωi = Ω

and Ωi
⋂
Ωj = , for i 6= j. Each sub-domain is associated with a sub-model

defined by Liui = fi. The boundary of each sub-domain, ∂Ωi, subtracting the
part of boundary which overlaps with the boundary of the entire problem is
in essence a part of the interface. Therefore the interface, which attached to
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Ωi, may be defined as γi = ∂Ωi∂Ω. The boundary conditions defined on γi
may be denoted by uγ and it satisfies a defect equation, such as D(uγ) = 0
(C.-H. Lai and Pericleous [1997]). Using superscripts to denote the number of
gluing process, the CMG-DDM algorithm may be written as follows.

Initial values: n = 0; u
(0)
i , i = 1, ...,M are given.

Repeat { n := n+ 1;
Do i = 1, ...,M

u
(n)
i := { Solve Liu(n)

i = fi in Ωi };
subject to:

u
(n)
i = g on ∂Ω

⋂
∂Ωi and u

(n)
i |γi = uγi;

End-Do
Solve D(uγ) = 0; }

Until ||D||2 < ǫ

When the model consists of a single domain (meshed component) then the For
loop and the defect calculation,D(uγ) = 0, are redundant. The CMG-Coupled
cases are performed in this way. From the above algorithm the For loop may
be run in parallel and on homogeneous computing systems the solution are
identical between parallel and scalar computations.

4 Numerical Experiments

The particular problem to be considered in this paper is governed by the 2-D
energy equation, limited to conduction only, in temperature u. The variables
in (2) are density (ρ), specific heat (c), thermal conductivity (k), time (t) and
the source term (S).

ρc
∂u

∂t
= ∇ · (k∇u) + S(u) (1)

The nonlinearity is introduced in the form of a material phase-change in the
source term. For solidification using the enthalpy source-based method this is
given by

S(u) = Lρ
∂f(u)

∂t
(2)

where L is the latent heat and f is the liquid fraction. The algorithm for
solving these kinds of problems may be found in papers by Chow and Cross
[1992] and Voller and Swaminathan [1991] and is not discussed in this paper.
Readers interested in obtaining more information are directed to these refer-
ences. In this study, the numerical stable method of Voller and Prakash [1987]
solidification algorithm is used.

A nonlinear problem with phase-change occurring inside the domain, ge-
ometry as that of Fig. 1, was used to conduct the numerical experiments
and investigations. Three experiments conducted were: 1) A steady state heat
transfer (no phase-change) where the top surface is at a temperature of 10◦C
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and bottom surface of 100◦C. The left side of the model is symmetry and
for all other boundaries, a convective heat boundary condition of ambient
temperature of 25◦C with a heat transfer coefficient of 10.0 W/m2C. 2) A
transient heat transfer problem that has the same boundary conditions as the
first experiment with an initial temperature of 100◦C. The time step size taken
was 10 seconds interval and simulation time end at 120 seconds. 3) The final
experiment is a heat transfer with the small solder bumps (Ch4 Solder Bump
in Fig. 1 undergoing solidification. The boundary condition is essentially the
same as the previous two experiments with both top and bottom surfaces now
have the convective heat boundary conditions. The initial temperature is at
183◦C with time step size of 2 seconds interval and simulation time end at
600 seconds.

Table 1 shows the dimension of the components and Table 2 shows the
material properties data used in the experiments. For convenient, the Si-Chip,
MCM-L and motherboard take on the material property of the Board dataset,
and both the Ch4 and BGA solder bumps take on the Solder dataset. For the
third experiment, only the Ch4 solder bumps are solidifying, the liquidus and
solidus temperatures for BGA solder bumps are set above that given thus no
solidification occurs.

Fig. 1. An example of multiple chip model geometry.

Table 1. Geometric dimension of components in the test model.

Length (mm) Height (mm) Gap Interval (mm)

Si Chip 10.5 1.5
Ch4 Solder Bump 1.0 1.0 1.0
MCM-4 15.5 2.0
BGA Solder Bump 2.0 2.0 3.0
Motherboard 19.5 3.0

Fig. 2 shows two different meshes used in present experiments. Figures 3 to
5 show the cell invariant temperature distribution of the CMG-Knitted com-
putation and CMG-DDM for the three experiments. The temperature profile
on the two meshes (conformal and non-conformal) is virtually the same. Ta-
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Table 2. Material properties.

Density Specific Conductivity Liquidus Solidus Latent
Heat Temp. Temp. Heat

kg/m3 J/kg C W/m C C C J/kg

Board 1400 838 0.18
Solder 8400 171 50.6 183 180 3700

ble 3 give the total energy in the system domain and computing costs for
the simulation, together with iteration numbers required. The knitted confor-
mal mesh result is used as the reference guide towards measuring accuracy
and computing performance. In the transient problems, the iteration numbers
shows the first time step has the highest iteration counts, this is obvious due
to the cold starting the simulation, whereas lowest is found in time steps to-
wards end of simulation. The CMG-knitted computation for linear problems,
Experiments 1 and 2, require 2 iterations for both steady state and per time
step in transient to achieve convergence on temperature. The largest devia-
tion of the solution from the referenced data is under 0.2 % in Experiment 3,
and under 0.07% and 0.01% respectively for Experiments 2 and 1. Computing
times for CMG-DDM for the two meshes (conformal and non-conformal) are
72.1 and 65.0 in Experiment 1, 44.5 and 40.2 in Experiment 2, and 2.1 and 2.0
in Experiment 3, times more expensive respective to the referenced knitted
conformal mesh cases.

Based on these results the CMG-DDM approach for linear problem is not
competitive, but non-linear problem is a different proposition. Assuming 25%
of overall time is used for analysis, this implies the projected total modelling
time of 197 seconds (= 49.296 / 25%) for coupled computation in Experiment
3, which suggests that the CMG-DDM approach to be competitive in non-
linear phase-change problems in electronic packaging.

5 Summary

Numerical experiments conducted indicates potential advantages of the CMG
method in electronic packaging for non-linear solder solidification based on the
enthalpy method (Chow and Cross [1992], Voller and Prakash [1987]) simula-
tion of multiple chip modules. The success of the method is the mechanization
by component approach to streamline the model simulation process at model
creation and mesh generation stages which are the most manpower intensive.
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Fig. 2. Two different meshes used in experiments.

Fig. 3. Comparison of the temperature distribution of steady state results.

Fig. 4. Comparison of the temperature distribution of transient results.
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Fig. 5. Comparison of the temperature distribution of solidification results.

Table 3. Total energy in system and computing times (Computing platform: P4,
2GHz, 1GB RAM).

Steady state results (||D||2 < 10−6)

Conformal mesh Non-conformal mesh

CMG-Knitted CMG-DDM CMG-Knitted CMG-DDM

Total energy 8.998910166 8.998910109 8.998117691 8.998120956
Relative error 6.334100x10−9 8.806344x10−5 8.770062x10−5

Computing time 0.031 2.234 0.015 2.015
Iteration number 2 230 2 232

Transient results (||D||2 < 10−6)

Conformal mesh Non-conformal mesh

CMG-Knitted CMG-DDM CMG-Knitted CMG-DDM

Total energy 9.378820792 9.378820836 9.384847314 9.384851563
Relative error 4.691421x10−9 6.425671x10−4 6.430202x10−4

Computing time 0.172 7.640 0.156 6.906
Max. Iterations 2 75 2 75
Min. Iterations 2 61 2 59

Solidification results (||D||2 < 10−6)

Conformal mesh Non-conformal mesh

CMG-Knitted CMG-DDM CMG-Knitted CMG-DDM

Total energy 15.214174680 15.214174700 15.185239930 15.185216610
Relative error 1.314564x10−9 1.901828x10−3 1.903361x10−4

Computing time 49.296 101.563 35.094 94.547
Max. Iterations 78 79 77 78
Min. Iterations 19 23 18 23
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Summary. Inexact Newton method with backtracking is one of the most popular
techniques for solving large sparse nonlinear systems of equations. The method is
easy to implement, and converges well for many practical problems. However, the
method is not robust. More precisely speaking, the convergence may stagnate for
no obvious reason. In this paper, we extend the recent work of Tuminaro, Walker
and Shadid [2002] on detecting the stagnation of Newton method using the angle
between the Newton direction and the steepest descent direction. We also study a
nonlinear additive Schwarz preconditioned inexact Newton method, and show that
it is numerically more robust. Our discussion will be based on parallel numerical
experiments on solving some high Reynolds numbers steady-state incompressible
Navier-Stokes equations in the velocity-pressure formulation.

1 Introduction

Many computational science and engineering problems require the numerical
solution of large, sparse nonlinear systems of equations. Several classes of ap-
proaches are available, including Newton type methods, multigrid type meth-
ods, and continuation type methods. However, for some difficult problems,
such as incompressible flows with high Reynolds number (Re), none of the
methods works well, except the continuation methods, e.g. parameter contin-
uation Gunzburger [1989] and pseudo time stepping Kelley and Keyes [1998],
which are often too slow to be considered practical. In general, nonlinear it-
erative methods are fragile. They may converge rapidly for a well-selected set
of parameters (for example, certain initial guesses, certain range of Re), but

⋆ The work was partially supported by the Department of Energy, DE-FC02-
01ER25479, and by the National Science Foundation, CCR-0219190, ACI-0072089
and ACI-0305666.
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diverge if we slightly change some of the parameters. They may converge well
at the beginning of the iterations, then suddenly stall for no apparent reason.
In this paper we develop some techniques for detecting the bad behavior of
Newton method, and focus on a class of nonlinear preconditioning methods
that make Newton more robust; i.e., not too sensitive to some of the unfriendly
parameters such as large Re. The preconditioner is constructed using the non-
linear additive Schwarz method, which not only increases the robustness of
Newton, but also maintains the parallel scalability of the algorithm.

2 A brief review of inexact Newton method

Solving a nonlinear system of equations,

F (x) = 0, (1)

using inexact Newton with backtracking (INB) Eisenstat and Walker [1996]
can be described briefly as

x(k+1) = x(k) − λ(k)s(k),

where λ(k) is the step length computed using a linesearch technique, and s(k)

is a good search direction if a non-zero λ(k) can be found. s(k) is computed,
often from a linearly preconditioned Jacobian equation

M−1
k Js(k) = M−1

k F (x(k)),

where J is a Jacobian of F and M−1
k is a linear preconditioner. It has been

known for a long time that, even with global strategies, INB often stagnates
for many problems. A recent study Tuminaro et al. [2002] shows that this is
likely because the angle between the Newton direction and the steepest descent
direction is too close to π/2. In this case, the Newton direction becomes only a
weak descent direction. As a result, only extremely small steps can be accepted
by linesearch. More precisely, let θ be the angle between s(k) and the negative
gradient direction of ‖F‖ at x(k). Then, according to Tuminaro et al. [2002],
in the worst case,

1

κ(J)
≤ cos(θ) ≤ 2

κ(J)
, (2)

where κ(J) is the condition number of J . This means that the Newton direc-
tion can be nearly orthogonal to the gradient of ‖F‖ when κ(J) is large. In the
incompressible Navier-Stokes equations, κ(J) becomes very large when Re is
high or when the mesh size is fine. Estimate (2) also suggests that sometimes
solving the Jacobian system too accurately is not a good idea, even without
considering the issue of computational cost. It might be better to stop the
Jacobian iteration earlier. The following stopping conditions were suggested
in Eisenstat and Walker [1996],

||F (x(k))− Js(k)||2 ≤ ηk||F (x(k))||2



Improving Robustness and Parallel Scalability of Newton 203

• Choice 0: ηk is a constant (not too small)

• Choice 1:

ηk =

∣∣||F (x(k))||2 − ||F (x(k−1))− Js(k−1)||2
∣∣

||F (x(k−1))||2
• Choice 2:

ηk = γ

( ||F (x(k))||2
||F (x(k−1))||2

)α
, γ ∈ [0, 1], α ∈ (1, 2].

INB with these forcing terms is more robust, but is still not enough to solve
the Navier-Stokes equations for a large range of Re because the parameters
in the “choices” are too problem-dependent Shadid et al. [1997]. A closer
look at (2) and its proof in Tuminaro et al. [2002] shows that the linear
preconditioner M−1

k does not appear in the estimate (2), which means that
even though the linear preconditioning may speed up the solution algorithm
for the Jacobian system, it does not help improve the quality of the search
direction. Therefore, to enhance the robustness of Newton method by finding a
better search direction we believe that the preconditioner has to be nonlinear.
An alternative approach to improve the quality of the search direction is based
on the affine invariant Newton methods Deuflhard [1991] using the natural
monotonicity test for highly nonlinear systems.

3 Nonlinear additive Schwarz preconditioning

This section describes a nonlinearly preconditioned inexact Newton algorithm
(ASPIN) Cai and Keyes [2002], Hwang and Cai [2003]. Suppose that F (x) = 0
is a nonlinear system of equations arising from a finite element discretization.
The finite element mesh on Ω is partitioned into non-overlapping subdomains
Ωi, i = 1, . . . , N , then, each subdomain is extended into a larger overlapping
subdomainΩ′i. LetRi be a restriction operator onΩ′i, we define the subdomain
nonlinear function

Fi = RiF.

For any given x ∈ Rn, Ti(x) is defined as the solution of the subspace nonlinear
systems,

Fi
(
x−RTi Ti(x)

)
= 0, for = 1, ..., N. (3)

Using the subdomain functions, we introduce a new global nonlinear system

F(x) =

N∑

i=1

RTi Ti(x) = 0, (4)

which we refer to as the nonlinear additive Schwarz preconditioned system.
Then, ASPIN algorithm is defined as: find a solution of (1) by solving
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F(x) = 0,

with INB, starting with an initial guess x(0). As shown in Cai and Keyes
[2002], Hwang and Cai [2003], an approximation of the Jacobian of F takes

the form
∑N

i=1 J
−1
i J . Through nonlinear preconditioning, we have:

• an improved angle estimate

1

κ(
∑N

i=1 J
−1
i J)

≤ cos(θ) ≤ 2

κ(
∑N

i=1 J
−1
i J)

; and

• an improved conditioning of the Jacobian system

(
N∑

i=1

J−1
i J

)
s(k) = F(x(k)); and

• an improved merit function ‖F‖2/2 for the linesearch.

4 Stabilized finite element method for incompressible
Navier-Stokes equations in the primitive variable

Consider two-dimensional steady-state incompressible Navier-Stokes equa-
tions in the primitive variable form Gunzburger [1989], Reddy and Gartling
[2000]: 




u · ∇u − 2ν∇ · ǫ(u) +∇p = 0 in Ω,
∇ · u = 0 in Ω,
u = g on Γ,

(5)

where u is the velocity, p is the pressure, ν = 1/Re is the dynamic viscosity,
and ǫ(u) = 1/2(∇u + (∇u)T ) is the symmetric part of the velocity gradient.
The pressure p is determined up to a constant. To make p unique, we impose
an additional condition

∫
Ω
p dx = 0.

To discretize (5), we use a stabilizedQ1−Q1 finite element method (Franca
and Frey [1992]). For simplicity, we consider only rectangular bilinear mesh
Th = {K}. Let V h and P h be a pair of finite element spaces for the velocity
and pressure, given by

V h = {v ∈ (C0(Ω) ∩H1(Ω))2 : v |K ∈ Q1(K)2, K ∈ Th }
P h = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ Th}.

The weighting and trial velocity function spaces V h0 and V hg are

V h0 = {v ∈ V h : v = 0 on Γ} and V hg = {v ∈ V h : v = g on Γ}.

Similarly, let the finite element space P h0 be both the weighting and trial
pressure function spaces:
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P h0 =

{
p ∈ P h :

∫

Ω

p dx = 0

}
.

Following Franca and Frey [1992], the stabilized finite element method for
steady-state incompressible Navier-Stokes equations reads: Find uh ∈ V hg and

ph ∈ P h0 , such that

B
(
uh, ph; v , q

)
= 0 ∀(v , q) ∈ V h0 × P h0 (6)

with

B(u , p; v , q) = ((∇u) · u , v) + (2νǫ(u), ǫ(v))− (∇ · v , p)− (∇ · u , q)+∑

K∈Th

((∇u) · u +∇p, τ((∇v ) · v −∇q))K + (∇ · u , δ∇ · v)

We use the stability parameters δ and τ suggested in Franca and Frey
[1992]. The stabilized finite element formulation (6) can be written as a non-
linear algebraic system

F (x) = 0, (7)

which is often large, sparse, and highly nonlinear when the value of Reynolds
number is large. A vector x corresponds to the nodal values of uh = (uh1 , u

h
2)

and ph in (6). Now, we define the subdomain velocity space as

V hi =
{
vh ∈ V h ∩ (H1(Ω′i))

2
: vh = 0 on ∂Ω′i

}

and the subdomain pressure space as

P hi =
{
ph ∈ P h ∩ L2(Ω′i) : ph = 0 on ∂Ω′i\Γ

}
.

Using these subspaces we can define subspace nonlinear problems as in (3).
Note that, implicitly defined in the subspaces V hi and P hi , we impose Dirichlet
conditions according to the original equations (5) on the physical boundaries,
and on artificial boundaries, we assume both u = 0 and p = 0. This is similar
to the conditions used in Klawonn and Pavarino [1998].

5 Experimental results

To show the convergence properties of ASPIN and its robustness with respect
to high Reynolds numbers, in this section we consider a lid-driven cavity flow
problem described by (5) on the unit square. We also compare the results with
those obtained using a standard Newton-Krylov-Schwarz algorithm Cai et al.
[1998], which is here referred to as INB. GMRES is used for solving Jacobian
systems. A zero initial guess is used for all test cases, and a constant nonlinear
tolerance 10−6 is used for ASPIN and INB. Other parameters to be studied
are described briefly as follows. Two meshes of size 64 × 64 and 128 × 128
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are considered. Reynolds numbers range from 103 to 104. The subdomains
are obtained by partitioning the mesh uniformly into either a 2×2 or a 4×4
partition. The number of processors is the same as the number of subdomains.
Our parallel software is developed using PETSc of Argonne National Labo-
ratory Balay et al. [2002]. More implementation details and numerical results
are available in Hwang and Cai [2003].

Figure 1 compares the nonlinear residual history of ASPIN with those
of INB with three different choices of forcing terms as described in Section
2. Ten tests are run for Reynolds numbers ranging from 103 to 104, with
an increment of 103. All results are obtained by on a 128×128 mesh using
16(=4×4) processors. We see that nonlinear residuals of INB with all choices
of forcing terms behave similarly. Except for a few cases with low Reynolds
numbers, INB nonlinear residuals stagnate around 10−3 without any progress
after about the first 15 iterations. Different choices of forcing terms do not help
much. On the other hand, ASPIN converges for the whole range of Reynolds
numbers. Furthermore, ASPIN preserves the local quadratic convergence of
Newton when the intermediate solution is near the desired solution.

To understand the robustness of ASPIN and INB, we next compare the
minimum values of cos(θ) for ASPIN and INB with different forcing terms in
Table 1. The values marked with asterisks in the table indicate that INB fails
to converge either after 150 nonlinear iterations, or the backtracking step fails.
For INB, the minimum value of cos(θ) is tiny when INB fails. This agrees well
with estimate (2), since κ(J) is expected to be very large for this high Re. On
the other hand, the minimum value of cos(θ) for ASPIN is always away from
zero and is not sensitive to the change of Re as well as the refinement of the
mesh.

Table 1. Comparison of the minimum values of cos(θ) for ASPIN and INB.

Re = 103 Re = 5 × 103 Re = 104

Mesh size: 64 × 64

Choice 0 1.68e-03 8.50e-12∗ 6.70e-11∗

Choice 1 4.21e-03 6.22e-08∗ 1.09e-04∗

Choice 2 4.80e-03 4.91e-05∗ 1.54e-04

ASPIN 7.37e-03 1.74e-03 1.82e-03

Mesh size: 128 × 128

Choice 0 8.65e-04 1.97e-07∗ 3.31e-07∗

Choice 1 3.78e-03 3.30e-05∗ 1.82e-08∗

Choice 2 3.33e-03 1.20e-04∗ 9.27e-05∗

ASPIN 2.98e-03 2.94e-03 3.90e-03

Scalability is an important issue in parallel computing and the issue be-
comes significant when we solve large scale problems with many processors.
Table 2 shows that the number of ASPIN iterations does not change much,
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while the average number of GMRES iterations increases when the number
of processors increases from 4 to 16 on a fixed 128×128 mesh. The increase of
GMRES iteration numbers is not unexpected since we do not have a coarse
space in the preconditioner. The number of GMRES iterations can be kept
near a constant if a multilevel ASPIN is used Cai et al. [2002], Marcinkowski
and Cai [2003].

Table 2. Varying the number of processors and the Reynolds number on a 128×128
mesh.

np Re = 103 Re = 5 × 103 Re = 104

ASPIN iterations

2 × 2 = 4 11 13 19

4 × 4 = 16 14 13 20

Average GMRES iterations

2 × 2 = 4 67 71 74

4 × 4 = 16 128 132 140
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Summary. The numerical simulation of turbulent indoor-air flows is performed
using iterative substructuring methods. We present a framework for coupling eddy-
viscosity turbulence models based on the non-stationary, incompressible, non-
isothermal Navier-Stokes problem with non-isothermal near-wall models; this ap-
proach covers the k/ǫ model with an improved wall function concept. The itera-
tive process requires the fast solution of linearized Navier-Stokes problems and of
advection-diffusion-reaction problems. These subproblems are discretized using sta-
bilized FEM together with a shock-capturing technique. For the linearized problems
we apply an iterative substructuring technique which couples the subdomain prob-
lems via Robin-type transmission conditions. The method is applied to a benchmark
problem, including comparison with experimental data by Tian and Karayiannis
[2000] and to realistic ventilation problems.

1 A full-overlapping DDM for wall-bounded flows

Let Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain. As the basic mathemat-
ical model we consider the (non-dimensional) incompressible, non-isothermal
Navier-Stokes equations with an eddy-viscosity model to be specified later and
the Boussinesq approximation for buoyancy forces. We seek a velocity field u,
pressure p, and temperature θ as solutions of

∂tu−∇ · (2νeS(u)) + (u ·∇)u + ∇p = − βθg
∇ · u = 0 (1)

∂tθ + (u ·∇)θ −∇ · (ae∇θ) = q̇V c−1
p

with S(u) := 1
2 (∇u+∇uT ), isobaric volume expansion coefficient β, gravita-

tional acceleration g, volumetric heat source q̇V , and specific heat capacity (at
constant pressure) cp. Moreover, we introduce effective viscosities νe = ν + νt
and ae = a + at with kinematic viscosity ν, turbulent viscosity νt, thermal
diffusivity a = νPr−1 and turbulent thermal diffusivity at = νtPr

−1
t with
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Prandtl numbers Pr = 0.7 and Prt = 0.9. Therein, the non-constant νt and
at are supposed to model turbulent effects and are considered in detail later.

Depending on the sign of u · n, the boundary ∂Ω is divided into wall zones
Γ0 ≡ ΓW , inlet zones Γ− and outlet zones Γ+. We impose

σ(u, p)n = τnn on Γ− ∪ Γ+ , u = 0 on Γ0 (2)

with σ(u, p) = 2νeS(u)− pI. For θ we require

θ = θin on Γ− , ae∇θ · n = 0 on Γ+ , θ = θw on Γ0. (3)

In an outer loop, for the semidiscretization in time we apply the implicit Euler
scheme which leads to a sequence of coupled non-linear problems to be solved
from time step to time step. Denote ∂̃tφ = (φ − φold)/(∆t) the backward-
difference quotient in time for a certain variable φ with time-step ∆t.

Ω

δ

WΓ
δΩ

δ
y

Γ
viscous  sublayer

Ω

external flow

ΓW

log-layer
Γδ

wall fitted

y
δy

x

z

Ω

coordinate system

δ

Fig. 1. Domain decomposition in the boundary layer region

Near ΓW , the solutions for u and θ often exhibit strong gradients. As an
illustration, Fig. 1 (right) shows the typical near-wall profile of the streamwise
component of u. The aim is to circumvent an anisotropic grid refinement in the
near-wall region, which is computationally very expensive. For this purpose
we study an overlapping domain-decomposition method which is presented
in the sequel, see also Fig. 1 (left). For clarity of the presentation we assume
∂Ω = Γ0 ≡ ΓW ; for the general case we refer to Knopp et al. [2002] and Knopp
[2003]. We start with the global problem with modified boundary conditions
on ΓW compared to (2), (3):

∂̃tu−∇ · (νe∇u) + (u ·∇)u + ∇p = −βθg in Ω

∇ · u = 0 in Ω

u · n = 0 , (I− n⊗ n)σ(u, p)n = τ t(u,u
BL, θBL) on ΓW (4)

∂̃tθ + (u ·∇)θ −∇ · (ae∇θ) = q̇V c−1
p in Ω

ae∇θ · n = q̇(uBL, θBL)c−1
p on ΓW
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where the r.h.s. data τ t(u,u
BL, θBL), q̇(uBL, θBL) are determined from

∂̃tu
BL −∇ · (νBLe ∇uBL) + (uBL ·∇)uBL + ∇pBL = f in Ωδ

∇ · uBL = 0 in Ωδ

uBL = 0 on ΓW , uBL = u on Γδ (5)

∂̃tθ
BL + (uBL ·∇)θBL −∇ · (aBLe ∇θBL) = q̇V c−1

p in Ωδ

θBL = θw on ΓW , θBL = θ on Γδ.

Now we specify νt, τ t(u,u
BL, θBL), q̇(uBL, θBL) in (4), and we modify (5).

(I) Global turbulence model in Ω: In (4), as a particular but successful
choice for indoor-air flow simulation, we apply the k/ǫ model for νt (see, e.g.,
Codina and Soto [1999]) using the formula νt = cµk

2ǫ−1 (cµ = 0.09) with
turbulent kinetic energy k and turbulent dissipation ǫ being the solution of

∂̃tk + (u ·∇)k −∇ · (νk∇k) = Pk +G− ǫ (6)

∂̃tǫ+ (u ·∇)ǫ−∇ · (νǫ∇ǫ) + C2ǫ
2k−1 = C1ǫk

−1(Pk +G)

with constants C1 = 1.44, C2 = 1.92, P rk = 1.0, P rǫ = 1.3, effective viscosities
νk = ν + νtPr

−1
k , νǫ = ν + νtPr

−1
ǫ , production and buoyancy terms

Pk := 2νt|S(u)|2, G := Ctβatg ·∇θ , Ct = 0.8.

The k/ǫ-equations (6) are solved in Ω\Ωδ with the following boundary con-
ditions (with κ = 0.41 and U∗ = |τ t|1/2)

k = c−1/2
µ U2

∗ , ǫ = U3
∗/(κy) on Γδ.

Alternatively to (6), we can use an eddy-viscosity-based LES model for νt in
Ω, e.g., the non-isothermal Smagorinsky model with Eidson’s modification

νt = (CS∆)2
(

max{ 0 ; ||S(u)||2F +
β

Prt
g ·∇θ}

)1/2

, at =
νt
Prq

with CS = 0.21 and Prq = 0.04.
(II) Boundary layer model in Ωδ: Denote x, y, z the streamwise, wall-
normal and spanwise direction resp. in a wall-fitted coordinate system, see
Fig. 1 (right). We simplify (5) in Ωδ under standard assumptions in Prandtl’s
boundary layer theory (cf. Knopp [2003]) and using modified effective viscosi-
ties in Ωδ

νBLe = νmax

(
1;

Re

Remin

)
, aBLe =

ν

Pr
max

(
1;

Pr

PrBLt

Re

Remin

)
(7)

with Re(x, y, z) = |uBL(x, y, z)|y/ν, PrBLt = 1.16 and with the following
empirical formula which accounts for effects of thermal stratification in the
boundary layer, see Knopp [2003] and references therein, viz.,
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Remin = R0 min[exp(−Ksq̇P rνU
−4
∗ g · n); 70], R0 = 20.0, Ks = 25.0. (8)

Then, instead of a set of partial differential equations (5), in Ωδ we solve

− d

dy

(
νBLe

duBLx
dy

)
= −βθBLgx,

− d

dy

(
aBLe

dθBL

dy

)
= 0, (9)

uBLx |y=0 = 0 , θBL|y=0 = θw,

with gx being the streamwise component of g and matching conditions

uBLx |y=yδ
= ux(yδ), θBL|y=yδ

= θ(yδ). (10)

Now we decouple and linearize the model (I), (II) within each time step:

(A)First update νt, at. Then update τ t, q̇: Given ux, θ on Γδ from the previous
iteration cycle, we replace the boundary condition (10) with

νe
duBLx
dy
|y=0 = R, ae

dθBL

dy
|y=0 = S. (11)

and solve the initial value problem (7),(8),(9),(11) using a shooting method
for (R,S) until the conditions (10) are fulfilled. Then we find the r.h.s.
τ t = −U2

∗u/||u|| and q̇ in (4) by setting U2
∗ = R and q̇ = cpS.

(B)We solve (4) and, if the k/ǫ model is used for νt, additionally (6), using a
block Gauss-Seidel method.

(C)If a certain stopping-criterion is not yet fulfilled, then goto step (A). Oth-
erwise goto next time step.

Step (B) requires the solution of two basic problems. First, the linearized
equations for θ, k and ǫ are advection-diffusion-reaction (ADR) problems with
non-constant viscosity of the general form (skipping the restriction ∂Ω = Γ0):

Lu ≡ −∇ · (ν∇u) + (b ·∇)u+ cu = f in Ω̃

u = g on Γ̃D (12)

ν∇u · n = h on Γ̃N .

Secondly, the linearized Navier-Stokes equations are of Oseen-type with a
positive reaction term and non-constant viscosity:

LO(a,u, p) ≡ −∇ · (2νS(u)) + (a ·∇)u + cu + ∇p = f in Ω

∇ · u = 0 in Ω (13)

σ(u, p)n = τnn on Γ− ∪ Γ+

(I− n⊗ n)σ(u, p)n = τ t, u · n = 0 on Γ0.
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For the finite element discretization of (12)-(13) we assume an admissible
triangulation Th = {K} of Ω and define discrete subspaces X l

h ≡ {v ∈
C(Ω) | v|K ∈ Πl(K) ∀K ∈ Th}, l ∈ N.
For the ADR-problem (12), for simplicity with g = 0 on ΓD, we apply the
Galerkin-FEM with SUPG-stabilization:

Find u ∈ Vh = {v ∈ X l
h | v|ΓD = 0} s.t. : bs(u, v) = ls(v) ∀v ∈ Vh , (14)

bs(u, v) = (ν∇u,∇v)Ω + ((b ·∇)u + cu, v)Ω +
∑

T∈Th

(δTLu, (b ·∇)v)T

ls(v) = (f, v)Ω + (h, v)ΓN +
∑

T∈Th

(δT f, (b ·∇)v))T

where (·, ·)S denotes the inner product on some S and with an appropriate
parameter set {δT }T , see Knopp et al. [2002]. Additionally, we use a (nonlin-
ear) shock-capturing method, see Knopp et al. [2002].
For the Oseen problem (13), we define the discrete spaces Vh × Qh =
(Xr

h)
d ×Xs

h with r, s ∈ N . The Galerkin FEM reads:

Find U = (u, p) ∈ Vh ×Qh, s.t. A(U, V ) = L(V ) ∀V = (v, q) ∈ Vh ×Qh
(15)

with the (bi)linear forms

A(U, V ) = a(u,v) + b(v, p)− b(u, q) , b(v, p) = −(p,∇ · v),

a(u,v) = (2νS(u),∇v)Ω + ((a ·∇)u + cu,v)Ω − (n⊗ nσ(u, p)n,v)Γ0

L(V ) = (f ,v)Ω + (τnn,v)Γ−∪Γ+ + (τ t,v)Γ0 .

Here we use an equal-order ansatz in Vh ×Qh (r = s = 1); thus the discrete
inf-sup condition is not satisfied. As a remedy we apply a pressure stabilization
(PSPG) together with divergence and SUPG stabilizations, cf. Knopp et al.
[2002].

2 Domain decomposition of the linearized problems

A nonoverlapping domain decomposition method with Robin interface condi-
tions is applied to the basic linearized problems (12), (13). Consider a nonover-
lapping partition of Ω (which, for simplicity, is assumed to be stripwise) into
convex, polyhedral subdomains being aligned with the FE mesh, i.e.

Ω = ∪Nk=1Ωk, Ωk ∩Ωj = ∅ ∀k 6= j , ∀K ∈ Th ∃k : K ⊂ Ωk.

Moreover, we set Γjk := ∂Ωj ∩ ∂Ωk, j 6= k, with Γkj ≡ Γjk.
For the (continuous) ADR-problem (12) the DDM reads: for given unk from
iteration step n on each Ωk, seek (in parallel) for un+1

k
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Lun+1
k = f in Ωk

un+1
k = 0 on ΓD ∩ ∂Ωk (16)

ν∇un+1
k · nk = h on ΓN ∩ ∂Ωk

together with the interface conditions (with a relaxation parameter θ ∈ (0, 1])

Φk(u
n+1
k ) = θΦk(u

n
j ) + (1 − θ)Φk(unk ) on Γjk, j = 1, . . . , N, j 6= k

Φk(u) = ν∇u · nk + (−1

2
b · nk + zk)u. (17)

Let Vk,h, b
s
k, and lsk denote the restrictions of Vh, b

s, and ls to a subdomain Ωk.
Moreover, Wkj,h is the restriction of Vh to the interface part Γkj . The inner
product in L2(Γkj) or, whenever needed, the dual product in (Wkj,h)

∗×Wkj,h

is denoted by 〈·, ·〉Γkj
.

The fully discretized DDM reads for k = 1, . . . , N and given unk , Λ
n
jk:

Parallel computation step: find un+1
k ∈ Vk,h s.t. ∀ vk ∈ Vk,h

bsk(u
n+1
k , vk) + 〈(−1

2
b · nk + zk)u

n+1
k , vk〉Γkj

= lsk(vk) +
∑

j( 6=k)
〈Λnjk, vk〉Γkj

.

Communication step: for all j 6= k, update the Lagrangian multipliers

〈Λn+1
kj , φ〉Γkj

= 〈θ(zk + zj)u
n+1
k − θΛnjk + (1− θ)Λnkj , φ〉Γkj

∀φ ∈ Wkj,h.

In Knopp et al. [2002], the analysis of the method is resumed and the following
design of the interface function is proposed (motivated by an a-posteriori
estimate)

zk =
1

2
|b · nk|+Rk(H), (18)

Rk(H) ∼ νmin
H

[
1 +H

√
cmax
νmin

+ min

(
H‖b‖max
νmin

;
‖b‖max√
(νc)min

)]
,

with H being the diameter of the interface. A further improvement is achieved
with a multilevel type approach with appropriate change of Rk(·) correspond-
ing to higher frequencies of the error, for details see Lube et al. [2003].

For the Oseen problem (13) we proceed similar to the method (16) for the
ADR problem. We use the interface conditions

Φk(u
n+1
k , pn+1

k ) = θΦk(u
n
j , p

n
j ) + (1− θ)Φk(unk , pnk ) on Γjk.

with relaxation parameter θ ∈ (0, 1] and the interface function

Φk(u, p) = ν∇u · nk − pnk + (−1

2
a · nk + zk)u (19)

with acceleration parameter zk which has the same structure as in (18). Con-
cerning the corresponding parallel algorithm (in weak form), its analysis and
further details, we refer to Knopp et al. [2002] and references therein.
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3 Application to Indoor Air Flow Simulation

The approach is applied to a standard benchmark test case for indoor-air flow
simulation, viz., turbulent natural convection in an air-filled square cavity as
sketched in Fig. 2 (left), using the research code Parallel NS. Let a tilde denote
dimensional quantities. Denote Ω̃ = (0, H̃)3 with H̃ = 0.75m. We impose
θ̃w = 323.15K on Γh and θ̃w = 283.15K on Γc. On Γb ∪ Γt, alternatively,
(i) we impose θw using the experimental data given in Tian and Karayiannis
[2000] or (ii) we simply require that ae∇θ · n = 0. Moreover, we have ν̃ =
1.53×10−5m2s−1, β̃ = 3.192×10−3K−1, g̃ = 9.81ms−2, thus giving a Rayleigh
number Ra = g̃β̃(θ̃h − θ̃c)H̃3Pr/ν̃ = 1.58× 109. We used a structured mesh
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Fig. 2. Sketch of cavity and flow (left) and prediction for V/U0 at y/H = 0.5 (right)
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∗ /U

2
0 (right) for variant (i)

with 81×65×29 grid points being equidistantly distributed in each coordinate
direction and we use∆t̃ = 1.0 for the time step. Computations were performed
on a cluster of 4 COMPAQ Professional Workstations XP1000 (667 MHz)
connected by Ethernet. Parallelization is accomplished using a master/slave
paradigm in the PVM configuration. No coarse-grid solver is used so far.
First, the agreement of the solution with DDM (using a coarse-granular 2 ×
2×1 partition of Ω) and without DDM (for variant (ii)) is obvious, see Fig. 2
(right). Therein, V denotes the streamwise component of u and Ũ0 = 0.9692.
The parallel speed-up achieved was 3.7. The accuracy of the approach (for
variant (i)) is validated by reference to the experimental data by Tian and
Karayiannis [2000]. Fig. 3 (left) shows the k/ǫ model prediction (with DDM)
for V . Fig. 3 (right) gives the predictions for Cf ≡ 2U2

∗/Ũ0 on Γh with s ≡ y
(k/ǫ with DDM for a 2× 2× 1 partition, LES model (7) without DDM).
The method is applied at Dresden University as an analysis tool for the design
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and investigation of natural ventilation systems, see Richter et al. [2003]. Note
that for the simulation presented in Fig. 4, the DDM described in Sec.2 is
applied where one subdomain is used for the room and one for the surrounding
air with the interface being located in the window.
Summarizing, in this paper we combined two DD strategies for turbulent
flows, one for near-wall modelling and one for parallel computation of the
linearized problems. For this approach, we demonstrated both the accuracy
for a benchmark problem and the applicability to a real-life problem.

Y

X

Z

-0.64 -0.06 0.53 1.12 1.70 2.29 2.87 3.46

3 m/s

pressure / Pa

3D view of the velocity field

Fig. 4. Indoor-air flow simulation for natural building ventilation.
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Fluid-Structure Interaction using
Nonconforming Finite Element Methods

Edward Swim and Padmanabhan Seshaiyer

Texas Tech University, Mathematics and Statistics (eswim@math.ttu.edu)

Summary. Direct numerical solution of the highly nonlinear equations governing
even the most simplified models of fluid-structure interaction requires that both the
flow field and the domain shape be determined as part of the solution since neither
is known a priori. To accomplish this, previous algorithms have decoupled the solid
and fluid mechanics, solving for each separately and converging iteratively to a solu-
tion which satisfies both. In this paper, we describe a nonconforming finite element
method which solves the problem of interaction between a viscous incompressible
fluid and a structure whose deformation defines the interface between the two si-
multaneously. A general methodology is described for the model 2D problem and
the algorithm is validated computationally for a one-dimensional example.

1 Introduction

Many applications from engineering and biological sciences, such as blood flow
through arteries, require detailed simulation of an interaction between a fluid
and an elastic membrane surrounding it. However, meshes generated for the
purpose of analyzing the two materials may be incompatible and the cost of
producing matching grids may be prohibitive. Much work has been done to
build efficient numerical schemes using nonconforming finite element meth-
ods (Seshaiyer [2003], Seshaiyer and Suri [2000b], Seshaiyer and Suri [2000a],
Belgacem et al. [2000], and references therein.) Thus far, these methods have
focused on model problems where the governing equations on each sub-domain
are the same, e.g., interaction between fluids (Chilton and Seshaiyer [2002])
or interaction between structures (Belgacem et al. [2003].)

Furthermore, it has been shown (Wan et al. [2003]) that even one-
dimensional models can be useful in predicting important characteristics of
blood flow despite their simplicity. Our purpose here is to present a noncon-
forming finite element method for fluid-structure interaction problems which
allows for both mesh refinement and degree enhancement independently on
each component. The methodology is described for a two-dimensional model
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problem and the algorithm is computationally validated for a one-dimensional
model.

2 Governing equations

Let x = (x1, x2). We consider a rectangular domain Ω which is divided into
two sub-domains, ΩF (t) and ΩS(t), at any time t, as illustrated in Figure 1.
We assume that a viscous incompressible fluid occupies ΩF while an elastic
solid material occupies ΩS . Initially, assume that Ω0

F ≡ ΩF (0) = I× I, where
I = [0, 1], and that Ω0

S ≡ ΩS(0) = [1, 2]×I. Let γ(t, x2) represent the interface
between the two sub-domains.

We model the velocity u ∈ IR2 and pressure p of the fluid using the Navier-
Stokes equations,

2∑

i=1

∂

∂xi

[
µF

(
∂uj
∂xi

+
∂ui
∂xj

)]
− ∂p

∂xj
= ρF

(
∂uj
∂t

+∇ · (uju)− fj
)
, (1)

j = 1, 2, ∀x ∈ ΩF (t), t > 0. Here, µF is the dynamic viscosity, ρF is the fluid
density, and f = (f1, f2) is the applied force. Moreover, due to the incompress-
ible nature of the fluid, the velocity must satisfy ∇ · u = 0. Additionally, we
model the displacement d of the solid from its initial position at time t = 0
using the Navier-space equations,

2∑

i=1

∂

∂xi

[
µS

(
∂dj
∂xi

+
∂di
∂xj

)]
+ λ

∂

∂xj
(∇ · d) = ρS

(
∂2dj
∂t2

− gj
)
, (2)

j = 1, 2, ∀x ∈ Ω0
S . Here, λ and µS are the Lamè coefficients, ρS is the solid

density, and g = (g1, g2) is the applied load on the structure. We impose
homogeneous Dirichlet boundary conditions on ∂ΩF \ γ and ∂ΩS \ γ except
on ΓDW , the downwind boundary of ΩF . On this boundary, we only assume
that the velocity u is known. In particular, we let u|ΓDW = (0, ũ).

Ω ΩF S
0 0 t Ω Ω

γ

F S( t )( t )

(t,x  )2

Γ DW

Fig. 1. Deformation of the fluid and solid sub-domains over time

Letting ν =
µF

ρF

, the kinematic viscosity of the fluid, and using incom-

pressibility of the fluid, (1) reduces to
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∂uj
∂t
− ν∆uj + u · ∇uj +

∂p

∂xj
= fj , (3)

j = 1, 2, ∀x ∈ ΩF (t), t > 0. Similarly, if we let µ = µS and ε =
µ+ λ

ρS

then

(2) becomes
∂2dj
∂t2

− µ∆dj − ε
∂

∂xj
(∇ · d) = gj. (4)

j = 1, 2, ∀x ∈ Ω0
S .

The weak formulation for (3) is to find uj satisfying
∫

ΩF (t)

(∂tuj)w
(j)
F dA+ν

∫

ΩF (t)

∇uj · ∇w(j)
F dA− ν

∫

∂ΩF (t)

∂uj
∂n

w
(j)
F ds

+

∫

ΩF (t)

(u · ∇uj)w(j)
F dA+

∫

ΩF (t)

(∂xjp)w
(j)
F dA =

∫

ΩF (t)

fjw
(j)
F dA,

for appropriate w
(j)
F ∈ H1(ΩF (t)), j = 1, 2. Thus,

aF (u,wF) + bF (p,wF) + c̃(u,wF) +BF (ΛF ,wF) = FF (wF), (5)

where

aF (u,wF) = ν

∫

ΩF

2∑

j=1

(∇uj · ∇w(j)
F )dA,

bF (p,wF) = −
∫

ΩF

p(∇ ·wF)dA,

c̃(u,wF) =

∫

ΩF

2∑

j=1

(∂tuj + u · ∇uj)w(j)
F dA,

BF (ΛF ,wF) = −
∫

γ

(ΛF ·wF)ds,

ΛF
j = ν(∇uj · n)− pnj ,

and

FF (wF) =

∫

ΩF

f ·wFdA+

∫

ΓDW

ũw
(2)
F ds.

Next, note that

bF (v,u) = 0 ∀v ∈ H1(ΩF (t)). (6)

And finally, ∀w(j)
S ∈ H1(Ω0

S),
∫

Ω0
S

(∂ttdj)w
(j)
S dA +µ

∫

Ω0
S

∇dj · ∇w(j)
S dA− µ

∫

∂Ω0
S

∂dj
∂n

w
(j)
S ds

−ε
∫

Ω0
S

[∂xj (∇ · d)]w
(j)
S dA =

∫

Ω0
S

gjw
(j)
S dA,
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j = 1, 2. Thus,

aS(d,wS) + cS(d,wS) +BS(ΛS ,wS) = FS(wS), (7)

where

aS(d,wS) =

∫

ΩS

µ
2∑

j=1

(∇dj · ∇w(j)
S ) + ε(∇ · d)(∇ ·wS)dA,

cS(d,wS) =

∫

ΩS

(∂ttd) ·wSdA,

BS(ΛS ,wS) = −
∫

γ

ΛS ·wSds,

ΛS
j = µ(∇dj · n) + ε(∇ · d)nj ,

and

FS(wS) =

∫

ΩS

g ·wSdA.

Now, on the interface

γ(t, x2) = 1 + d1(t, 1, x2),

where d = (d1, d2), we wish to enforce continuity of the velocities,

u(t, γ(t, x2), x2) =
∂d

∂t
(t, 1, x2),

and continuity of the flux,

(ΛF )|γ(t,x2) + (ΛS)|γ(0,x2) = 0.

To construct a two-field method, we set ΛN = (ΛF )|γ(t,x2) = −(ΛS)|γ(0,x2).
Then the global weak formulation is to find

(u, p,d,ΛN) ∈ XN ≡ [H1(ΩF )]2 ×H1(ΩF )× [H1(ΩS)]2 × [H−
1
2 (γ)]2

such that ∀(wF, v,wS,Ψ) ∈ XN ,

aF (u,wF) + bF (p,wF) + c̃(u,wF) +BF (ΛN ,wF) = FF (wF), (8)

aS(d,wS) + cS(d,wS)−BS(ΛN ,wS) = FS(wS), (9)

bF (v,u) = 0, (10)

and

G(u− ∂

∂t
d,Ψ) = 0, (11)

where

G(u,Ψ) =

∫

γ

u ·Ψds.

To solve a fully coupled fluid-structure interaction problem simultaneously for
both u and d, one must compute the solution to (8)-(11) and then extrapolate
a piecewise linear approximation for the interface γ at each time step.
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3 A one-dimensional model problem

Imposing (possibly nonconforming) meshes on Ω0
F and Ω0

S and assuming a
piecewise linear interface γ(t, x2) corresponding to the mesh for ΩF (t) as in
Figure 2, the spatially discrete problem is closely related to a collection of
one-dimensional problems of the following form.

0 1 2

1

0 1 2

1 γ (t)

t

Fig. 2. Evolution of a nonconforming mesh for Ω

We consider a coupled system (Grandmont et al. [2001]) for a velocity u
satisfying a modified Burgers’ equation and displacement d satisfying a wave
equation, e.g.,

∂u

∂t
− ν ∂

2u

∂x2
+

3

2
u
∂u

∂x
= f, x ∈ (0, γ(t)), (12)

where u(t, 0) = 0, and

∂2d

∂t2
− µ∂

2d

∂x2
= g, x ∈ (1, 2), (13)

where d(t, 2) = 0 and d(0, x) = 0, x ∈ (1, 2), with interface γ(t) = 1 + d(t, 1),
as illustrated in Figure 3. Again, we enforce continuity of velocities, i.e.,

u(t, γ(t)) =
∂d

∂t
(t, 1), (14)

and continuity of flux,

ν
∂u

∂x
(t, γ(t)) = µ

∂d

∂x
(t, 1). (15)

  fluid structure

0 1 2

t   fluid structure

0 2γ(t)

Fig. 3. Evolution of a one-dimensional domain
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Employing an arbitrary Lagrangian-Eulerian (ALE) formulation for the
fluid equation and an implicit formulation for the interface position, the dis-
crete variational problem is to find ūn+1, dn+1, and Γn+1 satisfying

(ūn+1, φ)n −∆tνφ(Γn)∂xū
n+1(Γn) +∆tν(∂xū

n+1, ∂xφ)n

+∆t((un − wn)∂xū
n+1, φ)n + 1

2∆t(ū
n+1∂xu

n, φ)n

= (un, φ)n +∆t(fn+1, φ)n,

1

∆t
(dn+1, ψ) +∆tµψ(1)∂xd

n+1(1) +∆tµ(∂xd
n+1, ∂xψ)

=
1

∆t
(2dn − dn−1, ψ) +∆t(gn+1, ψ),

ūn+1(Γn) =
1

∆t
(dn+1 − dn)(1),

ν∂xū
n+1(Γn) = µ∂xd

n+1(1),

and
Γn+1 = 1 +Dn+1(1),

where ūn+1(x) = un+1(x+wn(x)∆t) and wn(x) =
x

Γn
un(Γn) for n = 1, 2, ...,

Γn is the time-discrete approximation of γ(tn), ( · , · )n is the scalar product
on L2(0, Γn), and ( · , · ) is the scalar product on L2(1, 2).

4 Computational experiments

Using hierarchic basis functions (Szabo and Babuska [1991]), we construct
finite element approximations Ūn ≈ ūn and Dn ≈ dn and solve the resulting
linear system for Ūn+1, Dn+1, and Γn+1.

For our experiments, we let µ = 2 and consider an exact solution for
(12)-(15) given by

u(t, x) =
−2πx2 cos(πt)

(2− sin(πt))2
,

d(t, x) =
1

2
x(x − 2) sin(πxt),

and

γ(t) = 1− 1

2
sin(πt),

where ν(t) = 1
2µt(1− 1

2 sin(πt)). Note that both u and d are nonlinear.
Assuming a uniform grid and linear basis functions, let M be the number

of subintervals allowed on the interval (0, Γn) and let N be the number of
subintervals on (1, 2). Figure 4 compares the relative error of our method
whenever M = N to the case M = N − 1 as the degrees of freedom increase.
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The relative error under the L2 norm is plotted against the total degrees of
freedom. Panel (a) shows the results for the fluid velocity and panel (b) shows
the results for the structural displacement. Furthermore, it was previously
shown (Grandmont et al. [2001]) that the consistency error for both u(t, x)
and d(t, x) is of order∆t. Table 1 illustrates this property for our test problem.
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Fig. 4. Convergence of relative error on a uniform mesh

In conclusion, our numerical results provide confidence that this method
will be successful when extended to higher-dimensional problems. To do this,
one only needs to employ the ALE formulation along a given line segment
{(x1, x2) : 0 ≤ x1 ≤ γ(t, x2)}. We intend to present an implementation of this
method for 2D problems in the hp context in future work.
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Table 1. Relative L2 error for fluid velocity and structure displacement as ∆t
decreases

∆t ||u− U ||L2(0,Γ n)/||u||L2(0,Γ n) ||d−D||L2(1,2)/||d||L2(1,2)

0.1 0.445914 0.169221
0.05 0.243088 0.070792
0.025 0.170837 0.031750

0.00625 0.133612 0.009507
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Summary. Viscous-inviscid coupling methods for the computation of aerodynamic
boundary layers are discussed, with emphasis on the quasi-simultaneous method. Its
interaction law is analysed using matrix theory and reduced to its essentials. The
redesigned interaction law is tested for separated airfoil flow at maximum lift.

1 Introduction

The accurate and fast prediction of viscous flow over two- and three-dimen-
sional surfaces is an important problem in aero- and hydrodynamics. The
continuing advances in efficiency of numerical algorithms, together with the in-
creasing speed and memory size of computers, are enabling viscous flows to be
calculated by methods that solve the full (Reynolds-averaged) Navier–Stokes
equations. Whilst Navier–Stokes simulation potentially offers generality, its
computational requirements currently limit its use for practical applications,
especially within a design optimisation environment.

An alternative is to use the older technique of viscous-inviscid interaction
(VII), where an inviscid-flow solver is coupled to a viscous boundary-layer
calculation method (Figure 1). VII methods have shown to be very efficient
and robust (Lock and Williams [1987]). For many cases of aerodynamic inter-
est the coupled solution matches experimental data as well as Navier–Stokes
simulation, and this at much lower computational cost.

Domain 2

STRONG INTERACTION
M>1

Domain 1

Fig. 1. Decomposition of flow field into boundary layer and inviscid flow
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Since Prandtl [1905] introduced his boundary-layer concept in 1904, several
VII methods have been developed. The oldest technique is known as the direct
method, which solves the boundary layer with a prescribed velocity (pressure)
distribution ue. In turn, the boundary layer expresses its presence in terms of
a virtually thickened profile, called displacement thickness δ∗.

For situations with attached flow the direct method works well. However,
when regions of reversed flow are present the direct boundary-layer calculation
breaks down. In 1948, Goldstein [1948] presented an extensive study of the
breakdown, but no definitive conclusion about its origin could be given. Since
then the singularity at flow separation bears his name.

It was not until 1966 that the first clue on how to prevent this singularity
was given, when Catherall and Mangler [1966] presented calculations of a
boundary layer with prescribed δ∗. They were able to pass the critical point
of flow separation, but ran into numerical difficulties somewhat further on in
the reversed-flow region. A further clue was provided by the asymptotic triple-
deck theory introduced by Stewartson [1969], indicating a change in hierarchy
between the inviscid-flow region and the boundary layer.

Led by these ideas, in the late 70’s alternatives for the direct VII method
were introduced. An obvious choice is to reverse the order of information ex-
change. This inverse method survives in flow separation, but its convergence
is extremely slow. Henceforth, both methods were mixed into the semi-inverse
method (LeBalleur [1978]), where both flow regions are solved with prescribed
δ∗, which is then updated based on the difference in the respective ue distri-
butions. The latter update requires careful tuning of relaxation parameters.

Another idea was to avoid any hierarchy in the treatment of both flow
regions. However, a fully simultaneous approach would require both sets of
flow equations to be merged into one big system, which is quite complicated in
software terms and defies any flexibility in flow modeling. Hence, an attempt
was made to approximate such a simultaneous approach. Thus the concept
of the interaction law came up: a simple, yet powerful, description of the
inviscid flow, which can easily be solved simultaneously with the boundary-
layer equations (Veldman [1981]). In this paper we will analyse this quasi-
simultaneous approach and simplify the interaction law. We end up with a
method which is very close to the direct method, and yet has no problems
with reversed flow, as demonstrated with a calculation of airfoil flow.

2 Quasi-Simultaneous VII and the Interaction Law

In an abstract setting, the coupled VII problem can be written as

external inviscid flow: ue = Eδ∗

boundary-layer flow: ue = −V δ∗
}
⇒ (V + E)δ∗ = 0 . (1)

The classical way of solving these equations is to prescribe δ∗ to the external
inviscid flow, and then to return ue to the boundary layer. As the boundary-
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layer step breaks down when flow separation occurs, the quasi-simultaneous
method tries to avoid the iterative hierarchy involved. The basic idea is to
inform the boundary layer instantaneously how the external flow will react on
changes inside the boundary layer. Hereto, a sufficiently accurate, yet simple,
approximation of the external inviscid flow is introduced, denoted as ue = Iδ∗.
This interaction law is to be solved simultaneously with the boundary-layer
equations, i.e.

u
(n)
e − Iδ∗(n) = (E − I)δ∗(n−1)

u
(n)
e + V δ∗(n) = 0

}
⇒ (V + I)δ∗(n) = (I − E)δ∗(n−1) . (2)

Note that the VII iterations ‘only’ need to account for the difference between
the external flow E and its approximation I.

Next the question arises how to choose the interaction law. A fair descrip-
tion of how an inviscid flow reacts on displacement effects is delivered by
thin-airfoil theory, in its simplest form given by

ue(x) = ue0(x) +
1

π

∫

Γ

dδ∗

dξ

dξ

x− ξ , (3)

where ue0 is the edge velocity without displacement effects. Also triple-deck
theory provides this type of approximation, which makes (3) a good candidate
as an interaction law. In fact, this interaction law (describing thickness effects)
together with its anti-symmetric counterpart (describing camber effects) has
been used successfully in subsonic and transonic(!) airfoil/wake calculations
(Veldman et al. [1990]). As these thin-airfoil expressions are somewhat com-
plicated it is worthwhile to try to simplify the interaction law, yet retaining
a robust and efficient VII algorithm. Thus, the question to be answered is

How ‘small’ can I be chosen?

As a reminder, the direct choice I = 0 blows up in Goldstein’s singularity. We
will first address this question from a theoretical point of view. Thereafter,
the usefulness of the theory will be demonstrated on realistic flow problems.

3 A Model Problem

As a model problem to shape the theory, the flow past an indented plate
(Figure 2) is studied for which the external flow will be described by the thin-
airfoil expression (3). It is our aim to construct a simple interaction law for
this case. Let us first collect some properties of the operators E and V .

External Flow. The integral (3) is discretized on a uniform grid with mesh
size h. The displacement thickness δ∗ is interpolated by a piece-wise linear
function; only on the two intervals adjacent to the Cauchy principal value a
quadratic is used:
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Fig. 2. Geometry sketch of indented plate geometry
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π
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}
dδ∗
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π

d2δ∗

dξ2

∣∣∣∣
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h

π
Σj 6=i−1,i

dδ∗

dξ

∣∣∣∣
j+1/2

ln

∣∣∣∣
i− j

i− j − 1

∣∣∣∣ .

The corresponding discrete matrix E is symmetric, positive definite with di-
agonal 4/πh, and with non-positive off-diagonal entries.

Boundary-Layer Flow. Referring e.g. to Veldman [1984], a discrete boundary-
layer operator typically is lower diagonal, with positive diagonal entries for
attached flow and (slightly) negative diagonal entries for reversed flow.

4 Theory of Viscous-Inviscid Interaction

Throughout our mathematical analysis the following assumption is made:

Assumption The matrix V+E is assumed to be an M-matrix, i.e.
it has positive diagonal entries, non-positive off-diagonal entries and
all eigenvalues have positive real part.

The location of the eigenvalues corresponds with steady flow; the sign of the
matrix entries allows theory, and will hold approximately in practice.

VII Iterations. An interaction law (2) corresponds with a splitting V + E =
(V + I) − (I − E). When I ≥ E and when also V + I is an M-matrix, then
(V + E)−1 ≥ (V + I)−1 ≥ 0 [Horn and Johnson, 1991, p. 117 & 127] and
the splitting is regular [Varga, 1962, p. 88]. As the off-diagonals of E are
non-positive, this suggests to construct I from E by dropping one or more off-
diagonals. Subsequently, the comparison theorem on regular splittings [Varga,
1962, p. 90] implies that the convergence of the VII iterations deteriorates
monotonously with the number of dropped off-diagonals in I.

Boundary-Layer Iterations. In each VII iteration a boundary-layer compu-
tation has to be performed, in which (2) is to be solved. This is done by
repeated marching through the boundary layer, starting near the stagnation
point and proceeding in downstream direction. Thus, a Gauss–Seidel type of
iteration is performed. This method ‘only’ has to iterate on the upper trian-
gular part of the matrix V + I, which here consists of entries from I. Hence
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it may be expected that a ‘small’ upper-diagonal part will speed up conver-
gence. And, indeed, under the above assumption it can be proven that the
Gauss-Seidel convergence improves monotonously with the number of dropped
off-diagonals in I (Coenen [2001]). This is opposite to the behaviour of the
VII iterations, hence a trade-off is opportune (see below). Further, it is re-
marked that an interaction law which only consists of a main diagonal does
not require boundary-layer iterations.

separated flowattached

inviscid flow

δ*
i

boundary layer

uemin

uei

Fig. 3. A sketch of the boundary-layer behaviour, combined with an inviscid-flow
relation

Robustness. The boundary-layer formulation is highly nonlinear. A sketch of
the situation is given in Figure 3. Here, at a fixed boundary-layer station,
the dependence between the edge velocity and the displacement thickness is
shown (Veldman [1984]). This sketch shows clearly that below a certain value
for a prescribed ue no solution can be found anymore; this non-existence of a
boundary-layer solution induces the breakdown! Prescribing a linear combi-
nation of ue and δ∗, as is the case when an interaction law is applied, should
be useful provided the coefficient of δ∗ stays away from zero sufficiently. Also
during the iterations the process should not break down, hence the eigenval-
ues of the interaction matrix I, and herewith the eigenvalues of V + I, should
stay sufficiently far from the imaginary axis.

Again theory can be developed. With the above assumption, V+ I can be
written as a constant positive diagonal matrix minus a non-negative matrix.
For the latter type of matrices the largest eigenvalue grows monotonously with
the matrix entries (the Perron-Frobenius theorem [Varga, 1962, p. 30]). Thus
for V + I this dependency holds for the smallest eigenvalue. With I ≥ E, this
eigenvalue is located in the stable (positive) half plane. Further, it grows with
the number of dropped diagonals, herewith increasing the robustness of the
boundary-layer calculation. Also in this respect an interaction law consisting
of only the main diagonal of E scores best.
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5 Viscous-Inviscid Interaction in Practice

Indented Plate

The applicability of the theory will first be investigated with the above in-
dented plate model. The length of the domain is five units, with a dent up
to one unit deep (which is very deep in comparison with the boundary-layer
thickness, but gives a severe testcase for the VII algorithm). The Reynolds
number based on unit length is 108. The boundary layer is modelled with
Head’s entrainment method; see Coenen [2001].

The interaction law I is chosen by simply dropping off-diagonals in the
‘exact’ inviscid flow matrix E. Figure 4 gives the number of VII iterations
as a function of the number of retained diagonals (including the main diag-
onal). Three flow situations have been distinguished: one with attached flow
(when the dent is very shallow), one with mild separation, and one with severe
separation (as in Figure 2).

For all choices of I the VII iterations are found to converge. More-
over, according to theory, the convergence of the VII iterations improves
monotonously with the number of diagonals retained in I. The limit number
of iterations is 2-3. For attached flow this can be compared with the direct
method which also requires 3 iterations to converge (in the separated-flow
cases the direct method breaks down).
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Fig. 4. Number of VII iterations (left) and total number of boundary-layer sweeps
(right) as a function of the number of retained diagonals

Further, the number of VII iterations drops fast when the number of re-
tained diagonals increases. On the other hand this leads to slower convergence
of the boundary-layer iterations, and therefore the total number of boundary-
layer sweeps has also been monitored in Figure 4. A local minimum exists
when the interaction law only consists of the main diagonal; remember that
in this case only one boundary-layer sweep per VII iteration is required. When
one off-diagonal is added, the number of Gauss–Seidel sweeps per VII iter-
ation increases, such that the total number of boundary-layer sweeps also
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increases, even though the number of VII iterations has decreased. Adding
more off-diagonals the decrease in VII iterations becomes dominant. A mini-
mum number of boundary-layer sweeps is found in the limit I = E. Here, the
number of boundary-layer sweeps should be equal to the number required for
a fully simultaneous treatment, i.e. when the system (1) is solved by Gauss–
Seidel. Indeed, this is found to be the case.

Thus for the interaction law two interesting choices exist. One option is to
choose it according to the ‘full’ external flow; the other is to choose it equal
to only the diagonal 4/πh of the external-flow matrix. As the first option is
against our quest for simplicity, below we will test the second option on a
realistic problem of boundary-layer flow past a two-dimensional airfoil.

Subsonic Airfoil Flow

The above ideas on simplifying the interaction law will now be tested for aero-
dynamic flow past a NACA0012 airfoil (at Re = 9 ·106, and M∞ = 0); experi-
mental data is available. The inviscid flow is modelled by potential theory, and
computed by means of a panel method. Boundary layer plus wake are modelled
with Head’s entrainment method (for more information we refer to Coenen
[2001]). They are solved together with the interaction law I = diag(4/πh).
We stress that this interaction law is unaware of the Kutta condition and its
effect on the global circulation; it only accounts for the local VII physics –
but this turns out to be sufficient.

A large part of the lift polar has been computed. The calculations turn
out to be highly robust. It appears that even for separated-flow cases beyond
maximum lift the calculations converge without any need for a good initial
guess; they can be started from scratch. The number of VII iterations typically
is less than 100 at zero lift upto 1000 around maximum lift (computing times
count in seconds on an average PC). Only for larger angles of attack the
computations break down; using a good initial guess obtained at a slightly
smaller angle does not help.
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6 Conclusion

A short overview of viscous-inviscid interaction has been presented, starting
with Prandtl one century ago, and encountering Goldstein’s analysis half a
century later. Today, after a whole century of boundary-layer research, it has
been found that Goldstein’s singularity can be prevented by changing the
‘classical’ boundary condition of prescribed edge velocity into

(
ue +

4

πh
δ∗
)(new)

=

(
ue +

4

πh
δ∗
)(old)

.

This slight change, unlikely to be further simplified, results in a highly robust
calculation method, applicable to airfoil calculations beyond maximum lift.
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Summary. We investigate the performance of domain decomposition methods for
solving the Poisson equation on the surface of the sphere. This equation arises in a
global weather model as a consequence of an implicit time discretization. We consider
two different types of algorithms: the Dirichlet-Neumann algorithm and the optimal
Schwarz method. We show that both algorithms applied to a simple two subdomain
decomposition of the surface of the sphere converge in two iterations. While the
Dirichlet-Neumann algorithm achieves this with local transmission conditions, the
optimal Schwarz algorithm needs non-local transmission conditions. This seems to
be a disadvantage of the optimal Schwarz method. We then show however that for
more than two subdomains or overlapping subdomains, both the optimal Schwarz
algorithm and the Dirichlet Neumann algorithm need non-local interface conditions
to converge in a finite number of steps. Hence the apparent advantage of Dirichlet-
Neumann over optimal Schwarz is only an artifact of the special two subdomain
decomposition.

1 Introduction

Numerical efficiency is very important when modeling the atmosphere, see
Côté et al. [1998]. This is particularly true of operational weather forecasts
that must be run in real-time during a given time window, and weather be-
ing a global phenomenon, one must use a global model to accurately forecast
or analyze data. Furthermore, fast waves, which carry little energy, propa-
gate many times faster than the local wind speed, by a factor three or more

⋆ The author was partly supported by the Office of Science (BER), U.S. Department
of Energy, Grant No. DE-FG02-01ER63199
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depending on the application, and these waves restrict the time-step of ex-
plicit Eulerian integration schemes. The restrictions are particularly severe
for global finite-difference models, due to the convergence of the meridians
at the poles. This motivates the use of an implicit (or semi-implicit) time
treatment of the terms that govern the propagation of these oscillations in
order to greatly retard their propagation and permit a much larger time-step.
This approach results in the need to solve an elliptic problem on the sphere.
For a time-implicit scheme to be computationally advantageous, it must be
possible to integrate with a sufficiently-large time-step to offset the overhead
of solving the elliptic-boundary-value problem. This is often the case, even for
non-hydrostatic flows, as discussed in Skamarock et al. [1997].

Meteorological operational centers have recently acquired new high-per-
formance significantly-parallel computers. In order to reap the benefits af-
forded by those systems, parallel algorithms need to be designed for solving
the models used in numerical-weather-prediction and data assimilation sys-
tems. This motivates the present study, where the parallel solution based on
domain-decomposition methods on the surface of the sphere is analyzed. We
investigate two domain decomposition methods in this paper: the Dirichlet-
Neumann and the optimal Schwarz method. The Dirichlet-Neumann method
is a well studied method on the plane, see for example Bjørstad and Wid-
lund [1986], Bramble et al. [1986], Marini and Quarteroni [1989], and refer-
ences therein. The choice of the optimal relaxation parameter in the Dirichlet-
Neumann method on the plane is also well understood: for the case of two
subdomains with special symmetry, it is 1

2 . In more general situations, the
parameter of relaxation needs to be in a specific interval to obtain a fast
algorithm. The key idea underlying the optimal Schwarz method has been
introduced in Hagstrom et al. [1988] in the context of non-linear problems. A
new class of Schwarz methods based on this idea was then introduced in Char-
ton et al. [1991] and further analyzed in Nataf and Rogier [1995] and Japhet
[1998] for convection diffusion problems. For the case of the Poisson equation,
see Gander et al. [2001], where also the terms optimal and optimized Schwarz
were introduced. Optimal Schwarz methods have in general non-local trans-
mission conditions at the interfaces between subdomains, and are therefore
not as easy to use as classical Schwarz methods. Optimized Schwarz methods
use local approximations of the optimal, non-local transmission conditions at
the interfaces and are therefore as easy to use as the classical Schwarz method,
but have a greatly enhanced performance.

In Section 2, we introduce the Poisson equation on the sphere and the tools
of Fourier analysis, on which our results are based. In Section 3, we present
the Dirichlet-Neumann algorithm for the Poisson equation on the surface of
the sphere with possible overlap. We show that convergence in two iterations
can be achieved with an appropriate choice of the relaxation parameter. In the
case of two subdomains without overlap, this optimal parameter is a constant,
but with overlap, and in the case of three subdomains, convergence in a finite
number of steps is only possible with a non-local convolution relaxation pa-
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rameter. In Section 4, we present the optimal Schwarz algorithm for the same
configuration. We prove convergence in two iterations for the two subdomain
case and in three iterations for the three subdomain case, in both cases with
non-local transmission conditions. In Section 5 we illustrate our findings with
numerical experiments.

2 The Poisson Equation on the Sphere

We consider the solution of the Poisson problem

Lu = ∆u = f, in S ⊂ R3, (1)

where S is the unit sphere centered at the origin. Using spherical coordinates,
the equation (1) can be rewritten in the form

Lu =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2sin2ψ

∂2u

∂θ2
+

1

r2sinψ

∂

∂ψ

(
sinψ

∂u

∂ψ

)
= f, (2)

where ψ stands for the colatitude, with 0 being the north pole and π being
the south pole, and θ is the longitude. For our case on the surface of the unit
sphere, we consider solutions independent of r, which simplifies (2) to

Lu =
1

sin2ψ

∂2u

∂θ2
+

1

sinψ

∂

∂ψ

(
sinψ

∂u

∂ψ

)
= f. (3)

Our results are based on Fourier analysis. Because u is periodic in θ, it can
be expanded in a Fourier series,

u(ψ, θ) =

∞∑

m=−∞
û(ψ,m)eimθ, û(ψ,m) =

1

2π

∫ 2π

0

e−imθu(ψ, θ)dθ.

Equation (3) then becomes a family of ordinary differential equations; for any
positive or negative integer m, we have

− m2

sin2ψ
û(ψ,m) +

1

sinψ

∂

∂ψ

(
sinψ

∂û(ψ,m)

∂ψ

)
= f̂(ψ,m). (4)

For m fixed, the homogeneous problem, f̂(ψ,m) = 0 in (4), has the two
fundamental solutions

g±(ψ,m) =

(
sin(ψ)

cos(ψ) + 1

)±|m|
. (5)

Remark 1. g+ has a singularity at the south pole and g− has a singularity at
the north pole.

Remark 2. The function sinx/(cosx + 1) is monotonically increasing on the
interval [0, π), which can be seen by taking a derivative.
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3 The Dirichlet-Neumann Algorithm

We first decompose the surface of the sphere into two overlapping subdomains
as shown in Figure 1-(i), where a ≤ b. The Dirichlet-Neumann method to

Y

a

Ω
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Ω
1

Ω
3

Ω
2

Ω
1

Y

b
α

Z Z

β

(ii)(i)

Fig. 1. (i) Two overlapping subdomains (ii) Three nonoverlapping subdomains.

solve (1) solves iteratively the Poisson equation on Ω1 and Ω2 and exchanges
Dirichlet and Neumann conditions respectively on the interfaces a and b. In its
classical form, the algorithm is defined without overlap, but here we are also
interested in the influence of overlap on the algorithm. By linearity, it suffices
to consider only the homogeneous case in the convergence analysis, f = 0.
For an initial guess λ0(θ) on the interface b, the algorithm then performs the
iteration

Luk+1
1 = 0 in Ω1, uk+1

1 (b, θ) = λk(θ),

Luk+1
2 = 0 in Ω2,

∂
∂ψu

k+1
2 (a, θ) = ∂

∂ψu
k+1
1 (a, θ),

(6)

where the new function λk+1(θ) is defined by the linear combination

λk+1(θ) := γuk+1
2 (b, θ) + (1− γ)λk(θ). (7)

Here γ is a relaxation parameter which is assumed to be non-negative. Ex-
panding the iterates in a Fourier series and taking into account Remark 1 for
bounded solutions on the subdomains, we obtain the subdomain solutions

ûk+1
1 (ψ,m) = λ̂k(m)g+(ψ,m)

g+(b,m) ,

ûk+1
2 (ψ,m) = −λ̂k(m) g+(a,m)

g+(b,m)g−(a,m)g−(ψ,m).
(8)

Letting σ(m) = g+(a,m)g−(b,m), the iteration on λ in (7) becomes

λ̂k+1(m) = (1− γ̂(1 + σ2(m)))λ̂k(m). (9)

Proposition 1. The Dirichlet-Neumann iteration (6) with the two overlap-
ping subdomains on the surface of the sphere converges in two iterations,
provided the relaxation parameter is

γ̂ = γ̂opt(m) :=
1

1 + σ2(m)
. (10)
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Remark 3. The optimal relaxation parameter depends on m, which implies a
non-local convolution operation in real space. Without overlap however, a = b,
we have σ(m) = 1, and the optimal relaxation parameter becomes γopt = 1/2,
which is now independent of m and thus a simple local operation in real space.

To see if the optimal result for the non-overlapping two subdomain case
can be generalized to more subdomains, we consider a decomposition of the
surface of the sphere into three non-overlapping subdomains, see Figure 1-(ii),
where α < β. In this case the Dirichlet-Neumann algorithm for (1) with initial
guesses λ0

1(θ) and λ0
2(θ) is

Luk+1
1 = 0 in Ω1, uk+1

1 (α, θ) = λk1(θ),

Luk+1
2 = 0 in Ω2,

∂
∂ψu

k+1
2 (α, θ) = ∂

∂ψu
k+1
1 (α, θ),

uk+1
2 (β, θ) = λk2(θ),

Luk+1
3 = 0 in Ω3,

∂
∂ψu

k+1
3 (β, θ) = ∂

∂ψu
k+1
2 (β, θ),

(11)

where the new functions λkj (θ), j = 1, 2, are defined by

λk+1
1 (θ) = γ1u

k+1
2 (α, θ) + (1− γ1)λ

k
1(θ),

λk+1
2 (θ) = γ2u

k+1
3 (β, θ) + (1− γ2)λ

k
2(θ),

(12)

and γ1 and γ2 are non-negative relaxation parameters. Using Fourier series as
before, we arrive at the matrix iteration

[
λ̂k+1

1

λ̂k+1
2

]
= A

[
λ̂k1
λ̂k2

]
, A :=

[
γ̂1

∆−

∆+
+ (1 − γ̂1) 2 γ̂1

∆+

−2 γ̂2
∆+

γ̂2
∆−

∆+
+ (1 − γ̂2)

]
, (13)

where ∆± := η(m)± η−1(m) and η(m) := g+(α,m)/g+(β,m).

Proposition 2. The Dirichlet-Neumann iteration with three non-overlapping
subdomains on the surface of the sphere converges in three iterations, provided
the relaxation parameters are

γ̂1 = γ̂1,opt(m) := 1
2 + 1

2η
2(m)− 1

2η(m)
√

1 + η2(m),

γ̂2 = γ̂2,opt(m) := 1
2 + 1

2η
2(m) + 1

2η(m)
√

1 + η2(m).
(14)

This result shows that for more than two subdomains, convergence in a finite
number of steps can only be achieved with non-local convolution relaxation
parameters in the Dirichlet-Neumann algorithm.

4 Schwarz Algorithms

We decompose the surface of the sphere into two overlapping domains as
shown in Figure (1)-(i). The classical Schwarz algorithm is given by
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Luk+1
1 = 0 in Ω1, uk+1

1 (b, θ) = uk2(b, θ),

Luk+1
2 = 0, in Ω2, uk+1

2 (a, θ) = uk+1
1 (a, θ).

(15)

Using a Fourier series expansion as before, we find

ûk+1
1 (a,m)=ρûk1(a,m)

ûk+1
2 (b,m)=ρûk2(b,m)

, ρ :=
g+(a,m)

g+(b,m)

g−(b,m)

g−(a,m)
. (16)

Because of Remark 2, the fractions are less than one and this process is a
contraction and hence convergent. We have proved the following

Proposition 3. For each m 6= 0, the Schwarz iteration on the surface of
the sphere partitioned along two colatitudes a < b converges linearly with the
convergence factor

(
sin(a)

cos(a) + 1

)2|m|(
sin(b)

cos(b) + 1

)−2|m|
< 1. (17)

This shows that for small values of m the speed of convergence is very poor,
since the convergence factor in (17) is nearly one. Following the approach in
Gander et al. [2001], we introduce the following new transmission conditions:

(1 + p̂(m) ∂
∂ψ )ûk+1

1 (b,m) = (1 + p̂(m) ∂
∂ψ )ûk2(b,m),

(1 + q̂(m) ∂
∂ψ )ûk+1

2 (a,m) = (1 + q̂(m) ∂
∂ψ )ûk+1

1 (a,m),
(18)

where p̂ and q̂ are functions we can use to optimize the performance.

Proposition 4. If, for each m 6= 0, p̂(m) = sin(b)/|m| and q̂(m) = − sin(a)/|m|,
then the new Schwarz algorithm with transmission conditions (18) converges
in two iterations, even without overlap, a = b.

Proof. Using û1
2(ψ,m) = C2g−(ψ,m) and û1

1(ψ,m) = C1g+(ψ,m), where C2

is a coefficient to be determined by the method and C1 is given through the
initial guess, and substituting into the transmission condition, yields

C2g−(a,m)

(
1− q̂(m)

|m|
sin(a)

)
= C1g+(a,m)

(
1 + q̂(m)

|m|
sin(a)

)
= 0.

Hence C2 = 0 and the iteration has converged for Ω2. A similar argument
shows that in the second step, the iteration converges on Ω1 as well.

To see if this result generalizes to more than two subdomains, we consider
the Schwarz algorithm with three subdomains,

Luk+1
1 = 0 in Ω1, (1 + p ∂

∂ψ )uk+1
1 (α, θ) = (1 + p ∂

∂ψ )uk2(α, θ),

Luk+1
2 = 0 in Ω2, (1 + q1

∂
∂ψ )uk+1

2 (α, θ) = (1 + q1
∂
∂ψ )uk+1

1 (α, θ),

(1 + q2
∂
∂ψ )uk+1

2 (β, θ) = (1 + q2
∂
∂ψ )uk3(β, θ),

Luk+1
3 = 0 in Ω3, (1 + r ∂

∂ψ )uk+1
3 (β, θ) = (1 + r ∂

∂ψ )uk+1
2 (β, θ),

(19)

where p, q1, q2 and r are convolution operators in θ with Fourier symbol p̂,
q̂1, q̂2 and r̂ respectively.
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Proposition 5. If, for each m 6= 0, p̂(m) = sin(α)/|m|, q̂1(m) = − sin(α)/|m|,
q̂2(m) = sin(β)/|m|, r̂(m) = − sin(β)/|m|, then the new Schwarz algorithm
for three subdomains (19) converges in three iterations.

The proof of this last result is similar to the proof for the two subdomain case.

Remark 4. The choice p̂(m) = sin(α)/|m| and q̂2(m) = sin(β)/|m| is not nec-
essary in this Gauss-Seidel form of the optimal Schwarz method: p̂(m) and
q̂2(m) can be any real number, except − sin(α)/|m| and − sin(β)/|m| respec-
tively, and the stated results still hold (the situation is similar for the two
subdomain case). In the more parallel Jacobi form of the algorithms however
the given choice is necessary to obtain the convergence results stated.

5 Numerical experiments

We used a spectral method in the longitude with 20 modes, and a finite dif-
ference method in the colatitude with discretization parameter h = π/3000.
In the first set of experiments, we used two subdomains, once with overlap
[ 9
20π,

11
20π], and once without overlap. A comparison of the convergence be-

havior of the algorithms is shown in Figure 2 on the left. While the classical
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Fig. 2. Convergence behavior for the methods analyzed: the two subdomain case
on the left and the three subdomain case on the right.

Schwarz algorithm converges very slowly, both the optimal Schwarz and the
Dirichlet-Neumann algorithm converge in two steps with and without overlap,
as predicted by the analysis.

In the second set of experiments, we use three non-overlapping subdo-
mains. In Figure 2 on the right, one can see that the optimal Schwarz and
Dirichlet-Neumann algorithms converge in three steps, as predicted by the
analysis, whereas the Dirichlet-Neumann algorithm with the constant relax-
ation parameter 1/2, which was optimal for the two subdomain case without
overlap, is now much slower.
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6 Conclusion

The Dirichlet-Neumann algorithm converges with local relaxation parameter
in a finite number of steps only in the special case of two subdomains. To
obtain convergence in a finite number of steps for more than two subdomains
or if overlap is used, non-local relaxation parameters are needed, like for the
optimal Schwarz method. These non-local transmission conditions will serve
as a guiding principle to develop local approximations which lead to fast
algorithms.
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Summary. We are interested in a robust and accurate domain decomposition
method with arbitrary interface conditions on non-matching grids using a finite
volume discretization. We introduce transmission operators to take into account the
non-matching grids. Under compatibility assumptions, we have the well-posedness
of the global problem and of the local subproblems with a new discretization of the
arbitrary interface conditions. Then, we give two error estimates in the discrete H1

norm: the first one is in O(h1/2) with L2 orthogonal projections onto piecewise func-
tions along the interface and the second one in O(h) with transmission conditions
based on a linear rebuilding along the interface. Finally, numerical results confirm
the theory. Particular attention is paid to the situation with non matching grids and
highly heterogeneous coefficients both across and inside subdomains. The addition
of a third very thin subdomain between geological blocks is necessary to ensure a
good accuracy.

1 Introduction

The aim of basin modelling is to simulate maturation of source rocks and mi-
gration of oil in sedimentary basins in order to provide quantitative prediction
about phenomena leading to oil accumulations. A sedimentary basin is divided
by faults in several blocks, which are themselves composed of several layers
of different lithology. In order to account for these heterogeneities, the mesh
used in each block follows the stratigraphic layers. Blocks displacement along
faults results in sliding and therefore leads to non matching grids between
two adjacent blocks (eventually between two adjacent layers). Our objective
is to develop numerical methods based on finite volume discretization (as it
is well adapted to multiphase flow modelling), and to handle efficiently non-
matching grids. We work in the context of domain decomposition techniques
which offer a general framework to handle non matching grids.
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As a first simplified model, we consider the following problem in Ω,
bounded polygonal subset of IRd (d = 2, 3):

(η −∆)(p) = f in Ω and p = 0 on ∂Ω (1)

where η > 0. For the sake of simplicity, we assume that the domain Ω is
divided in two non overlapping subdomains Ωi (i = 1, 2), with grids that do
not match on the interface.
Previous works have shown that Robin or more general interface conditions
in domain decomposition methods ensure robustness and efficiency of the
iterative domain decomposition Faille et al. [2000], Achdou et al. [1999]. A
continuous domain decomposition formulation of (1) reads:

(η −∆)(pn+1
i ) = f in Ωi and pn+1

i = 0 on ∂Ω ∩ ∂Ωi
∂pn+1

i

∂ni
+ αjp

n+1
i = −∂p

n
j

∂nj
+ αjp

n
j on ∂Ωj ∩ ∂Ωi, i, j = 1, 2 and i 6= j

(2)

where αj > 0. Our aim is to combine this domain decomposition algorithm
with a cell centered finite volume discretization, while satisfying the following
properties. First, the method should be robust enough (at least existence and
uniqueness of the discrete solution). Then it should allow a wide range of
values for Robin coefficients or even more general interface conditions and
it should be accurate enough as our ultimate goal is to consider grids that
do not match between layers. Finally, as sliding blocks are considered, the
discretization in one block should not depend on the grid of the adjacent
block. In the framework of finite volume or mixed finite element method,
several discretization methods for non-matching grids have been developed
Arbogast et al. [1996], Ewing et al. [1991], Achdou et al. [2002],Cautrés et al.
[2000], Aavatsmark et al. [2001] but these methods do not use Robin conditions
or loose finite volume accuracy.

The rest of the paper is organized as follows. In the next section, we de-
scribe the finite volume discretization inside a subdomain. In § 3, we introduce
the transmission operators used to match the unknowns. In § 5, error estimates
are given. In § 6, numerical results are shown. In § 7, discontinuous coefficients
are taken into account.

2 Finite volume discretization

We consider a finite volume admissible mesh Ti associated with each sub-
domain Ωi Eymard et al. [2000] which is a set of closed polygonal subsets
of Ωi such that Ωi = ∪K∈TiK and EΩi is the set of faces of Ti. We shall
use the following notations: Let ǫi be a face of EΩi located on the boundary
of Ωi, K(ǫi) denotes the control cell K ∈ Ti such that ǫi ∈ K, Ei is the
set of faces of domain Ωi located on the interface, E(K) is the set of faces
of K ∈ Ti, Ei(K) is the set of faces of K ∈ Ti which are on the interface,
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Ni(K) = {K ′ ∈ Ti : K ∩K ′ ∈ EΩi} is the set of the control cells adjacent to
K and [K,K ′] denotes the face K ∩K ′.
We introduce piK an approximation of p(xK) (where xK is a point inside the
control cell K), piǫ an approximation of p(yǫ) (where yǫ is the center of the
face ǫ ∈ Ei) and uiǫ an approximation of the flux ∂pi

∂ni
(yǫ) outward Ωi through

Ei. Then, not taking into account the Dirichlet boundary condition, a finite
volume scheme for (1) can be defined by the set of equations Eymard et al.
[2000].

ηpiKm(K)−
∑

K′∈Ni(K)

piK′ − piK
d(xK′ , xK)

m([K,K ′])−
∑

ǫ∈Ei(K)

uiǫm(ǫ) = F iK (3)

with uiǫ =
piǫ − piK
d(yǫ, xK)

for ǫ ∈ Ei (4)

for all control cells K of Ti and where m(A) is the measure of A ⊂ Ω. Dis-
cretized Robin interface conditions or more general interface conditions on Ei
are introduced in the next section.

3 Transmission operators

We introduce the operators Qi : P 0(Ej) 7→ P 0(Ei) (i, j = 1, 2 i 6= j) where
P 0(Ei) is the space of piecewise constant functions on Ei.
Assumption 1 Operators Q1 and Q2 are transposed of each other for the
standard L2 scalar product.

Method Constant The first type of transmission operators that we consider
are the restrictions on P 0(Ej) of P ci the L2 orthogonal projection onto P 0(Ei).
They satisfy Assumption 1.

Method Linear The second type of transmission operators uses a linear re-
building to ensure a more accurate transmission than P ci . We introduce for
i = 1, 2

• the interface grid: E2
i coarsening by a factor 2 of Ei

• P 1
d (E2

i ) discontinuous piecewise linear functions on E2
i .

• interpolation operator Ii : P 0(Ei) 7−→ P 1
d (E2

i ) and its transpose Iti
(w.r.t. the scalar product L2(Γ ), ∀u ∈ P 0(ǫi) and ∀v ∈ P 1(ǫ2i ) <
Ii(u), v >L2(Γ )=< u, Iti (v) >L2(Γ )).

• PLi L2 orthogonal projection on P 1
d (E2

i )

The definitions of the transmission operators are inspired by previous
works Arbogast et al. [1996] in mixed finite element method:
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Fig. 1. Linear rebuilding and transmission operators

Q1 = It1P
L
1 (5)

Q2 = PC2 I1

They satisfy Assumption 1 but are not projections.

4 Interface Conditions

In analogy with Bernardi et al. [1994], transmission operators are used to
write discrete matching conditions ensuring continuity of the solution and of
its normal derivative on the interface:

p2 = Q2(p1) on E2 and u1 = Q1(−u2) on E1 (6)

where pi ∈ P 0(Ei) is the approximate pressure on Ei and ui ∈ P 0(Ei) is the
approximate flux outward Ωi on Ei (pi = (pǫi)ǫ∈Ei and ui = (uǫi)ǫ∈Ei). In mor-
tar terminology Bernardi et al. [1994], domain Ω1 is called the master because
it imposes the pressure and Ω2 is called the slave.
These matching conditions are made compatible with arbitrary interface con-
ditions defined via operators Si : P 0(Ei) 7−→ P 0(Ei) which satisfy
Assumption 2 Si is positive definite
The corresponding interface conditions read:

Q1(S2(Q2(p1))) + u1 = Q1(S2(p2)− u2) (7)

p2 +Q2(S
−1
1 (Q1(u2))) = Q2(p1 − S−1

1 (u1)) (8)

Examples of interface conditions are:

• Discrete Steklov-Poincaré operator (Si = (DtNi)h)
• Robin interface conditions de Si = diag(αiǫ), Si = diag(αiopt)
• optimized of order 1 or 2 (Si tridiagonal)

Lemma 1. Under Assumptions 1 and 2, mortar matching conditions (6 ) and
arbitrary interface conditions (7)-(8) are equivalent.
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5 Error Estimates

It is proved in Saas et al. [2002] that under Assumptions 1 and 2,

• the global problem defined by the set of equations (3)-(4)-(6) is well-posed
and stable.

• the local problem defined in Ω1 by the set of equations (3)-(4)-(7) and the
local problem defined in Ω2 by the set of equations (3)-(4)-(8) are both
well-posed and stable.

Under Assumptions 1 and 2 and additional assumptions on the mesh:
Assumption 3 ∃C > 0 such that ∀ǫ ∈ Ei, diam(ǫ) ≤ Cd(xK(ǫ), yǫ)

1/2

error estimates can be derived

Theorem 1. The H1 discrete norm of the error is in O(h1/2) when the piece-
wise constant projections are used (Qi = P ci ).
The H1 discrete norm of the error is in O(h) when the linear rebuilding (5)
is used.

6 Numerical Results in the homogeneous case

Numerical tests have been done with the equation in four subdomains:

p−∆p = x3y2 − 6x2y2 − 2x3 + (1 + x2 + y2)sin(xy) in Ω

p = p0 on ∂Ω

This results have been compared to the analytical solution which is p(x, y) =
x3y2+sin(xy). The domain decomposition method is reformulated with a sub-
structuring method and is solved with a GMRES algorithm. For asymptotic
study, we use an initial non conforming mesh which we refine successively by
a factor 2. We compare different methods TPFA (Two point flux approxima-
tion, see Cautrés et al. [2000]), Ceres (like TPFA but a linear interpolation is
performed in order to have a consistent flux approximation on the interface,
see Faille et al. [1994]), New Cement (Achdou et al. [2002]), Constant and
Linear (§ 3). For all these methods, we take different values for Si = diag(α)
with α = 1 or α = 1/h or α = αopt = 1/h1/2. The numerical solution depends
on the choice of Si only for the New Cement method. Accuracy is given in
figure 2 and iteration counts of the GMRES algorithm in figure 3.

7 Numerical Results in the heterogeneous case

We consider now the problem with discontinuous coefficients

ηp− div(κ∇p) = f in Ω and p = 0 on ∂Ω (9)
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Fig. 2. Slopes: Linear ≃ 1.3; New Cement: (Si = cte: ≃ 1.3), (Si = 1/h1/2: ≃ 0.9),
(Si = 1/h: ≃ 0.6), Constant: ≃ 0.5, TPFA: ≃ 0.5

Fig. 3. Iteration counts for the GMRES algorithm

where η > 0 and κ are highly discontinuous, typically two or three orders of
magnitude, see figure 4. For Test 2 for instance, with a very coarse grid meth-
ods Constant and Linear (see § 3) work very poorly especially compared to
TPFA and Ceres methods. Typically we have the following relative errors: Lin-
ear: 60%, Constant 10%, TPFA 3.2% and Ceres 2%. The errors are computed
thanks to a computation on a very fine mesh since we don’t have analytic
solutions in these cases. Poor results for methods Linear and Constant are
due to the fact that the flux on the interface is a very discontinuous function
whose jumps are located on the jumps of the coefficients on both blocks. In
Ceres and TPFA, a subgrid containing all locations of the jumps of the coeffi-
cients on the interface is involved which is not the case for methods Constant
and Linear. In order to remedy this situation, a very thin third subdomain
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Fig. 4. Heterogeneous media

is introduced between the blocks. The mesh of this additional subdomain
along the interface is the intersection of the grid interfaces of the neighboring
blocks, see figure 5. Methods Constant and Linear are then applied to this
three subdomains case. The improvement is dramatic. The relative errors are
then: Linear: 1.6%, Constant 1.6% (compared to respectively 60% and 10%
in the two-subdomain case).

Fig. 5. Addition of a third subdomain

8 Conclusion

We have introduced matching operators to take into account the non-matching
grids. Under compatibility assumptions, we have the well-posedness of the
global problem and of the local subproblems with a new discretization of the
arbitrary interface conditions. We give two error estimates in the discrete H1

norm: the first one is in O(h1/2) with L2 orthogonal projections onto piecewise
functions along the interface and the second one in O(h) with transmission
conditions based on a linear rebuilding along the interface. The error esti-
mates depend only on the transmission operators, see § 3. But, the numerical
solutions are independent of the interface conditions whose discretizations
are given by (7)-(8). Particular attention was paid to the situation with non
matching grids and highly heterogeneous coefficients both across and inside
subdomains. The addition of a third very thin subdomain between geological
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blocks is necessary to ensure a good accuracy. Extension to a finite element
discretization would be interesting.
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Summary. We analyze the convergence behavior of the overlapping Schwarz wave-
form relaxation algorithm applied to nonlinear advection problems. We show for
Burgers’ equation that the algorithm converges super-linearly at a rate which is
asymptotically comparable to the rate of the algorithm applied to linear advection
problems. The convergence rate depends on the overlap and the length of the time
interval. We carefully track dependencies on the viscosity parameter and show the
robustness of all estimates with respect to this parameter.

1 Introduction

Overlapping Schwarz waveform relaxation algorithms have been applied suc-
cessfully to many evolution problems. However, a rigorous error analysis is
only available in the case of linear and weakly nonlinear problems. For results
covering the heat equation, advection-diffusion equations, and problems with
nonlinear source terms, we refer to Gander [1997], Giladi and Keller [2002],
Gander [1998], Daoud and Gander [2000], Gander and Zhao [2002].

We present here first convergence results for the algorithm applied to a
class of strongly nonlinear problems: scalar parabolic conservation laws with
nonlinear fluxes. In Section 2 we present the problem and the necessary analyt-
ical background. In particular we focus on conservation laws in the advection
dominated case when the problem is singularly perturbed. In Section 3 we
introduce the Schwarz waveform relaxation algorithm for parabolic conserva-
tion laws. In Section 4 the error analysis for the algorithm is presented for
the special case of Burgers’ equation. We focus on two topics: the comparison
of the results for the linear and the nonlinear case and the influence of the
diffusion parameter ε on the convergence rate. The paper concludes with a
numerical experiment that confirms the theoretical results.

We note that there is a fundamentally different approach to solve nonlin-
ear conservation laws using domain decomposition. One first discretizes the
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problem uniformly in time using an implicit scheme, and then applies domain
decomposition to the steady problems obtained at each time step, see Dolean
et al. [2000] and references therein. For a heterogeneous approach, see also
Garbey [1996], Garbey and Kaper [1997].

2 Advection Dominated Conservation Laws

We consider for T > 0 and a function u0 ∈ W 1,∞(R) the initial boundary
value problem

∂uε

∂t
+

∂

∂x
f(uε) = ε

∂2uε

∂x2
in R× (0, T ), uε(., 0) = u0 in R (1)

for the unknown uε = uε(x, t) : R × (0, T ) → R. Here ε > 0 is a constant
and f ∈ C2(R) denotes the possibly nonlinear flux function. The scalar prob-
lem (1) is a simple model for nonlinear systems of conservation laws which
arise frequently to describe dynamical processes in continuum mechanics. Im-
portant examples are the Navier-Stokes equations in fluid mechanics and the
system of thermo-elasticity in solid mechanics. An interesting feature of many
applications governed by conservation laws is the fact that they are advection
dominated. On the level of problem (1) this implies that the diffusion param-
eter ε is small and we have to consider a singularly perturbed problem. In
the limit ε = 0 the parabolic equation in (1) changes type and becomes the
hyperbolic equation

∂u0

∂t
+

∂

∂x
f(u0) = 0 in R× (0, T ) (2)

for the unknown u0 : R× (0, T )→ R. It is well-known that classical solutions
of the initial value problem for (2) do not exist globally in time for all smooth
initial data if f is nonlinear, see for example Dafermos [2000]. Singularities
called shock waves occur. In the singularly perturbed case with ε > 0, diffusive
layers with ∂uε

∂x = O(ε−1) take the role of shock waves. The following theorem
reflects the relationships between solutions of (1), (2) and summarizes the
results we need later from the theory of conservation laws.

Theorem 1. There exists a unique classical solution uε ∈ C1(0, T ;C2(R)) of
(1) that satisfies

inf
x∈R

{u0(x)} ≤ uε(x, t) ≤ sup
x∈R

{u0(x)}, (x, t) ∈ R× [0, T ],

ε‖uεx‖L∞(R×[0,T ]) ≤ C,

where the positive constant C does not depend on ε. Furthermore there exists
a function u0 ∈ L∞(R× [0, T ]) such that for each compact set Q ⊂ R we have

lim
ε→0
‖u0 − uε‖L1(Q×[0,T ]) = 0.
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The analogous statements hold for the initial boundary value problem with
Dirichlet boundary conditions.

The proofs of these results are classical and can be found for instance in
Dafermos [2000].

3 Overlapping Schwarz Waveform Relaxation

We approximate the solution of (1) using the overlapping Schwarz waveform
relaxation algorithm on the two subdomains Ω1 = (−∞, L) and Ω2 = (0,∞)
with overlap L > 0. The parameter ε is fixed here, so we therefore drop the
index ε in this and the next section to simplify the notation. For iteration index
n ∈ N, the overlapping Schwarz waveform relaxation algorithm is defined by

∂un1
∂t

+ f ′(un1 )
∂un1
∂x

= ε
∂2un1
∂x2

in Ω1 × (0, T ),

un1 (·, 0) = u0 in Ω1,
un1 (L, ·) = un−1

2 (L, ·) on [0, T ],

(3)

and
∂un2
∂t

+ f ′(un2 )
∂un2
∂x

= ε
∂2un2
∂x2

in Ω2 × (0, T ),

un2 (·, 0) = u0 in Ω2,
un2 (0, ·) = un−1

1 (0, ·) on [0, T ].

(4)

4 Convergence Analysis

We first review results on the iteration (3), (4) for the linear flux f(u) =
cu, c ∈ R. We define the errors in the Schwarz waveform relaxation iteration
by en1 := u−un1 on the left subdomain and en2 := u−un2 on the right subdomain
for n ∈ N0. For n ∈ N, we find that the error en1 satisfies

∂en1
∂t

+ c
∂en1
∂x

= ε
∂2en1
∂x2

in Ω1 × (0, T ),

en1 (·, 0) = 0 in Ω1,

en1 (L, ·) = en−1
2 (L, ·) on [0, T ],

(5)

and the analogous equations hold for en2 . The error analysis for (5) has been
performed in Gander [1997] and independently in Giladi and Keller [2002].
We cite the final result.

Theorem 2 (Linear Advection Diffusion). The overlapping Schwarz wave-
form relaxation algorithm (3), (4) for the advection diffusion problem (1) with
f(u) = cu converges super-linearly. For each T > 0 and i = 1, 2 we have



254 Martin J. Gander and Christian Rohde

sup
x∈Ωi,0≤t≤T

|e2ni (x, t)| ≤ Cierfc
(
nL√
εT

)
, (6)

where C1 = sup0≤t≤T |e01(L, t)| and C2 = sup0≤t≤T |e02(0, t)|.

Remark 1. If we apply the expansion
√
πerfc(z) = e−z

2

(z−1 + O(z−3)) for
large values z > 0 in the estimate (6), we obtain

sup
x∈Ωi,0≤t≤T

|e2ni (x, t)| ≈ Ci√
π
e−

n2L2

εT

√
εT

nL
.

For fixed T, L, ε > 0 we observe that the algorithm converges super-linearly
for n → ∞ and t ≤ T . The error vanishes also for ε → 0 , reflecting the fact
that the algorithm applied to the pure advection equation converges in two
steps.

We now consider the iteration (3), (4) for the quadratic flux f(u) = u2

2 ,
that is Burgers’ equation. For n ∈ N, we find that the error en1 := u − un1
satisfies the equation

∂en1
∂t

+ u
∂en1
∂x

+
∂un1
∂x

en1 = ε
∂2en1
∂x2

in Ω1 × (0, T ),

en1 (·, 0) = 0 in Ω1,

en1 (L, ·) = en−1
2 (L, ·) on [0, T ],

(7)

and an analogous problem for en2 . We note that in contrast to the linear
equation the error equations for the Burgers case contain an additional source
term scaled with the spatial derivative of the iterate. Moreover due to Theorem
1 these terms behave like O(ε−1) (The estimates in Theorem 1 hold mutatis
mutandis also for initial boundary value problems).

For our analysis of the non-linear case we require that the iteration starts
with the initial guesses

u0
i (x, t) = inf

x′∈Ωi

{u0(x
′)}, (x, t) ∈ Ωi × (0, T ), i = 1, 2. (8)

Because of this choice and the comparison principle for parabolic differential
equations we have for all iterations n ∈ N0

eni (x, t) ≥ 0, (x, t) ∈ Ωi × (0, T ), i = 1, 2.

It suffices therefore to derive upper bounds for the errors to obtain a bound
on the convergence rate of the overlapping Schwarz waveform relaxation al-
gorithm applied to Burgers’ equation. The first step of our analysis is to
determine linear advection diffusion problems that bound the evolution of the
errors. We show the derivation of the linear problems in detail, because it
is here where the influence of the viscosity parameter ε needs to be traced
carefully.
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Lemma 1 (Super-Solutions). For all n ∈ N we have

0 ≤ en1 (x, t) ≤ ēn1 (x, t), ∀ (x, t) ∈ Ω1 × (0, T ),

where the super-solution ēn1 is the solution of the linear, constant coefficient
problem

∂ēn1
∂t

+ a1
∂ēn1
∂x

+ b1ē
n
1 = ε

∂2ēn1
∂x2

in Ω1 × (0, T ),

ēn1 (·, 0) = 0 in Ω1,
ēn1 (L, t) = exp(σ1t) sup

0≤τ≤t
en−1
2 (L, τ) t ∈ [0, T ],

(9)

with the constants a1, b1, σ1 ∈ R given by

a1 := inf
(x,t)∈Ω1×(0,T )

{u(x, t)},

b1 := inf
(x,t)∈Ω1×(0,T )

{∂un1
∂x

(x, t) + (u(x, t) − a1)
a1

2ε

}
,

σ1 :=

{
−a

2
1

4ε − b1 if −a
2
1

4ε − b1 ≥ 0,
0 otherwise.

The number σ1 is finite but can be of order O(ε−1) due to (ii) in Theorem 1.

Remark 2. It is not surprising that the constant coefficient problems contain
source terms that are not present in the linear case. Note that the spatial

derivatives
∂un

i

∂x are in fact multiplied with the second derivative of the flux
f = f(u) which is one for f(u) = u2/2 and vanishes in the linear case.

Proof. (of Lemma 1) We use explicit solutions of the constant-coefficient equa-
tion (9) by means of the heat kernel. We define the shifted derivative of the
heat kernel by

K1,x(x, t) = − 1

2
√
π

x− L
ε1/2t3/2

exp
(
− (x − L)2

4εt

)
. (10)

For the linear, constant coefficient problem (9) satisfied by the super-solution,
we then have the closed form solution formula

ēn1 (x, t) = exp(p1x+ q1t)

∫ t

0

K1,x(x, t− τ)g1(τ) dτ, (11)

where we used the constants

pi =
ai
2ε
, qi = −a

2
i

4ε
− bi, i = 1, 2 (12)

and the function g1 = g1(t) = exp(−p1L + (σ1 − q1)t) sup0≤τ≤t e
n−1
2 (L, τ).

Note that g1 is nonnegative due to the non-negativity of the errors, and mono-
tonically increasing because of our choice of σ1. To show that ēn1 is indeed a
super-solution, we have to show that
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dn1 := ēn1 − en1 ≥ 0. (13)

Now the difference function dn1 satisfies the linear advection diffusion equation

∂dn1
∂t

+ u
∂dn1
∂x

+
∂un1
∂x

dn1 − ε
∂2dn1
∂x2

= Q1(x, t), (14)

where the source term Q1(x, t) is given by

Q1(x, t) = (u(x, t)− a1)
∂ēn1
∂x

+

(
∂un1
∂x

(x, t)− b1
)
ēn1 (x, t)

= (u(x, t)− a1)
e(p1x+q1t)

2
√
π

∫ t

0

e

„
− (x−L)2

4ε(t−τ)

«

ε1/2(t− τ)3/2
[

(x− L)2

2ε(t− τ) − 1

]
g1(τ) dτ

−
(
(u(x, t)− a1)p1 +

∂un1
∂x

(x, t)− b1
)
(x − L)

×e
(p1x+q1t)

2
√
π

∫ t

0

e

„
− (x−L)2

4ε(t−τ)

«

ε1/2(t− τ)3/2 g1(τ) dτ

=: (u(x, t)− a1)e
(p1x+q1t)Q11(x, t)

+

(
(u(x, t)− a1)p1 +

∂un1
∂x

(x, t)− b1
)
e(p1x+q1t)(L− x)Q12(x, t).

If we can show that Q11(x, t) and Q12(x, t) are non-negative for all (x, t) ∈
Ω1× (0, T ), we obtain Q1(x, t) ≥ 0 for all (x, t) ∈ Ω1× (0, T ) by the definition
of a1, b1, which implies (13) by the maximum principle for (14) with zero initial
and boundary data. But Q12 is nonnegative since g1 from (11) is nonnegative.
For Q11 we observe that it is the x-derivative of the solution w of the heat
equation wt = εwxx in Ω1 × (0, T ) which satisfies w(L, .) = g1 and w(., 0) ≡
0. Since g1 is nonnegative and monotonically increasing, Q11 must also be
nonnegative, which concludes the proof that ēn1 is a super-solution of en1 .

For the preceding proof we used an explicit solution for the constant coeffi-
cient problem (9) which serves to bound the error at a given iteration step. To
obtain an upper bound on the error over many iteration steps, one considers
then the iterated formula using a similar result on the subdomain Ω2 for en2 .
Since the iteration for the bounds is an iteration for linear problems, one can
obtain, using similar techniques as the ones used in Gander [1997] or Giladi
and Keller [2002], the following result.

Theorem 3 (Burgers’ Equation). The overlapping Schwarz waveform re-
laxation algorithm (3), (4) for the nonlinear advection problem (1) with
f(u) = u2/2 and initial guess (8) converges super-linearly. For each T > 0
and i = 1, 2 we have

sup
x∈Ωi,0≤τ≤T

{e2ni (x, t)} ≤ Cie
D(T+L)

ε nerfc

(
nL√
εT

)
, (15)



Nonlinear Advection Problems 257

where the constants C1 = sup0≤t≤T {e01(L, t)}, C2 = sup0≤t≤T {e02(0, t)}, and
D are independent of ε, L, T and n (but depends on C from Theorem 1).

Remark 3.
(i) If we apply the expansion for the erfc-function for fixed T, L, ε > 0 as in
Remark 1, we observe that the algorithm converges super-linearly for n→∞
and t ≤ T at the same asymptotic rate as for the linear advection diffusion
equation.
(ii) For Burgers’ equation, the error estimate contains in addition the factor

e
D(T+L)

ε n. Thus there exists a T ∗ = T ∗(n) such that (a) the algorithm con-
verges for ε → 0 on any time interval [0, T ] with T < T ∗(n), and (b) the
estimate for the error e2n1 does not converge to 0 for ε → 0 on time inter-
vals with T > T ∗(n). This scenario does not happen for the linear advection
diffusion equation. Even though our estimate might not be sharp, this factor
reflects the fact that in the purely hyperbolic case the Schwarz algorithm con-
verges in a finite number of steps. The number of steps however depends on
the nonlinearity and the initial data, see Gander and Rohde [2003].
(iii) Theorem 3 can be extended to the case of multiple subdomains, such that
the estimate is independent of the number of subdomains, as in the linear
case, see Gander and Rohde [2003].

We conclude the paper with a numerical experiment that illustrates the
results of Theorem 3. As initial data we take the continuous function

u0(x, t) =





1 : x < 0,
1− 2x : 0 ≤ x < 1,
−1 : x ≥ 1.

The hyperbolic limit problem with ε = 0 will develop a (standing) shock
at t = 0.5. Thus for small but positive values of ε the solution will exhibit
a sharp layer. For the numerical method we take two bounded subdomains
Ω1 = (0, 1

2 +L) and Ω2 = (1
2 −L, 1) with the overlap parameter L = 0.1. We

compute the numerical solution up to T = 0.6 with a centered finite difference
scheme in space, explicit for the nonlinear term and implicit for the Laplacian.
The discretization parameters were∆x = 0.01 and∆t = 0.003. Figure 1 shows
the error on [0, 1]× [0, 0.6] in the L∞-norm versus the number of iterations at
even iteration steps. One can clearly see the super-linear convergence behavior
of the overlapping Schwarz waveform relaxation algorithm applied to Burgers’
equation with the dependence on ε, as predicted by Theorem 3. One can
also see that for ε small, the convergence in a finite number of steps of the
hyperbolic limit starts to manifest itself.
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Summary. We present and analyze a new nonconforming domain decomposition
method based on a Schwarz method with Robin transmission conditions. We prove
that the method is well posed and convergent. Our error analysis is valid in two
dimensions for piecewise polynomials of low and high order and also in three dimen-
sions for P1 elements. We further present an efficient algorithm in two dimensions to
perform the required projections between arbitrary grids. We finally illustrate the
new method with numerical results.

1 Introduction

We propose a domain decomposition method based on the Schwarz algorithm
that permits the use of optimized interface conditions on nonconforming grids.
Such interface conditions have been shown to be a key ingredient for efficient
domain decomposition methods in the case of conforming approximations (see
Després [1991], Nataf et al. [1995], Japhet [1998], Chevalier and Nataf [1998]).
Our goal is to use these interface conditions on nonconforming grids, because
this simplifies greatly the parallel generation and adaptation of meshes per
subdomain. The mortar method, first introduced in Bernardi et al. [1994],
also permits the use of nonconforming grids, and it is well suited to the use of
“Dirichlet-Neumann” (Gastaldi et al. [1996]) or “Neumann-Neumann” meth-
ods applied to the Schur complement matrix. But the mortar method can not
be used easily with optimized transmission conditions in the framework of
Schwarz methods. In Achdou et al. [2002], the case of finite volume discretiza-
tions has been introduced and analyzed. This paper is a first step in the finite
element case; we consider only interface conditions of order 0 here.
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2 Definition of the method and the iterative solver

We consider the model problem

(Id−∆)u = f in Ω,
u = 0 on ∂Ω,

(1)

where f is given in L2(Ω) and Ω is a C1,1 (or convex) domain in IRd, d = 2
or 3. We assume that it is decomposed into K non-overlapping subdomains

Ω = ∪Kk=1Ω
k
, where Ωk, 1 ≤ k ≤ K are C1,1 or convex polygons in two

or polyhedrons in three dimensions. We also assume that this domain de-
composition is conforming. Let nk be the unit outward normal for Ωk and
Γ k,ℓ = ∂Ωk ∩ ∂Ωℓ.

The variational statement of problem (1) consists of writing the problem
as follows: Find u ∈ H1

0 (Ω) such that

∫

Ω

(∇u∇v + uv) dx =

∫

Ω

fvdx, ∀v ∈ H1
0 (Ω). (2)

We introduce now the space H1
∗ (Ω

k) = {ϕ ∈ H1(Ωk), ϕ = 0 over ∂Ω∩∂Ωk},
and the constrained space

V={(v,q) ∈ (
K∏

k=1

H1
∗ (Ω

k))×(
K∏

k=1

H−1/2(∂Ωk)), vk=vℓ and qk=−qℓ on Γ k,ℓ}.

Problem (2) is then equivalent to the following: Find (u,p) ∈ V such that

K∑

k=1

∫

Ωk

(∇uk∇vk + ukvk) dx−
K∑

k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk)

=

K∑

k=1

∫

Ωk

fkvkdx, ∀v ∈
K∏

k=1

H1
∗ (Ω

k).

Being equivalent with the original problem, where pk = ∂u
∂nk

over ∂Ωk, this
problem is naturally well posed. We now describe the iterative procedure in
the continuous case, and then its discrete, non-conforming analog.

2.1 The continuous case

We introduce for α ∈ IR, α > 0, the zeroth order transmission condition

pk + αuk = −pℓ + αuℓ over Γ k,ℓ

and the following algorithm: let (unk , p
n
k ) ∈ H1

∗ (Ω
k) × H−1/2(∂Ωk) be an

approximation of (u, p) in Ωk at step n. Then, (un+1
k , pn+1

k ) is the solution in
H1
∗ (Ω

k)×H−1/2(∂Ωk) of
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∫

Ωk

(
∇un+1

k ∇vk + un+1
k vk

)
dx−H−1/2(∂Ωk) < pn+1

k , vk >H1/2(∂Ωk)

=

∫

Ωk

fkvkdx, ∀vk ∈ H1
∗ (Ω

k),

< pn+1
k +αun+1

k , vk >Γk,ℓ=<−pnℓ +αunℓ , vk >Γk,ℓ , ∀vk ∈ H1/2
00 (Γ k,ℓ).

(3)

Convergence of this algorithm is shown in Després [1991] using energy esti-
mates and summarized in the following

Theorem 1. Assume that f is in L2(Ω) and (p0
k)1≤k≤K ∈

∏
ℓH

1/2(Γ k,ℓ).
Then, algorithm (3) converges in the sense that

lim
n−→∞

(
‖unk − uk‖H1(Ωk) + ‖pnk − pk‖H−1/2(∂Ωk)

)
= 0, for 1 ≤ k ≤ K,

where u solves (1), uk = u|Ωk , pk = ∂uk

∂nk
on ∂Ωk for 1 ≤ k ≤ K.

2.2 The discrete case

We introduce now the discrete spaces: each Ωk is provided with its own mesh
T kh , 1 ≤ k ≤ K, such that Ωk = ∪T∈T k

h
T. For T ∈ T kh , let hT be the diameter

of T and h the discretization parameter, h = max1≤k≤K(maxT∈T k
h
hT ). Let

ρT be the diameter of the circle in two dimensions or sphere in three dimen-
sions inscribed in T . We suppose that T kh is uniformly regular: there exists
σ and τ independent of h such that ∀T ∈ T kh , σT ≤ σ and τh ≤ hT . We
consider that the sets belonging to the meshes are of simplicial type (triangles
or tetrahedra), but the following analysis can be applied as well for quadran-
gular or hexahedral meshes. Let PM (T ) denote the space of all polynomials
defined over T of total degree less than or equal to M for our Lagrangian
finite elements. Then, we define over each subdomain two conforming spaces
Y kh and Xk

h by

Y kh = {vh,k ∈ C0(Ωk), vh,k|T ∈ PM (T ), ∀T ∈ T kh },
Xk
h = {vh,k ∈ Y kh , vh,k|∂Ωk∩∂Ω = 0}. (4)

The space of traces over each Γ k,ℓ of elements of Y kh is denoted by Yk,ℓh . In the
sequel we assume for the sake of simplicity that referring to a pair (k, ℓ) implies

that Γ k,ℓ is not empty. With each such interface we associate a subspace W̃ k,ℓ
h

of Yk,ℓh like in the mortar element method; for two dimensions, see Bernardi
et al. [1994], and for three dimensions see Belgacem and Maday [1997] and
Braess and Dahmen [1998]. To be more specific, we recall the situation in
two dimensions: if the space Xk

h consists of continuous piecewise polynomials
of degree ≤ M , then it is readily noticed that the restriction of Xk

h to Γ k,ℓ

consists of finite element functions adapted to the (possibly curved) side Γ k,ℓ

of piecewise polynomials of degree ≤ M . This side has two end points which
we denote by xk,ℓ0 and xk,ℓn and which belong to the set of vertices of the
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corresponding triangulation of Γ k,ℓ: xk,ℓ0 , xk,ℓ1 , . . . , xk,ℓn−1, x
k,ℓ
n . The space W̃ k,ℓ

h

is then the subspace of those elements of Yk,ℓh that are polynomials of degree

≤M − 1 over both [xk,ℓ0 , xk,ℓ1 ] and [xk,ℓn−1, x
k,ℓ
n ]. As before, the space W̃ k

h is the

product space of the W̃ k,ℓ
h over each ℓ such that Γ k,ℓ 6= ∅.

The discrete constrained space is then defined by

Vh = {(uh,ph) ∈ (

K∏

k=1

Xk
h)× (

K∏

k=1

W̃ k
h ),

∫

Γk,ℓ

((ph,k + αuh,k)− (−ph,ℓ + αuh,ℓ))ψh,k,ℓ = 0, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h },

and the discrete problem is the following: Find (uh,ph) ∈ Vh such that ∀vh =

(vh,1, ...vh,K) ∈∏K
k=1X

k
h ,

K∑

k=1

∫

Ωk

(∇uh,k∇vh,k+uh,kvh,k) dx−
K∑

k=1

∫

∂Ωk

ph,kvh,kds=

K∑

k=1

∫

Ωk

fkvh,kdx. (5)

The discrete algorithm is then as follows: let (unh,k, p
n
h,k) ∈ Xk

h × W̃ k
h be a

discrete approximation of (u,p) in Ωk at step n. Then, (un+1
h,k , p

n+1
h,k ) is the

solution in Xk
h × W̃ k

h of
∫

Ωk

(
∇un+1

h,k ∇vh,k+un+1
h,k vh,k

)
dx−
∫

∂Ωk

pn+1
h,k vh,kds=

∫

Ωk

fkvh,kdx, ∀vh,k∈Xk
h , (6)

∫

Γk,ℓ

(pn+1
h,k + αun+1

h,k )ψh,k,ℓ =

∫

Γk,ℓ

(−pnh,ℓ + αunh,ℓ)ψh,k,ℓ, ∀ψh,k,ℓ ∈ W̃ k,ℓ
h . (7)

Remark 1. Let πk,ℓ denote the orthogonal projection operator from L2(Γ k,ℓ)

onto W̃ k,ℓ
h . Then (7) corresponds to

pn+1
h,k + απk,ℓ(u

n+1
h,k ) = πk,ℓ(−pnh,ℓ + αunh,ℓ) over Γ k,ℓ. (8)

Remark 2. A fundamental difference between this method and the original
mortar method in Bernardi et al. [1994] is that the interface conditions are
chosen in a symmetric way: there is no master and no slave, see also Gander
et al. [2001]. Equation (8) is the transmission condition on Γ k,ℓ for Ωk, and
the transmission condition on Γ k,ℓ for Ωℓ is

pn+1
h,ℓ + απℓ,k(u

n+1
h,ℓ ) = πℓ,k(−pnh,k + αunh,k) over Γ k,ℓ. (9)

In order to analyze the convergence of this iterative scheme, we define for any
p in

∏K
k=1 L

2(∂Ωk) the norm

‖p‖− 1
2 ,∗ = (

K∑

k=1

K∑

ℓ=1
ℓ 6=k

‖pk‖2
H

− 1
2

∗ (Γk,ℓ)
)

1
2 ,
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where ‖.‖
H

− 1
2

∗ (Γk,ℓ)
stands for the dual norm of H

1
2
00(Γ

k,ℓ). Convergence of the

algorithm (6)-(7) can be shown again using an energy estimate, see Japhet
et al. [2003].

Theorem 2. Assume that αh ≤ c for some constant c small enough. Then,
the discrete problem (5) has a unique solution (uh,ph) ∈ Vh. The algorithm
(6)-(7) is well posed and converges in the sense that

lim
n−→∞

(‖unh,k − uh,k‖H1(Ωk) +
∑

ℓ 6=k
‖pnh,k − ph,k‖

H
− 1

2
∗ (Γk,ℓ)

) = 0, for 1 ≤ k ≤ K.

3 Best approximation properties

In this part we give best approximation results of (u,p) by elements in Vh.
The proofs can be found in Japhet et al. [2003] for the two dimensional case
with the degree of the finite element approximations M ≤ 13 and in three
dimensions for first order approximations.

Theorem 3. Assume that the solution u of (1) is in H2(Ω) ∩ H1
0 (Ω) and

uk = u|Ωk ∈ H2+m(Ωk) with M − 1 ≥ m ≥ 0, and let pk,ℓ = ∂u
∂nk

over each

Γ k,ℓ. Then, there exists a constant c independent of h and α such that

‖uh − u‖∗ + ‖ph − p‖− 1
2 ,∗ ≤ c(αh

2+m + h1+m)
K∑

k=1

‖u‖H2+m(Ωk)

+ c(
hm

α
+ h1+m)

K∑

k=1

∑

ℓ

‖pk,ℓ‖
H

1
2
+m(Γk,ℓ)

.

Assuming more regularity on the normal derivatives on the interfaces, we have

Theorem 4. Assume that the solution u of (1) is in H2(Ω)∩H1
0 (Ω) and uk =

u|Ωk ∈ H2+m(Ωk) with M − 1 ≥ m ≥ 0, and pk,ℓ = ∂u
∂nk

is in H
3
2+m(Γk,ℓ).

Then there exists a constant c independent of h and α such that

‖uh − u‖∗ + ‖ph − p‖− 1
2 ,∗ ≤ c(αh

2+m + h1+m)

K∑

k=1

‖u‖H2+m(Ωk)

+ c(
h1+m

α
+ h2+m)(log h)β(m)

K∑

k=1

∑

ℓ

‖pk,ℓ‖
H

3
2
+m(Γk,ℓ)

.

Remark 3. The Robin parameter α can depend on h in the previous theorems,
like the optimal Robin parameter αopt in section 5.
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4 Efficient projection algorithm

The projection (8) between non conforming grids is not an easy task in an
algorithm, already for two dimensional problems, since one needs to find the
intersections of corresponding arbitrary grid cells. A short and efficient al-
gorithm has been proposed in Gander et al. [2001] in the finite volume case
with projections on piecewise constant functions. In our case, we denote by n
the dimension of W k,ℓ

h , and we introduce the shape functions {ψk,ℓi }1≤i≤n of

W k,ℓ
h . Then, to compute the right hand side in (7), we need to compute the

interface matrix

M = (

∫

Γk,ℓ

ψk,ℓi ψℓ,kj )1≤i,j≤n.

In the same spirit as in Gander et al. [2001], the following short algorithm in
Matlab computes the interface matrix M for non-matching grids in one pass.

function M=InterfaceMatrix(ta,tb);

n=length(tb);

m=length(ta);

ta(m)=tb(n); % must be numerically equal

j=1;

M=zeros(n,length(ta));

for i=1:n-1,

tm=tb(i);

while ta(j+1)<tb(i+1),

M(i:i+1,j:j+1)=M(i:i+1,j:j+1)+intMortar(ta(j),ta(j+1),...

tb(i),tb(i+1),tm,ta(j+1),j==1|j==m-1,i==1|i==n-1);

j=j+1;

tm=ta(j);

end;

M(i:i+1,j:j+1)=M(i:i+1,j:j+1)+intMortar(ta(j),ta(j+1),...

tb(i),tb(i+1),tm,tb(i+1),j==1|j==m-1,i==1|i==n-1);

end;

It takes two vectors ta and tb with ordered entries, which represent two
non-matching grids at the interface, with ta(1)=tb(1), ta(end)=tb(end),
and computes the matrix M(i,j)=

∫
Γk,ℓ b

iaj , where bi is the hat function for
the node tb(i) and aj is the hat function for the node ta(j). The mortar
condition of constant shape functions at the corners is taken into account,
and from the resulting matrix M the first and last row and column needs
to be removed. This algorithm has linear complexity; it does a single pass
without any special cases or any additional grid. It advances automatically
on whatever side the next cell boundary is coming and handles any possible
cases of non-matching grids at a one dimensional interface.

5 Numerical results

On the unit square Ω = (0, 1)× (0, 1) we consider the problem
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(Id−∆)u(x, y) = x3(y2 − 2)− 6xy2 + (1 + x2 + y2)sin(xy), (x, y) ∈ Ω,
u = x3y2 + sin(xy), (x, y) ∈ ∂Ω,

whose exact solution is u(x, y) = x3y2 + sin(xy). We decompose the unit
square into four non-overlapping subdomains with meshes generated in an
independent manner, as shown in Figure 1 on the left. The computed solution
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Fig. 1. Initial mesh and computed solution after two refinements.

is the solution at convergence of the discrete algorithm (6)-(7), with stopping
criterion maxk,ℓ/Γk,ℓ 6=∅

(∫
Γk,ℓ((ph,k + αuh,k)− (−ph,ℓ + αuh,ℓ))ψk,ℓ

)
< 10−8,

and α = 10. On Figure 1 on the right, we show the computed solution.
Figure 2 on the left corresponds to the best approximation error of Theo-

rem 4. On the right, we compare in the case of two subdomains the optimal
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Fig. 2. H1 error versus h on the left and number of iterations versus α on the right.

numerical α to the theoretical value, which minimizes the convergence rate
at the continuous level: αopt = [(π2 + 1)(( π

hmin
)2 + 1)]

1
4 . The nonconforming

meshes have 289 and 561 nodes respectively, and the discretization parame-
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ters are h1 = 0.065 and h2 = 0.032. We observe that the optimal numerical α
is very close to αopt.
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Summary. For advection-diffusion problems we show that a non-overlapping do-
main decomposition method with interface conditions of Robin type can be acceler-
ated by using a critical parameter of the transmission condition in a cyclic way.

1 Introduction

We consider a non-overlapping domain decomposition method (DDM) with
Robin transmission conditions for the advection-diffusion-reaction model

Lu := −ǫ∆u+ (b ·∇)u+ cu = f in Ω (1)

u = 0 on ∂Ω (2)

in a bounded polyhedral domain Ω ⊂ Rd with a Lipschitz boundary ∂Ω and
0 < ǫ ≤ 1,b ∈ [H1(Ω) ∩ L∞(Ω)]d, c ∈ L∞(Ω), f ∈ L2(Ω), c− 1

2∇ · b ≥ 0.

Let {Ωk} be a non-overlapping macro partition with Ω = ∪Nk=1Ωk. The
goal of the well-known DDM of Robin type (Lions [1990]) is to enforce (in
appropriate trace spaces) continuity of the solution u and of the diffusive and
advective fluxes ǫ∇u·nkj resp.− 1

2 (b·nkj)u on the interfaces Γkj := ∂Ωk∩∂Ωj .
The algorithm reads in strong form:

For given unk , n ∈ N0, in each Ωk, find (in parallel) un+1
k , such that

Lun+1
k = f in Ωk (3)

un+1
k = 0 on ∂Ωk ∩ ∂Ω (4)

Φk(u
n+1
k ) = Φk(u

n
j ) on Γkj (5)

with Φk(u) = ǫ∇u ·nkj +(zk− 1
2b ·nkj)u on Γkj , k 6= j and the outer normal

vector nkj on ∂Ωk ∩ ∂Ωj . By determining the interface parameter zk > 0 in
a proper way the convergence of the method (3)-(5) can be accelerated.

Let Th be an admissible, quasi-uniform triangulation of Ω being aligned
with the macro partition. Vh := {v ∈ H1

0 (Ω) | v|K ∈ Pl(K) ∀K ∈ Th} denotes
a conforming finite element (FE) space of order l. The stabilized FE method
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Find uh ∈ Vh, such that : as(uh, vh) = ls(vh) ∀vh ∈ Vh , (6)

as(u, v) = (ǫ∇u,∇v)Ω + (b ·∇u + c u, v)Ω +
∑

T∈Th

(δTLu, b ·∇v)T ,

ls(v) = (f, v)Ω +
∑

T∈Th

(δT f, b ·∇v)T , δT ∼ h2
T (ǫ+ hT ||b||∞,T )−1

with residual stabilization provides improved stability and accuracy (w.r.t.
the streamline derivative b · ∇u) in the hyperbolic limit ǫ→ 0 of (1)-(2).

Assume, for simplicity, that the macro partition has no interior cross-
points. Then we restrict the bilinear and linear forms as and ls to each subdo-
main by ask = as|Ωk

and lsk = ls|Ωk
. Moreover, we define Vk,h = Vh|Ωk

and the
trace space Wkj,h = Vh|Γkj

. Finally, we denote by 〈·, ·〉Γkj
the dual product

on (Wkj,h)
∗×Wkj,h. Then the weak formulation of the fully discretized DDM

is given by

(I) Parallel computation step :
For k = 1, . . . , N find un+1

h,k ∈ Vk,h such that for all vk ∈ Vk,h:

ask(u
n+1
h,k , vk) + 〈zkun+1

h,k , vk〉Γk
= lsk(vk) +

∑

j( 6=k)
〈Λnjk, vk〉Γkj

. (7)

(II) Communication step :
For all k 6= j, update Lagrange multipliers Λn+1

kj ∈W ∗kj,h such that:

〈Λn+1
kj , φ〉Γkj

= 〈(zk + zj)u
n+1
h,k − Λnjk, φ〉Γkj

, ∀φ ∈Wkj,h. (8)

This method is very easy to implement. It is used as a building block in a
parallelized flow solver for the thermally driven incompressible Navier-Stokes
problem, cf. Knopp et al. [2002]. A fast convergence of the DDM is desirable,
in particular for time-dependent problems.

It is well-known that the algorithm (7)-(8) is well-posed if zk = zj > 0.
Moreover, the sequence {unk}n∈N is strongly convergent according to

lim
n→∞

‖| unh,k − uh|Ωk
‖|Ωk

= 0 (9)

where ‖|v‖|Ωk
:=
√
ask(v, v), Lube et al. [2000]. The convergence speed de-

pends in a sensitive way on the parameters zk which have to be optimized. In
Sec. 2 we review an a priori optimization introduced by Nataf and Gander.
Sec. 3 is devoted to an a posteriori based approach.

2 A-priori optimization of the interface condition

The convergence of the Robin DDM (3)-(5) can be described in simple
cases using a Fourier analysis. Nataf and Gander proposed a semi-continuous
a priori optimization of the interface parameter z over a relevant range
S = (smin, smax) of Fourier modes. An optimization is important for highly
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oscillatory solutions, e.g. for the Helmholtz equation (1)-(2) with b ≡ 0
and c/ǫ ≪ −1. An improved idea is a cyclic change of z for appropriate
frequency ranges. For the symmetric case with b = 0 and ǫ = 1, Gan-
der and Golub [2002] proposed the following variant of the DDM (3)-(5) in
Ω = R2, Ω1 = R+ ×R, Ω2 = R− ×R with the cyclic Robin condition

∇un+1
1 · n1 + znmod(m)un+1

1 = ∇un2 · n1 + znmod(m)un2 (10)

and similarly for un+1
2 on Γ = {0} × R for m = 2l and appropriate cho-

sen z0, . . . , zm−1. For l = 0, Gander and Golub [2002] obtain the following
contraction rate

ρ(s, z) =

(√
c+ s2 − z0

√
c+ s2 + z0

)2

for the s−th Fourier mode. For the mesh parameter h, an optimization over
S = (smin, π/h) gives minz0≥0

(
maxs∈S ρ(s, z0)

)
= 1 − O(

√
h). In the cyclic

case m = 2l one gets the rate

ρ(m, s, z) =

m∏

j=1

(√
c+ s2 − znmod(m)

√
c+ s2 − znmod(m)

)2/m

and the optimized result

min
z≥0

(
max
s∈S

ρ(m, s, z)

)
≈ 1− 4

m

[
(c+ s2min)h2

16π2

] 1
4m

, h→ +0.

This result is useful for meshes with
(c+s2min)h2

16π2 ≤ 1, but this estimate deteri-
orates in the singularly perturbed case, i.e. for fixed h and c→ +∞.

For the non-symmetric case, the optimization of the Schwarz method cor-
responding to l = 0 can be found in Nataf [2001]. The extension to a cyclic
Schwarz method with l ≥ 1 is open.

3 A posteriori based design of the interface condition

As an alternative to the a priori based design of the interface parameter we
propose an approach based on an a posteriori estimate. Consider a simplified
situation with Ω = Ω1 ∪ Ω2 ⊂ R2 with meas1(∂Ω ∩ ∂Ωi) > 0 and straight
interface Γ = ∂Ω1 ∩ ∂Ω2 of size H = meas (Γ ) ∼ diam(Ωi), i = 1, 2. Set

W = H
1
2
00(Γ ). We assume constant data ǫ, b, c. In Lube et al. [2000] we proved

Theorem 1. Let uh be the solution of (6). The DDM-subdomain error enh,k =
unh,k − uh|Ωk

, k ∈ {1, 2}, can be controlled via (computable) interface data:

‖|en+1
h,k ‖|Ωk

≤ Aj ‖unh,k−un+1
h,j ‖W +Bj

∣∣∣∣zk −
b · nk

2

∣∣∣∣ ‖unh,k−un+1
h,j ‖L2(Γ ) (11)
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for j = 3− k and with data-dependent constants

Aj =
√
ǫ

(
1 +

√
c

ǫ
H + min

[‖b‖∞H
ǫ

;
‖b‖∞√
cǫ

])
, Bj =

√
H

ǫ
. (12)

This result motivates to equilibrate the two right-hand side terms in (11) in
order to obtain information about the design of the interface parameter zk.
In Lube et al. [2000] we considered the estimate

‖|en+1
h,k ‖|s,Ωk

≤ max

(
Aj ; BjC

√
H

∣∣∣∣zk −
1

2
b · nk

∣∣∣∣
)
‖unh,k − un+1

h,j ‖W (13)

using the continuous embedding result ‖φ‖L2(Γ ) ≤ C
√
H‖φ‖W for all φ ∈ W .

On the other hand, an inverse estimate in (11) leads to

‖|en+1
h,k ‖|s,Ωk

≤ max

(
CAjh

− 1
2 ;Bj

∣∣∣∣zk −
1

2
b · nk

∣∣∣∣
)
‖unh,k − un+1

h,j ‖L2(Γ ). (14)

In the symmetric case b = 0 we get from (13) and (14)

zk ∼
ǫ

H

√
H

L

(
1 +H

√
c

ǫ

)
, L ∈ {h,H}. (15)

In the non-symmetric case b 6= 0, the design of zk has to match the
hyperbolic limit of the Robin condition, i.e.

0 = lim
ǫ→0

Φk(u) = (−1

2
b · nk + lim

ǫ→0
zk)u if b · nk ≥ 0.

By extending this condition to the inflow part of ∂Ωk with b · nk < 0, we
obtain from (13)-(14) as a reasonable choice

zk =
1

2
|b · nk|+Rk(L), L ∈ {h,H}, (16)

Rk(L) ∼ ǫ

H

√
H

L

(
1 +H

√
c

ǫ
+ min

[
H‖b‖
ǫ

;
‖b‖√
cǫ

])
. (17)

Inserting (16), (17) with L = H in (13) and applying an inverse inequality,
we obtain the optimized a posteriori estimates

‖|en+1
h,k ‖|Ωk

≤ Aj‖unh,k − un+1
h,j ‖W ≤ CAjh−

1
2 ‖unh,k − un+1

h,j ‖L2(Γ ). (18)

The last estimate also follows directly by inserting (16), (17) with L = h in
(14). Therefore we propose to extend the condition (16) to L ∈ [h,H ].

In Lube et al. [2000] we considered the case L = H . This choice usually
allows a fast error reduction down to the discretization error level if the so-
lution has no highly oscillatory behaviour. Fortunately, the latter case is rare
for problem (1)-(2) with c− 1

2∇ · b ≥ 0.
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Fig. 1. Reliability of the a posteriori estimate for h = 1
128

(left), Control of

maxn / minn

P4
i=1 ‖|e

n+1
h,k ‖|Ωi/

P

i6=j ‖u
n+1
h,i − un

h,j‖L2(Γij) vs. z (right).

Example 1. Consider the problem (1)-(2) with b ≡ 0, ǫ = 10−2, c = 1 in
Ω = (0, 1)2. The exact (smooth) solution is u = x1(1−x1)x2(1−x2)e

x1x2 . We
denote the solution of (6) with P1-elements and h = 1

128 by uk = uh|Ωk
. The

DDM on an equidistant 2 × 2 macro partition with an initial guess Λ0
jk = 0

leads to the sequence unh,k. The stopping criterion
∑

k ‖|unh,k − uh|Ωk
‖|Ωk

≤
10−6 has a tolerance beyond the discretization error level.

Fig. 1 (left) shows that the subdomain error ‖|·‖|Ωk
is clearly controlled by

the L2(Γ ) interface error according to Theorem 1. Moreover, the convergence
of the DD-iteration depends strongly on z. The fast error reduction in the first
phase corresponds to a fast reduction of “low” frequencies; but then a (very)
slow reduction of “higher” modes can be seen. In Fig. 1 (right) we control
the maximal/minimal (w.r.t. to the number n of DD steps) ratio between the
subdomain and interface errors for varying h. The value zk ∼ 1

10 corresponding
to the minimum of this ratio for h = 1

256 is in agreement with the value
predicted by (15) with L = H . As predicted by Theorem 1, we observe a
linear dependence of the error on z for increasing z. �

Obviously, the results of Example 1 with the optimized value of z according
to (16), (17) with L = H depend only on the data of the problem (1)-(2) and
not on h. We want to check this result for other typical cases.

Example 2. Let be Ω and the solution u as in Example 1. The FEM solution
uh of (6) is computed with P1-elements on a fine mesh with h = 1

256 and with
SUPG stabilization in advection-dominated cases for

A: Symmetric case: b = (0, 0), c = 1, DDM with 4 subdomains,
B: Case |b · ni| > 0: b = (2, 1), c = 1, DDM with 2 subdomains,
C: Case |b · ni| ≡ 0: b = (0, 1), c = 1, DDM with 2 subdomains .

The initial guess for the Lagrange multipliers is Λ0
ij = 0. The stopping

criterion for the error between the discrete solutions with and without DDM
is
∑

k ‖unh,k−uh|Ωk
‖L2(Ωk) ≤ 10−6. The convergence in this range is predicted



272 Gert Lube, Tobias Knopp, and Gerd Rapin

10-3 10-2 10-1 100 101 102

dd-parameter ’z’

0

10

20

30

dd
-s

te
ps

Case A

10-3 10-2 10-1 100 101 102

dd-parameter ’z’

0

10

20

30

dd
-s

te
ps

Case B

10-3 10-2 10-1 100 101 102

dd-parameter ’z’

0

10

20

30

dd
-s

te
ps

Case C

h = 1/32
h = 1/64
h = 1/128
h = 1/256
ε = 1
ε = 10-2

ε = 10-4

Fig. 2. Optimization of the interface parameter z with one-level approach.

by the data of (1)-(2) and is h-independent. The optimal values of zk are
predicted by the optimized zk from (16), (17) with L = H , see Fig. 2. �

The nice convergence behaviour can be explained by the smoothness of
the solutions and of the initial guess Λ0

ij . Moreover, in our experiments we
never found problems for singularly perturbed problems with sharp layers.

Nevertheless, the convergence behaviour of the Robin-DDM is not satisfac-
tory beyond the discretization error level. Moreover, regarding our application
to flow problems (Knopp et al. [2002]), in the turbulent case the solution usu-
ally has high-frequent components which may not be efficiently damped in our
previous approach. As a remedy we propose a combination of the a posteriori
control of the interface error with a cyclic multi-level version of the DDM:

Step 1: (optionally) Apply (7)-(8) with the optimized zk from (16)-(17) with
L = H until reduction of the interface error down to discretization error
level, e.g. ‖unh,i − un+1

h,j ‖L2(Γ ) ≤ κhl+1/2 for Pl elements.
Step 2: Apply (7)-(8) in a cyclic way with p levels (see below) using (16)-(17) with

z1
k, ..., z

p
k related to L = H (for z1

k) and l = h (for zpk), resp., and an even
number (to our experience, 4 or 6 are sufficient) of DD steps per level
until ‖unh,i − un+1

h,j ‖L2(Γ ) ≤ TOL.
Let us discuss this approach for some cases of Example 2. First of all, we

have to fix the number p of levels. Assume a dyadic representation of the coarse
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and of the fine mesh of the domain Ω = (0, 1)2 with H = 2−s, h = 2−t, s, t ∈
N. From (16)-(17) we obtain Rk(L) ≤ Rk(h) ∼

√
H/h, i.e. a mild dependence

on
√
H/h. We propose the following rule: For 2p <

√
H/h ≤ 2p+1, take p

levels. Thus we obtain for a very fine mesh width h = 2−10 a number of two
levels for a coarse grid width H = 2−5 and of four levels for H = 2−1.

Example 3. Consider the situation of Example 2 with a 2×2 macro partition
with H = 1

2 and a fine mesh with h = 2−6. This leads to p = 2 levels. We
start with the symmetric case of (1)-(2) with ǫ = 1,b = 0, c = 1. The fast
error reduction within the first steps is followed by a very slow reduction in
the one-level case, cf. Fig. 3 (left). Here uh and uhseq denote the solutions with
and without DDM. The two-level method with 6 DD-steps per level leads to
a dramatic acceleration, cf. Fig. 3 (right).
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Fig. 3. Error reduction for the symmetric case: p = 1 (left), p = 2 (right)

Consider now the non-symmetric and advection-dominated case with ǫ =

10−5,b = (1,2)T

√
5
, c = 0. In Fig. 4 we observe a similar behaviour of the

proposed approach with p = 1 (left) and p = 2 (right) levels, although the
acceleration is not so dramatic as in the symmetric case. �

Finally, let us note an observation of Gander and Golub [2002] for the
symmetric case: The quality of the cyclic DDM (3)-(5) with an optimized
condition (10) as a solver increases with the number of levels such that no
improvement can be found with Krylov acceleration. A similar behaviour is
very likely in the non-symmetric case.

4 Summary

Considerable progress has been reached for Schwarz methods with (a priori)
optimized transmission conditions. We propose an approach based on a refined
a posteriori error estimate for a DDM with transmission conditions of Robin
type. For the one-level variant, this condition can be optimized in such a
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Fig. 4. Error reduction for the non-symmetric case: p = 1 (left), p = 2 (right)

way that the convergence is very reasonable down to the discretization error
level; but then one observes a rapid slow-down of error reduction for higher
error modes. This is valid for “smooth” solutions and is in contrast to highly
oscillatory solutions typically appearing, e.g., for turbulent flows.

A multilevel-type method with optimized interface parameters allows a
strong acceleration of the convergence. The approach is motivated by theo-
retical results, but more efforts are necessary to improve its present state. An
advantage of the method over a priori optimized methods is the control of
the convergence within the iteration. Moreover, a combination with adaptive
mesh refinement is possible. It remains open whether the method is linearly
convergent. Moreover, a genuinely multilevel-type implementation might be
possible. Finally, the extension to incompressible flows has to be done.
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A Stabilized Three-Field Formulation and its
Decoupling for Advection-Diffusion Problems

Gerd Rapin1 and Gert Lube1
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Summary. We propose a new stabilized three-field formulation applied to the
advection-diffusion equation. Using finite elements with SUPG stabilization in the
interior of the subdomains our approach enables us to use almost arbitrary discrete
function spaces. They need not to satisfy the inf-sup conditions of the standard
three-field formulation. The scheme is stable and satisfies an optimal a priori es-
timate. Furthermore, we show how the scheme can be solved efficiently in parallel
by an adapted Schur complement equation and an alternating Schwarz algorithm.
Finally some numerical experiments confirm our theoretical results.

1 Introduction

In an bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, we consider the problem

Lu := −ǫ△u+ b · ∇u+ cu = f in Ω, u = 0 on ∂Ω (1)

with ǫ > 0, b ∈ (W 1,∞(Ω))d, c ∈ L∞(Ω), and f ∈ L2(Ω). Especially the
singularly perturbed case ǫ << 1 is of interest, since there the solution can
possess sharp layers. Moreover, it is well known, that simple numerical meth-
ods fail, since spurious oscillations of the numerical solution may occur.

The three-field formulation was introduced by Baiocchi et al. [1992] (see
also Brezzi and Marini [2001]). Decomposing the domain into non-overlapping
subdomains the method allows different discretization techniques in different
subdomains. Especially, the treatment of non-matching grids is possible. In
the discrete case the corresponding function spaces must satisfy two inf-sup
conditions. This is quite restrictive for the choice of the discrete spaces. In
our stabilized scheme we circumvent these conditions by appending additional
terms. The latter terms are well-adapted to the hyperbolic limit ǫ = 0.

2 The three-field formulation

First let us tackle the global problem (1). The weak formulation reads:
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Find w ∈ H1
0 (Ω) | aΩ(w, v) = lΩ(v), ∀v ∈ H1

0 (Ω) (2)

with

aG(w, v) = ǫ

∫

G

∇w · ∇vdx +

∫

G

(b · ∇w + cw)vdx, lG(v) =

∫

G

fvdx

for all w, v ∈ H1(Ω) and a domain G ⊂ Ω. To ensure the well-posedness of (2)
we assume the existence of a constant c0 > 0 such that c̃ := c− 1

2∇ · b ≥ c0.
Then the Lemma of Lax-Milgram shows that (2) possesses a unique solution.

In order to introduce the three-field formulation, we divide the domain Ω
into N non-overlapping subdomains Ωi with sufficiently smooth boundaries,
i.e. Ω =

⋃N
i=1Ωi, Ωi ∩ Ωj = ∅, i 6= j. Moreover, we define local interfaces

Γi := ∂Ωi \ ∂Ω and the skeleton Γ :=
(⋃N

i=1 ∂Ωi

)
\ ∂Ω. For the three-field

formulation three different function spaces are introduced. The first function
space V :=

∏N
i=1 V

i with V i := {vi ∈ H1(Ωi) | v|∂Ω∩∂Ωi = 0} is defined
on the subdomains. Furthermore, we need a space of Lagrange multipliers Λi

on each local interface Γi. The local Lagrange multiplier space Λi is given by

the dual space of H
1
2
00(Γi). We denote the dual product on 〈Λi, H

1
2
00(Γi)〉 by

〈·, ·〉i. The global space is given by Λ :=
∏N
i=1 Λ

i. The third function space is
defined on Γ by Φ := {ϕ ∈ L2(Γ ) : there exists u ∈ H1

0 (Ω), u = ϕ on Γ }.
Now we formulate the following three-field formulation (cf. Bertoluzza and

Kunoth [2000]): Find u ∈ V, λ ∈ Λ and ψ ∈ Φ, such that

i)
∑N

i=1
aΩi(u

i, vi)−
∑N

i=1
ǫ〈λi, vi〉i=

∑N

i=1
lΩi(v

i) ∀v ∈ V

ii)
∑N

i=1
ǫ〈νi, ψ − ui〉i =0 ∀ν ∈ Λ (3)

iii)
∑N

i=1
ǫ〈λi, φ〉i =0 ∀φ ∈ Φ.

It can be shown that the three-field formulation (3) possesses a unique solution
(u,λ, ϕ) ∈ V×Λ×Φ. If the solution w ∈ H1

0 (Ω) of (2) is sufficiently regular,
i.e. △w ∈ L2(Ωi), i = 1, . . .N , the solution can be represented by

u = (w|Ω1 , . . . , w|ΩN ), λ =

(
∂w

∂n1
|Γ1 , . . . ,

∂w

∂nN
|ΓN

)
, ϕ = w|Γ (4)

where ni is the outward normal of Ωi (cf. Baiocchi et al. [1992]).

3 A stabilized three-field formulation

Now the three-field formulation (3) is discretized by linear finite elements.
To this end we introduce quasi-uniform meshes T iu , T iλ and Tϕ on Ωi, Γi and
Γ . The meshes can be non-matching. But for simplicity we assume that all
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meshes have the same global mesh size h. Moreover, we need the notation ∂T iu
for the restriction of T iu onto the local interface Γi. Thus we obtain discrete
spaces Vh ⊂ V, Λh ⊂ Λ and Φh ⊂ Φ.

Replacing the continuous function spaces by discrete subspaces, the well-
posedness of the discrete scheme of (3) requires two certain inf-sup conditions.
One idea to guarantee the conditions is proposed in Brezzi and Marini [2001].
They enrich the space V h by bubble functions. Here, we avoid the constraints
by adding some stabilization terms modifying ideas of Baiocchi et al. [1992].

In the advection dominated case further problems occur. Using a standard
discretization it is well known that there may arise spurious oscillations of the
computed solution. Therefore we use the SUPG method and define

aSDΩi
(uih, v

i
h) := aΩi(u

i
h, v

i
h) +

∑
T∈T i

u

δT (Luih,b · ∇vih)T ,

lSDΩi
(vih) := lΩi(v

i
h) +

∑
T∈T i

u

δT (f,b · ∇vih)T

for i = 1, . . . , N . The parameter δT is defined by δT := δ0hT ‖b‖−1
L∞(T ) in

the advection dominated regime for PeT := 1
2hT ǫ

−1‖b‖L∞(T ) > 1 and by

δT := 1
2δ0h

2
T ǫ
−1 else. Now the error in the interior of the subdomains can be

controlled by the streamline diffusion norm

‖|vh|‖2SD,Ωi
:= ǫ|vh|21,Ωi

+ ‖
√
c̃vh‖20,T +

∑
T∈T i

u

δT ‖b · ∇vh‖20,T

which gives us additional control in the streamline direction. Taking all the
mentioned problems into account we end up with the following stabilized
three-field formulation: Find uh ∈ Vh,λh ∈ Λh and ϕh ∈ Φh, such that

i)
∑N

i=1

{
aSDΩi

(uih, v
i
h)− lSDΩi

(vih)− ǫ〈λih, vih〉i + f−i (uih − ϕh, vih)
}
=0

ii)
∑N

i=1

{
ǫ〈νih, uih − ϕh〉i −

∑
E∈∂T i

u

βE

(
∂uih
∂ni
− λih, νih

)

E

}
=0 (5)

iii)
∑N

i=1

{
ǫ〈λih, φh〉i − f+

i (uih − ϕh, φh)
}

=0

for all vh ∈ Vh,νh ∈ Λh,φh ∈ Φh. We have used the notation

f±i (uih − ϕh, ψ) :=
∑

E∈∂T i
u

∫

E

(αE + (b · ni)±)(uih − ϕh)ψds, ψ ∈ H
1
2∗ (Γi)

with (b · ni)± := 1
2 |b · ni| ± 1

2 (b · ni). Thus (b · ni)− acts only on the inflow

part Γ−i := {x ∈ Γi | b(x) ·ni(x) < 0} and (b ·ni)+ only on the outflow part.
The parameters αE , βE ≥ 0 will be specified later.

Let us shortly explain, why we have added the different stabilization terms.
f±i (·, ·), which are added to the first resp. third line of (5), couple the local
spaces V ih and the space Φh . They give additional control in stream-wise direc-

tion, especially in the hyperbolic limit ǫ→ 0. By
∑

E∈∂T i
u
βE

(
∂ui

h

∂ni
− λih, νih

)
E
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the spaces Φh and Λh are coupled. Theses couplings enable us to ignore the
mentioned inf-sup conditions.

We can prove the following a priori estimate (for the rather technical proof
cf. Rapin and Lube [2003b], Theorems 1 and 2). Here, a � b means, that there
exists a constant C > 0 independent of h and ǫ such that a ≤ Cb.
Theorem 1. Assume for the stabilization parameters the inequalities

min{ǫ/h, ǫ2/h2} � αE � max{1, ǫ/h}, min{ǫ2, hǫ} � βE � hmax{h2, ǫ}.

Then there exists a unique solution uh ∈ Vh,λh ∈ Λh and ϕh ∈ Φh of (5)
and the error is bounded by

‖|(u,λ, ϕ)− (uh,λh, ϕh)|‖ �
(
ǫ

1
2 + h

1
2

)
h
∑N

i=1
|ui|2,Ωi (6)

for a solution u ∈ V ∩H2(Ω). The norm is given by

‖|(uh,λh, ϕh)|‖2 :=
∑N

i=1
(1 − β0)‖|uih|‖2SD,Ωi

+
∑N

i=1

∑
E∈∂T i

u

∫

E

[
(2αE + |b · ni|)(uih − ϕh)2 + βE(λih)

2
]
ds.

If we insert a sufficiently regular solution (u,λ, ϕ) of (3) into the stabilized
formulation (5), all additional terms vanish. In this sense (5) is consistent.

There is some degree of freedom for the choice of the stabilization param-
eters in the advection dominated regime. In the diffusion dominated case we
obtain the well known choice of the discontinuous Galerkin method αE ∼ ǫ/hE
(and βE ∼ ǫhE). Using suitable global constants 0 < α0, β0 < 1 we determine

αE = α0

{
ǫ/hE , ǫ ≥ h2

E

ǫ2/h3
E , ǫ < h2

E
, βE = β0

{
ǫhE, ǫ ≥ h2

E

h3
E , ǫ < h2

E
. (7)

By (7) we mainly enforce boundary conditions in a weak sense on the inflow
part of the subdomains, even for ǫ = 0.

Remark 1. For given ϕh ∈ Φh and right hand side f ∈ L2(Ω) the equations
(5,i), (5,ii) are discretizations of the local Dirichlet problems

Lwi = f in Ωi wi = ϕh on ∂Ωi, wi = 0 on ∂Ω \ ∂Ωi.

These problems are well-posed (cf. Rapin and Lube [2003a]).

4 A Schur complement method

Now we derive the corresponding Schur complement equation for our sta-
bilized scheme. Then the solution of (3) can be obtained by solving local
problems. Computing the local problems can be done completely in parallel.
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Recall that for given f ∈ L2(Ω), ϕh ∈ Φh the first two lines of (5)
are local Dirichlet problems (cf. Remark 1). Denoting the local solutions by
(zh(f, ϕh),γh(f, ϕh)) ∈ V h ×Λh we see

(zh(f, ϕh),γh(f, ϕh)) = (zh(f, 0),γh(f, 0)) + (zh(0, ϕh),γh(0, ϕh))

due to the linearity of the scheme. Inserting this in the third line of (5) yields
the Schur complement equation for our scheme: Find ϕh ∈ Φh, such that

〈Shϕh, ψh〉 =
∑N

i=1

{
−ǫ〈γih(f, 0), ψh〉i + f+

i (zih(f, 0), ψh)
}
, ∀ψh ∈ Φh (8)

where the discrete Steklov-Poincaré operator Sh is defined by

〈Shϕh, ψh〉 :=
∑N

i=1

{
ǫ〈γih(0, ϕh), ψh〉i − f+

i (zih(0, ϕh)− ϕh), ψh)
}
.

Theorem 2. The discrete Schur complement equation (8) possesses a unique
solution. Moreover, (zh(f, ϕh),γh(f, ϕh), ϕh) is the solution of (5).

Proof. cf. Rapin and Lube [2003b], Lemma 3.

5 An alternating Schwarz method

Tallec and Sassi [1995] describe a non-conforming discretization for the Pois-
son problem. We extend the algorithm to the advection-diffusion problem
using the additional stabilization terms f±i (·, ·) of (5). Starting with an initial
guess (ψh)0 ∈ Φh, (λh)0 ∈ Λh, we obtain the algorithm:

1. Find (uh)k+1 ∈ Vh such that

aSDΩi
((uih)k+1, v

i
h) + f−i ((uih)k+1 − (ψh)k, v

i
h) =

lSDΩi
(vih) + ǫ〈(λih)k, vih〉Γi , ∀vih ∈ V ih .

2. Compute (λih)k+ 1
2
∈ Λih by

ǫ〈(λih)k+ 1
2
, µih〉Γi = ǫ〈(λih)k, µih〉Γi − f−i ((uih)k+1 − (ψh)k, µ

i
h), ∀µih ∈ Λih.

3. Find (ψh)k+1 ∈ Φh such that there holds for all φh ∈ Φh
∑N

i=1

{
ǫ〈(λih)k+ 1

2
, φh〉Γi − f+

i ((uih)k+1 − (ψh)k+1, φh)
}

= 0.

4. Compute (λih)k+1 ∈ Λih such that there holds for all µih ∈ Λih
ǫ
〈
(λih)k+1, µ

i
h

〉
Γi

= ǫ〈(λih)k+ 1
2
, µih〉Γi − f+

i ((uih)k+1 − (ψh)k+1), µ
i
h).

It can be proved that the algorithm is well-posed. In step 1 local problems with
Robin conditions on the interface are solved. The algorithm is quite similar to
the algorithm proposed by Lube et al. [2003]. The Robin values on the inflow
part of the local problems are mainly determined by the Robin values of the
neighbouring subdomains, computed in the previous step.

A convergence proof of this algorithm is still an open problem. But the
numerical results are very promising (cf. Rapin [2003]).
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6 Numerical experiments

The main focus of our algorithm is the application to the advection dominated
case. Especially the case of nontrivial flows is of interest. To demonstrate the
power of our approach we consider the following (quite hard) example.

Example 1. We search for a solution Lu = f in Ω = (0, 1)2 with boundary
conditions u = −0.5 on γ1 := {(x1, x2) ∈ ∂Ω | x2 = 0}, u = 0.5 on γ2 :=
{(x1, x2) ∈ ∂Ω | x2 = 1}, and u = 0 on the remainder ∂Ω \ (γ1 ∪ γ2) of the
boundary. The flow is given by

b(x1, x2) :=
(
(2x2 − 1)(1− (2x1 − 1)2), 4x2(2x1 − 1)(x2 − 1)

)T
.

b is a rotational flow with a center in (1
2 ,

1
2 ) and ∇ · b = 0.

We decompose the unit square Ω into (6×6) squares. In the context of do-
main decomposition this example is particularly interesting. In the advection
dominated case the solution is almost constant in the interior of Ω. The con-
stant is given by the mean value of the Dirichlet data on the boundary. Now
any discretization has to find this value by mixing the boundary information.

For a global mesh size hint the local meshes are chosen by a checkerboard
pattern with local mesh sizes hu = hint \ 2hint, hλ = (1/3)hint \ (2/3)hint,
hϕ = hint. For all computations we have chosen α0 = 1 and β0 = 1. The
result for ǫ = 10−6 is plotted in Figure 1 (a). It coincides quite well with the
solution of the one-domain case. Although the SUPG stabilization technique
is used, typically crosswind wiggles of the finite element solution appear.

The purpose of the next example is to numerically validate the a priori
estimate of Theorem 1.

Example 2. For −ǫ△u + (−1,−1)T · ∇u = f in Ω and u = g on ∂Ω we dis-
tinguish two cases. (a) We choose f , g in such a way that u(x, y) = x cos(πy)
becomes the exact solution. In the second case (b) with f = 1 and g = 0
strong boundary layers appear in the singularly perturbed case.

We consider Example 2 (a). Using a decomposition of Ω into (6 × 6) sub-
rectangles we alter the mesh size for ǫ = 1, 0.1, 10−4. The results are plotted in
Figure 1 (b) and agree with Theorem 1. If we choose the nonsmooth Example
2 (b) with layers, we obtain a convergence rate of 1/2 in the L2(Ω) norm
as in the SUPG case without domain decomposition, since the layers are not
resolved. Moreover, we obtain the optimal rates on subdomains Ω′ ⊂ Ω away
from the layers (cf. Rapin [2003]).

Next, we study the effect of the stabilization on the discrete Schur com-
plement equation (8) and the alternating Schwarz algorithm.

We start with the Schur complement equation (8) applied to Example 2
(a). The equation is solved by the GMRES method. In Table 1 (a) we observe
that the number of iteration steps is independent of the mesh size for the
singularly perturbed case (ǫ = 10−4, 10−6). In the diffusion dominated regime
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Fig. 1. (a) Plot of Example 1; (b) error in the energy norm
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i=1(ǫ|·|
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1,Ωi

+‖·‖2
0,Ωi

)
1
2

for Example 2 (a).

(ǫ = 1, 0.1) the number of iteration steps increases for smaller mesh sizes.
Therefore in this case we have to introduce a preconditioner. First experiments
with a generalized Neumann–Neumann preconditioner can be found in Rapin
[2003]. As expected, in Table 1 (b) we observe an increase of the number of
iteration steps for more subdomains.

Please note, that, in general, the local solutions of the first iteration steps
possess sharp boundary layers on the outflow part, although the reference
solution is smooth. The layers become smaller within the convergence process.
Therefore, we obtain the same results for Example 2 (b).

Now we consider the alternating Schwarz algorithm. In our numerical ex-
periments we compare the discrete solution with the reference solution of
the continuous problem. In Figure 2 we see that the discretization error is
reached within a few steps for the singularly perturbed case. In the diffusion
dominated case the convergence is quite slow, but can be accelerated by an
adaptive choice of the parameter αE (cf. Lube et al. [2003]).

Summarized one can state that both methods work well both in the dif-
fusion dominated case and the singularly perturbed case. But we suggest to

ǫ \ hint 0.05 0.02 0.01 0.005

1 21 32 46 66

10−1 19 31 43 59

10−4 19 20 19 18

10−6 19 20 19 19

(a)

ǫ \ n 2 4 6 8 10 12

1 25 51 65 78 81 97

10−1 26 21 26 30 34 38

10−4 16 21 26 30 34 38

10−6 6 21 26 30 34 38

(b)

Table 1. Number of iteration steps of the GMRES algorithm, which is needed to
reduce the initial residuum by the factor 10−8 for Example 2 (a). The initial guess
is always 0. In (a) we consider different mesh sizes hint and diffusion coefficients ǫ
for a (4 × 3) partition. In (b) the domain is decomposed into (n × n) subdomains
for mesh size hint = 0.01.
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Fig. 2. Convergence behavior of the alternating Schwarz algorithm in the L2(Ω)
norm for a (4 × 3) decomposition. On the left hand side the mesh size is chosen by
hint = 0.02 and on the right hand side by hint = 0.01.

use the Schur complement method in the diffusion dominated case and the
alternating Schwarz method in the advection dominated case.
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Summary. Interface boundary conditions are the key ingredient to design efficient
domain decomposition methods. However, convergence cannot be obtained for any
method in a number of iterations less than the number of subdomains minus one
in the case of a one-way splitting. This optimal convergence can be obtained with
generalized Robin type boundary conditions associated with an operator equal to
the Schur complement of the outer domain. Since the Schur complement is too
expensive to compute exactly, a new approach based on the computation of the
exact Schur complement for a small patch around each interface node is presented
for the two-Lagrange multiplier FETI method.

1 Introduction
Interface boundary conditions are the key ingredient to design efficient domain
decomposition methods, see Chevalier and Nataf [1998], Benamou and Després
[1997], Gander et al. [2002]. However, convergence cannot be obtained for
any method in a number of iterations less than the number of subdomains
minus one in the case of a one-way splitting. For the two-Lagrange multiplier
FETI method, this optimal convergence can be obtained with generalized
Robin type boundary conditions associated with an operator equal to the
Schur complement of the outer domain, see Roux et al. [2002]. In practice this
optimal condition cannot be implemented since the Schur complement is too
expensive to compute exactly. Furthermore, the Schur complement is a dense
matrix on each interface and even if it were computed, using it would create
a very large increase of the bandwidth of the local subproblem matrix. Hence
the issue is how to build a sparse approximation of the Schur complement that
is not expensive to compute and that leads to good convergence properties of
the two-Lagrange multiplier FETI iterative method.

Different approaches based on approximate factorization or inverse compu-
tation of the subproblem matrix have been tested, see Roux et al. [2002]. Here,



284 F.-X. Roux, F. Magoulès, L. Series, Y. Boubendir

a new approach based on the computation of the exact Schur complement for
a small patch around each interface node appears to be a very efficient method
for designing approximations of the complete Schur complement. Furthermore
this approach can be easily implemented without any other information than
the local matrix in each subdomain.

2 Review of the Two-Lagrange Multiplier FETI Method
2.1 Introduction of Two-Lagrange Multiplier on the Interface

Consider a splitting of the domain Ω as in Figure 1 and note by subscripts
i and p the degrees of freedom located inside subdomain Ω(s), s = 1, 2, and
on the interface Γ . Then, the contribution of subdomain Ω(s), s = 1, 2 to the
matrix and the right-hand side of a finite element discretization of a linear
partial differential equation on Ω can be written as follows:

K(s) =

[
K

(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

]
, b(s) =

[
b
(s)
i

b
(s)
p

]

where K
(1)
pp and K

(2)
pp represent the interaction matrices between the nodes

on the interface obtained by integration on Ω(1) and on Ω(2). The global
problem is a block system obtained by assembling local contribution of each
subdomain:



K

(1)
ii 0 K

(1)
ip

0 K
(2)
ii K

(2)
ip

K
(1)
pi K

(2)
pi Kpp






x

(1)
i

x
(2)
i

xp


 =



b
(1)
i

b
(2)
i

bp


 . (1)

The block Kpp is the sum of the two blocks K
(1)
pp and K

(2)
pp . In the same way,

bp = b
(1)
p + b

(2)
p is obtained by local integration in each subdomain and sum

on the interface.

Fig. 1. Non-overlapping domain splitting.

The two-Lagrange multiplier FETI method, see Farhat et al. [2000], is an
iterative based domain decomposition method which consists to determine the
solution of the following coupled problem:
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[
K

(1)
ii K

(1)
ip

K
(1)
pi K

(1)
pp +A(1)

][
x

(1)
i

x
(1)
p

]
=

[
b
(1)
i

b
(1)
p + λ(1)

]

[
K

(2)
ii K

(2)
ip

K
(2)
pi K

(2)
pp +A(2)

][
x

(2)
i

x
(2)
p

]
=

[
b
(2)
i

b
(2)
p + λ(2)

]

λ(1) + λ(2) − (A(1) +A(2))x(1)
p = 0

λ(1) + λ(2) − (A(1) +A(2))x(2)
p = 0

where the free matrices A(1) and A(2) are to be determined for the best perfor-
mance of the algorithm. It is clear that this coupled problem is equivalent to

the global problem (1), see Roux et al. [2002]. The elimination of x
(s)
i in favor

of x
(s)
p in the two first equations and substitution in the two last equations

leads to the following linear system upon the variable λ := (λ(1), λ(2))T :

Fλ = d (2)

with F and d the matrix and right hand side defined as:

F :=

[
I I − (A(1) +A(2))[S(2) +A(2)]−1

I − (A(1) +A(2))[S(1) +A(1)]−1 I

]

d :=

[
(A(1) +A(2))[S(2) +A(2)]−1c

(2)
p

(A(1) +A(2))[S(1) +A(1)]−1c
(1)
p

]

The iterative solution of this system is usually performs with a Krylov method.

2.2 Optimal Interface Boundary Conditions

It is shown in Roux et al. [2002] that the best choice for the free matrices
A(s), s = 1, 2 corresponds to the complete outer Schur complement, i.e. the
discretization of the optimal continuous boundary conditions associated to
the Steklov-Poincaré operator, see Ghanemi [1997], Collino et al. [2000] and
Boubendir [2002]. An extension of this result in the case of a one way split-
ting can be obtained in the discrete case, see Roux et al. [2002], and in the
continuous case, see Nataf et al. [1994].

Theorem 1. In a case of a two-domain splitting, the Jacobi iterative algo-
rithm for the two-Lagrange multiplier FETI method with augmented term
equal to the complete outer Schur complement converges in one iteration at
most.

Theorem 2. In a case of a one way splitting, the Jacobi iterative algorithm
for the two-Lagrange multiplier FETI method with augmented term equal to
the complete outer Schur complement converges in a number of iteration equal
to the number of subdomain minus one.
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3 Approximation of Optimal Interface Boundary
Conditions
In the previous section, we have recalled that the best choice for the augmented
matrix in the case of a one way splitting domain decomposition is the complete
outer Schur complement matrix. This choice can not be done in practice since
the computational cost of the complete outer Schur complement matrix is too
expensive.

3.1 Neighbor Schur Complement

From a physical point of view, the complete outer Schur complement ma-
trix represent the interactions of all the degree of freedom of the subdomains
condensed on the interfaces. The restriction of the interactions only with the
neighboring subdomains, leads to approximate the complete outer Schur com-
plement with the neighbor Schur complement. The computational cost and
the exchange of data are thus reduced to the neighboring subdomains only.
Unfortunately, this approach still leads to an expensive computational cost.
Hence the issue is how to build a sparse approximation of the Schur comple-
ment that is not expensive to compute and that gives good convergence for
the two-Lagrange multiplier FETI method.

3.2 Lumped Approximation

We have shown in Roux et al. [2002] that an approximation of the neighbor

Schur complement matrix K
(s)
bb − K

(s)
bi [K

(s)
ii ]−1K

(s)
ib with its first term, i.e.

with the matrix K
(s)
bb gives good results. Such an approximation, presents the

advantage to be very easy to implement since this matrix is computed by the
neighboring subdomain during the assembly procedure and the integration of
the contribution of the interface nodes. Only an exchange with the neighboring
subdomain is required for this regularization procedure.

3.3 Sparse Approximation based on Overlapping Layers

In this section we present a new approach for the approximation of the neigh-
boring Schur complement with a sparse matrix, which leads to a better approx-
imation than the lumped approximation, as shown in the numerical results.
The goal is to obtained a spectral density of the approximated matrix close to
the spectral density of the neighbor Schur complement matrix. We first define
the following subsets of indexes:

VΩ(2) = {indexes of nodes inside the subdomain Ω(2)}
VΓ = {indexes of nodes on the interface Γ}
V li = {indexes of the nodes j such that the minimum

connectivity distance between i and j is lower or

equal than l, l ∈ N}
V lΓ,i = VΓ ∩ V li



Approximation of Optimal Interface Boundary Conditions 287

The sparse approximation investigated here consist to define a sparse aug-
mented matrix obtained through an extraction of some coefficients and local
condensation along the interface. The complete algorithm to compute the aug-
mented matrix—in the case of a two domain splitting—in subdomain Ω(1) can
be define as:

Algorithm 1. [sparse approximation]

1. construction of the structure of the interface matrix A1 ∈ RdimVΓ×dimVΓ .
2. construction of the sparse structure of the subdomain matrix
K(2) ∈ RdimVΩ(2)×dimVΩ(2) .

3. assembly of the matrix K(2).
4. for all i in VΓ do

4.1. extraction of the coefficientsKmn, (m,n) ∈ V li ×V li , and construction

of the sparse matrix A2 ∈ RdimV
l

i ×dimV l
i with these coefficients.

4.2. computation of the dense matrix A3 ∈ RdimV
1

Γ,i×dimV 1
Γ,i by conden-

sation of the matrix A2 on the degree of freedom V 1
Γ,i.

4.2. extraction of the coefficients of the line associated with the node
i from the matrix A3 and insertion inside the matrix A1 at the line
associated with the node i.

5. construction of the symmetric matrix A4 =
(AT

1 +A1)
2 .

6. regularization of the matrix K(1) with the matrix A4.

where l denotes the number of layers considered.
Similar calculation performed in the subdomain Ω(2) gives the augmented

matrix A(2) to add to the subdomain matrix K(2). As an example the regu-
lar mesh with Q1-finite elements presented Figure 2 leads to the subsets of

4 5 6
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1211109
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19 20 21 22 23 24

25 26

8
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Fig. 2. Numbering of the nodes in subdomain Ω(2).

indexes V 1
7 = {1, 2, 7, 8, 13, 14}, V 2

7 = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21} and
V 1
Γ,7 = {1, 7, 13}. These subsets correspond to the overlapping layers repre-

sented Figure 3.

4 Numerical Results
4.1 The Model Problem

In this section, a two dimensional beam of length L1 and high L2 submitted to
flexion is analyzed. The Poisson ratio and the Young modulus are respectively
ν = 0.3 and E = 2.0 105N/m2. Homogeneous Dirichlet boundary conditions
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Fig. 3. On the left one interface node, on the middle one interface node with one
layer, and on the right one interface node with two layers.

are imposed on the left and homogeneous Neumann boundary conditions are
set on the top and on the bottom. Loading, model as non homogeneous Neu-
mann boundary condition are imposed on the right of the structure. The beam
is meshed with triangular elements and discretized with P1 finite elements.
The domain is then split into two or ten subdomains in a one way splitting
and the condensed interface problem is solved iteratively with the orthodir

Krylov method. The stopping criterion is set to ||rn||2 < 10−6||r0||2, where rn
and r0 are the nth and initial global residuals.

4.2 Spectral Analysis

Figure 4 represent the spectral density of the eigenvalues of the matrix of the
condensed interface problem (2) for different augmented matrices. An aug-
mented matrix equal to the neighbor Schur complement will leads to eigen-
values equal to one which correspond to a spectral density equal to a Dirac
function.
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Fig. 4. Spectral density of the condensed interface problem with an augmented
matrix issue from the lumped approximation (left) vs from the sparse approximation
(right) (L1 = 10, L2 = 1, h = 1/160). Case of two subdomains.

We can see on Figures 4 that a sparse approximation performed with a
number of layers equal to four leads to a spectral density close to a Dirac
function. Opposite, a lumped approximation leads to spectrum much more
different. This result can be explain by the fact that the sparse approximation
is based on local condensation i.e. on local Steklov-Poincaré operators which
is not the case of the lumped approximation.
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4.3 Asymptotic Analysis

The asymptotic analysis of the proposed methods upon different parameters is
now analyzed. The analysis upon the domain size reported Figure 5 show the
respective dependence of the methods. The asymptotic behavior of the pro-
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Fig. 5. Asymptotic behavior for different augmented matrices and different subdo-
main size. (L1 = 64, L2 = 1, h = 1/20).

posed methods upon the mesh size is presented Figure 6. On the left picture,
four layers are considered for the sparse approximation. A linear dependence
upon the mesh size can be noticed for all the methods. On the right picture,
the number of layers of the sparse approximation increase proportionally with
the mesh size. A linear dependence still occurs for the sparse approximation
but the slope of the curve is lower than with a constant number of layers
equal to four. The asymptotic results obtained with this last approximation

10^1

10^2

10^3

10^-3 10^-2 10^-1 10^0

nu
m

be
r 

of
 it

er
at

io
ns

h

Neighbor Schur cmpt
Sparse approx. of Schur cmpt

Lumped approx. of Schur cmpt

10^1

10^2

10^3

10^-3 10^-2 10^-1 10^0

nu
m

be
r 

of
 it

er
at

io
ns

h

Neighbor Schur cmpt
Sparse approx. of Schur cmpt

Lumped approx. of Schur cmpt

Fig. 6. Asymptotic behavior for different augmented matrices and different mesh
size on the left for a constant number of layers, and on the right for a number of
layers increasing proportionally with the mesh size. (L1 = 10, L2 = 1). Case of ten
subdomains.

are still less efficient than those obtained with a continuous approach, see
Gander et al. [2002], but the implementation of the previous method doesn’t
depends on a priori knowledge of the problem to be solved (coefficients of the
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partial differential equation, mesh size, . . . ) and thus helps its use as a black
box routine!

5 Conclusions
In this paper the principle of the two-Lagrange multiplier FETI method with
optimal interface boundary conditions has been remain. A new method for
the approximation of these optimal conditions has been introduced. This new
method is based on the computation of the exact Schur complement for a small
patch around each interface node. This method appears to be a very efficient
method for designing approximations of the complete Schur complement that
give robust iterative algorithms for solving many different kinds of problems.
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Y. Boubendir. Techniques de décomposition de domaine et méthode
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Summary. We present overlapping Schwarz methods for the numerical solution
of two model problems of delay PDEs: the heat equation with a fixed delay term,
and the heat equation with a distributed delay in the form of an integral over
the past. We first analyze properties of the solutions of these PDEs and find that
their dynamics is fundamentally different from that of regular time-dependent PDEs
without time delay. We then introduce and study overlapping Schwarz methods of
waveform relaxation type for the two model problems. These methods compute the
local solution in each subdomain over many time-levels before exchanging interface
information to neighboring subdomains. We analyze the effect of the overlap and
derive optimized transmission conditions of Robin type. Finally we illustrate the
theoretical results and convergence estimates with numerical experiments.

1 Introduction

Delay differential equations model physical systems for which the evolution
does not only depend on the present state of the system but also on the past
history. Such models are found, for example, in population dynamics and epi-
demiology, where the delay is due to a gestation or maturation period, or in
numerical control, where the delay arises from the processing in the controller
feedback loop. Delay differential equations have been studied extensively (and
almost exclusively) in the context of ordinary differential equations. An ordi-
nary delay differential equation is an equation of the form

ẏ(t) = F (t, y(t), yt), t ∈ [0, T ], (1)

where yt denotes a function segment extending over a time-interval of length
τ into the past: yt(s) = y(t + s), s ∈ [−τ, 0]. Equation (1) is usually com-
plemented with an initial condition of the type y0(s) = g(s), where g(s) is a
given function over the interval s ∈ [−τ, 0]. A good starting point to study the
analysis and numerical computation of ordinary delay differential equations
is Bellen and Zennaro [2003], and the references therein.
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Delay PDEs are less well understood. They are typically of the form

∂

∂t
u(t, x) = Lu(t, x, u(t,x)) + f(t, x), (2)

where u(t,x) is a function segment, which can extend both in the past and over
some region in space: u(t,x)(v, w) = u(t+ v, x+ w), (v, w) ∈ [−τ, 0]× [−σ, σ].
Equation (2) has to be completed with boundary conditions and an initial
condition, which, typically, have to be specified over some initial and boundary
regions around the domain of definition of the delay PDE. A set of examples,
illustrating the wide range of existing delay PDE models can be found in Wu
[1996]. A characteristic example from numerical control is the equation

∂u

∂t
= D

∂2u

∂x2
+ v(g(u(t− τ, x)))∂u

∂x
+ c[f(u(t− τ, x))− u(t, x)],

which models a furnace used to process metal sheets. Here, u is the temper-
ature distribution in a metal sheet, moving at a velocity v and heated by a
source specified by the function f ; both v and f are dynamically adapted
by a controlling device monitoring the current temperature distribution. The
finite speed of the controller, however, introduces a fixed delay of length τ .
An example from population dynamics is the so-called Britton-model,

∂u

∂t
= D∆u+ u(1− g ⋆ u) with g ⋆ u =

∫ t

t−τ

∫

Ω

g(t− s, x− y)u(s, y) dy ds.

Here, u(t, x) denotes a population density, which evolves through random
migration (modeled by the diffusion term) and reproduction (modeled by the
nonlinear reaction term). The latter involves a convolution operator with a
kernel g(t, x), which models the distributed age-structure dependence of the
evolution and its dependence on the population levels in the neighborhood.

There is little experience with numerical methods for solving delay PDEs.
Zubik-Kowal [2001] and Huang and Vandewalle [2003] analyze the accuracy
and stability of spatial and temporal discretization schemes. Zubik-Kowal and
Vandewalle [1999] analyze the convergence of a waveform relaxation scheme
of Gauss-Seidel and Jacobi type, for solving the discretized problems. In this
paper we present a first analysis of domain decomposition based waveform
relaxation methods for the solution of two model delay PDEs. Waveform re-
laxation schemes using domain decomposition in space for parabolic equations
without delay were introduced in Gander and Stuart [1998] and independently
in Giladi and Keller [2002], and further analyzed in Gander [1998] and Gander
and Zhao [2002], see also the references therein. In those papers, it was shown
that domain decomposition leads to a fundamentally faster convergence rate
than the classical waveform relaxation methods. The performance of these
methods can however still be drastically improved using better transmission
conditions between subdomains, see Gander et al. [1999]. Our goal is to anal-
yse whether such optimization is also possible in the parabolic delay PDE
case.
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The structure of the paper is as follows. In §2 we define two characteristic
models of delay PDEs, and we analyze the stability of the solution of those
problems as a function of the parameters appearing in the model. In §3, we
analyze the performance of the classical overlapping Schwarz waveform re-
laxation method when used as a solver for delay PDEs. An algorithm using
optimized Robin type transmission conditions is studied in §4. Finally, in §5,
the theoretical results are verified by some numerical experiments.

2 Analysis of Delay PDEs

We consider two representative model problems: a PDE with a constant delay
and one with a distributed delay. By analyzing the properties of their solu-
tions, we hope to gain some insight into the behavior of solutions to the more
complex problems introduced in §1. The constant delay PDE is given by

∂u

∂t
=
∂2u

∂x2
+ au(t− τ), with

{
x ∈ R, t ∈ R+,
a ∈ R, τ ∈ R

+.
(3)

Using separation of variables, we arrive at solutions of the form u(t, x) =
eλt · eikx. The constants λ ∈ C and k ∈ R satisfy the so-called characteristic
equation λ = −k2 + ae−λτ . Separating real and imaginary parts, λ = η + iω,
we obtain the system of equations

{
η = −k2 + ae−ητ cos(ωτ),
ω = − ae−ητ sin(ωτ).

(4)

The natural question that arises therefore is for what (a, τ)-pairs the charac-
teristic equation has only solutions with η ≤ 0 and thus solutions of the delay
PDE stay bounded for all time. To answer this question of stability, we dis-
tinguish two cases. First, we identify the region in the (a, τ) parameter space
where unstable solutions exist corresponding to real roots λ; next we treat
the unstable, oscillatory solutions case, i.e. corresponding to complex-valued
roots with non-vanishing imaginary part ω.

Setting ω = 0 and η > 0, equation (4) simplifies to η = −k2 + ae−ητ . For
positive a, and a given k, this equation has a unique solution η, as illustrated in
Figure 1 (left). If k2<a, the corresponding η is positive. Hence, for any a > 0
there always exist modes (with k small enough) that grow exponentially. A
similar graphical argument shows that, for a < 0, any roots η must necessarily
be negative. Hence, there are no unstable real modes in that case.

Next, by setting ω > 0 and η = 0 in (4) we determine the boundary
of the (a, τ)-region where unstable oscillatory modes exist. This leads to the
conditions k2 = a cos(ωτ) and −ω = a sin(ωτ). An analysis of these conditions
reveals that they can only be satisfied for a < 0 if ± ωτ ∈ [π/2, π] + 2πn
with n an arbitrary positive integer; for a > 0 the corresponding condition
becomes ± ωτ ∈ [3π/2, 2π] + 2πn.



294 Stefan Vandewalle and Martin J. Gander

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−k2+a e−ητ 

η 

a 

k2 

η 

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

STABLE 

unstable real 

unstable real and complex 

unstable complex 

−aτ=π/2 

aτ=3π/2 

a 

τ 

Fig. 1. Left: stability analysis of the constant delay PDE, the case of real roots.
Right: stable and unstable regions in the (a, τ ) parameter space.

The curves aτ = −ωτ/ sin(ωτ), for ωτ = π/2+πn are especially important.
They determine the (a, τ)-values at which the constant mode, k=0, becomes
unstable, with an oscillation determined by the corresponding ω. It can be
shown that the constant mode is the first mode to become unstable; this
leads to the theorem below. In Figure 1 (right) the stability region is shown
in white. In the other regions each unstable mode is of a specific multiplicity.

Theorem 1. The solution to the constant delay PDE (3) is stable if −π/2 ≤
aτ ≤ 0.

The second model problem is a distributed delay PDE,

∂u

∂t
=
∂2u

∂x2
+ a

∫ 0

−τ
u(t+ s) ds with

{
x ∈ R, t ∈ R

+,
a ∈ R, τ ∈ R+.

(5)

Now, the characteristic equation is given by λ = −k2+ a
λ(1−e−λτ ). Separating

real and imaginary parts as we did before, one obtains the system
{
η2 − ω2 + ηk2 = a(1 − cos(ωτ)e−ητ ),
2ηω + ωk2 = a sin(ωτ)e−ητ .

(6)

We determine the (a, τ)-pairs for which the characteristic equation has only
solutions with η ≤ 0. An elementary graphical argument reveals that any
positive a admits unstable real roots, i.e., with ω = 0. There are no such
roots for a < 0. Setting η = 0 in (6), we arrive at two equations, which can
only be satisfied for a < 0 and for ± ωτ ∈ [π, 2π] + 2πn. As before, the
constant mode, with k=0, is the stability determining one. The curves aτ2 =
−ω2τ2/(1 − cos(ωτ)) for ωτ = π + 2πn determine the (a, τ)-values where a
constant mode instability appears. Figure 2 shows the stability region.

Theorem 2. The solution to the distributed delay PDE (5) is stable if −π2/2 ≤
aτ2 ≤ 0.
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Fig. 2. Stable and unstable regions for the distributed delay PDE.

3 Domain Decomposition

The classical Schwarz algorithm. We decompose the domain of PDE (3)
into two overlapping subdomains Ω1 =(−∞, L) and Ω2 =(0,∞), with overlap
L > 0. The classical Schwarz waveform iteration is then given by

{
∂un

1

∂t =
∂2un

1

∂x2 + aun1 (t− τ) on Ω1, u
n
1 (t, L) = un−1

2 (t, L),

∂un
2

∂t =
∂2un

2

∂x2 + aun2 (t− τ) on Ω2, u
n
2 (t, 0) = un−1

1 (t, 0),
(7)

starting with some initial guesses u0
1(t, L) and u0

2(t, 0). For the analysis we will
assume those to be in L2. Using Laplace transforms, we can rewrite (7) as an
iteration in ‘frequency space’ and explicitly solve for the Laplace transform of
the solutions un1 (t, L) and un2 (t, 0). Using arguments very similar to the ones
in Gander et al. [1999] we arrive at the following result.

Theorem 3. Assume a and τ satisfy the stability condition of Theorem 1.
Then, the classical Schwarz waveform relaxation algorithm (7) for the constant
delay PDE (3) converges linearly, i.e., with en1 = u− un1 and en2 = u− un2 ,

||en1 (·, L)||2 + ||(en2 (·, 0)||2 ≤ ρn(||e01(·, L)||2 + ||e02(·, 0)||2), (8)

where ρ := ρcla = supω∈R

∣∣∣ e−
√
iω−ae−iωτ L

∣∣∣ < 1.

The full details of the derivation are given in the companion report Vandewalle
and Gander. Using elementary, but very technical arguments, the convergence
rate ρcla can be bounded, as a function of the problem parameters and the
size of the overlap.

Corollary 1. The convergence rate of the classical Schwarz method for prob-

lem (3) satisfies ρcla ≤ e−
√
−a cos(aτ)/2L, provided −aτ < 1.
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Next, we consider the Schwarz algorithm for the distributed delay PDE,




∂un
1

∂t =
∂2un

1

∂x2 + a
∫ 0

−τ u1(t+ s) ds on Ω1, un1 (t, L) = un−1
2 (t, L),

∂un
2

∂t =
∂2un

2

∂x2 + a
∫ 0

−τ u2(t+ s) ds on Ω2, un2 (t, 0) = un−1
1 (t, 0).

(9)

With a Laplace transform analysis similar to that for the constant delay case,
and some technical arguments, we derive the following theorem and corollary.

Theorem 4. Assume a and τ satisfy the stability condition of Theorem 2.
Then, the classical Schwarz algorithm (9) for delay PDE (5) converges linearly

as in (8), where ρ := ρcla = supω∈R

∣∣∣ e−
√
iω+i a

ω (1−e−iωτ )L
∣∣∣ < 1.

Corollary 2. The convergence rate of the classical Schwarz method for prob-

lem (5) satisfies ρ ≤ e−
√√−a sin(

√−2aτ)/2L.

The optimized Schwarz algorithm. We introduce new transmission con-
ditions in (7) and (9), using B+ and B− to denote ( ∂∂x+p) and ( ∂∂x−p),

B+u
n
1 (t, L) = B+u

n−1
2 (t, L), B−un2 (t, 0) = B−un−1

1 (t, 0). (10)

Theorem 5. Assume a and τ satisfy the stability condition of Theorem 1.
Then, the Schwarz waveform relaxation algorithm (7) with the Robin trans-
mission conditions (10) converges as stated in (8), where

ρ := ρopt(p) = sup
ω∈R

∣∣∣∣∣

√
iω − ae−iωτ − p√
iω − ae−iωτ + p

e−
√
iω−ae−iωτ L

∣∣∣∣∣ < 1. (11)

Defining the curve Γ = {z : z =
√
iω − ae−iωτ , ω ∈ R}, the optimal choice of

the parameter p is the value p⋆ which solves the min-max problem

min
p

max
z∈Γ

∣∣∣∣
z − p
z + p

· e−z L
∣∣∣∣ . (12)

In Figure 3 we graphically depict the curve Γ , together with the contour lines
of the function that appears in the min-max problem, for the case L=0.

In a numerical computation, ω ∈ [−ωmax, ωmax], because a numerical grid
in time with spacing ∆t can not carry arbitrary high frequencies; an estimate
of ωmax is ωmax = π

∆t . This simplifies the min-max problem (12) to a problem
in a bounded domain, but it is still difficult to solve analytically, even for the
special case L = 0. We therefore propose to solve the min-max problem over
the bounding box given in Figure 3 containing the curve. This problem can
be solved in closed form for L = 0.

Theorem 6. Let L = 0 and set b = ℜ(
√
i(ωmax + 2π/τ)− ae−iωmaxτ ). As-

sume −aτ ≤ 1. If b ≥ −a cos(aτ) + 1/ cos(aτ), then the solution of the ap-
proximate min-max problem is given by p⋆ =

√
2 cos(aτ)b + a; otherwise it is

p⋆ =
√

2a2 cos2(aτ)− a.
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The parameter p⋆ guarantees a lower bound on achievable acceleration,

ρopt(p
⋆) ≤

√
(p⋆ − q)2 + q2 − a
(p⋆ + q)2 + q2 − a · ρcla, q = −a cos(aτ). (13)

A similar analysis can also be done for the distributed delay PDE, leading to
a min-max problem as in (12), along a curve

Γ̃ = {z : z =

√
iω + i

a

ω
(1− e−iωτ ), ω ∈ R}. (14)

One can show that Γ̃ belongs to the same bounding box as the curve Γ . Hence,
using the value of p⋆ from Theorem 6, a similar convergence acceleration will
be achieved over the classical algorithm as in (13).

4 Numerical Results

We investigate the influence of the overlapL on the convergence of the classical
Schwarz algorithm, and the influence of the parameter p in the Robin trans-
mission conditions, on the convergence of the optimized Schwarz method. The
results presented are for the constant delay PDE. We chose the parameters
a = −1.55, τ = 1, i.e., within the stability region, and x ∈ [0, 2], t ∈ [0, 10],
∆x = 1

50 and ∆t = 1
50 . In Figure 4 (left) we show the evolution of the error

as a function of the iteration index n, for various values of the overlap. The
convergence improvement with increasing overlap is evident. The influence
of the parameter in the Robin transmission conditions is shown in Figure 4
(right). Here, a minimal overlap of size L = ∆x was used.

Our experiments show clearly that the transmission conditions play a very
important role for the performance of the algorithm. Compared to the overlap,
where an increase corresponds to an increase in the subdomain solution cost,
a change in p does not increase the subdomain solution cost.
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Fig. 4. Left: influence of the overlap on the performance of the classical Schwarz
waveform relaxation algorithm for the constant delay PDE problem. Right: influence
of the parameter p in the Robin transmission condition on the performance of the
optimized Schwarz algorithm.
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Summary. In recent years the hybrid-Trefftz finite element (hT-FE) model, which
originated in the work by Jirousek and his collaborators and makes use of an inde-
pendently defined auxiliary inter-element frame, has been considerably improved. It
has indeed become a highly efficient computational tool for the solution of difficult
boundary value problems In parallel and to a large extent independently, a general
and elegant theory of Domain Decomposition Methods (DDM) has been developed
by Herrera and his coworkers, which has already produced very significant numeri-
cal results. Theirs is a general formulation of DDM, which subsumes and generalizes
other standard approaches. In particular, it supplies a natural theoretical frame-
work for Trefftz methods. To clarify further this point, it is important to spell out
in greater detail than has been done so far, the relation between Herrera’s theory
and the procedures studied by researchers working in standard approaches to Trefftz
method (Trefftz-Jirousek approach). As a contribution to this end, in this paper the
hybrid-Trefftz finite element model is derived in considerable detail, from Herrera’s
theory of DDM. By so doing, the hT-FE model is generalized to non-symmetric
systems (actually, to any linear differential equation, or system of such equations,
independently of its type) and to boundary value problems with prescribed jumps.
This process also yields some numerical simplifications.

1 Introduction

Trefftz [1926] method was originated by this author. However, the origins of
the hybrid-Trefftz (HT) finite element (FE) model are only around twenty five
years old, Jirousek and Leon [1977], Jirousek [1978]. Since then it has become
a highly efficient computational tool for the solution of difficult boundary
value problems, Jirousek and Wroblewski [1996], Qin [2000], with an increas-
ing popularity among researchers and practitioners. In parallel and to a large
extent independently, a general and elegant theory of domain decomposition
methods (DDM) has been developed by Herrera and coworkers (Herrera et al.
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[2002] and Herrera [2003]). This, throughout its different stages of develop-
ment, has been known by a variety of names; mainly, localized adjoint method
(LAM), Trefftz-Herrera method and unified theory of DDM. This is a gen-
eral formulation, which subsumes and generalizes many other approaches. In
particular, it seems to be the natural framework for Trefftz methods and sev-
eral aspects of that theory have been recognized as fundamental by some of
the most conspicuous researchers of these methodologies (Jirousek and Wrob-
lewski [1996], Zielinski [1995] and Jirousek and Zielinski [1997]). However, it
is important to spell out in greater detail than thus far, the relation between
Herrera’s theory and the procedures of Trefftz-Jirousek approach, Jirousek
and Wroblewski [1996], which are extensively used by the researchers working
in Trefftz method.

In particular, to this end, in the present paper a detailed analysis and com-
parison of the hybrid-Trefftz finite element model is carried out using Herrera’s
theory. In this manner, the HT-FE approach is generalized to problems with
prescribed jumps and to non-symmetric operators. Also, a manner in which
a significant reduction of the number of degrees of freedom involved in the
HT-FE global equations is indicated. Although only problems formulated in
terms Laplace operator are considered, the results can be extended to very
general classes of differential operators using Herrera’s general framework, as
it will be explained in a paper now being prepared.

2 Notations and auxiliary results

Since the main purpose of this paper is to clarify the relation between Herrera’s
theory and Trefftz-Jirousek approach, as was stated in the Introduction, the
notation that is used follows closely that which is standard is expositions of
this latter approach (Qin [2000]). In addition, it is related with that which has
been applied in Herrera’s theory developments. A domain, Ω, is considered
and one of its partitions {Ω1, ..., ΩE}, referred as ‘the partition’. In addition
to the boundary Γ , of Ω, to be referred as the ‘outer boundary’, one considers
the ‘internal boundary’ ΓI , which separates the subdomains from each other.
The outer boundary is assumed to be the union of Γu and Γq. The boundary
Γe, of every subdomain, Ωe, of the partition, is assumed to be the union of
Γeu ≡ Γe ∩ Γu, Γeq ≡ Γe ∩ Γq and ΓeI ≡ Γe ∩ ΓI . Trial and test functions are
taken from the same linear space, D, whose members are functions defined in
each one of the subdomains and, therefore, are generally discontinuous across
ΓI , together with their derivatives. Borrowing from Herrera’s notation, one
writes

[u] ≡ u+ − u− and
⌢̇
u ≡ 1

2
(u+ + u−) (1)

[u] and
⌢̇
u are referred as the ‘jump’ and the ‘average’ of u, respectively.

Here, u+ and u− are the limits from the positive and negative sides, respec-
tively. The internal boundary is oriented by defining a unit normal vector n
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whose sense is chosen arbitrarily; then, the convention is that n points toward
the positive side.

Given two functions, u ∈ D and w ∈ D, the following relation between
Jirousek’s and Herrera’s notations will be applied in the sequel

E∑

e=1

∫

ΓeI

w
∂u

∂n
dσ ≡ −

∫

ΓI

[
w
∂u

∂n

]
dσ (2)

In the left-hand side of this equation, using Jirousek’s notation, the normal
derivative is taken with respect to the unit normal vector that points outwards
of Ωe. Thus, when Jirousek’s notation is used one has two unit normal vectors
defined at each point of ΓI , while in Herrera’s notation there is only one.

3 Trefftz-Jirousek Approach

For simplicity, we restrict attention to the case when the differential oper-
ator is Laplace’s operator and adopt a notation similar to that followed by
Jirousek and his collaborators (see for example Qin [2000]). The boundary
value problem considered in Trefftz-Jirousek method is

Lu ≡ ∆u = b, in Ωe, e = 1, ..., E (3)

u = ū on Γu and
∂u

∂n
= q̄n on Γq (4)

Together with

[u] =

[
∂u

∂n

]
= 0 on ΓI (5)

Observe that any function u ∈ D, which satisfies Eq.(3), can be written as

u = uP + uH (6)

Where
∆uP = b̄, ∆uH = 0, in Ωe, e = 1, ..., E (7)

The above equation, which is fulfilled by uH ∈ D, is homogeneous. There-
fore the set of functions that satisfy Eq.(3), constitutes a linear subspace
DH ⊂ D. In addition, uP ∈ D is not uniquely determined by Eq.(7). How-
ever, once uP ∈ D is chosen, uH = u−uP is unique. Assuming that a function,
uP ∈ D, fulfilling Eq.(7), has been constructed the search to determine the
solution u ∈ D is carried out in the (affine) subspace DP ≡ uP +DH ⊂ D.
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4 Jirousek’s Variational Principle

The variational principles to be applied are derived from the functional (see
Qin [2000])

Πm ≡
1

2

∫

Ω

(
q21 + q22

)2
dΩ−

∫

Γu

qnūds+

∫

Γq

(q̄n − qn)uds−
E∑

e=1

∫

ΓeI

qnũds (8)

Observe that Πm is a functional of a pair: (u, ũ), where u ∈ D and ũ,
the so called ‘displacement frame’, is a function defined on ΓI . In Herrera’s
notation, the above functional is

Πm ≡
1
2

∫
Ω
∇u · ∇udx−

∫
Γu
ū∂u∂ndx+

∫
Γq

(
q̄n − ∂u

∂n

)
udx−

E∑
e=1

∫
ΓeI

∂u
∂n ũdx

(9)

or, introducing the jumps (see the Notations Section)

Πm ≡
1
2

∫
Ω
∇u · ∇udx−

∫
Γu
ū∂u∂ndx+

∫
Γq

(
q̄n − ∂u

∂n

)
uds+

∫
ΓI
ũ
[
∂u
∂n

]
dx

(10)

The system of equations used in Trefftz-Jirousek method is obtained by
requiring that the variation of this functional be zero, in the (affine) subspace
of functions that fulfill Eq. (3), while no restriction is imposed on the frame,
ũ. The weak formulation derived using this functional is δΠm = 0, which can
be written as

∫
Ω
∇u · ∇wdx −

∫
Γu
ū∂w∂n dx+

∫
Γq

{(
q̄n − ∂u

∂n

)
w − u∂w∂n

}
dx

+
∫
ΓI

{
w̃
[
∂u
∂n

]
+ ũ

[
∂w
∂n

]}
dx = 0

(11)

Here, w ∈ DH and w̃ stand for the variation of u and ũ, respectively. This is
the form in which it is most frequently applied. However, for our analysis it
is more convenient to write it as

∫
Γu

(u− ū) ∂w∂n dx−
∫
Γq
w
(
∂u
∂n − q̄n

)
dx

+
∫
ΓI

{
w̃
[
∂u
∂n

]
− [u]

⌢̇
∂w
∂n +

(
ũ− ⌢̇

u

)[
∂w
∂n

]
}
dx = 0

(12)

Therefore, the Euler equations for this variational formulation are the bound-
ary conditions of Eqs. (4) and the continuity conditions for the function and
its normal derivative of Eqs. (5), together with

ũ =
⌢̇
u ≡ u on ΓI (13)

Clearly
⌢̇
u ≡ u because u is continuous across ΓI .

In conclusion, a pair (u, ũ), with u ∈ DP , that satisfies Eq. (12) for every
variation w ∈ DH , has the following properties:
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1. u is solution of the BVP, and
2. ũ = u on ΓI .

Generally the linear subspaceDH ⊂ D is infinite dimensional and therefore
the search for u ∈ DP , in the entirety of DP ⊂ D, is not feasible. In order to
make it feasible, a finite-dimensional (affine) subspace D̂P ≡ uP + D̂H ⊂ D
is introduced as follows: a finite family of linearly independent functions E ≡{
w1, ..., wN

}
⊂ D is chosen and D̂H ⊂ DH is defined to be

D̂H ≡ span
{
w1, ..., wN

}
(14)

The system E ≡
{
w1, ..., wN

}
⊂ D̂H , above, is usually referred as a truncated

T-complete system of homogeneous solutions, Jirousek and Wroblewski [1996].
In addition a system of functions each one of them defined on ΓI exclusively,{
w̃1, ..., w̃Ñ

}
, is introduced. This is referred as the frame basis. Then one

approximates u ∈ DP and ũ, by

û = uP + ûH (15)

and

̂̃u =
Ñ∑

α=1

c̃αw̃
α (16)

respectively. Here ûH ∈ D̂H . Clearly, Eq. (14) implies

ûH =

N∑

i=1

ciw
i (17)

Above {c1, .., cN} and {c̃1, .., c̃Ñ} are suitable choices of the coefficients. They
are determined by application of the variational principle discussed before.
Actually, the weak formulations of Eq. (11) or (12) are applied, with u and

ũ replaced by û and ̂̃u, respectively. By inspection, it is seen that the Euler
equations associated with Eq. (12) yield the following approximate relations

û ≈ ū on Γu,
∂û
∂n ≈ q̄n on Γq

[û] ≈
[
∂û
∂n

]
≈ 0 and ũ ≈

⌢̇

û on ΓI
(18)

It is relevant to observe that û ∈ D̂P , as given by Eqs. (15) and (17), is a
discontinuous function and, therefore, its average across ΓI , in Eq. (18), can
not be replaced by its value on ΓI . Also, usually the internal ΓI boundary is
much larger than the external boundary, Γu ∪ Γq, then the relation N ≈ 2Ñ
is fulfilled approximately and the total number of degrees of freedom is

N + Ñ ≈ 3

2
N (19)
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5 The BVPJ and Herrera’s Variational Principles

The boundary value problem considered in Herrera’s theory is a boundary
value problem with prescribed jumps (BVPJ) in the internal boundary, ΓI ,
which is the same as that considered in Section 3, except that Eq. (5) is
replaced by

[u] = j0Σ ,

[
∂u

∂n

]
= j1Σ on ΓI (20)

where j0Σ and j1Σ are given functions defined on ΓI. In Herrera’s theory two
weak formulations are introduced, Herrera [2001], Herrera [1985]: the ‘weak
formulation in terms of the data of the problem’. This is the basis of the direct
approach and it yields weak formulations that are quite similar those usually
applied by other authors. For the BVPJ here considered, it is

〈LHu,w〉 ≡
∫
Ω
w∆udx+

∫
Γu
u∂w∂n dx−

∫
Γq
w ∂u
∂ndx+

∫
ΓI

{
⌢̇
w
[
∂u
∂n

]
− [u]

⌢̇
∂w
∂n

}
dx =

∫
Ω
wb̄dx+

∫
Γu
ū∂w∂n dx−

∫
Γq
wq̄ndx+

∫
ΓI

{
⌢̇
wj1Σ − j0Σ

⌢̇
∂w
∂n

}
dx

(21)

Which is equivalent to the ’weak formulation in terms of the complementary
information’

〈L∗Hu,w〉 ≡
∫
Ω
u∆wdx+

∫
Γu
w ∂u
∂ndx−

∫
Γq
u∂w∂n dx +

∫
ΓI

{
⌢̇
u
[
∂w
∂n

]
− [w]

⌢̇
∂u
∂n

}
dx =

∫
Ω wb̄dx+

∫
Γu
ū∂w∂n dx−

∫
Γq
wq̄ndx +

∫
ΓI

{
⌢̇
wj1Σ − j0Σ

⌢̇
∂w
∂n

}
dx

(22)

Both of these formulations are equivalent, because it can be shown that
〈L∗Hu,w〉 ≡ 〈LHu,w〉 = 〈LHw, u〉. Furthermore, they are equivalent to the
variational condition δΠH (u) = 0, if ΠH (u) is defined to be

2ΠH (u) ≡
∫
Ω
u∆udx+

∫
Γu
u ∂u∂ndx−

∫
Γq
u ∂u∂ndx+

∫
ΓI

{
⌢̇
u
[
∂u
∂n

]
− [u]

⌢̇
∂u
∂n

}
dx−

2

{
∫
Ω
wb̄dx+

∫
Γu
ū∂w∂n dx−

∫
Γq
wq̄ndx+

∫
ΓI

{
⌢̇
wj1Σ − j0Σ

⌢̇
∂w
∂n

}
dx

} (23)

When u is varied subjected to the restriction u ∈ DP , so that ∆w = 0, Eqs.
(21) and (22) can also be written as

∫
Γu

(u− ū) ∂w∂n dx−
∫
Γq
w
(
∂u
∂n − q̄n

)
dx

+
∫
ΓI

{
⌢̇
w
([
∂u
∂n

]
− j1Σ

)
−
(
[u]− j0Σ

) ⌢̇
∂w
∂n

}
dx = 0

(24)
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and

∫

Γu

w
∂u

∂n
dx−

∫

Γq

u
∂w

∂n
dx+

∫

ΓI




⌢̇
u

[
∂w

∂n

]
− [w]

⌢̇

∂u

∂n



dx =

∫

Ω

wb̄dx+

∫

Γu

ū
∂w

∂n
dx−

∫

Γq

wq̄ndx+

∫

ΓI




⌢̇
wj1Σ − j0Σ

⌢̇

∂w

∂n



dx

(25)

respectively. Eq. (24) exhibits the Eqs. (4) and (20), as the Euler equations of
the variational principle in terms of the data of the BVPJ. However, the use
of Eq. (25) is different.

Let ũ, q̃n, ũa and q̃a be functions defined, the first two, on Γq and Γu
respectively, and on ΓI , the last two. Assume that they satisfy

∫

Γu

wq̃ndx−
∫

Γq

ũ
∂w

∂n
dx+

∫

ΓI

{
ũa

[
∂w

∂n

]
− [w] q̃a

}
dx =

∫

Ω

wb̄dx+

∫

Γu

ū
∂w

∂n
dx−

∫

Γq

wq̄ndx+

∫

ΓI




⌢̇
wj1Σ − j0Σ

⌢̇

∂w

∂n



dx

(26)

for every w ∈ DH , then subtracting Eq. (26) from Eq. (25), it is seen that
∫

Γu

w

(
∂u

∂n
− q̃n

)
dx−

∫

Γq

(u− ũ) ∂w
∂n

dx

+

∫

ΓI





(
⌢̇
u − ũa

)[
∂w

∂n

]
− [w]




⌢̇

∂u

∂n
− q̃a





dx = 0

(27)

Eq. (26) is a variational principle whose Euler equations, in view of Eq. (27),

are q̃n = ∂u
∂n on Γu, ũ = u on Γq and ũa =

⌢̇
u , q̃a =

⌢̇
∂u
∂n on ΓI .

When a truncated T-complete system of homogeneous solutions, E ≡{
w1, ..., wN

}
⊂ DH , is used to generate a subspace D̂H ⊂ DH , and DH is

replaced by D̂H , then these equations are only approximately satisfied. In par-
ticular, ũa and q̃a are approximations of the averages, across ΓI , of the function
and its normal derivative, respectively. The following systems of ‘frames’ are

introduced: Ẽu ≡
{
w̃1
u, ..., w̃

Ñu
u

}
, Ẽq ≡

{
w̃1
q , ..., w̃

Ñq
q

}
, Ẽua ≡

{
w̃1
ua, ..., w̃

Ñua
ua

}

and Ẽqa ≡
{
w̃1
qa, ..., w̃

Ñqa
qa

}
. The first two are defined on Γq and Γu respectively,

and the last two on ΓI . Then the functions are taken to be linear combinations
of these bases with suitable coefficients, which are determined by application
of the weak formulation of Eq. (26). Of course a necessary condition for this
to be possible is that N = Ñu+ Ñq+ Ñua+ Ñqa. The total number of degrees
of freedom is N and global matrix associated the system of equations (26) is
N ×N .
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6 Comparisons and Conclusions

Clearly Trefftz-Jirousek and Trefftz-Herrera formulations are closely related.
However, this latter approach generalizes Jirousek’s since the boundary value
problem considered in Section 4 is a particular case of the more general BVPJ
treated in Section 5; namely, Trefftz-Jirousek method deals with the particular
case of this BVPJ when j0Σ = j1Σ = 0. Also, according to Eq. (19) in Trefftz-
Herrera formulation the number of degrees of freedom is reduced a 33%, in
comparison with Trefftz-Jirousek formulation. Indeed, in this latter approach
one deals with 3

2N × 3
2N global matrices, while these are only N ×N in the

former. A more thorough discussion of these points will be presented in a
paper now being prepared.
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Mixed Finite Element Methods for Diffusion
Equations on Nonmatching Grids

Yuri Kuznetsov

Department of Mathematics, University of Houston (kuz@math.uh.edu)

Summary. The hybridization technique is applied to replace the macro-hybrid
mixed finite element problem for the diffusion equation by the equivalent cell-based
formulation. The underlying algebraic system is condensed by eliminating the de-
grees of freedom which represent the interface flux and cell pressure variables to the
system containing the Lagrange multipliers variables. An approach to the numerical
solution of the condensed system is briefly discussed.

1 Introduction

In this paper, we consider macro-hybrid mixed finite element method for the
diffusion equation on nonmatching grids. The paper is organized as follows.
The four-field macro-hybrid mixed formulation for the diffusion equation is
given in Sect. 2.

In Sect. 3, we apply the hybridization technique to replace the macro-
hybrid formulation by the cell-based formulation and describe the condensa-
tion procedure to reduce the underlying algebraic system to the system for the
Lagrange multipliers only. In Sect. 4, we briefly discuss an algebraic solution
method for the condensed system.

2 Problem formulation

We consider the diffusion problem in the form of a system of the first order
differential equations

K−1 ū + gradp = 0
div ū + cp = f

(1)

in a bounded connected polygonal (polyhedral) domainΩ in IRd, d = 2 (d = 3)
with homogeneous boundary conditions
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p = 0 on ΓD,
ū · n̄ = 0 on ΓN .

(2)

Here ΓD and ΓN are the Dirichlet and the Neumann parts of the boundary
∂Ω, n̄ is the outward unit normal to ∂Ω, K = K(x) is the diffusion tensor,
K = KT > 0, c = c(x) is a nonnegative function, and f ∈ L2(Ω). We assume
that ΓD is a closed subset of ∂Ω consisting of a finite number of segments
(polygons) in the case d = 2 (d = 3).

For the sake of simplicity, in the paper, we consider only the case d = 2.
The extension to the three dimensional problem is basically straightforward.

The weak formulation of (1), (2) reads as follows: find

ū ∈ V ≡
{
v̄ : v̄ ∈ Hdiv(Ω),

∫

∂Ω

|v̄ · n̄|2 ds < +∞, v̄ · n̄ = 0 on ΓN
}
,

p ∈ Q ≡ L2(Ω) such that

∫

Ω

(
K−1ū

)
· v̄ dx −

∫

Ω

p(∇ · v̄) dx = 0

∫

Ω

(∇ · ū)q dx +

∫

Ω

cpq dx =

∫

Ω

fq dx
(3)

for all (v̄, q) ∈ V ×Q.
Let Ωh be a partitioning of Ω into m nonoverlapping polygonal cells ek:

Ωh =

m⋃

k=1

ek, (4)

and Vh and Qh be finite element subspaces of V and Q, respectively. We
assume that the partitioning Ωh is conforming, i.e. the interface Γst between
any adjacent cells es and et is always a common edge for both cells and the set
ΓN∩ΓD belongs to the set of vertices in Ωh. If all the cells ek are triangles then
Vh can be chosen as the proper subspace of the lowest Raviart-Thomas finite
element space RT0(Ωh) (see, Brezzi and Fortin [1991]). Otherwise, we can use
the new method for the construction of Vh recently invented in Kuznetsov and
Repin [2003]. The normal components ū · n̄st of the flux ū at the interfaces Γst
between cells es and et are constants in both choices of Vh. Here n̄st denotes
the unit normal to Γst directed from es to et.

The mixed finite element approximation to (1), (2) reads as follows: find
(ūh, ph) ∈ Vh ×Qh such that

∫

Ω

(
K−1ūh

)
· v̄ dx −

∫

Ω

ph(∇ · v̄) dx = 0

∫

Ω

(∇ · ūh) q dx +

∫

Ω

cphq dx =

∫

Ω

fq dx
(5)

for all (v̄, q) ∈ Vh ×Qh.
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Let Ω be splitted into two nonoverlapping subdomains Ω1 and Ω2 with a
piece-wise linear simply connected interface boundary Γ . Then, the four-field
macro-hybrid mixed formulation of (1), (2) originally proposed in Kuznetsov
and Wheeler [1995] reads as follows: find (ūk, pk, λk) ∈ Vk×Qk×Λk, k = 1, 2,
φ ∈ Φ such that

a1(ū1, v̄1) + b1(p1, v̄1) + c1(λ1, v̄1) = 0
a2(ū2, v̄2) + b2(p2, v̄2) + c2(λ2, v̄2) = 0

b1(q1, ū1) − σ1(p1, q1) = l1(q1)
b2(q2, ū2) − σ2(p2, q2) = l2(q2)

c1(µ1, ū1) + d1(φ, µ1) = 0
c2(µ2, ū2) + d2(φ, µ1) = 0

d1(ψ, λ1) + d2(ψ, λ2) = 0

(6)

for all (v̄k, pk, µk) ∈ Vk ×Qk × Λk, k = 1, 2, ψ ∈ Ψ .
Here

Vk =
{
v̄ : v̄ ∈ Hdiv(Ωk),

∫

∂Ωk

(v̄ · n̄k)2 ds < +∞, v̄ · n̄ = 0 on ∂Ωk ∩ ΓN
}
,

Qk = L2(Ωk), Λk = L2(Γ ), k = 1, 2,

Φ = L2(Γ ),
(7)

and

ak(ū, v̄) =

∫

Ωk

(
K−1ū

)
· v̄ dx, σk(p, q) =

∫

Ωk

cpq dx,

bk(p, v̄) = −
∫

Ωk

p (∇ · v̄) dx, ck(λ, v̄) = (−1)k−1

∫

Γ

λ (v̄ · n̄Γ ) ds,

dk(φ, µ) = (−1)k
∫

Γ

φµ ds, lk(q) = −
∫

Ωk

fq dx,

(8)

k = 1, 2, where n̄Γ is the unit normal vector to Γ directed from Ω1 to Ω2.

LetΩk,h be a partitioning ofΩk intomk polygons e
(k)
i , k = 1, 2. We assume

that both partitionings are conformal and the set of vertices of Γ belongs to
the set of vertices of both partitionings Ω1,h and Ω2,h. Subspaces Vk,h and
Qk,h of the spaces Vk and Qk, respectively, are defined similar to Vh and Qh
in problem (5).
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Let Γ
(k)
h =

nk⋃
i=1

γ
(k)
i,h be the trace of Ωk,h onto Γ where γ

(k)
i,h are the edges

of the cells in Ωk,h adjacent to Γ , i = 1, nk, k = 1, 2. Here nk is the number
of cells’ edges in Ωh belonging to Γ , k = 1, 2. We define Λk,h by

Λk,h =
{
λ : λ = const on γ

(k)
i,h , i = 1, nk

}
(9)

k = 1, 2, and choose

Φh = Λ1,h. (10)

The finite element approximation to (6)-(8) reads as follows: find
(ūk,h, pk,h, λk,h) ∈ Vk,h × Qk,h × Λk,h, k = 1, 2, φh ∈ Φh, such that the
equations (6) with ūk = ūk,h, pk = pk,h, λk = λk,h, k = 1, 2, φ = φh are
satisfied for all (v̄k, qk, µk) ∈ Vk,h × Qk,h × Λk,h, k = 1, 2, ψ ∈ Φh. This
approximation results in the system

A



w1

w2

φ


 =



F1

F2

0


 (11)

with the matrix

A =



A1 0 DT

1

0 A2 D
T
2

D1 D2 0


 (12)

where

Ak =



Mk BTk CTk
Bk −Σk 0
Ck 0 0


 (13)

are the saddle point matrices, k = 1, 2, and

wk =



uk
pk
λk


 , Fk =




0
−fk
0


 , k = 1, 2. (14)

Here Mk is a symmetric positive definite matrix, and Σk is a symmetric
positive definite (or semidefinite) matrix, k = 1, 2.

3 Hybridization and condensation

The extension of (6)-(8) to the case of many subdomains is straightforward.
We consider the hybrid mixed formulation based on partitionings of Ωk,h into

subdomains/cells e
(k)
i used in Sect. 2 for the approximation of the problem

(6)-(8).
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We introduce new spaces Vk,i,h and Qk,i,h to be the restrictions onto e
(k)
i

of Vk,h subject to ΓN = ∅ and Qk,h, respectively, i = 1,mk, k = 1, 2, and

define the spaces V̂k,h and Q̂k,h as the products of the spaces Vk,i,h and Qk,i,h,
i = 1, mk, respectively, k = 1, 2. Then, we introduce spaces Λk,i,h of functions

λ defined on ∂e
(k)
i which are constants on each interface Γk,i,h between e

(k)
i

and adjacent cells e
(k)
j as well as on the intersections ∂e

(k)
i with the linear

parts of ∂Ω, i = 1, mk, k = 1, 2. The functions in Λk,i,h should vanish on

ΓD. We denote by Λ̂k,h the product of all spaces Λk,i,h, k = 1, 2. Finally, we
preserve the definition for Φh from Sect. 2.

The new finite element problem reads as follows: find (ûk,h, p̂k,h, λ̂k,h) ∈
V̂k,h × Q̂k,h × Λ̂k,h, k = 1, 2, φ̂h ∈ Φh, such that

â1(û1,h, v̄1) + b̂1(p̂1,h, v̄1) + ĉ1(λ̂1,h, v̄1) = 0

â2(û2,h, v̄2) + b̂2(p̂2,h, v̄2) + ĉ2(λ̂2,h, v̄2) = 0

b̂1(q1, û1,h) − σ̂1(p̂1,h, q1) = l̂1(q1)

b̂2(q2, û2,h) − σ̂2(p̂2,h, q2) = l̂2(q2)

ĉ1(µ1, û1,h) + d̂1(φ̂h, µ1) = 0

ĉ2(µ2, û2,h) + d̂2(φ̂h, µ1) = 0

d̂1(ψ, λ̂1,h) + d̂2(ψ, λ̂2,h) = 0

(15)

for all (v̄k, pk, µk) ∈ V̂k,h × Q̂k,h × Λ̂k,h, k = 1, 2, ψ ∈ Φh.
Here,

âk(ūk, v̄k) =

mk
X

i=1

Z

e
(k)
i

`

K−1ūk,i

´

· v̄k,i dx, b̂k(pk, v̄k) = −

mk
X

i=1

Z

e
(k)
i

pk,i (∇ · v̄k,i) dx,

ĉk(λk, v̄k) =

mk
X

i=1

Z

∂e
(k)
i

\ΓD

λk,i (v̄k,i · n̄k,i) ds, σ̂k(pk, qk) =

mk
X

i=1

Z

e
(k)
i

cpk,iqk,i dx,

d̂k(φ, µk) = (−1)k
mk
X

i=1

Z

Γ∩∂e
(k)
i

φµk,i ds, l̂k(qk) = −

mk
X

i=1

Z

e
(k)
i

fqk,i dx,

(16)

where n̄k,i is the outward unit normal to ∂e
(k)
i , i = 1, mk, k = 1, 2.

The finite element problem (15), (16) is said to be the hybridization of
the finite element problem of the previous Section. It can be proved that the

problems are equivalent, i.e. the restrictions of ūk,h and pk,h onto a cell e
(k)
i

coincide with ûk,i,h and p̂k,i,h, respectively, λk,h coincides with restriction of

λ̂k,h onto Γ , and φh coincides with φ̂h.
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Problem (15), (16) results in the system of linear algebraic equations

A




w1

λ1

w2

λ2

φ




=




F1

0
F2

0
0




(17)

with the 5× 5 block matrix

A =




A1 C
T
1 0 0 0

C1 0 0 0 DT
1

0 0 A2 C
T
2 0

0 0 C2 0 DT
2

0 D1 0 D2 0




(18)

where Ak is the block diagonal matrix with the diagonal blocks

Ak,i =

(
Mk,i BTk,i
Bk,i −Σk,i

)
, (19)

Ck =
(
Ck,1 . . . Ck,mk

)
, (20)

and

Fk =




Fk,1
...

Fk,mk


 , Fk,i =

(
0
−fk,i

)
, i = 1, mk, (21)

k = 1, 2. The subvectors w1 and w2 can be excluded from the system by the
block Gauss elimination method. The reduced system is given by




S1 0 −DT
1

0 S2 −DT
2

−D1 −D2 0





λ1

λ2

φ


 =



g1
g2
0


 (22)

where

Sk =

mk∑

i=1

Ck,iA
−1
k,i C

T
k,i (23)

gk =

mk∑

i=1

Ck,iA
−1
k,i Fk,i, (24)

k = 1, 2. The system (22)-(24) is said to be the condensation of the system
(17)-(21).
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4 Algebraic solvers

The saddle point system (22) can be explicitly reduced to a system with a
positive definite matrix. With additional block partitioning

Sk =

(
Skk SkΓ

SΓk S
(k)
ΓΓ

)
, Dk =

(
0 DkΓ

)
,

λk =

(
λkk
λkΓ

)
, gk =

(
gk1
gkΓ

) (25)

where the blocks S
(k)
ΓΓ ,DkΓ , λkΓ , and gkΓ correspond to the degrees of freedom

located on the interface Γ , k = 1, 2. System (22) can be written in the form
of 5× 5 block system




S11 S1Γ 0 0 0

SΓ1 S
(1)
ΓΓ 0 0 −DT

1Γ

0 0 S22 S2Γ 0

0 0 SΓ2 S
(2)
ΓΓ −DT

2Γ

0 −D1Γ 0 −D2Γ 0







λ11

λ1Γ

λ22

λ2Γ

φ




=




g11
g1Γ
g22
g2Γ
0



. (26)

In this system D1Γ is the diagonal matrix. Then, excluding the subvectors
λ1Γ and φ by the block Gauss elimination method we get the system

R



λ11

λ22

λ2Γ


 =



g11
g22
gΓ


 (27)

with the symmetric positive definite matrix

R =



S11 0 RT1Γ
0 S22 S2Γ

R1Γ SΓ2 RΓΓ


 (28)

where

RΓΓ = S
(2)
ΓΓ + DT

2Γ D
−1
1Γ S

(1)
ΓΓ D

−1
1Γ D2Γ ,

R1Γ = −DT
2Γ D

−1
1Γ SΓ1,

gΓ = g2Γ −DT
2ΓD

−1
1Γ g1Γ .

(29)

To solve the system (27) we can use iterative techniques developed for
algebraic systems with symmetric positive definite matrices. We recall that
for the mortar P1 finite element methods the above explicit reduction is not
applicable.

The preconditioned Lanczos method is a good candidate to solve the sad-
dle point system (22). In Kuznetsov [1995] an efficient preconditioner was
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proposed for the P1 mortar element method. By coupling the ideas from
Kuznetsov [1995], Kuznetsov and Wheeler [1995] with the new results from
the recent publication by Kuznetsov [2003] we are able to derive efficient pre-
conditioners for the system matrix in (22) as well. This is a topic for another
publication.

Acknowledgement. The author is thankful to Oleg Boyarkin for his help in prepa-
ration of the paper.

References

F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-
Verlag, New York – Berlin – Heidelberg, 1991.

Y. A. Kuznetsov. Efficient iterative solvers for elliptic problems on nonmatch-
ing grids. Russ. J. Numer. Anal. Math. Modelling, 10(3):187–211, 1995.

Y. A. Kuznetsov. Spectrally equivalent preconditioners for mixed hybrid dis-
cretizations of diffusion equations on distorted meshes. J. Numer. Math.,
11(1):61–74, 2003.

Y. A. Kuznetsov and S. K. Repin. New mixed finite element method on
polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Modelling,
18(3):261–278, 2003.

Y. A. Kuznetsov and M. F. Wheeler. Optimal order substructuring precondi-
tioners for mixed finite element methods on nonmatching grids. East-West
J. Numer. Math., 3(2):127–143, 1995.



Mortar Finite Elements with Dual Lagrange
Multipliers: Some Applications⋆

Bishnu P. Lamichhane and Barbara I. Wohlmuth

University of Stuttgart, Institute of Applied Analysis and Numerical Simulation
http://www.ians.uni-stuttgart.de/nmh,{lamichhane,wohlmuth}@mathematik.

uni-stuttgart.de

Summary. Domain decomposition techniques provide a powerful tool for the nu-
merical approximation of partial differential equations. We consider mortar tech-
niques with dual Lagrange multiplier spaces to couple different discretization schemes.
It is well known that the discretization error for linear mortar finite elements in the
energy norm is of order h. Here, we apply these techniques to curvilinear boundaries,
nonlinear problems and the coupling of different model equations and discretizations.

1 Introduction

The numerical approximation of partial differential equations is often a chal-
lenging task. When different physical models should be used in different sub-
regions, a suitable discretization scheme has to be used in each region. Mortar
methods yield efficient and flexible coupling techniques for different discretiza-
tion schemes. The central idea of mortar methods is to decompose the domain
of interest into non-overlapping subdomains and impose a weak continuity
condition across the interface by requiring that the jump of the solution is
orthogonal to a suitable Lagrange multiplier space, see Bernardi et al. [1993,
1994]. Here, we work with mortar techniques and dual Lagrange multiplier
spaces. These non-standard Lagrange multipliers show the same qualitative a
priori estimates and quantitative numerical results as the standard ones and
yield locally supported basis functions for the constrained space leading to a
cheaper numerical realization, see Wohlmuth [2001]. This paper is concerned
with applications of mortar methods to couple different physical models in
different simulation regions. In the next section, we apply mortar methods
to couple compressible and nearly incompressible materials in linear elastic-
ity. In Section 3, the linear Laplace operator is coupled with the non-linear
p-Laplace operator. Finally in Section 4, we show an application to an elasto-
acoustic problem, and a generalized eigenvalue problem has to be solved. For

⋆ This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB
404, C12.
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all our models, we provide numerical results. The weak coupling in terms of
dual Lagrange multipliers results in a diagonal matrix on the slave side. As a
consequence, the Lagrange multiplier can be eliminated locally, and optimal
multigrid methods can be applied to the resulting positive definite system.

2 Compressible and Nearly Incompressible Materials

In this section, we consider a problem in linear elasticity with two different
materials in two subdomains, one of them being nearly incompressible. We
assume that the domain Ω ⊂ R2 is decomposed into two non-overlapping
subdomains Ω1 and Ω2 with a common interface Γ̄ = Ω̄1 ∩ Ω̄2, and the
subdomain Ω1 is occupied with a nearly incompressible material having a
very large Lamé parameter λ1. It is well-known that standard low order finite
elements for nearly incompressible materials suffer from locking, see Babuška
and Suri [1992], and various approaches have been introduced to improve
the numerical results. Working with a mixed formulation on Ω1, see, e.g.,
Braess [2001], and standard finite element approach on Ω2, we use mortar
techniques with dual Lagrange multipliers to realize the coupling between the
two formulations. On each subdomain, we define the space

H1
∗(Ωk) := {v ∈ H1(Ωk)

2,v|∂Ω∩∂Ωk
= 0}, k = 1, 2,

and consider the constrained product space

V := {v ∈
2∏

k=1

H1
∗(Ωk) |

∫

Γ

[v] · ψ dσ = 0, ψ ∈M},

where M := H−
1
2 (Γ ) is the Lagrange multiplier space, and [v] is the jump

of v across Γ . Introducing an additional unknown p := λ1divu in Ω1, the
variational problem is given by: find [u, p] ∈ V × L2(Ω1) such that

a(u,v) + b(v, p) = l(v), v ∈ V,

b(u, q)− 1

λ1
c(p, q) = 0, q ∈ L2(Ω1),

where l ∈ V′ and

a(u,v) :=

2∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λ2

∫

Ω2

divu divv dx,

b(v, q) :=

∫

Ω1

divv q dx, c(p, q) :=

∫

Ω1

p q dx, and l(v) :=

∫

Ω

f · v dx.

Here, ε(u) is the linear strain tensor. For our example, the domain Ω :=
conv{(0, 0), (48, 44), (48, 60), (0, 44)} is decomposed into two subdomains Ω1
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and Ω2 with Ω1 := conv{(12, 20.25), (36, 38.75), (36, 50.25), (12, 38.75)}, and
Ω2 := Ω\Ω̄1. Here, convξ is the convex hull of the set ξ. The decomposition
of the domain and the initial triangulation are shown in the left picture of
Figure 1. Here, the left boundary of Ω is fixed and the right boundary is
subjected to an in-plane shearing load of 100N along the positive y-direction.
The lower and upper boundaries are set free, and we do not apply any volume
force. The material parameters are taken to be E1 = 250Pa, E2 = 80Pa,
ν1 = 0.4999, and ν2 = 0.35 to get a nearly incompressible response in Ω1,
where Ei and νi are the Young’s modulus and the Poisson ratio onΩi, i = 1, 2,
respectively. The displacement field is discretized with bilinear finite elements,
and the pressure in Ω1 is discretized with piecewise constant functions. The
right picture of Figure 1 shows the vertical displacement at (48, 60) versus the
number of elements. We compare three different numerical schemes. Using
standard conforming finite elements (standard) in Ω does not give satisfying
numerical results, whereas the more expensive mixed formulation (mixed) in
Ω provides good results. Our numerical results show that the mortar approach
(coupled) is almost as good as the mixed formulation and significantly better
than the standard one.

10
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10
3

10
4

10
5

15

18

21

24

27

standard
coupled
mixed

Fig. 1. Decomposition of the domain and initial triangulation (left), distorted grid
on level 2 (middle), and vertical tip displacement versus number of elements (right)

3 The Laplace and the p-Laplace Operator

In this section, we consider the coupling of a linear and a non-linear model. The
linear model is described by a Poisson equation, and we use the p-Laplacian for
the non-linear model. Here, we decompose the domain Ω := (−1, 1)× (−1, 1)
into four non-overlapping subdomains defined by Ω1 := (−1, 0) × (−1, 0),
Ω2 := (0, 1)× (−1, 0), Ω3 := (−1, 0)× (0, 1) and Ω4 := (0, 1)× (0, 1). We have
given the decomposition of the domain and the initial triangulation in the
left picture of Figure 2. We consider the Poisson equation −∇ · (α∇)u = f in
Ω1 and Ω4 and the p-Laplacian −∇ · (α|∇u|p−2∇u) = f in Ω2 and Ω3. The
p-Laplace equation occurs in the theory of two-dimensional plasticity under
longitudinal shear or in the diffusion problem with non-linear diffusivity, see
Atkinson and Champion [1984], and we are considering here different material
models in different subdomains. For the regularity of the solutions and error es-
timates of the p-Laplacian, we refer to Liu and Barret [1993] and Liu and Yan



322 Bishnu P. Lamichhane and Barbara I. Wohlmuth

[2001]. Let Thk
be a shape regular simplicial triangulation on Ωk with mesh-
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LM−norm
HM−norm
O(h2)
O(h)

Fig. 2. Decomposition of the domain and initial triangulation (left), isolines of the
solution (middle) and discretization errors versus number of elements (right)

sizes bounded by hk, and S(Ωk, Thk
) stands for the space of linear conforming

finite elements in the subdomain Ωk associated with the triangulation Thk
sat-

isfying the Dirichlet boundary conditions on ∂Ωk ∩ ∂Ω, k = 1, · · · , 4. Then,
the unconstrained finite element spaceXh is given by Xh :=

∏4
k=1 S(Ωk, Thk

).
The interface Γ := {(0, y),−1 < y < 1} ∪ {(x, 0),−1 < x < 1} inherits its
one-dimensional triangulation SΓ from the mesh on Ω2 and Ω3. We recall that
(0, 0) is a crosspoint, andMh does not have any degree of freedom at this point.
Now, the Lagrange multiplier space Mh is defined on Γ and is associated with
the triangulation SΓ . Assuming q1 := 2, q2 := p, q3 := p, and q4 := 2, we can
write the weak formulation of the problem as: find (uh, λh) ∈ Xh ×Mh such
that

a(uh, v) + b(v, λh) = l(v), v ∈ Xh,
b(uh, µ) = 0, µ ∈Mh,

(1)

where a(u, v) :=
∑4

i=1

∫
Ωi
α|∇u|qi−2∇u · ∇v dx, b(v, µ) :=

∫
Γ
[v]µdσ, and

l(v) :=
∫
Ω
f v dx. If α > 0, and the right hand side function f is sufficiently

smooth, we can show by monotonicity techniques that the problem (1) has a
unique solution, see Liu [1999]. However, the regularity of the solution is not
known. Let uh :=

∑n
k=1 ukφk and λh :=

∑ns

k=1 λkµk, where n and ns are the
dimensions ofXh andMh, respectively. Suppose w = (u1, · · · , un, λ1, · · · , λns)
be a vector. Now, we define F (w) := (F1(w), F2(w))T with

F1(w) :=



a(uh, φ1) + b(φ1, λh)− l(φ1)

...
a(uh, φn) + b(φn, λh)− l(φn)


 , F2(w) :=



b(uh, µ1)

...
b(uh, µns)


 .

The system F (w) = 0 is a non-linear system if p 6= 2, and we apply the
Newton method to solve this system. First, we initialize the solution vector
w0 satisfying the given Dirichlet boundary conditions. Then, we iterate until
convergence with

Jk∆wk = F (wk),

where ∆wk := wk − wk+1, and Jk is the Jacobian of F evaluated at wk.
Working with a dual Lagrange multiplier space has the advantage that the
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Jacobian matrix Jk has exactly the same form as the saddle point matrix
arising from the mortar finite elements with a dual Lagrange multiplier space
for the Laplace operator, see Wohlmuth and Krause [2001]. Hence, we can
apply the multigrid approach introduced in Wohlmuth and Krause [2001]
to solve the linear system on each level. Suppose that Ω̃l := Ω1 ∪ Ω4, and
Ω̃p := Ω2∪Ω3. In our numerical example, we choose α = 0.5 in Ω̃l, and α = 1

in Ω̃p, p = 1.5, and f = 0. For boundary conditions, we set u(−1,−1) =
u(1, 1) = 0, u(−1, 1) = 1 and u(1,−1) = −1, and the Dirichlet boundary
condition on ∂Ω is imposed by taking the linear combination of them in
between. Here, we do not have the exact solution. To get the approximation
of the discretization errors, we compute a reference solution uref at a fine
level and compare it with the solution uh at each level until href ≤ 2h. We
have given the discretization errors in the LM - and HM - norms defined by

‖v‖LM := ‖v‖L2(Ω̃l)
+ ‖v‖Lp(Ω̃p), and ‖v‖HM := |v|W 1,2(Ω̃l)

+ |v|W 1,p(Ω̃p)

in the right picture of Figure 2, and the isolines of the solution are given
in the middle. Although the regularity of the solution is not known, we get
convergence of order h2 in the LM -norm and of order h in the HM -norm.

4 Application to an Elasto-Acoustic Problem

In this section, we show the application of mortar finite element methods
for an elasto-acoustic problem. We consider the situation that the fluid is
completely surrounded by the structure. The problem is described by a linear
elastic structure occupying a subdomain ΩS ⊂ R2 coupled with an irrotational
fluid in ΩF ⊂ R2. The interface Γ (= ∂ΩS∩∂ΩF ) separates the fluid and solid
regions. Given the fluid-density ρF , the solid-density ρS , and the acoustic
speed c, we seek the frequency ω, the velocity-field u, and the pressure p such
that

∇p− ω2ρFuF = 0 in ΩF ,

p+ c2ρF∇ · uF = 0 in ΩF ,

∇ · σ(uS) + ω2ρSuS = 0 in ΩS ,

uS = 0 on ΓD,

σ(uS) · nS = 0 on ΓN ,

σn(uS) + p = 0, σt(uS) = 0, and (uF − uS) · n = 0 on Γ.

Here, σ is the usual stress tensor from linear elasticity, σn = n · (σ · n) is the
normal stress on Γ , and σt = σ ·n−σnn is the tangential traction vector on Γ ,
where n is the outward normal to ΩF on Γ . This problem has become a subject
of different papers, see, e.g., Hansbo and Hermansson [2003], Bermúdez and
Rodŕıguez [1994], Alonso et al. [2001]. We introduce the following function
spaces to formulate our problem in the weak form



324 Bishnu P. Lamichhane and Barbara I. Wohlmuth

X := H(div, ΩF )×H1
ΓD

(ΩS), and V := {(uF ,uS) ∈ X, [u] · n = 0 on Γ},

where

H(div, ΩF ) := {v ∈ L2(ΩF )2, ‖∇ · v‖L2(ΩF ) <∞},
H1
ΓD

(ΩS) := {v ∈ H1(ΩS)2, v|ΓD
= 0}, and [u] := (uF − uS).

The weak form of the continuous problem is: find u ∈ V and ω ∈ R such that

a(u,v) = ω2m(u,v), v ∈ V, where

a(u,v) := (ρF c
2∇ · uF ,∇ · vF )ΩF + (σ(uS), ǫ(vS))ΩS , and

m(u,v) := (ω2ρFuF ,vF )ΩF + (ω2ρSuS ,vS)ΩS .

Here, ǫ(vS) is the linear strain tensor and is related to the stress tensor by

Hooke’s law, i.e., σij(vS) = 2µǫij(vS)+λ
∑2

k=1 ǫkk(vS)δij , i, j = 1, 2. Let Ths

and Thf
be shape regular simplicial triangulations on ΩS and ΩF , respectively,

and Γ inherits its triangulation SΓ from the side of ΩF . It is a well-known fact
that if standard Lagrangian finite elements are used to discretize the fluid, it
will give rise to spurious eigensolutions with positive eigenvalues interspersed
among the ‘real’ ones, and a possible remedy of this problem is to use Raviart-
Thomas elements in the fluid domain, see Bermúdez et al. [1995]. Therefore,
we discretize the fluid domain with Raviart-Thomas elements of lowest order:

RT0 := {u ∈ H(div, ΩF ) : u|K = (a+ bx, c+ by), K ∈ Thf
, a, b, c ∈ R},

and the solid domain with Lagrangian finite elements of lowest order:

WD
h := SD(ΩS , Ths)× SD(ΩS , Ths),

where SD(ΩS , Ths) is the finite element space on ΩS satisfying the Dirich-
let boundary condition on ΓD. The kinematic constraint can be imposed by
piecewise constant Lagrange multipliers yielding a uniform inf-sup condition.
Suppose Xh := RT0 ×WD

h , and Mh := {µh ∈ L2(Γ ) : µh|e ∈ P0(e), e ∈ SΓ }.
Now the finite element space can be written as

Vh := {(uhF ,uhS) ∈ Xh,

∫

Γ

[uh] · nµh dσ = 0, µh ∈Mh}.

The discrete problem reads: find uh ∈ Vh, and ωh ∈ R such that

a(uh,vh) = ω2
hm(uh,vh), vh ∈ Vh.

Remark 1. We remark that the Lagrange multiplier λh approximates the pres-
sure on the interface Γ . The Lagrange multipliers are associated with the one-
dimensional mesh inherited from the triangulation on the fluid domain. Due
to the special structure of the support of the nodal basis functions of RT0

and Mh, the degree of freedom corresponding to the Lagrange multiplier can
locally be eliminated by inverting a diagonal mass matrix.
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In Alonso et al. [2001], an adaptive finite element scheme is analyzed to solve
the fluid-structure vibration problem, where the kinematic constraint is im-
posed by means of piecewise constant Lagrange multiplier. Following this
technique, we arrive at the same mortar setting as we discuss here. Now,
we consider the domain Ω := {(x, y) ∈ R2, x2 + y2 < 1} decomposed into
two subdomains ΩS and ΩF with ΩF := {(x, y) ∈ R2, x2 + y2 < 0.6}, and
ΩS := Ω\Ω̄F . Here, ΓD = {(cos θ, sin θ), 5π

4 ≤ θ ≤ 7π
4 }. We have used the fol-

lowing parameters in our numerical example: ρF = 1000kg/m
3
, c = 1430m/s,

ρS = 7700kg/m3, E = 144GPa, and ν = 0.35. The first three consecutive
eigenmodes along with the pressure in the fluid domain and the distorted
grids in the solid domain are shown in Figure 3. We note that Γ defines a
curvilinear interface. To evaluate the weak coupling, we commit an additional
variational crime by projecting the mesh of the structure side to the mesh on
the fluid side.

Fig. 3. The first, second and the third eigenmodes corresponding to the eigenvalues
809.1481, 1980.7519 and 3606.3907 (rad/s)

The second numerical example is taken from Bermúdez and Rodŕıguez [1994].
The domain Ω := (0, 1.5) × (0, 1.5) is decomposed into two subdomains
ΩS and ΩF with ΩF := (0.25, 1.25) × (0.25, 1.25), ΩS := Ω\Ω̄F , and
ΓD = {(x, 0) ∈ R2, 0 ≤ x ≤ 1.5}. We have used the same physical parameters
as in the previous example. The computed eigenfrequencies (in rad/s) along
with the extrapolated ones referred to as ‘Exact’ in Bermúdez and Rodŕıguez
[1994] are given in Table 1.

Table 1. The computed eigenfrequencies using mortar techniques compared with
the extrapolated eigenfrequencies (‘Exact’) in Bermúdez and Rodŕıguez [1994]

Eigenmodes Computed Eigenfrequencies ‘Exact’

1 648.1847 641.837
2 2147.3593 2116.398
3 3419.5020 3201.475
4 3885.9022 3804.124
5 4214.0865 4211.620
6 4699.6782 4687.927
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Non-Conforming Finite Element Methods for
Nonmatching Grids in Three Dimensions

Wayne McGee and Padmanabhan Seshaiyer⋆
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Summary. In the last decade, non-conforming domain decomposition methods
such as the mortar finite element method have been shown to be reliable tech-
niques for several engineering applications that often employ complex finite element
design. With this technique, one can conveniently assemble local subcomponents
into a global domain without matching the finite element nodes of each subcom-
ponent at the common interface. In this work, we present computational results
for the convergence of a mortar finite element technique in three dimensions for a
model problem. We employ the mortar finite element formulation in conjunction
with higher-order elements, where both mesh refinement and degree enhancement
are combined to increase accuracy. Our numerical results demonstrate optimality
for the resulting non-conforming method for various discretizations.

1 Introduction

As computational resources are rapidly increasing, numerical modeling of
physical processes is being performed on increasingly complex domains. Often
an analysis may be performed by decomposing the global domain into several
local subdomains, each of which can be modeled independently. The global
domain can then be reconstructed by assembling the subdomains appropri-
ately. In the standard conforming method, it is required that the corners of
a given element intersect other elements only on their corners, that is, cor-
ners must not coincide with edges of other elements. It is often infeasible
or inconvenient to coordinate the decomposition and reassembly processes so
that the subdomains conform at the common interfaces. The use of a non-
conforming method circumvents this difficulty. In practical applications, the
non-conforming method has two noteworthy advantages. First, the discretiza-
tion of the domain can be selectively increased in localized regions, such as
around corners or other features where the error in the solution is likely to be

⋆ This work of this author is supported in part by the National Science Foundation
under Grant DMS 0207327.
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greatest. This allows for greater accuracy in the method without the computa-
tional load associated with increasing the discretization of the entire domain.

Another practical benefit of the non-conforming method is that the process
may be utilized to connect independently analyzed substructures in a large
problem. For example, in the construction of an aircraft, the fuselage and
wing structures may have been analyzed independently by different engineers,
possibly in different organizations. It is highly unlikely that the independently
constructed meshes of each subcomponent would coincide when assembled.
Moreover, transition meshing could become highly complex and expensive to
achieve. The non-conforming approach eliminates this need.

The mortar finite element method (Bernardi et al. [1993], Belgacem [1999],
Seshaiyer and Suri [2000b], D. Braess and Wieners [2000], Wohlmuth [2000]
and references therein) is an example of a non-conforming technique. In the
last decade, there has been a lot of research on the theoretical and compu-
tational aspects of this domain decomposition technique (Seshaiyer and Suri
[1998], Seshaiyer [2003], Ewing et al. [2000], Braess et al. [1999]). It has been
well-established that the mortar finite element method yields optimal results
both in the presence of highly non-quasiuniform meshes and high polynomial
degree (Seshaiyer and Suri [2000a]) and also preserves the optimal rates af-
forded by conforming h, p, and hp discretizations for a variety of applications
(Belgacem et al. [2000, 2003]).

In the last few years, the extension of the mortar finite element technique
has been analyzed (see Belgacem and Maday [1997], Braess and Dahmen
[1998], Kim et al. [2001] and references therein). In Belgacem and Maday
[1997] the mortar finite element method was extended for the special case
of linear polynomials. However, the method is difficult to generalize for a
general mesh of parallelograms for any polynomial degree. To circumvent this,
a variant of the mortar method, M1, was introduced in (Seshaiyer and Suri
[2000a], Seshaiyer [2003]) which easily extends the technique to any number of
dimensions. The computational performance of this method, however, was not
tested which is the focus, herein. In this paper, we computationally validate
the convergence behavior for the mortar finite element formulation for a time-
dependent model problem in three-dimensions. In particular, we show via
numerical experiments that the M1 mortar method is stable and behaves as
well as the conforming finite element method.

2 Model problem and its discretization

Consider the model problem for x = (x1, x2, x3) ∈ Ω, t > 0:

∂u(x, t)

∂t
−∇ · (P (x)∇u(x, t)) +Q(x)u(x, t) = f(x, t), (1)

where P is uniformly positive and Q is a nonnegative function in the bounded
domain Ω, with the boundary and initial conditions
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u(x, t) = 0 for x ∈ ∂Ω, (2)

u(x, 0) = g(x). (3)

Discretizing time using a backward Euler scheme yields

−∇ · (P(0)∇un) +Q(0)un = fn(0), (4)

where P(0) = (∆t)P , Q(0) = 1 + (∆t)Q, and fn(0) = un−1 + (∆t)fn.
Let us for simplicity, decompose Ω into two geometrically conforming non-

overlapping subdomains Ω1 and Ω2, which share a common interface Γ (de-
noted by the dotted line). For each subdomain Ωi, we consider a regular
sequence of geometrically conforming triangulations τi. Note that, no com-
patibility is assumed between meshes in different subdomains, i.e. the meshes
of Ω1 and Ω2 need not match on Γ . This is illustrated in the figure 1.

Ω Ω1 Ω2

Fig. 1. Geometrically conforming decomposition of Ω partitioned into Ω1 and Ω2

with non-conforming meshes

Let u
(i)
n denote the interior solution in each Ωi, which satisfies the global

continuity restriction u
(1)
n (x) = u

(2)
n (x) for x ∈ Γ . Due to the non-conformity

of the grids across Γ , we enforce this continuity in a weak sense as

b(un, ψ) :=

∫

Γ

(u(1)
n − u(2)

n ) ψ dx = 0 ∀ψ ∈ H−1/2(Γ ). (5)

Let us now describe the weak formulation of our model problem (4) as a
mixed method formulation, which is a convenient method for implementation.
Using standard Sobolev space notation, define H1

D(Ωi) = {v ∈ H1(Ωi)|v =
0 on ∂Ωi

⋂
∂ΩD}. The weak form of (4) then becomes: For i = 1, 2, find

u
(i)
n ∈ H1

D(Ωi) such that for all vi ∈ H1
D(Ωi),

∫

Ωi

P(0)∇u(i)
n · ∇vi dx−

∫

Γ

P(0)
∂u

(i)
n

∂n
vi ds+

∫

Ωi

Q(0)u
(i)
n vi dx =

∫

Ωi

fn(0)vi dx.

(6)

Let λ = −P(0)
∂u

(1)
n

∂n
= P(0)

∂u
(2)
n

∂n
. Define the spaces Ṽ = {v ∈ L2(Ω), v|Ωi ∈

H1
D(Ωi)} and Λ = {ψ ∈ D′(Γ ), ψ|Γ ∈ H−

1
2 (Γ )} (where D′ is the Schwarz set

of distributions) equipped with their respective norms.
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For each T ∈ τi, denote the set Sp(T ) to be all polynomials generated
by the serendipity (or trunk) space families. Hence S2(T ) has 20 degrees of
freedom. We have used these spaces for our computations in the next section.

Assume the finite element spaces V
(i)
F = {u ∈ H1(Ωi) | u|T ∈ Sp(T ), u =

0 on ∂Ωi ∩ ∂ΩD} are given. We can then define the non-conforming space

ṼF = {u ∈ L2(Ω) | u|Ωi ∈ V (i)
F } ⊂ Ṽ .

To define the finite-dimensional Lagrange multiplier space, let us sup-
pose that the mesh on the interface Γ matches the mesh on Ω1 (Note
that this choice is arbitrary). For K ⊂ R2, we denote by Qp,s(K) the
set of polynomials on K which is of degree p in x and s in y (so that
Qp,p(K) = Qp(K)). Let us denote the rectangles in the mesh on the in-
terface Γ by Kij , 0 ≤ i, j ≤ N . Then the Lagrange multiplier space will be

defined as ΛF =
{
χ ∈ C(Γ ) : χ|Kij

∈ Qp−1(Kij)
}
⊂ Λ (see Figure 2). The

Q Q Q

Q

Q

Q

Q

Q

Q

p-1

p-1

p-1 p-1

p-1

p-1 p-1

p-1

p-1

Fig. 2. Lagrange multiplier space for M1 method

associated mortar method is called the M1 mortar finite element method, and
has been implemented in the next section. It can be shown that this choice of
the Lagrange multiplier space leads to optimal results in three-dimensions by
extending the arguments of Seshaiyer and Suri [2000a] and Seshaiyer [2003].

Let us now define
0

VΓ
F = {u|Γ , u ∈ V (i)

F }∩H1
D(Γ ). Then for any z ∈ L2(Γ ),

we define the space XΓ
F (z) = {w ∈

0

VΓ
F ,

∫

Γ

(w − z) χ ds = 0 ∀ χ ∈ ΛF }. Let

us now make the following restriction.

Condition I: XΓ
F (z) 6= ∅ for all z ∈ L2(Γ ).

If Condition I holds, then one can prove that the mixed formulation sat-
isfies the inf-sup condition:

inf
λ∈ΛF
λ6=0

sup
v∈ṼF

b(v, λ)

||v||Ṽ ||λ||Λ
> 0

Let the finite dimensional spaces V
(i)
F and ΛF be spanned by basis func-

tions {Ψ (i)
j }Ni

j=1 and {Φj}Nλ

j=1 respectively. Writing u
(i)
n =

∑Ni

k=1 a
(i)
k Ψ

(i)
k and

λ =
∑Nλ

k=1 bkΦk respectively, (6) and (5) yield a discrete system of integral
equations, which can be written in block matrix form as:
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A1 0 B1

0 A2 B2

BT1 BT2 0






a(1)

a(2)

b


 =




F1

F2

0


 (7)

Here a(i) = {a(i)
1 , a

(i)
2 , . . . , a

(i)
Ni
}, b = {b1, b2, . . . , bNλ

} and

Ai(sj) =

∫

Ωi

P
(i)
(0)∇Ψ (i)

s · ∇Ψ (i)
j dx+

∫

Ωi

Q
(i)
(0)Ψ

(i)
s Ψ

(i)
j dx

B1(js) =

∫

Γ

ΦsΨ
(1)
j ds B2(js) = −

∫

Γ

ΦsΨ
(2)
j ds Fi(j) =

∫

Ωi

f
(i)
n(0)Ψ

(i)
j dx

for i = 1, 2. Note that the invertibility of the stiffness matrix in (7) is related
to Condition I.

3 Numerical Results

In this section, we demonstrate the performance of the numerical technique
described. Our computations were performed for the model problem (1) on
the domain Ω = (−1, 1)× (−1, 1)× (−1, 1), and we decompose this domain
into Ω1 = (−1, 1)× (−1, 0)× (−1, 1) and Ω2 = (−1, 1)× (0, 1)× (−1, 1). We
take h1 subintervals along the x, y, and z axes for Ω1, and h2 subintervals for
Ω2. A sample partition of Ω into two subdomains with h1 = 3 and h2 = 2 is
shown in Figure 1. Note that the grids do not match on the interface. For our
experiments, we consider uniform polynomial degrees p in both subdomains.

Steady-state, constant coefficients

Our initial experiment involves a steady-state (∂u∂t = 0) equation with constant
coefficients P = Q = 1. We choose the right hand side f such that our exact
solution is u(x, y, z) = (1− x2)(1− y2)(1 − z2).

We consider the h-version for the non-conforming method for the combina-
tions (h1, h2) = {(3, 3), (3, 4), (4, 4), . . . , (7, 8), (8, 8)} with polynomial degrees
p = 1 and p = 2. The results are demonstrated for both the L2 (Figure 3(a))
and H1 (Figure 3(b)) errors. For our computations, we have used tensor prod-
ucts of one-dimensional Gauss-Legendre quadratures for numerical integration
and the errors have been computed at the Gauss points on the rectangular
grids. Due to our simplified geometry with a smooth regular solution, we not
only get optimal solutions but one can also observe superconvergence rates.
Although not obvious, one may need to perform a detailed analysis for the
mixed mortar method, to study this superconvergence behaviour following the
details Ewing and Lazarov [1993].

Figure 4 demonstrates the performance of the non-conforming method ver-
sus the conforming method for p = 2. For this experiment, the L2 error for
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Fig. 3. Steady-state convergence: (a) L2 error, (b)H1 error
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Fig. 4. Conforming versus non-conforming method

the conforming meshes (h1, h2) = {(3, 3), (4, 4), . . . , (8, 8)} (circles) is plotted
against the non-conforming meshes (h1, h2) = {(3, 4), (4, 5), . . . , (7, 8)} (aster-
isks). The results indicate that the non-conforming method performs no worse
than the conforming method in higher dimensions.

Steady-state, varying coefficients

Next, we performed computations for the steady-state problem with P (y) =
sin y + 2 and Q(y) = cos y + 2. The results of this experiment are shown in
Table 1. We denote by DOF the number of degrees of freedom, which is the
size of the stiffness matrix in (7). L2 andH1 denote the errors in the respective
norms, and L2% and H1% are the respective relative errors.
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Table 1. Nonconstant coefficients, p = 2

h1 h2 DOF L2 L2% H1 H1%

3 3 136 0.004798 0.435505 0.062567 1.948016
3 4 244 0.003711 0.336868 0.048629 1.514050
4 4 361 0.001307 0.118605 0.024271 0.755660
4 5 553 0.001238 0.112389 0.020820 0.648217
5 5 756 0.000491 0.044614 0.011831 0.368343
5 6 1056 0.000395 0.035888 0.009703 0.302095
6 6 1369 0.000222 0.020174 0.006605 0.205649
6 7 1801 0.000190 0.017269 0.005602 0.174420
7 7 2248 0.000114 0.010382 0.004051 0.126116
7 8 2836 0.000096 0.008694 0.003458 0.107656
8 8 3441 0.000065 0.005862 0.002658 0.082762

Table 2. Convergence in ∆t

n L2 8:8 H1 L2 7:8 H1 L2 7:7 H1

2 0.550825 1.605919 0.550899 1.606458 0.554554 1.629562
4 0.435470 0.802964 0.275490 0.803821 0.279264 0.838348
8 0.137706 0.401490 0.137790 0.402982 0.141801 0.458332
16 0.068853 0.200759 0.068948 0.203510 0.073412 0.290824
32 0.034427 0.100407 0.034545 0.105592 0.039823 0.228157
64 0.017214 0.050257 0.017377 0.059764 0.023938 0.208207

Time-dependent case

Our final experiment confirmed convergence for the unsteady equation. The
exact solution was chosen to be u(x, y, z, t) = t(1 − x2)(1 − y2)(1 − z2). We
considered several matching and non-matching mesh combinations and the
results for the combinations (h1, h2) = {(8, 8), (7, 8), (7, 7)} for polynomial
degree 2, are presented in Table 2. Our computations were run from time
t = 0 to time t = 1, with varying numbers of time steps n. The results not
only demonstrate convergence as we refine the time discretization but also
suggest that the errors for the non-matching combination (8, 7) are between
the matching combinations (7, 7) and (8, 8) as one should expect.

Conclusion

A non-conforming finite element method for non-matching grids in three di-
mensions was described and implemented. Our numerical results for a model
problem clearly demonstrate that the technique performs as well as the stan-
dard conforming finite element method in higher dimensions.
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Summary. We consider an additive Schwarz preconditioner for the algebraic sys-
tem resulting from the discretization of second order elliptic equations with discon-
tinuous coefficients, using the lowest order Crouzeix-Raviart element on nonmatch-
ing meshes. The overall discretization is based on the mortar technique for coupling
nonmatching meshes. A convergence analysis of the preconditioner has recently been
given in Rahman et al. [2003]. In this paper, we give a matrix formulation of the
preconditioner, and discuss some of its numerical properties.

1 Introduction

We consider the Crouzeix-Raviart (CR), or the nonconforming P1 finite ele-
ment discretization on nonmatching meshes of the following elliptic problem
with discontinuous coefficients: Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where Ω ⊂ R2 is a bounded, simply connected polygonal domain, a(u, v) =∑N
i=1 ρi(∇u,∇v)L2(Ωi) and f(v) =

∑N
i=1

∫
Ωi
fv dx, and Ω = ∪Ni=1Ωi is the

partition of Ω into nonoverlapping polygonal subdomains Ωi of diameter Hi.
The coefficients ρi are positive constants with possibly large jumps across sub-
domain interfaces. Let Xh(Ωi) be the nonconforming P1 (Crouzeix-Raviart)
finite element space defined on a quasi-uniform triangulation Th(Ωi) of mesh
size hi, of the subdomain Ωi, consisting of functions which are piecewise
linear in each triangle τ ⊂ Ωi, continuous at the interior edge midpoints
xk ∈ ΩCRih , and vanishing at the edge midpoints lying on the boundary ∂Ω.
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Since the triangulations on Ωi and Ωj may not match on their common inter-
face Γ ij = Ωi ∩Ωj , the functions in Xh(Ω) = ΠN

i=1Xh(Ωi) are discontinuous
at edge midpoints along the interface. We use a special technique, known as
the mortar technique, cf. Bernardi et al. [1994], for the coupling of nonmatch-
ing meshes. An analysis of the mortar technique for the Crouzeix-Raviart
element has been given in Marcinkowski [1999].

According to the mortar technique, a weak continuity condition, called
the mortar condition, is imposed on the function along the interfaces. A func-
tion uh = {ui}Ni=1 ∈ Xh satisfies the mortar condition on the interface Γij ,
if Qmui = Qmuj, where Qm : L2(Γij) → Mhj (δm(j)) is the L2-projection

operator defined as: (Qmu, ψ)L2(δm(j)) = (u, ψ)L2(δm(j)), ∀ψ ∈ Mhj(δm(j)),

where δm(j) ⊂ ∂Ωj is the nonmortar side of Γij , M
hj(δm(j)) ⊂ L2(Γij) is the

test space of functions which are piecewise constant on the triangulation of
δm(j), and (·, ·)L2(δm(j)) denotes the L2 innerproduct on L2(δm(j)). The other
side of Γij , called the mortar side, is denoted by γm(i) ⊂ ∂Ωi. The discrete
problem takes the following form: Find u∗h = {ui}Ni=1 ∈ Vh such that

ah(u
∗
h, vh) = f(vh), ∀vh ∈ Vh, (2)

where Vh ⊂ Xh is a subspace of functions which satisfy the mortar con-
dition on all interfaces, and ah(u, v) =

∑N
i=1 ρi

∑
τ∈Th(Ωi)

(∇u,∇v)L2(τ) =
∑N

i=1 ai(u, v). Vh is a Hilbert space with an inner product defined by ah(·, ·).
The problem has a unique solution and a priori error estimates have been
provided in Marcinkowski [1999].

Even though, there exists a lot of work concerning the nonconforming P1
element on matching grids, cf., e.g., Brenner [1996], Hoppe and Wohlmuth
[1995], Sarkis [1997], the work on nonmatching grids is very limited, cf.,
e.g., Marcinkowski [1999], Xu and Chen [2001]. Recently, an efficient additive
Schwarz method for the nonconforming P1 element on nonmatching grids has
been proposed in Rahman et al. [2003]. In this paper, we complement the work
by introducing the matrix formulation of the preconditioner, and discuss some
of its numerical properties.

2 An additive Schwarz preconditioner

In this section, we describe the additive Schwarz preconditioner of Rahman
et al. [2003], for the problem (2), which is based on the idea of solving local
subproblems on nonoverlapping subdomains, and coarse problems on specially
constructed subspaces of small dimensions. The preconditioner is defined using
the general framework for additive Schwarz methods, cf. Smith et al. [1996].

We decompose Vh as Vh =
∑

γ V
γ + V 0 +

∑N
i=1 V

i, where the first sum

is taken over the set of all mortar sides {γ}. For i = 1, · · · , N , V i is the
restriction of Vh to Ωi, with functions vanishing at subdomain boundary edge
midpoints ∂ΩCRih as well as on the remaining subdomains. V γ is a space of



On an additive Schwarz preconditioner for the CR mortar finite element 337

Ωi

1

ρiχi

ρiQm(χi)

ρiχi

ρiQm(χi)

ρ
i
χ

i

ρ
i
Q

m
(χ

i
)

ρ
i
χ

i

ρ
i
Q

m
(χ

i
)

Ωi

1
Ωj

ρ
i
Q

m
(χ

j
)

ρ
i
χ

j

Ωl

ρ
i
χ

l

ρ
i
Q

m
(χ

l)

Ωk

ρiχk

ρiQm(χk)

Ωn

ρiχn

ρiQm(χn)

Fig. 1. Examples of Φi corresponding to a subdomain Ωi having only mortar sides
(left) or nonmortar sides (right), indicating the nonzero values of the function.

functions given by their values on mortar edge midpoints γCRh , V γ = {v ∈
Vh : v(x) = 0, x ∈ ΩCR

h \ γCRh }. The coarse space V 0, a special space having
a dimension equal to the number of subdomains, is defined using the function
χi ∈ Xh(Ωi) associated with the subdomain Ωi. χi is defined by its nodal

values as: χi(x) = 1/
∑
j ρj(x) at x ∈ Ω

CR

ih , where the sum is taken over

the subdomains which x is common to, V 0 is given as the span of its basis
functions, Φi, i = 1, · · · , N , i.e., V 0 = span{Φi : i = 1, · · · , N}, where Φi
associated with Ωi, is defined as follows (cf. Figure 1).

Φi(x) =





1, x ∈ ΩCRih ,
ρiχi(x), x ∈ γCRm(i)h,

ρiQm(χj)(x), x ∈ δCRm(i)h, δm(i) = γm(j),

ρiQm(χi)(x), x ∈ δCRm(j)h, δm(j) = γm(i),

ρiχj(x), x ∈ γCRm(j)h, γm(j) = δm(i),

0, x ∈ ∂ΩCRih ∩ ∂Ω,

(3)

and Φi(x) = 0 at all other x in Ω
CR

h . We use exact bilinear forms for all our
subproblems. The projection like operators T i : Vh → V i are defined in the
standard way, i.e., for i ∈ {{γ}, 0, · · · , N} and u ∈ Vh, T iu ∈ V i is the solution
of ah(T

iu, v) = ah(u, v), v ∈ V i. Let T =
∑
γ T

γ + T 0 + T 1 + · · ·+ TN . The
problem (2) is now replaced by the following preconditioned system,

Tu∗h = g, (4)

where g =
∑

γ T
γu∗h +

∑N
i=0 T

iu∗h. Let c and C represent generic constants
independent of the mesh sizes h = infi hi and H = maxiHi, and of the jumps
of the coefficients ρi, then the following result holds.

Theorem 1 (Rahman et al. [2003]). For all u ∈ Vh,

c
h

H
ah(u, u) ≤ ah(Tu, u) ≤ Cah(u, u). (5)
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The proof of this theorem is given in Rahman et al. [2003], which uses the
general theory for Schwarz methods, cf. Smith et al. [1996]. It follows from the
theorem, that the condition number of the operator T is bounded by c(Hh ).

2.1 Matrix formulation

Our aim is to derive a matrix representation for the preconditioned system (4).
The finite element space V h can be expressed as V h = span{φk}, where each
basis function φk is associated with a node xk which is either a subdomain

interior edge midpoint or a mortar edge midpoint. Let ϕ
(i)
k denote the standard

nodal basis function of Xh(Ωi), associated with the edge midpoint xk. The
basis functions are defined as follows.

If xk ∈ ΩCRih , a subdomain interior node, then φk(x) is exactly equal to
ϕk(x). If xk ∈ γCRm(i)h, a mortar node, then φk(x) = ϕk(x) on Ωi, while on

δm(j), where γm(i) = δm(j), φk(x) = Qm(ϕk)(x) at x ∈ δCRm(j)h. φk is zero at

the remaining edge midpoints of Ωj , and zero everywhere on the remaining
subdomains. Note that there are no basis functions associated with nonmortar
edge midpoints. Using these basis functions of Vh, the problem (2) can be
rewritten in the matrix form as

Au∗ = f , (6)

where u∗ is a vector of nodal values of u∗h, and A is a matrix generated by
the bilinear form ah(., .) on Vh×Vh. We shall now see how this matrix can be

obtained from the local matrices Êi generated by ai(., .) on Xh(Ωi)×Xh(Ωi).

Observing that ah(., .) =
∑N

i=1 ai(., .), where ai(., .) = ah(., .)|Ωi , we can
calculate the elements of A from their local contributions restricted to in-
dividual subdomains Ωi. In order to calculate the local contribution ai(., .),
we use only those basis functions that have nonzero supports on Ωi. These
basis functions are exactly the ones associated with the nodes of ΩCRih , γCRm(i)h

(γm(i) ⊂ ∂Ωi), and the set γCRm(j)h (γm(j) = δm(i) ⊂ ∂Ωi) of neighboring mortar
edge midpoints except those on ∂Ω. Let Λi be the set of all these nodes.

Let Pi be the restriction matrix which is a permutation of a rectangular
identity matrix, such that Piu returns the vector of all coefficients of u, as-
sociated with the nodes of Λi. PT

i is the corresponding extension matrix. Let
Ei, associated with the subdomain Ωi, be the matrix generated by ai(., .) on
span{φk : xk ∈ Λi}× span{φl : xl ∈ Λi}. Using these three types of matrices,

we can assemble the global matrix as A =
∑N

i=1 PT
i EiPi.

We note that Ei =
{
ai(φk, φl)

}
, where xk, xl ∈ Λi, and Êi =

{
ai(ϕk, ϕl)

}
,

where xk, xl ∈ ΩCRih . If xk, xl ∈ ΩCRih ∪ γCRm(i)h, then ai(φk, φl) = ai(ϕk, ϕl). If

xk ∈ γCRm(j)h, then the calculation of an element of Ei involving φk, requires

the values of Qm(ϕk)(xo) at the nodes xo ∈ δCRm(i)h, since, by definition, φk =∑
xo∈δCR

m(i)h
Qm(ϕk)(xo)ϕo in Ωi. In the following, we derive these coefficients

{Qm(ϕk)(xo)} from the mortar condition.



On an additive Schwarz preconditioner for the CR mortar finite element 339

We assume that the subdomain Ωi has only one nonmortar side δm(i), the
extension to more than one nonmortar edge is straightforward. Let Mγm(j)

=
{
(ϕk, ψo)L2(δm(i))

}
and Sδm(i)

=
{
(ϕo, ψo)L2(δm(i))

}
, for xk ∈ γCRm(j)h and

xo ∈ δCRm(i)h, be the master and the slave matrix, respectively. Then

Qm(i) = S−1
δm(i)

Mγm(j)

is the matrix representation of the mortar projection Qm. The columns of this
matrix correspond to the nodes xk ∈ γCRm(j)h, containing exactly the coefficients

{Qm(ϕk)(xo)}. We note that Sδm(i)
is a diagonal matrix containing the lengths

of the edges along δm(i), as entries.
Now define the matrix Qi = diag(I,Qm(i)), where I is the identity matrix

corresponding to the nodes of ΩCRih and γCRm(i)h, and Qm(i) is the projection

matrix corresponding to the nodes of γCRm(j)h. Then it is easy to see that Ei =

QT
i ÊiQi. Finally, we have A =

∑N
i=1 PT

i QT
i ÊiQiPi. In the same way, we get

f =
∑N

i=1 PT
i QT

i f̂ i.
We follow the standard procedure, cf. Smith et al. [1996], for express-

ing the preconditioned system in matrix form. Since V i ⊂ Vh, for i ∈
{{γ}, 0, 1, · · · , N}, the interpolation operators Ii : V i → Vh are simply the
imbedding operators. Let RT

i be the matrix representation of Ii. In matrix
form, T i is then given by Ti = RT

i A−1
i RiA, where Ai = RiART

i . Now,

setting T =
∑
γ Tγ +

∑N
i=0 Ti, which is the matrix representation of T , the

preconditioned system (4) takes the following matrix form.

Tu∗ = g. (7)

In this, T = BA and g = Bf , where B =
∑
γ RT

γA−1
γ Rγ +

∑N
i=0 RT

i A−1
i Ri

is the preconditioner. The restriction matrices Ri, i = 1, · · · , N , and Rγ are
all permutations of rectangular identity matrices such that Riu and Rγu
return vectors of coefficients of u, associated with the subdomain interior
edge midpoints ΩCRih and the mortar edge midpoints γCRh , respectively. The
construction of R0 is different but simple. Let vi be the vector of nodal values
of Φi, then the columns of RT

0 consist of exactly these vectors, i.e., vi, i =
1, · · · , N . The matrices Pi and Ri, i = 1, · · · , N , and Rγ are never formed in
practice. Their use in this section has been merely for the representation.

Most iterative methods for solving (7) require the actions of A and

B on different vectors in each iteration. Once the matrices Qm(i) and Êi,
i = 1, · · · , N , and Ai, i ∈ {{γ}, 0, · · · , N}, are generated, the actions of A
and B on the vectors can be calculated by multiplying the vectors with the
expressions of A and B, respectively.

3 Numerical Examples

In this section, we present numerical results and discuss some of the properties
of the preconditioner presented in the previous section. The Preconditioned
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Table 1. Numerical results for varying jumps in the coefficients. d× d = 36 subdo-
mains, each having 2m2 = 72 or 2n2 = 50 elements, are used for the triangulation.

Coefficient Condition CG-iteration L2-norm of H1
h-seminorm of

jump ρ number κ2 counts error error

100 31.580 35 0.9516 · 10−3 0.4366 · 10−1

102 32.755 39 0.1099 · 10−2 0.4558 · 10−1

104 32.825 39 0.1104 · 10−2 0.4565 · 10−1

106 32.834 39 0.1104 · 10−2 0.4565 · 10−1

Conjugate Gradients (PCG) method has been used for solving the precon-
ditioned system (4), which stops as the relative norm of the residual drops
below the tolerance 10−6. In all our experiments, a uniform triangulation has
been used in each subdomain employing, in a checker board order, either 2m2

or 2n2 triangular elements, where m and n are chosen differently in order to
have nonmatching grids with different mesh sizes across subdomain interfaces.

Test I

The objective of this test is to study the effect of coefficient jumps on the
convergence. We consider a model problem for which the exact solution is
known. The problem is defined on a unit square initially defined as the union of
2×2 nonoverlapping square subregions with coefficients ρ1 = ρ, ρ2 = 1, ρ3 =
1, and ρ4 = ρ so that the jump in the coefficients across any subregion interface
is equal to ρ > 0. The function f is chosen such that the exact solution can
be given by u(x, y) = sin(πx) sin(πy). Note that ∇u · η vanishes along the
subregion interfaces.

Numerical results for varying jumps in the coefficients are presented in Ta-
ble 1, showing condition number estimate of the preconditioned system, and
the L2-norm and the broken H1-seminorm (H1

h) of the error in the numerical
solution. The condition number estimates, as shown in the table, remain un-
changed as the jump increases, illustrating that the preconditioner is robust
with respect to jumps in the coefficients. In Table 2, we present the weighted
L2-norm (L2

ρ) and the weighted broken H1-seminorm (H1
ρh) of the error for

varying subdomain size and mesh size, where the weights are the coefficients

Table 2. Numerical results for varying subdomain size and mesh size, and fixed
ρ = 10. H and h of the second row correspond to d = 4, m = 12 and n = 11.

Subdomain Mesh Condition CG-iteration L2
ρ-norm of H1

ρh-seminorm of
size size number κ2 counts error error

H 1
2
h 131.27 68 0.2541 · 10−3 0.2914 · 10−1

H h 65.08 47 0.1056 · 10−2 0.6057 · 10−1

1
2
H 1

2
h 66.20 53 0.3778 · 10−3 0.3293 · 10−1
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ρi. The condition number estimates of the table are in accordance with the
theory. The error in the L2

ρ-norm and H1
ρh-seminorm indicate convergence as

O(h2) and O(h), respectively.

Test II

In our second test, we consider the choice of mortar or nonmortar sides, and
the ratio between mesh sizes from neighboring subdomains, and discuss their
possible influence on the convergence. The problem is defined on a unit square,
with the force function f(x) = 2π2 sin(πx) sin(πx). We assume the domain to
be the union of d × d subregions (subdomains) with coefficients ρi = 1 or
ρi = ρ = 104 distributed in a checkerboard order.

Table 3. Condition number and CG-iteration counts (in parentheses) for two op-
posite choices of mortar sides and varying mesh size ratio. m = 12 for ρi = ρ, and
n = 11, 6 for ρi = 1 giving hρi=ρ/hρi=1 ≈ 1, 1

2
.

Subdomains Choice I Choice II
d× d m = 12, n = 11 m = 12, n = 6 m = 12, n = 11 m = 12, n = 6

6 × 6 68.63 (57) 68.63 (54) 68.62 (57) 63.28 (49)
9 × 9 68.79 (59) 68.95 (55) 68.72 (57) 63.40 (49)

Each column in Table 3 and Table 4, corresponds to a fixed pair {m,n}
representing a fixed H

h ratio. Two opposite choices of mortar sides, called
‘Choice I’ and ‘Choice II’, have been chosen for the experiment. ‘Choice I’
corresponds to choosing the sides with larger coefficients as the mortar sides,
and ‘Choice II’ corresponds to the opposite choice. Under each choice of mortar
sides, two sets of results corresponding to different mesh size ratios between
neighboring subdomains are presented. The difference between the tables is as
follows: In Table 3, we use a finer mesh on subdomains with larger coefficient,
i.e. hρi=ρ < hρi=1, (this gives a better a priori error, cf. Bernardi and Verfürth
[2000]), and in Table 4, we do the opposite.

Table 4. Condition number estimate and iteration counts (in parentheses) for two
opposite choices of mortar sides and varying mesh size ratio. m = 11, 6 for ρi = ρ,
and n = 12 for ρi = 1 giving hρi=1/hρi=ρ ≈ 1, 1

2
.

Subdomains Choice II Choice I
d× d m = 11, n = 12 m = 6, n = 12 m = 11, n = 12 m = 6, n = 12

6 × 6 62.86 (55) 33.78 (45) 62.87 (57) 33.77 (43)
9 × 9 62.99 (51) 34.04 (42) 62.99 (51) 34.05 (40)
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As seen from the tables above, for a particular choice of mortar sides and
a fixed H

h ratio, the condition number estimates remain bounded. In fact,
the choice of mortar sides show no or only a mild influence on the condition
number estimates. The place where this mild influence is seen in the table,
is for the mesh size ratio hρi=ρ/hρi=1 = 1

2 , cf. Table 3. It has however been
observed through experiments that the percentile difference between the esti-
mates reduces gradually with the mesh size. We close this section by making
a final remark on Table 4. As seen from the table, the condition number es-
timates for the ratio hρi=1/hρi=ρ = 1

2 are approximately half of those for
hρi=1/hρi=ρ = 1. This is due to the minimum eigenvalue. It is not difficult to
show, taking into account the special shapes of the basis functions {Φi} (due
to the checkerboard distribution of the coefficients) in the proof of Theorem
1, that the bound for the minimum eigenvalue approximately doubles as the
ratio is halved.
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Summary. Second order elliptic problems with discontinuous coefficients are con-
sidered. The problem is discretized by the finite element method on geometrically
conforming non-matching triangulations across the interface using the mortar tech-
nique. The resulting discrete problem is solved by a FETI-DP method. We prove
that the method is convergent and its rate of convergence is almost optimal and
independent of the jumps of coefficients. Numerical experiments for the case of four
subregions are reported. They confirm the theoretical results.

1 Introduction

In this paper we discuss a second order elliptic problem with discontinuous
coefficients defined on a polygonal region Ω ⊂ R2 which is a union of many
polygons Ωi. The problem is discretized by the finite element method on ge-
ometrically conforming non-matching triangulations across Γ = ∪i∂Ωi\∂Ω
using the mortar technique, see Bernardi et al. [1994]. The resulting discrete
problem is solved by a FETI-DP method, see Farhat et al. [2001], Klawonn
et al. [2002], Mandel and Tezaur [2001] for the matching triangulation and
Dryja and Widlund [2002], Dryja and Widlund [2003] for the non-matching
one. The method is discussed under the assumption of continuity of the solu-
tion at vertices of Ωi. We prove that the method is convergent and its rate of
convergence is almost optimal and independent of the jumps of coefficients.

The presented results are a generalization of results obtained in Dryja
and Widlund [2002], Dryja and Widlund [2003] for continuous coefficients
and many subregions, and in Dryja and Proskurowski [2003] for discontinu-
ous coefficients and two subregions Ωi. In the first two papers two different
preconditioners, a standard one and a generalized one, are analyzed for the
mortar discretization which is not standard. The mortar condition there is
modified at the vertices of Ωi using the continuity of the solution at these
vertices. In the present paper we consider a standard mortar discretization
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and a standard preconditioner. Numerical experiments for the case of four
subregions are reported. They confirm the theoretical results.

The paper is organized as follows. In Section 2, the differential and discrete
problems are formulated. In Section 3, a matrix form of the discrete problem
is given. The preconditioner is described and analyzed in Section 4. Numerical
experiments are presented in Section 5.

2 Differential and discrete problem

We consider the following differential problems. Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where a(u, v) = (ρ(x)▽ u,▽u)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region and Ω = ∪Ni=1Ωi, Ωi are disjoint
polygonal subregions of diameter Hi, ρ(x) = ρi is a positive constant on Ωi
and f ∈ L2(Ω). We solve (1) by the FEM on non–matching triangulation
across ∂Ωi. To describe a discrete problem the mortar technique is used, see
Bernardi et al. [1994].

We impose on Ωi a triangulation with triangular elements and parameter
hi. The resulting triangulation in Ω is non-matching across ∂Ωi. We assume
that the triangulation on each Ωi is quasiuniform and additionally that the
parameters hi and hj on a common edge of Ωi and Ωj are proportional.
Let Xi(Ωi) be a finite element space of piecewise linear continuous functions
defined on the introduced triangulation. We assume that functions of Xi(Ωi)
vanish on ∂Ωi ∩ ∂Ω. Let

Xh(Ω) = X1(Ω1)× . . .×XN (ΩN ). (2)

Note that Xh(Ω) ⊂ L2(Ω) but Xh(Ω) 6⊂ H1
0 (Ω). To formulate a discrete

problem for (1) we use the mortar technique for geometrically conforming
case. For that the following notation is used. Let Γij be a common edge of
two substructures Ωi and Ωj , Γij = ∂Ωi ∩ ∂Ωj . Let Γ = (∪i∂Ωi)\∂Ω. We
now select open edges γm ⊂ Γ , called mortar such that Γ = ∪γm and γm ∩
γn = 0 for m 6= n. Let Γij as an edge of Ωi be denoted by γm(i) and called
mortar (master), and let Γij as an edge of Ωj be denoted by δm(j) and called
non-mortar (slave). The criteria for choosing γm(i) as the mortar side is that
ρi ≥ ρj , the coefficients on Ωi and Ωj , respectively.

Let M(δm(j)) be a subspace of Wj(δm(j)), the restriction of Xj(Ωj) to
δm(j), δm(j) ⊂ ∂Ωj. Functions of M(δm(j)) are constants on elements of the
triangulation on δm(j) which touch ∂δm(j). We say that ui ∈ Xi(Ωi) and
uj ∈ Xj(Ωj) on δm ≡ δm(j) = γm(i) = Γij , an edge common to Ωi and Ωj ,
satisfy the mortar condition if

∫

δm

(ui − uj)ψds = 0, ψ ∈M(δm). (3)
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We are now in a position to introduce V h, the space for discretization
of (1). Let V h(Ω) be a subspace of Xh(Ω) of functions which satisfy the
mortar condition (3) for each δm ⊂ Γ and which are continuous at common
vertices of the substructures. The discrete problem for (1) in V h is defined as
follows.

Find u∗h ∈ V h such that

aH(u∗h, vh) = f(vh), vh ∈ V h (4)

where aH(u, v) =
N∑
i=1

ai(u, v), ai(u, v) = ρi(▽u,▽v)L2(Ωi). The problem has

a unique solution and the error bound is known, see Bernardi et al. [1994].

3 FETI-DP equation

To derive FETI-DP method we first rewrite the problem (4) as a saddle-point
problem using Lagrange multipliers. For u = {ui}Ni=1 ∈ Xh(Ω) and ψ =
{ψp}Pp=1 ∈M(Γ ) =

∏
mM(δm), the mortar condition (3) can be rewritten as

b(u, ψ) ≡
N∑

i=1

∑

δm(i)⊂∂Ωi

∫

δm(i)

(ui − uj)ψkds = 0, (5)

where δm(i) = γm(j) = Γij , ψk ∈ M(δm(i)). Let X̃h(Ω) denote a subspace of

Xh(Ω) of functions which are continuous at common vertices of substructures.
The problem now consists of finding (u∗h, λ

∗
h) ∈ X̃h(Ω) ×M(Γ ) such that

a(u∗h, vh) + b(vh, λ
∗
h) = f(vh), vh ∈ X̃h(Ω), (6)

b(u∗h, ψh) = 0, ψh ∈M(Γ ). (7)

It can be proved that u∗h, the solution of (6) - (7) is the solution of (4) and
vice versa. Therefore the problem (6) - (7) has a unique solution.

To derive a matrix form of (6) - (7) we first need a matrix formulation

of (7). Using the nodal basis functions ϕ
(l)
δm(i)

∈ Wi(δm(i)), ϕ
(k)
γm(j) ∈ Wj(γm(j))

and ψ
(p)
δm(i)

∈ Mm(δm(i)) (δm(i) = γm(j) = Γij) the equation (7) can be

rewritten on δ̄m(i) as

Bδm(i)
uiδm(i)

−Bγm(j)
ujγm(j)

= 0, (8)

where uiδm(i)
and ujγm(j)

are vectors which represent ui|δm(i)
∈Wi(δm(i)) and

uj |γm(j) ∈Wj (γm(j)), and (nδ(i) ≡ nδm(i)
and nγ(j) ≡ nγm(j)

)

Bδm(i)
= {(ψ(p)

δm(i)
, ϕ

(k)
δm(i)

)L2(δm(i))}, p = 1, .., nδ(i), k = 0, .., nδ(i) + 1,

Bγm(j)
= {(ψ(p)

δm(i)
, ϕ

(l)
γm(j)

)L2(γm(j))}, p = 1, .., nδ(i), l = 0, .., nγ(j) + 1.

(9)



348 Maksymilian Dryja and Wlodek Proskurowski

Here nδ(i), nδ(i) + 2 and nγ(j) + 2 are the dimensions of Mm(δm(i)), Wi(δm(i))
and Wj(γm(j)), respectively. Note that Bδm(i)

and Bγm(j)
are rectangular ma-

trices. We split the vectors uiδm(i)
and ujγm(j)

into vectors u
(r)
iδm(i)

, u
(c)
iδm(i)

and u
(r)
jγm(j)

, u
(c)
jγm(j)

, respectively, where u
(c)
iδm(i)

and u
(c)
jγm(j)

represent values

of functions ui and uj at the end points of δm(i) and γm(j), and u
(r)
iδm(i)

and

u
(r)
jγm(j)

represent values of ui and uj at the interior nodal points of δm(i) and

γm(j). Using this notation one can rewrite (8) as

(B
(r)
δm(i)

u
(r)
iδm(i)

+B
(c)
δm(i)

u
(c)
iδm(i)

)− (B(r)
γm(j)

u
(r)
jγm(j)

+B(c)
γm(j)

u
(c)
jγm(j)

) = 0. (10)

Note that

B
(r)
δm(i)

= {(ψ(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))}, p, k = 1, . . . , nδ(i) (11)

is a square tridiagonal matrix nδ(i) × nδ(i), symmetric and positive definite

and cond(B
(r)
δm(i)

) ∼ 1, while the remaining matrices B
(c)
δm(i)

, B
(c)
γm(j) , B

(r)
γm(j)

are rectangular with dimensions nδ(i)×2, nδ(i)×2, nδ(i)×nγ(j), respectively.

Let K(l) be the stiffness matrix of al(. , . ). It is represented as

K(l) =



K

(l)
ii K

(l)
ir K

(l)
ic

K
(l)
ri K

(l)
rr K

(l)
rc

K
(l)
ci K

(l)
cr K

(l)
cc


 , (12)

where the rows correspond to the interior unknowns u
(i)
l of Ωl, u

(r)
l to its

edges, and u
(l)
c to its vertices. Let S(l) denote the Schur complement of K(l)

with respect to the second and third rows, i.e. to the unknowns u
(r)
l and u

(c)
l .

This matrix is represented as

S(l) =

(
S

(l)
rr S

(l)
rc

S
(l)
cr S

(l)
cc

)
, (13)

where the first row corresponds to the unknowns u
(r)
l while the second one to

u
(c)
l . Let

S = diag {S(l)}Nl=1, Srr = diag {S(l)
rr }Nl=1, Scr = (S(1)

cr , . . . , S
(N)
cr ), (14)

and the solution u∗h of (6) - (7) be represented as (u(i), u(r), u(c)) where these

global sub-vectors correspond to the local unknowns u
(i)
l , u

(r)
l , u

(c)
l , respec-

tively. We have taken into account that the values of u
(c)
l at the common

vertices of substructures are equal.

We set λ̃∗ = {B(r)
δm(i)

λ∗δm(i)
}, δm(i) ⊂ Γ , where λ∗ = {λ∗δm(i)

} is the so-

lution of (6) - (7). The mortar condition is represented by B = (Br, Bc),
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where these global diagonal matrices are represented by the local ones

(I
(r)
δm(i)

, −(B
(r)
δm(i)

)−1B
(r)
γm(j)

) and ((B
(r)
δm(i)

)−1B
(c)
δm(i)

, −(B
(r)
δm(i)

)−1B
(c)
γm(j)

), re-

spectively and I
(r)
δm(i)

is an identity matrix of nδ(i) × nδ(i). The form of these

matrices follows from (10) after multiplying it by (B
(r)
δm(i)

)−1.

To represent (6) - (7) in the matrix form we first eliminate unknowns
corresponding to the interior nodal points of Ωl, then use the assumption
that the unknowns corresponding to the common vertices of Ωl are the same

(the continuity at the vertices) and finally setting λ̃∗ = {B(r)
δm(i)

λ∗δm(i)
} we get

Srru
(r) + Srcu

(c) +BTr λ̃
∗ = gr, (15)

Scru
(r) + S̃ccu

(c) +BTc λ̃
∗ = gc, (16)

Bru
(r) +Bcu

(c) = 0. (17)

Here Srr and Scr (Src = STcr) are defined in (14) while S̃cc is defined by S
(l)
cc ,

see (13), taking into account that u
(c)
l at common vertices of substructures

are the same.
Eliminating u(r) and u(c) from (15) - (17) we get

Fλ̃∗ = d, (18)

where F = BS̃−1BT , d = BS̃−1g, B = (Br, Bc), g = (gr, gc)
T and

S̃ =

(
Srr Src
Scr S̃cc

)
. (19)

We check straightforwardly that F and d can be represented as follows:

F = Frr − FrcF−1
cc Fcr, FTrc = Fcr, (20)

where
Frr = BrS

−1
rr B

T
r , Frc = Bc −BrS−1

rr Src, Fcc = S̃cc − ScrS−1
rr Src,

d = dr − FrcF−1
cc dc, dr = BrS

−1
rr gr, dc = gc − ScrS−1

rr gr.
In the next section we analyze the preconditioner for F .

4 FETI-DP preconditioner

The preconditioner M for (18) is defined as

M−1 = BrSrrB
T
r . (21)

An ordering of substructures Ωl is called Neumann-Dirichlet (N-D) order-
ing (a check board coloring) if all sides of a fixed Ωl are mortar while all sides
of the neighboring substructures of Ωl are non-mortar.
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Theorem 1. Let the mortar side be chosen where the coefficient ρi is larger.
Then for λ ∈M(Γ ) the following holds

c0

(
1 + log

H

h

)α
〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ c1

(
1 + log

H

h

)2

〈Mλ, λ〉, (22)

where α = 0 for N-D ordering of substructures and α = −2 in the general
case; c0 and c1 are positive constants independent of hi, Hi, and the jumps of
ρi; h = mini hi, H = maxiHi.

In the proof of Theorem 1 we will need the following lemmas.

Lemma 1. For w ∈ X1(∂Ω1) × . . . ×XN (∂ΩN ) with the same values at the
vertices of Ωi the following holds

||BTr Brzr||2Srr
≤ C(1 + log

H

h
)2||w||2S , (23)

where zr = w − IHw and IHw is a linear interpolant of w on edges of ∂Ωi
with values w at the end points of the edges.

Lemma 2. For λ ∈M(Γ )

C(1 + log
H

h
)α〈Mλ, λ〉 ≤ 〈Frrλ, λ〉, (24)

where α = 0 for the N-D ordering of substructures Ωl and α = −2 in the
general case, C is independent of h,H and the jumps of ρi.

Proofs of these estimates are slight modifications of the proofs of state-
ments in Dryja and Widlund [2002]. The only item one needs to take into
account is that the coefficients ρi are larger on the mortar sides. Therefore
the proofs of these lemmas are omitted.

Proof. To prove the RHS of Theorem 1 we proceed as follows. For −λ ∈M(Γ )
we compute w = (w(r), w(c)) by solving (15) - (16) with gr = 0 and gc = 0.
Note that this problem has a unique solution under the assumption that u(c)

is continuous at the cross points. Using this, after some manipulations we
obtain

〈Fλ, λ〉 = 〈Brw(r) +Bcw
(c), λ〉 = 〈Bw, λ〉. (25)

Let IHw be a linear interpolant of w on edges with values w at the end points
of each edge. Note that Bw = B(w − IHw) = Brzr since zr ≡ w − IHw = 0
at the end points of the edges. Using that in (25), we get

〈Fλ, λ〉 = 〈Bw, λ〉 = 〈Brzr, λ〉. (26)

On the other hand, using that S̃w = BTλ and 〈S̃w, w〉 = 〈Sw,w〉, see (15)
- (17), we have
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〈Bw, λ〉 =
〈Bw, λ〉2
〈Bw, λ〉 =

〈Brzr, λ〉2
〈Sw,w〉 ≤

||M1/2λ||2||M−1/2Brzr||2
||w||2S

. (27)

By Lemma 1

||M−1/2Brzr||2 = ||BTr Brzr||2Srr
≤ C(1 + log H

h )2||w||2S . (28)

Substituting this into (27) we have

〈Bw, λ〉 ≤ C(1 + log
H

h
)2||M1/2λ||2. (29)

Using this in (26) we get the RHS estimate of Theorem 1.
To prove the LHS of Theorem 1 we first note that, F ≤ Frr, see (20), and

then use Lemma 2.

5 Numerical results

The test example for all our experiments is the weak formulation, see (1), of

−div(ρ(x)∇u) = f(x) in Ω, (30)

with the Dirichlet boundary conditions on ∂Ω, where Ω is a union of four
disjoint square subregions Ωi, i = 1, . . . , 4, of a diameter one, and ρ(x) = ρi is
a positive constant in each Ωi. The mortar and non-mortar sides are chosen
such that ργ ≥ ρδ, see Theorem 1. The region Ω is cut into 4 subregions in
a checkerboard coloring way: two equidistant grids (with the ratios 1:1, 2:1,
4:1, etc.) are imposed, one on the black, the other on the white squares. A
random right hand side to f of (30) is chosen. Numerical experiments have
been carried out with different scaling of the coefficients in the preconditioner.
The best results were obtained for the preconditioner with ρδ = ργ = 1. They
are reported in Table 1 and Table 2, and they confirm the theory.
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hγ

= 1 : 1 hδ
hγ

= 2 : 1 hδ
hγ

= 4 : 1 hδ
hγ

= 8 : 1 hδ
hγ

= 16 : 1

hδ NO DP NO DP NO DP NO DP NO DP

1/8 12 3 12 8 11 10 12 10 11 10

1/16 17 3 16 9 15 11 15 11 15 11
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Table 2. Iteration count without (denoted NO) and with the FETI-DP precondi-
tioner (denoted DP) for different grid ratios hδ

hγ
and

ργ

ρδ
= 1000.
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hγ

= 1 : 1 hδ
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= 2 : 1 hδ
hγ

= 4 : 1 hδ
hγ

= 8 : 1 hδ
hγ

= 16 : 1

hδ NO DP NO DP NO DP NO DP NO DP
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Summary. We consider a FETI-DP formulation of the Stokes problem with mor-
tar methods. To solve the Stokes problem correctly and efficiently, redundant
continuity constraints are introduced. Lagrange multipliers corresponding to the
redundant constraints are treated as primal variables in the FETI-DP formu-
lation. We propose a preconditioner for the FETI-DP operator and show that
the condition number of the preconditioned FETI-DP operator is bounded by
Cmaxi=1,··· ,N

˘

(1 + log (Hi/hi))
2
¯

, where Hi and hi are the subdomain size and
the mesh size, respectively, and C is a constant independent of Hi and hi.

1 Introduction

Recently, FETI-DP methods, which were originally developed by Farhat
et al. [2001], have been applied to nonconforming discretizations( Dryja and
Widlund [2002, 2003], Kim and Lee [2002]). Nonconforming discretizations
are important for multiphysics simulations, contact-impact problems, the
generation of meshes and partitions aligned with jumps in diffusion coeffi-
cients, hp-adaptive methods, and special discretizations in the neighborhood
of singularities. For the elliptic problems in 2D, Dryja and Widlund [2002]
showed that the Dirichlet preconditioner gives the condition number bound
C(1 + log(H/h))4, where H and h denote the subdomain size and the mesh
size, respectively. Further, Dryja and Widlund [2003] proposed a different pre-
conditioner which is similar to the one in Klawonn and Widlund [2001], and
proved the condition number bound C(1 + log(H/h))2 with a restriction that
the mesh sizes on the nonmortar side and the mortar side are comparable.
For the same problem, Kim and Lee [2002] formulated a FETI-DP opera-
tor in a different way from Dryja and Widlund [2002, 2003] and proposed a
Neumann-Dirichlet preconditioner, which gives the condition number bound
C(1 + log(H/h))2 without the restriction on mesh sizes between neighboring
subdomains. For the elliptic problems with heterogeneous coefficients, they

⋆ This work was partially supported by KOSEF R01-2000-00008.
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obtained the same condition number bound which does not depend on the
coefficients.

In this paper, we extend the result in Kim and Lee [2002] to the Stokes
problem. We use the inf-sup stable P1(h) − P0(2h) finite elements in each
subdomain. For the optimality of the approximation under nonmatching dis-
cretizations, we impose mortar matching conditions on the velocity functions
using the standard Lagrange multiplier space introduced in Bernardi et al.
[1994].

2 FETI-DP formulation

Let Ω be a bounded polygonal domain in R2. We assume that Ω is partitioned
into nonoverlapping bounded polygonal subdomains {Ωi}Ni=1 and the partition
is geometrically conforming. Let H1

D(Ωi) be a space of functions in H1(Ωi)
with zero traces on ∂Ωi ∩ ∂Ω, L2

0(Ωi) be a space of functions in L2(Ωi) with
zero average and Π0 be a space of functions in L2

0(Ω) which are constants in
each subdomain. Then, we consider the following variational form of Stokes’

problem: Find
(
u, pI , p

0
)
∈ ∏N

i=1

[
H1
D(Ωi)

]2 ×∏N
i=1 L

2
0(Ωi)×Π0 such that

N∑

i=1

(∇u,∇v)Ωi −
N∑

i=1

(pI + p0,∇ · v)Ωi =

N∑

i=1

(f ,v)Ωi ∀ v ∈
N∏

i=1

[
H1
D(Ωi)

]2
,

−
N∑

i=1

(∇ · u, qI)Ωi = 0 ∀ qI ∈
N∏

i=1

L2
0(Ωi),

−
N∑

i=1

(∇ · u, q0)Ωi = 0 ∀ q0 ∈ Π0,

(1)

and the velocity u is continuous across the subdomain interfaces Γ =⋃N
i,j=1(∂Ωi ∩ ∂Ωj). Here, (·, ·)Ωi denotes the inner product in [L2(Ωi)]

n for
n = 1, 2.

We associate Ωi with quasi-uniform triangulations Ωhi

i and Ω2hi

i . Then we
consider the inf-sup stable P1(hi) − P0(2hi) finite elements and denote them
by Xi and Qi, respectively. In addition, Q0

i is defined as a subspace of Qi with
zero average on Ωi. Let Wi := Xi for all i = 1, · · · , N . To get a FETI-DP
formulation, we define the following spaces:

X :=

{
v ∈

N∏

i=1

Xi : v is continuous at subdomain corners

}
,

W =

{
w ∈

N∏

i=1

Wi : w is continuous at subdomain corners

}
,
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Q :=

N∏

i=1

Q0
i .

In this paper, we will use the same notation for a finite element function and
the vector of nodal values of that function. The same applies to the notations
Wi, X , W , etc. For vi ∈ Xi, we write

vti =
(
(v
i
I)
t (vir)

t (vic)
t
)
,

where the symbol I, r and c represent the d.o.f.(degrees of freedom) at the
interior nodes, nodes on edges and corners, respectively. Since v ∈ X is con-
tinuous at subdomain corners, there exists a vector vc such that vic = Licvc
for all i = 1, · · · , N with a restriction map Lic. The vector vc has the d.o.f.
corresponding to the union of subdomain corners. Let

vtI =
(
(v

1
I)
t · · · (vNI )t

)
, vtr =

(
(v

1
r)
t · · · (vNr )t

)
.

We define the spaces XI ,Wr and Wc which consist of vectors vI , vr and vc,
respectively. For w ∈ W , we define wr ∈ Wr and wc ∈ Wc similarly to vr
and vc.

On each Γij(= ∂Ωi∩∂Ωj), we determine mortar and nonmortar sides and
define

mi :=
{
j : Ωhi |Γij is the nonmortar side of Γij

}
,

si :=
{
j : Ωhi |Γij is the mortar side of Γij

}
.

We consider the standard Lagrange multiplier space Mij and let

M :=

N∏

i=1

∏

j∈mi

Mij .

Then the following mortar matching conditions are imposed on v ∈ X :

∫

Γij

(vi − vj) · λij ds = 0 ∀λij ∈Mij , ∀ i = 1, · · · , N, ∀j ∈ mi. (2)

Now, we rewrite (2) into a matrix form. Let Biji be a matrix with entries

(Biji )lk = ±
∫

Γij

ψl · φk ds ∀l = 1, · · · , L, ∀k = 1, · · · ,K, (3)

where {ψl}Ll=1 is basis for Mij and {φk}Kk=1 is nodal basis for Wi|Γij . In (3),
the +sign is chosen if Ωi|Γij is a nonmortar side, otherwise the −sign is chosen.
Let Eij : Mij → M be an extension operator by zero and Rlij : Wl → Wl|Γij

for l = i, j be a restriction operator and Bi =
∑

j∈mi∪si
EijB

ij
i R

i
ij . Then (2)

is written into
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Bw = 0, (4)

where B =
(
B1 · · · BN

)
and w =

(
wt

1 · · · wt
N

)t
with wi = vi|∂Ωi . Let Bi,r

and Bi,c be matrices that consist of the columns of Bi corresponding to the
d.o.f. on edges and corners, respectively. Then (4) is written into

Brwr +Bcwc = 0,

where Br =
(
B1,r · · · BN,r

)
and Bc =

∑N
i=1Bi,cL

i
c.

Borrowing the idea of Li [2001], we add the following redundant continuity
constraints to the coarse problem

∫

Γij

(vi − vj) ds = 0 ∀i = 1, · · · , N, ∀j ∈ mi. (5)

and rewrite (5) as
Rt(Brwr +Bcwc) = 0, (6)

with a suitable matrix R. Let S be the Lagrange multiplier space correspond-
ing to the constraints (6).

Then, the following is induced from the Galerkin approximation to (1):
Find (uI , pI ,ur,uc, p

0,µ,λ) ∈ XI ×Q×Wr ×Wc ×Π0 × S ×M such that




AII GII AIr AIc 0 0 0
GtII 0 GtrI GtcI 0 0 0
ArI GrI Arr Arc Gr0 B

t
rR Btr

AcI GcI Acr Acc Gc0 B
t
cR Btc

0 0 Gtr0 Gtc0 0 0 0
0 0 RtBr R

tBc 0 0 0
0 0 Br Bc 0 0 0







uI
pI
ur
uc
p0

µ

λ




=




f I
0
f r
fc
0
0
0




.

Let
ztr =

(
utI p

t
I utr

)
, ztc =

(
utc (p0)t µt

)
.

In the FETI-DP formulation, we regard zc as a primal variable. After elimi-
nating zr and zc, we obtain the following equation for λ

FDPλ = d (7)

and call FDP a FETI-DP operator.

3 Preconditioner

We define Si as the discrete Schur complement operator of the Stokes problem
in Ωi obtained by eliminating interior velocity and pressure unknowns. Let

S := diag(S1, · · · , SN )
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and it can be seen easily that S is s.p.d. on W . Hence, we define a norm for
w ∈ W as

‖w‖2W :=

N∑

i=1

< Siwi,wi > .

Let

W 0 =

N∏

i=1

∏

j∈mi

W 0
ij ,

where W 0
ij consists of functions in Wi|Γij with zero value at the end points of

Γij . For a function wij ∈W 0
ij with j ∈ mi, let w̃ij ∈ Wi be the zero extension

of wij . Using this, we define the zero extension w̃ ∈ W of w ∈ W 0 by

w̃ = (w̃1, · · · , w̃N ) with w̃i =
∑

j∈mi

w̃ij

and a norm on W 0 by
‖w‖W 0 := ‖w̃‖W .

We introduce the following subspaces with the norms induced from the spaces
W and W 0:

WR :=
{
w ∈W : Rt(Brwr +Bcwc) = 0

}
,

WR,G :=
{
w ∈WR : Gtr0wr +Gtc0wc = 0

}
,

W 0
R :=

{
w ∈W 0 : w̃ ∈ WR

}
.

Let us define
MR =

{
λ ∈M : Rtλ = 0

}

and a dual norm for λ ∈MR by

‖λ‖2MR
:= max

w∈W 0
R\{0}

< λ,w >2
m

‖w‖2W 0

,

where < λ,w >m=
∑N

i=1

∑
j∈mi

∫
Γij
λij · wij ds is a duality pairing. From

this dual norm, we can find an operator F̂DP which gives

< F̂DPλ,λ >= ‖λ‖2MR
(8)

and propose F̂−1
DP as a preconditioner for the FETI-DP operator in (7). To give

a matrix form of F̂−1
DP , we define Rij : W 0 →W 0

ij as a restriction operator and

Eiij : W 0
ij →Wi as an extension operator by zero. Let B̂iji be a matrix obtained

from Biji after deleting the columns corresponding to the end points of Γij .
Since, we restrict λ ∈MR and w ∈W 0

R, we need l2-orthogonal projections

P ij
W 0

R
: W 0|Γij →W 0

R|Γij , P ijMR
: M |Γij →MR|Γij .
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Let B̂ij = P ijMR
B̂iji P

ij
W 0

R
and B̂i =

∑
j∈mi

EiijB̂
−1
ij Rij . Then, we obtain

F̂−1
DP =

N∑

i=1

B̂tiSiB̂i.

Thus, the computation of F̂−1
DPλ can be done parallely in each subdomain.

4 Condition number estimation

In this section, we only state lemmas that are used to analyze the condi-
tion number bound without proofs. In the following, C is a generic constant
independent of hi and Hi.

Lemma 1. For λ ∈MR, we have

< FDPλ,λ >= max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2W
.

Lemma 2. For λ ∈MR, we have

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2W
≥ ‖λ‖2MR

.

Let us define a notation | · |Si :=< Si ·, · >1/2. Then the following lemma can
be found in Bramble and Pasciak [1990].

Lemma 3. For wi ∈Wi, we have

C1β|wi|Si ≤ |wi|1/2,∂Ωi
≤ C2|wi|Si ,

where β is the inf-sup constant for the finite elements of subdomain Ωi and
the constants C1 and C2 are independent of hi and Hi.

We also have the following result which is derived from Lemma 5.1 in Mandel
and Tezaur [2001].

Lemma 4. For w ∈W , we have

‖wi−wj‖2H1/2
00 (Γij)

≤ C max
l∈{i,j}

{(
1 + log

Hl

hl

)2
}(
|wi|21/2,∂Ωi

+ |wj |21/2,∂Ωj

)
.

From Lemma 3, Lemma 4 and the continuity of mortar projection inH
1/2
00 (Γij),

we have

Lemma 5. For λ ∈MR,

max
w∈WR,G\{0}

< Bw,λ >2

‖w‖2W
≤ C max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
‖λ‖2MR

.
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From Lemma 1, Lemma 2, Lemma 5 and (8), we obtain the following condition
number bound:

Theorem 1.

κ(F̂−1
DPFDP ) ≤ C max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
.

5 Numerical Results

Let Ω = [0, 1]×[0, 1] ⊂ R2 and consider Stokes problem with an exact solution

u =

(
sin3(πx)sin2(πy)cos(πy)
−sin2(πx)sin3(πy)cos(πx)

)
and p = x2 − y2.

Let N denote the number of subdomains. We only consider the uniform par-
tition of Ω. The notation N = 4 × 4 means that Ω is partitioned into 4 × 4
square subdomains. Let n denote the number of nodes on subdomain edges
including end points, which is associated with Ωhi

i , a triangulation for velocity
functions. We solve the FETI-DP operator with and without preconditioner
varying N and n under nonmatching discretizations. Those cases are denoted
by PFETI-DP and FETI-DP, respectively. The CG(Conjugate Gradient) it-
eration is stopped when the relative residual is less than 10−6.

In Tables 1 and 2, the number of CG iterations and the corresponding
condition number are shown varying N and n. From Table 1, we observe that
PFETI-DP performs well and the condition numbers seem to behave log2-
growth as n increases. In Table 2, as N increases with n = 5 or n = 9, the
CG iteration becomes stable for both cases with and without preconditioner.
Hence, we can see that the developed preconditioner gives the condition num-
ber bound as confirmed in theory.

Table 1. CG iterations(condition number) when N = 4 × 4

n FETI-DP PFETI-DP

5 16(8.35) 12(3.75)
9 50(1.15e+2) 15(5.79)
17 86(5.01e+2) 17(7.93)
33 119(1.31e+3) 20(9.88)
65 153(3.29e+3) 22(1.20e+1)
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Table 2. CG iterations(condition number) when n = 5, 9

n = 5 n = 9
N FETI-DP PFETI-DP FETI-DP PFETI-DP

4 × 4 16(8.35) 12(3.75) 50(1.15e+2) 15(5.79)
8 × 8 16(9.18) 12(3.68) 53(1.19e+2) 15(6.21)
16 × 16 16(9.57) 11(3.42) 57(1.34e+2) 16(6.27)
32 × 32 16(10.88) 12(3.78) 56(1.25e+2) 16(6.24)

References

C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to
domain decomposition: the mortar element method. In Nonlinear partial
differential equations and their applications. Collège de France Seminar,
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Summary. Iterative substructuring methods with Lagrange multipliers for elliptic
problems are considered. The algorithms belong to the family of dual-primal FETI
methods which were introduced for linear elasticity problems in the plane by Farhat
et al. [2001] and were later extended to three dimensional elasticity problems by
Farhat et al. [2000]. Recently, the family of algorithms for scalar diffusion prob-
lems was extended to three dimensions and successfully analyzed by Klawonn et al.
[2002a,b]. It was shown that the condition number of these dual-primal FETI al-
gorithms can be bounded polylogarithmically as a function of the dimension of the
individual subregion problems and that the bounds are otherwise independent of
the number of subdomains, the mesh size, and jumps in the diffusion coefficients. In
this article, numerical results for some of these algorithms are presented and their
relation to the theoretical bounds is studied. The algorithms have been implemented
in PETSc, see Balay et al. [2001], and their parallel scalability is analyzed.

1 Elliptic model problem, finite elements, and geometry

Let Ω ⊂ IR3, be a bounded, polyhedral region, let ∂ΩD ⊂ ∂Ω be a closed
set of positive measure, and let ∂ΩN := ∂Ω \ ∂ΩD be its complement.
We impose homogeneous Dirichlet and general Neumann boundary condi-
tions, respectively, on these two subsets and introduce the Sobolev space
H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
We decompose Ω into non-overlapping subdomains Ωi, i = 1, . . . , N, where

each is the union of shape-regular elements with the finite element nodes on
the boundaries of neighboring subdomains matching across the interface Γ .
The interface Γ is the union of subdomain faces, which are shared by two
subregions, edges which are shared by more than two subregions and vertices
which form the endpoints of edges. All of them are regarded as open sets.

For simplicity, we will only consider a piecewise trilinear, conforming finite
element approximation of the following scalar, second order model problem:
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find u ∈ H1
0 (Ω, ∂ΩD), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD), (1)

where

a(u, v) =

N∑

i=1

ρi

∫

Ωi

∇u · ∇vdx, f(v) =

N∑

i=1

( ∫

Ωi

fvdx +

∫

∂Ωi∩∂ΩN

gNvds
)
,

(2)
where gN is the Neumann boundary data defined on ∂ΩN . We further assume
that the diffusion coefficient ρi is a positive constant on each subregion Ωi.

For the theoretical analysis, we also make a number of further technical
assumptions; see Klawonn et al. [2002a,b] for details.

2 The FETI-DP Method

For each subdomain Ωi, i = 1, . . . , N , we assemble local stiffness matrices
K(i) and local load vectors f (i). We denote by u(i) the local solution vectors
of nodal values. The local stiffness matrices K(i) can be partitioned according
to vertex and remaining degrees of freedom, denoted by subscript c and r,
respectively.

K(i) =

[
K

(i)
rr K

(i)
rc

K
(i)
rc

T
K

(i)
cc

]
, u(i) =

[
u

(i)
r

u
(i)
c

]
, f (i) =

[
f

(i)
r

f
(i)
c

]
, i = 1, . . . , N.

By assembling the stiffness matrix contributions from the vertices, we ob-

tain from the local submatrices K
(i)
cc the global matrix K̃cc and from the local

matrices K
(i)
rc the partially assembled matrices K̃

(i)
rc . Here, we choose to as-

semble at all vertices. It is also possible to take only a sufficient number of
them; for details, see Klawonn et al. [2002a]. We introduce the following nota-

tion Krr := diagNi=1(K
(i)
rr ) and K̃rc := [K̃

(1)T
rc · · · K̃(N)T

rc ]T . The global vectors

ũc and f̃c are defined accordingly. We note that the FETI-DP iterates will be
continuous at all vertices throughout the iterations.

To guarantee continuity at the remaining interface nodes, i.e., those which

are not vertices, we introduce the jump operator Br = [B
(1)
r , . . . , B

(N)
r ]. The

entries of this matrix are 0, 1,−1 and it is constructed such that components
of any vector ur, which are associated with the same node on the interface Γ ,

coincide when Brur =
∑N
i=1 B

(i)
r u

(i)
r = 0.

We can now reformulate the finite element discretization of (1) as



Krr K̃rc B

T
r

K̃T
rc K̃cc 0
Br 0 0





ur
ũc
λ


 =



fr
f̃c
0


 . (3)
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Elimination of the primal variables ur and ũc leads to a reduced linear system
of the form

FAλ = dA,

where the matrix FA and the right hand side dA are formally obtained by block
Gauss elimination. Let us note that the matrix FA is never built explicitly but
that in every iteration appropriate linear systems are solved; see Farhat et al.
[2000] or Klawonn et al. [2002a] for more details.

To obtain better convergence properties for three dimensional problems, a
larger coarse problem was suggested by introducing additional optional con-
straints of the form

Qrur = 0. (4)

Here, Qr := [Q
(1)
r . . . Q

(N)
r ], Q

(i)
r := [O Q∆B

(i)
∆ ], and Q∆ is a rectangular

matrix which has as many columns as there are remaining degrees of freedom
which are on the interface; for the latter set, we will also use the subscript
∆. The number of rows is determined by the number of primal edges and
faces. A primal edge is an edge where the average of u is the same across this
edge whichever component of the product space is used in its computation.
Analogously, we define a primal face. The matrix Q∆ is constructed such that
(4) guarantees that certain linear combinations of the rows of B∆u∆ are zero.
These linear combinations are related to primal edges and faces. Then, (4)
enforces that averages at primal edges and faces have common values across
the interface.

Introducing additional optional Lagrange multipliers µ to enforce the extra
constraints given in (4), we obtain from (3) the following linear system




Krr K̃rc Q
T
r B

T
r

K̃T
rc K̃cc 0 0
Qr 0 0 0
Br 0 0 0







ur
ũc
µ
λ


 =




fr
f̃c
0
0


 . (5)

Elimination of ur, ũc, and µ leads again to a reduced linear system of the form

Fλ = d, (6)

where the matrix F and the right hand side d are again formally obtained by
block Gauss elimination.

Let us now define the Dirichlet preconditioner. We need a scaled jump
operator BD,r. It is obtained from Br = [O B∆] by scaling B∆ subdomain-
wise with appropriate diagonal scaling matrices D(i) and setting BD,∆ :=

[D(1)B
(1)
∆ . . . D(N)B

(N)
∆ ]. The scaling matrices D(i) are defined using the dif-

fusion coefficients ρi; for details, see Klawonn et al. [2002a]. Finally, we add
a zero column to BD,r for each vertex node. From the local stiffness matri-
ces K(i), we obtain local Schur complements S(i), by eliminating the interior
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variables, which operate on the degrees of freedom belonging to the inter-
face nodes. Let us define the block diagonal matrix S := diagNi=1(S

(i)). The
Dirichlet preconditioner is then defined as

M−1 := BD,rSB
T
D,r.

The FETI-DP algorithms are preconditioned conjugate gradient methods for
solving the preconditioned linear system

M−1Fλ = M−1d.

Following the notation in Klawonn et al. [2002a,b], we denote the algorithm
using just vertex constraints by Algorithm A. For those methods which ad-
ditionally use optional constraints, we denote the method choosing all edges
and faces as primal by Algorithm B, the one using all edges by Algorithm C,
and finally the algorithm which uses just faces by Algorithm E. We denote
the corresponding matrix F in (6) by FB , FC , and FE .

3 Theoretical Estimates

For Algorithms A, B, C, and E, we have the following estimates; cf. Klawonn
et al. [2002a,b].

Theorem 1. The condition numbers satisfy

1. κ(M−1FA) ≤ C(H/h)(1 + log(H/h))2,
2. κ(M−1FB) ≤ C(1 + log(H/h))2,
3. κ(M−1FC) ≤ C(1 + log(H/h))2,
4. κ(M−1FE) ≤ C max((1 + log(H/h))2, TOL ∗ (1 + log(H/h))),

where C > 0 is a constant which is independent of H,h, TOL, and the values
of the coefficients ρi.

We note that the condition number estimate for Algorithm E is only valid
if, for all pairs of substructures Ωi, Ωk, which have an edge E ik in common,
we have an acceptable face path. An acceptable face path is a path from Ωi
to Ωk, possibly via several other substructures Ωj , which do not necessarily
touch the edge in question, such that the associated coefficients ρj , ρi, and ρk
satisfy TOL ∗ ρj ≥ min(ρi, ρk) for some chosen tolerance TOL.

4 Computational results

We have applied the FETI-DP algorithms A, B, C, and E to the model prob-
lem (1), where Ω := [0, 1]3 is the unit cube. We decompose the unit cube
into N ×N ×N cubic subdomains with sidelength H := 1/N . The diffusion
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coefficients ρi alternate between 1 and 104 and are distributed in a threedi-
mensional checkerboard pattern; cf. Figure 1. On the front, left, and bottom
part, homogeneous Dirichlet boundary conditions are applied. On all the re-
maining parts of the boundary, we imposed homogeneous Neumann boundary
conditions. The coefficients are constant on each subdomain and (1) is dis-
cretized by conforming trilinear elements with finite element diameter h. All
algorithms are implemented in PETSc, see Balay et al. [2001]. We use the
preconditioned conjugate gradient method with a zero initial guess. The stop-
ping criterion is the relative reduction of the initial residual by 10−7 in the
Euclidean norm. In order to analyze the numerical scalability of our algo-

Fig. 1. Model domain decomposed into cubes with discontinuous diffusion coeffi-
cients ρi = 1 and ρi = 104.

rithms, we have carried out two different types of experiments. In our first set
of runs, we kept the subdomain size H/h fixed and increased the number of
subdomains and thus the overall problem size; cf. Tables 1,2,3,4. Our second
series of experiments is carried out with a fixed number of subdomains and an
increasing subdomain size H/h resulting in an increased 1/h; cf. Tables 5 and
6 and Figure 2. From both set of runs, we see that our computational results
support the theoretical condition number estimates. However, for Algorithm
E, we cannot decide if the growth of the condition number is polylogarithmic.
From the range of H/h used in the experiments, it rather looks linear than
polylogarithmic. We note that for this problem, the bound of Theorem 1 is ba-
sically meaningless since TOL = 104. Experiments for an isotropic material,
i.e., with no jumps in the coefficients show the same polylogarithmic growth
as Algorithms B and C. This is an interesting point which needs some fur-
ther analysis. In a third set of experiments, we have tested our algorithms for
parallel scalability. We considered a decomposition into 216 subdomains with
13824 degrees of freedom for each subdomain which yields an overall problem
size of 2 685 619 degrees of freedom; cf. Table 7.

The experiments in Tables 1,2,3,4 were carried out on two dual Athlon MP
2200+ PCs with 2 GByte memory each. The experiments in Tables 5,6 and 7
were computed on the 350 node Linux cluster Jazz at the Argonne National
Laboratory. Each node is a 2.4 GHz Pentium Xeon where half of the nodes
has 2 GByte memory and the other half has 1 GByte.

The experiments show that all algorithms have a good parallel scalability
for our model problem. For this problem and the number of degrees of freedom
considered, the CPU times are not significantly different, although Algorithm
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C is always slightly faster. To decide which method is the best, more exten-
sive testing with different model problems and geometries is needed. This is
currently ongoing research and will be published elsewhere.

Table 1. Algorithm A - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 9 1.00035 11.5539
27 1000 21,952 14 1.00051 28.8335
64 1000 50,653 19 1.00361 25.0130

125 1000 97,336 22 1.00283 28.8335
216 1000 166,375 24 1.00231 25.0127
343 1000 262,144 26 1.00188 28.8335
512 1000 389,017 25 1.00161 25.0127
729 1000 551,368 26 1.00138 28.8335

1000 1000 753,571 24 1.00125 25.0127

Table 2. Algorithm B - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 7 1.00085 1.47091
27 1000 21,952 8 1.00049 1.55036
64 1000 50,653 8 1.00025 1.47011

125 1000 97,336 8 1.00022 1.55036
216 1000 166,375 8 1.00013 1.46995
343 1000 262,144 8 1.00013 1.55036
512 1000 389,017 8 1.00009 1.46989
729 1000 551,368 8 1.00010 1.55036

1000 1000 753,571 7 1.00014 1.46985

Acknowledgement. The authors gratefully acknowledge the use of ”Jazz”, a 350 node
computing cluster operated by the Mathematics and Computer Science Division at
Argonne National Laboratory as part of its Laboratory Computing Resource Center.
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Table 3. Algorithm C - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 8 1.00030 1.61492
27 1000 21,952 9 1.00040 2.06800
64 1000 50,653 9 1.00020 1.93210

125 1000 97,336 10 1.00012 2.06875
216 1000 166,375 9 1.00009 1.93192
343 1000 262,144 10 1.00008 2.06875
512 1000 389,017 9 1.00006 1.93210
729 1000 551,368 10 1.00005 2.06875

1000 1000 753,571 9 1.00005 1.93210

Table 4. Algorithm E - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 8 1.00102 11.4671
27 1000 21,952 10 1.00185 16.2107
64 1000 50,653 14 1.00129 16.2191

125 1000 97,336 16 1.00113 16.2246
216 1000 166,375 19 1.00089 16.2281
343 1000 262,144 19 1.00079 16.2304
512 1000 389,017 20 1.00067 16.2319
729 1000 551,368 20 1.00060 16.2329

1000 1000 753,571 20 1.00054 16.2335

Table 5. Algorithms A and C - Constant H

Subdomains H/h Dof Algorithm A Algorithm C

Iter λmin λmax Iter λmin λmax

216 4 6,859 14 1.00018 4.20279 6 1.00001 1.28960
216 8 79,507 22 1.00147 16.7662 8 1.00029 1.75693
216 12 300,763 27 1.00306 34.0512 10 1.00010 2.08459
216 16 753,571 31 1.00371 53.9590 11 1.00017 2.34317
216 20 1,520,875 32 1.00519 75.7574 11 1.00024 2.55999
216 24 2,685,619 34 1.00651 99.0372 12 1.00029 2.74869
216 28 4,330,747 36 1.00660 123.530 12 1.00035 2.91716
216 32 6,539,203 36 1.00677 149.054 13 1.00034 3.07033

C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP:
A dual-primal unified FETI method - part i: A faster alternative to the
two-level FETI method. Int. J. Numer. Meth. Engrg., 50:1523–1544, 2001.

C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain de-
composition method. Numer. Lin. Alg. Appl., 7:687–714, 2000.
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Table 6. Algorithms B and E - Constant H

Subdomains H/h Dof Algorithm B Algorithm E

Iter λmin λmax Iter λmin λmax

216 4 6,859 5 1.01252 1.06768 13 1.00006 4.19816
216 8 79,507 7 1.00052 1.31862 19 1.00044 12.1453
216 12 300,763 8 1.00021 1.62065 22 1.00058 20.3391
216 16 753,571 10 1.00021 1.90164 23 1.00054 28.5889
216 20 1,520,875 10 1.00033 2.14742 23 1.00066 36.8711
216 24 2,685,619 11 1.00040 2.36688 25 1.00062 45.1044
216 28 4,330,747 12 1.00040 2.61352 24 1.00081 53.3703
216 32 6,539,203 12 1.00046 2.80160 24 1.00097 61.5779
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Fig. 2. Condition number growth for varying H/h for Algorithms A and E (left)
and Algorithms B and C (right).

Table 7. Parallel Scalability - Algorithms A, B, C and E with 216 subdomains,
13824 dof for each subdomain (2,685,619 dof).

Algorithm

Processors A B C E

27 223s 207s 205s 216s
54 113s 106s 106s 110s
108 57.0s 54.2s 53.8s 55.4s
216 29.1s 28.9s 27.2s 29.1s

A. Klawonn, O. B. Widlund, and M. Dryja. Dual-Primal FETI methods for
three-dimensional elliptic problems with heterogeneous coefficients. SIAM
J.Numer.Anal., 40, 159-179 2002a.

A. Klawonn, O. B. Widlund, and M. Dryja. Dual-Primal FETI methods with
face constraints. In L. F. Pavarino and A. Toselli, editors, Recent develop-
ments in domain decomposition methods, pages 27–40. Springer-Verlag, Lec-
ture Notes in Computational Science and Engineering, Volume 23, 2002b.
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Summary. The contribution deals with the numerical solving of contact problems
with Coulomb friction for 3D bodies. A variant of the FETI based domain de-
composition method is used. Numerical experiments illustrate the efficiency of our
algorithm.

1 Introduction

The FETI method was proposed by Farhat and Roux [1992] for parallel so-
lution of problems described by elliptic partial differential equations. The key
idea is elimination of the primal variables so that the original problem is
reduced to a small, relatively well conditioned quadratic programming prob-
lem in terms of the Lagrange multipliers. Then the iterative solver is used to
compute the solution.

Our recent papers (see Dostál et al. [2002] or Haslinger et al. [2002]) ap-
ply the FETI procedure to the contact problems with Coulomb friction in
2D. It leads to the sequence of quadratic programming problems with simple
inequality bounds so that the fast algorithm based on an active set strat-
egy and an adaptive precision control (see Dostál and Schöberl [2003]) can
be used directly. The situation is not so easy in 3D. The reason is that the
tangential contact stress has two components in each contact node which are
subject to quadratic inequality constraints. Fortunately the structure of this
constraints is relatively simple: the vector whose components are the tangen-
tial contact stresses belongs to a circle in IR2 with the center at the origin
and a given radius. A convenient piecewise linear approximation of the circle
can be defined by the intersection of squares rotated of a constant angle α.
Doing this approximation at all the contact nodes, we obtain a new quadratic

⋆ Supported by grant GAČR 101/01/0538, MSM ME641 and MSM 272400019.
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programming problem with bound and equality constraints that can be ef-
ficiently solved by the algorithm based on the augmented Lagrangian (see
Dostál et al. [2003]). The implementation details for the problem with one
body on the rigid foundation can be found in Haslinger et al. [2003]. Here, we
shall extend our method to 3D-multibody problems and show how to reduce
the size of the solved quadratic programming problem by means of the mixed
finite element method.

2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference config-
uration bounded domains Ωp ⊂ IR3, p = 1, 2, . . . , s, with sufficiently smooth
boundaries Γ p that are split into three disjoint parts Γ pu , Γ pt and Γ pc so that

Γ p = Γ pu ∪Γ pt ∪Γ pc . Let us suppose that the zero displacements are prescribed
on Γ pu and that the surface tractions of density tp ∈ (L2(Γ pt ))3 act on Γ pt .
Along Γ pc the body Ωp may get into unilateral contact with some other of
the bodies. Finally we suppose that the bodies Ωp are subject to the volume
forces of density fp ∈ (L2(Ωp))3.

To describe non-penetration of the bodies, we shall use linearized non-
penetration condition that is defined by a mapping χ : Γc −→ Γc, Γc =⋃s
p=1 Γ

p
c , which assigns to each x ∈ Γ pc some nearby point χ(x) ∈ Γ qc , p 6= q.

Let vp(x),vq(χ(x)) denote the displacement vectors at x,χ(x), respectively.
Assuming the small displacements, the non-penetration condition reads

vpn(x) ≡ (vp(x)− vq(χ(x))) · np(x) ≤ δp(x),

where δp(x) = (χ(x) − x) · np(x) is the initial gap and np(x) is the critical
direction defined by np(x) = (χ(x) − x)/‖χ(x) − x‖ or, if χ(x) = x, by the
outer unit normal vector to Γ pc .

We start with the weak formulation of an auxiliary problem, called the
contact problem with given friction. To this end we introduce the space of
virtual displacements

V = {v = (v1, . . . ,vs) ∈
s∏

p=1

(H1(Ωp))3 : vp = 0 on Γ pu}

and its closed convex subset of kinematically admissible displacements

K = {v ∈ V : vpn(x) ≤ δp(x) for x ∈ Γ pc },

where np ∈ (L∞(Γ pc ))3 and δp ∈ L∞(Γ pc ). Let us assume that the normal
contact stress Tν ∈ L∞(Γc), Tν ≤ 0, is known apriori so that one can evaluate
the slip bound g on Γc by g = F (−Tν), where F = F p > 0 is a coefficient of
friction on Γ pc . Denote gp = g|Γp

c
.

The primal formulation of the contact problem with given friction reads
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(P) minJ (v) subject to v ∈ K,
where

J (v) = 1
2a(v,v)− b(v) + j(v)

is the total potential energy functional with the bilinear form a representing
the inner energy of the bodies and with the linear form b representing the
work of the applied forces tp and fp, respectively. The sublinear functional j
represents the work of friction forces

j(v) =

s∑

p=1

∫

Γp
c

gp‖vpt ‖ ds,

where vpt is the projection of the displacement vp on the plane tangential
to the unit outer normal vector to Γ pc denoted by νp ∈ (L∞(Γ pc ))3. Let us
introduce unit tangential vectors tp1, t

p
2 ∈ (L∞(Γ pc ))3 such that the triplet

B = {νp(x), tp1(x), tp2(x)} is an orthonormal basis in IR3 for almost all x ∈ Γ pc
and denote vpt1 = vp · tp1, vpt2 = vp · tp2. Then vpt = (0, vpt1 , v

p
t2) with respect to

the basis B so that the norm appearing in j reduces to the Euclidean norm
in IR2. More details about the formulation of contact problems can be found
in Hlaváček et al. [1988].

The Lagrangian L : V × Λt × Λn −→ IR of the problem (P) is defined by

L(v,µt,µn) =
1

2
a(v,v)− b(v) +

s∑

p=1

∫

Γp
c

µ
p
t · vpt ds+

s∑

p=1

〈µpn, vpn − δp〉Γp
c
,

where

Λt = {µt = (µ1
t , . . . ,µ

s
t ) ∈

s∏

p=1

(L∞(Γ pc ))2 : ‖µpt ‖ ≤ gp,µpt = (µpt1 , µ
p
t2)},

Λn = {µn = (µ1
n, . . . , µ

s
n) ∈

s∏

p=1

H−1/2(Γ pc ) : µpn ≥ 0}

and 〈·, ·〉Γp
c

denotes the duality pairing between H−1/2(Γ pc ) and H1/2(Γ pc ).
The Lagrange multipliers µt, µn are considered as functionals on the

contact parts of the boundaries. While the first one accounts for the non-
penetration condition, the second one removes the non-differentiability of the
sublinear functional as

j(v) = sup
µt∈Λt

s∑

p=1

∫

Γp
c

µ
p
t · vpt ds, v ∈ V.

Thus the problem (P) can be replaced by the saddle-point problem as

min
v∈K
J (v) = min

v∈V
sup

(µt,µn)∈Λt×Λn

L(v,µt,µn).
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By the mixed formulation of the problem (P), we mean a problem of finding
a saddle-point of the Lagrangian L:

(M)





Find (u,λt,λn) ∈ V × Λt × Λn such that

a(u,v) = b(v)−
s∑

p=1

∫

Γp
c

λ
p
t · vpt ds−

s∑

p=1

〈λpn, vpn〉Γp
c
, ∀v ∈ V

s∑

p=1

∫

Γp
c

(λpt − µpt ) · upt ds+

s∑

p=1

〈λpn − µpn, upn − δp〉Γp
c
≤ 0,

∀(µt,µn) ∈ Λt × Λn.

It is well-known that there is a unique saddle-point (u,λt,λn) and its first
component u solves the problem (P).

Let us point out that the solution u ≡ u(g) of (P) depends on a particular
choice of g ∈ L∞(Γc), g ≥ 0. We can define a mapping Φ which associates with
every g the product F (−Tν(u(g))), where Tν(u(g)) ≤ 0 is the normal contact
stress related to u(g). The classical Coulomb’s law of friction corresponds to
the fixed point of Φ which is defined by g = F (−Tν(u(g))). To find it, we can
use the method of successive approximations which starts from a given g(0)

and generates the iterations g(l) by

(MSA) g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed
for sufficiently small F (see Haslinger [1983]).

3 Discretizations

We shall discretize the contact problem with given friction by means of one
of the following two approximations.

Approximation I is based on the finite element method applied to the primal
formulation (P). We divide the bodies Ωp into tetrahedron finite elements T
with the maximum diameter h and assume that the partitions are regular and
consistent with the decompositions of ∂Ωp into Γ pu , Γ pt and Γ pc . Moreover, we
restrict ourselves to the geometrical conforming situation where the intersec-
tion between the boundaries of any two different bodies ∂Ωp ∩ ∂Ωq, p 6= q, is
either empty, a vertex, an entire edge, or an entire face. On the partitions, we
introduce the finite element subspace of V by

Vh = V 1
h × · · · × V sh

with
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V ph = {vp ∈ (C(Ωp))3 : vp|T ∈ (P1(T ))3 for all T ⊂ Ωp},
where Pm(T ) denotes the set of all polynomials on T of degree≤ m. Replacing
V by Vh, we can rewrite the approximative primal formulation (P) into an
algebraic form. Then we can proceed to the dual formulation introducing
the algebraic mixed formulation (analogously to the continuous setting) and
eliminating the primal variables (displacements).

Approximation II is based on the mixed finite element method applied to the
mixed formulation (M). The space V is approximated by the same Vh as in
Approximation I. In addition, to approximate the sets Λt and Λn, we introduce
regular partitions of Γ pc formed by rectangles R with the maximum diameter
H . Let us point out that this partitions are independent on the partitions of
Ωp used for the approximation of V . Let us define

ΛpH = {λp ∈ L2(Γ pc ) : λp|R ∈ P0(R) for all R ⊂ Γ pc }.

Repleacing L∞(Γ pc ) and H−1/2(Γ pc ) by ΛpH in the definitions of Λt and Λn, we
obtain their approximations Λt,H and Λn,H , respectively. The approximative
mixed formulation (M) can be reduced again to the dual formulation elimi-
nating the primal variables. If the partitions of Γ pc are defined by restrictions
of the partitions of the bodies Ωp then we obtain a variant of the so called
mortar method, see Krause and Wohlmuth [2002].

The dual formulations arising from both Approximation I and Approxima-
tion II are represented by the quadratic programming problems of the same
type:

(D) min Θ(λ) s.t. λ ∈ Λ and R⊤(f −B⊤λ) = 0,

with

Θ(λ) =
1

2
λ⊤BK†B⊤λ− λ⊤(BK†f − c),

Λ = {λ = (λ⊤t1 ,λ
⊤
t2 ,λ

⊤
n )⊤ : ‖((λt1)k, (λt2)k)‖ ≤ gk, λn ≥ 0},

B =




N
T1

T2


 , c =




d
0
0


 .

Here, K† denotes a generalized inverse to the symmetric positive semidefi-
nite stiffness matrix K = diag(K1, . . . ,Ks), R is the full rank matrix whose
columns span the kernel of K, the full rank matrices N,T1,T2 describe pro-
jections of displacements at the nodes lying on Γc to the normal and tangential
directions, respectively, f represents the nodal forces, d is the vector of dis-
tances between the bodies and gk are the values of the slip bound at the
contact nodes. The difference between Approximation I and Approximation II
consists in the different contents of B and c.
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The minimized functional in (D) is strictly convex and quadratic but the
feasible set contains the non-linear constraints ‖((λt1)k, (λt2)k)‖ ≤ gk. This
constraints can be treated by the method described in Haslinger et al. [2003]
so that the efficient algorithm based on the augmented Lagrangian (see Dostál
et al. [2003]) can be applied.

The advantage of Approximation II is that the number of the dual vari-
ables is lower compared with Approximation I , i.e. the size of the problem (D)
is considerably reduced. This happens if H/h > 1, i.e. if the partitions of Γ pc
used for the definitions of ΛpH are coarser than the partitions of the bodies Ωp

restricted to Γ pc . The coarser partitions are related to the satisfaction of the
Ladyzhenskaya–Babuška–Brezzi condition that guarantees the existence and
the uniquenees of the solution. For our particular choice of the spaces, this
condition is satisfied if the ratio H/h is sufficiently large (see Haslinger and
Hlaváček [1982]). On the other hand, the ratio H/h should not be too large
in order to avoid violation of the non-penetration condition that is satisfied
in the weak sense only.

The method of successive approximation (MSA) can be implemented so
that the problem (D) is solved to evaluate the mapping Φ. We shall use a more
efficient version of this method, in which two outer loops (i.e. the iterative
steps of (MSA) and the outer loop of the algorithm for solving (D)) can be
connected in one loop. The resulting algorithm can be viewed as the method
of successive approximation with an inexact solving of the auxiliary problems
with given friction.

4 Numerical experiments and conclusions

Let us consider two bricks Ω1 and Ω2 as in Figure 1 made of an elas-
tic isotropic, homogeneous material characterized by Young modulus E =
21.2× 1010 and Poisson’s ratio σ = 0.277 (steel). The brick Ω1 is unilaterally
supported by the rigid foundation Ω0. The applied surface tractions are in
Figure 1, the volume forces vanish. Both contact interfaces Γ 1

c = Ω0 ∩ Ω1

and Γ 2
c = Ω1 ∩ Ω2 are partitioned by two meshes as in Figure 2. The mesh

defined by restriction of the partitions of the bodies Ω1 and Ω2 is triangular
(dotted) while the mesh used for approximation of the Lagrange multipliers is
rectangular (solid). Let us point that the meshes on the interfaces do match
for the sake of simple implementation of the model problem. Our method can
be applied directly to the problems with nonmathing meshes.

Table 1 compares behaviour of our algorithm for Approximation I and
Approxiamtion II with H/h = 2, 4. All computations are carried out with
12150 primal variables while the number of the dual variables nd is different.
From the results, we conclude that the performance of the algorithm is not
too sensitive to the value of the coefficient of fricrion and the efficiency of our
algorithm is comparable to solving of the linear problems. Approximation II
reduces the size of the dual problem nd with relatively minor effect on the
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Fig. 1. The model problem with two loaded bodies.

supp φj

supp ψi

Fig. 2. The meshes on Γ 2
c for H/h = 2 and the supports of FEM basis functions.

Table 1. Iter denotes the number of outer iterations; Cg is the total number of the
conjugate gradient steps; err is the relative error.

Approx. I Approx. II

nd = 2592 H/h = 2, nd = 576 H/h = 4, nd = 144

F Iter Cg Iter Cg err Iter Cg err

0.001 24 373 32 299 0.0100 23 147 0.0178

0.01 22 332 26 291 0.0102 16 114 0.0175

0.1 19 331 20 315 0.0120 19 137 0.0147

1 21 931 21 711 0.0078 24 242 0.0104

10 16 229 26 213 0.0206 16 117 0.0413
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solutions compared by err = ‖uII − uI‖/‖uI‖, where uI and uII are results
of Approximation I and Approximation II, respectively.

Using auxiliary decomposition, results on natural coarse space projections
(see Mandel and Tezaur [1996], Klawonn and Widlund [2001]) and quadratic
programming (see Dostál and Schöberl [2003], Dostál [2003]), it is possible to
show that our algorithm for the problem with given friction is scalable.
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Choosing Nonmortars: Does it Influence the
Performance of FETI-DP Algorithms?

Dan Stefanica

City University of New York, Baruch College, Department of Mathematics

Summary. We investigate whether different choices of nonmortar sides for the
geometrically conforming partitions inherent to FETI–DP influence the convergence
of the algorithms for four different preconditioners. We conclude experimentally
that they do not, although better condition number estimates exist for a Neumann-
Dirichlet choice of nonmortars.

1 Introduction

The dual–primal FETI (FETI–DP) method is an iterative substructuring
method using Lagrange multipliers. It was introduced in Farhat et al. [1999]
for two dimensional problems as a FETI–type algorithm which does not re-
quire solving singular problems on individual subdomains, and was extended
to three dimensional problems in Farhat et al. [2000] and Klawonn et al.
[2002]. The scalability and optimal convergence properties of FETI–DP were
established in Mandel and Tezaur [2001] and Klawonn et al. [2002].

Mortar finite elements were first introduced by Bernardi et al. [1994] and
are actively used in practice for their advantages over the conforming finite
elements, e.g., flexible mesh generation and straightforward local refinement.
Extending FETI and FETI–DP algorithms to mortar discretizations is a nat-
ural idea and such work can be traced back to Lacour and Maday [1997]. Most
of this work was computational, investigating the convergence properties of
various FETI preconditioners for mortar algorithms; see, e.g., Stefanica [2001,
2002]. Condition number estimates were established for two FETI–DP pre-
conditioners for mortar methods by Dryja and Widlund [2002a,b]. Recently,
similar bounds were obtained by Dryja and Proskurowski [2004] for problems
with discontinuous coefficients.

The FETI–DP algorithms discussed here are based on geometrically con-
forming partitions of the computational domain. Across every subdomain side
there is exactly one edge belonging to a different subdomain. For mortar meth-
ods, either one of these sides is chosen to be a nonmortar, with the other one
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being a mortar side. In Dryja and Widlund [2002a], the condition number
estimate for a FETI–DP preconditioner depends on whether the choice of
nonmortars is random or is made according to a Neumann-Dirichlet order-
ing of the subdomains, i.e., with the sides of any subdomain being either all
mortars or all nonmortars.

In this paper, we investigate experimentally this result and conclude that,
in practice, the special choice of nonmortars does not influence the numerical
convergence of the FETI–DP algorithm. We also compare the numerical per-
formance of three other possible preconditioners, a generalized one suggested
in Dryja and Widlund [2002b] and two other similar to the Dirichlet and gen-
eralized preconditioners for FETI mortar algorithms, and conclude that the
generalized preconditioners have the best convergence properties.

The notations in this paper are related to those of Dryja and Widlund
[2002b] and of Farhat et al. [1999]. For details omitted here due to space
constraints, we refer the reader to the same two papers.

2 Mortar Finite Element Spaces of First Type

To construct the mortar finite element space W , the computational domain Ω
is partitioned into nonoverlapping rectangular subdomains Ωi, i = 1 : N . For
the FETI–DP algorithms considered here, the partition must be geometrically
conforming, i.e, the intersection between the closures of any two subdomains
is either empty, or consists of a vertex or an entire edge, and the mortars must
be of the first type, i.e., continuity is required at the corner nodes.

Across the interface Γ , i.e., the set of points that belong to the bound-
aries of at least two subregions, we do not require pointwise continuity. Since
the partition is geometrically conforming, the edges of the subdomains are
pairwise opposite. From each pair, one edge, denoted by δm(i) and assumed
to belong to the subdomain Ωi, is chosen to be a nonmortar side, while the
other edge, denoted by γm(j) and belonging to Ωj , is a mortar side.

The restriction of a mortar function v ∈ W to any subdomain is a P1

or a Q1 finite element function. We assume that each subdomain Ωi has a
diameter of order H and that its triangulation has a mesh size of order h. Let
vi and vj be the restrictions of v to an arbitrary nonmortar side δm(i) and
to its opposite mortar side γm(j), respectively. Then vi and vj have the same
values at the left and right end points of δm(i) and γm(j), respectively, and the
following mortar conditions have to be satisfied:

∫

δm(i)

(vi − vj) ψ ds = 0, ∀ ψ ∈M(δm(i)), (1)

where M(δm(i)) is a space of test functions having the same dimension as
the number of interior nodes of δm(i), i.e., piecewise linear functions on δm(i)

which are constant in the first and last mesh interval.
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For algorithmic purposes, we derive a matrix formulation for the mortar
conditions (1). Let vi,r be the vector of interior nodal values of vi on δm(i),
and let vi,c be the vector of corner nodal values of vi on δm(i). We define vj,r
and vj,c similarly for vj on γm(j). The matrix formulation of (1) is

Bδm(i),rvi,r + Bδm(i),cvi,c − Bγm(j),rvj,r − Bγm(j),cvj,c = 0, (2)

where the matrix Bδm(i),r is banded for classical mortars and equal to the
identity for the biorthogonal mortars of Wohlmuth [2000].

3 FETI–DP Algorithms for Mortars

As model problem we choose the Poisson problem with mixed boundary con-
ditions on Ω. Given f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∆u = f on Ω, with u = 0 on ∂ΩD and ∂u/∂n = 0 on ∂ΩN , (3)

where ∂ΩN and ∂ΩD are the parts of ∂Ω = ∂ΩN ∪∂ΩD where Neumann and
Dirichlet boundary conditions are imposed, respectively,

To discretize (3), let Wi be the restriction to Ωi of the mortar finite el-

ement space W . The primal variables space is Ŵ , the subspace of Πn
i=1Wi

of functions continuous at each corner node. Lagrange multipliers are used
to enforce the mortar conditions (1). The dual variables space is ΠmM(δm),
where the product is considered over all the nonmortar sides. We partition the
nodal values of v ∈ Ŵ into the corner nodal values vc and the remainder nodal
values vr. Note that vr can be further split into interior nodal values vint and
remainder boundary nodal values vbr . The continuity conditions at the sub-
domain corners are enforced by using a global vector of degrees of freedom vgc
and a global to local map Lc with one nonzero entry per line equal to 1, and by
requiring that vc = Lcv

g
c . Therefore, v = [vint; vbr ; vbc ] = [vr; vbc ] = [vr;Lcv

g
c ].

Let K be the stiffness matrix of the discrete problem and let Krr, Krc,
and Kcc be its blocks corresponding to a decomposition of v into vr and vc.
We use a Lagrange multiplier matrix B to enforce the mortar conditions (1).
The matrix B has one horizontal block, Bδm(i)

, for each nonmortar side δm(i),
built from the columns of Bδm(i),r, Bδm(i),c, Bγm(j),r, and Bγm(j),c, with all the
other entries zero; cf. (2). We can also write B = [Br Bc] using vertical blocks
corresponding to the remainder and corner nodes.

The saddle point formulation of the model problem is


I 0 0
0 LTc 0
0 0 I





Krr Krc B

T
r

KT
rc Kcc B

T
c

Br Bc 0





I 0 0
0 Lc 0
0 0 I





ur
ugc
λ


 =




fr
LTc fc

0


 . (4)

After eliminating the primal variables ur and ugc we obtain the dual problem

FIrr + F̃Irc (K
∗
cc)
−1F̃TIrc

λ = d, (5)
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where FIrr = BrK
−1
rr B

T
r , F̃Irc = BrK

−1
rr Krc − BcLc, and K∗cc = LTc (Kcc −

KcrK
−1
rr Krc)Lc.

As pointed out by Kim and Lee [2002], the FETI–DP algorithms of Dryja
and Widlund are not applied on the mortar spaceW , but on a space very close
to W . We call this the DW setting throughout the rest of the paper. Using the
notations from section 2, the condition (3.4) from Dryja and Widlund [2002b]
(the same as (6) from Dryja and Widlund [2002a]) used to build the block of
B corresponding to the nonmortar δm(i) can be expressed as

Bδm(i),rvi,r + Bγm(j),rvj,r = 0,

which is different from the mortar condition (2). Thus, the discrete problem
solved in Dryja and Widlund [2002b,a] can be written as



I 0 0
0 LTc 0
0 0 I





Krr Krc B

T
r

KT
rc Kcc 0
Br 0 0





I 0 0
0 Lc 0
0 0 I





ur
ugc
λ


 =




fr
LTc fc

0


 (6)

and corresponds to (4) for Bc = 0. The dual problem for the DW setting is

BrS̃
−1BTr λ = d̃, (7)

where BrS̃
−1BTr = FIrr + FIrc (K

∗
cc)
−1FTIrc

, with FIrc = BrK
−1
rr Krc obtained

from F̃Irc by setting Bc = 0. We note that our matrix Br is the same as the
matrix B from Dryja and Widlund [2002b,a].

Let Srr = Kbrbr −KbrintK
−1

int,intK
T
brint be a Schur complement–type ma-

trix. The Dirichlet preconditioner M−1
D and the generalized preconditioner

M̃−1
gen were introduced in Dryja and Widlund [2002b] for the DW setting dual

problem (7):

M−1
D = BrSrrB

T
r ; (8)

M̃−1
gen = diag(BrB̃

T
r )−1B̃rSrrB̃

T
r diag(B̃rB

T
r )−1. (9)

The generalized matrix B̃r is obtained by scaling the Bγm(j),r in the block
corresponding to the nonmortar side δm(i) by hδm(i)

/hγm(j)
; see (3.13) from

Dryja and Widlund [2002b] for more details.
In Dryja and Widlund [2002a], it was shown that, for a random choice

of the nonmortar sides, κ(M−1
D ) ≤ C(1 + logH/h)4, while κ(M−1

D ) ≤ C(1 +
logH/h)2 if the nonmortar sides are chosen according to a Neumann–Dirichlet
ordering, i.e., with all the sides of any subdomain being either all mortars or
all nonmortars. In Dryja and Widlund [2002b], it was shown that κ(M̃−1

gen) ≤
C(1 + logH/h)2. All constants denoted by C are independent of H and h.

For the dual problem (5), based on the numerical performance of FETI
algorithms for mortars, see Stefanica [2001], we suggest the following Dirichlet
and generalized preconditioners:

F−1
D = BrSrrB

T
r ; (10)

F−1
gen = diag(BrB

T
r )−1BrSrrB

T
r diag(BrB

T
r )−1. (11)



Choosing Nonmortars for FETI-DP 381

4 Numerical Results

We tested the numerical performance of the preconditioners F−1
gen (11) and

F−1
D (10) for the mortar dual problem (5), and the preconditioners M̃−1

gen (9)

and M−1
D (8) for the approximate dual problem (7).

Our interests were four–fold:
• check the convergence and scalability properties of the resulting algorithms;
• compare the performance of the algorithms for mortars to that of the algo-
rithms for the DW setting;
• investigate whether a Neumann–Dirichlet choice of nonmortars improves
convergence, in particular for the Dirichlet preconditioner M−1

D ;
• decide which of the four preconditioners performs best.

The model problem was the Poisson equation on the unit square Ω with
mixed boundary conditions. We partitioned Ω into N = 16, 36, 64, and 121
congruent squares, and Q1 elements were used in each square. For each par-
tition, the number of nodes on each edge, H/h, was taken to be, on average,
5, 10, 20, and 40, respectively, for different sets of experiments. The meshes
did not match for any neighboring subdomains. The preconditioned conjugate
gradient iteration was stopped when the residual norm decreased by a factor
of 10−6. The experiments were carried out in MATLAB.

We report iteration counts, condition number estimates, and flop counts
for two different sets of experiments: for randomly chosen nonmortars, in
Table 1, and for a Neumann–Dirichlet choice of nonmortars, in Table 2.

Table 1. Convergence results, randomly chosen nonmortars

Generalized Dirichlet DW Generalized DW Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 5 7 2.6 3.0e-1 24 32 1.0e+0 8 2.3 3.3e-1 26 32 1.1e+0
16 10 9 3.4 1.7e+0 22 41 4.3e+0 9 3.1 1.7e+0 28 40 5.4e+0
16 20 10 4.5 1.2e+1 23 52 2.8e+1 10 4.0 1.2e+1 30 51 3.6e+1
16 40 11 5.7 9.5e+1 25 65 2.2e+2 10 4.9 8.6e+1 32 62 2.8e+1

36 5 8 2.5 9.9e-1 25 31 3.1e+0 9 2.6 1.0e+0 30 33 3.5e+0
36 10 10 3.5 5.1e+0 26 40 1.3e+1 11 3.4 5.4e+0 32 41 1.6e+1
36 20 12 4.5 3.5e+1 29 51 8.6e+1 12 4.4 3.4e+1 35 52 1.0e+2
36 40 13 5.7 2.7e+2 30 63 6.3e+2 13 5.5 2.6e+2 38 64 7.8e+2

64 5 10 2.8 2.8e+0 28 36 7.9e+0 10 2.8 2.5e+0 32 37 8.0e+0
64 10 12 3.7 1.2e+1 29 47 3.0e+1 12 3.7 1.2e+1 37 48 3.6e+1
64 20 13 4.8 7.1e+1 32 60 1.8e+2 13 4.8 6.9e+1 41 61 2.2e+2
64 40 15 6.1 5.6e+2 34 76 1.3e+3 15 6.0 5.5e+2 45 76 1.7e+3

121 5 9 2.7 6.4e+0 29 36 2.1e+1 11 3.4 6.7e+0 37 41 2.3e+1
121 10 12 3.7 2.8e+1 30 45 7.2e+1 13 4.5 2.8e+1 41 52 8.9e+1
121 20 13 4.8 1.5e+2 33 61 3.8e+2 14 5.6 1.5e+2 46 68 5.0e+2
121 40 15 6.2 1.1e+3 36 77 2.6e+3 16 6.9 1.1e+3 51 84 3.7e+3
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Table 2. Convergence results, Neumann–Dirichlet choice for nonmortars

Generalized Dirichlet DW Generalized DW Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 5 7 2.6 3.0e-1 20 21 8.7e-1 7 2.3 2.9e-1 22 21 4.6e+0
16 10 8 3.5 1.6e+0 19 26 3.7e+0 8 3.1 1.5e+0 24 25 4.6e+0
16 20 9 4.5 1.1e+1 19 33 2.3e+1 9 4.0 1.1e+1 24 32 2.9e+1
16 40 10 5.7 8.6e+1 19 42 1.7e+2 9 5.0 7.7e+1 26 40 2.3e+1

36 5 8 2.5 9.9e-1 25 33 3.1e+0 9 2.6 1.0e+0 28 33 3.2e+0
36 10 10 3.4 5.1e+0 26 42 1.3e+1 11 3.5 5.4e+0 31 43 1.5e+1
36 20 12 4.5 3.5e+1 29 54 8.6e+1 12 4.4 3.4e+1 34 54 9.8e+1
36 40 13 5.7 2.7e+2 31 67 6.5e+2 13 5.8 2.6e+2 37 68 7.6e+2

64 5 9 2.7 2.5e+0 29 38 8.2e+0 10 2.9 2.5e+0 33 39 8.0e+0
64 10 12 3.7 1.2e+1 29 49 3.0e+1 12 3.8 1.2e+1 36 49 3.5e+1
64 20 13 4.8 7.1e+1 30 63 1.7e+2 13 4.8 6.9e+1 42 63 2.3e+2
64 40 15 6.2 5.6e+2 31 79 1.2e+3 15 6.1 5.5e+2 46 80 1.7e+3

121 5 9 2.7 6.4e+0 30 40 2.2e+1 10 3.2 6.1e+0 35 38 2.2e+1
121 10 12 3.7 2.8e+1 31 52 7.4e+1 12 4.2 2.6e+1 39 48 8.4e+1
121 20 13 4.8 1.4e+2 33 66 3.8e+2 14 5.3 1.5e+2 44 61 4.8e+2
121 40 15 6.2 1.1e+3 35 83 2.5e+3 16 6.6 1.1e+3 49 77 3.6e+3

The convergence patterns reported in Table 1 and Table 2, showed that
all preconditioners yielded scalable algorithms. When the number of nodes
on each subdomain edge, H/h, was fixed and the number of subdomains, N ,
was increased, the iteration count showed only a slight growth. When H/h
was increased, while the partition was kept unchanged, the small increase in
the number of iterations was satisfactory. The condition number estimates
exhibited a similar dependence, or lack thereof, on N and H/h. Note that the
Dirichlet preconditioner for the DW setting, M−1

D , albeit scalable, required
the largest number of iterations, about three times as many as F−1

gen, and had

condition numbers about one order of magnitude larger than for F−1
gen.

The generalized preconditioners F−1
gen and M̃−1

gen had almost the same
iteration counts and flop counts and were cheapest to implement. This was
due in part to the fact that, for FETI–DP, the matrices diag(BrB

T
r ) and

diag(BrB̃
T
r ) were block diagonal. The Dirichlet preconditioner for mortars,

F−1
D , was noticeably more efficient than its DW counterpart, M−1

D .
By comparing the convergence results from Table 1 to those from Ta-

ble 2 for each preconditioner, we concluded that the answer to the question
from the title of the paper is that choosing nonmortars does not influence
the performance of the FETI–DP algorithms. A relatively small improvement
in terms of iteration counts was achieved consistently for M−1

D , the precon-
ditioner for which a tighter condition number estimate was proved for the
Neumann–Dirichlet choice of nonmortars in Dryja and Widlund [2002a].
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The generalized mortar preconditioners F−1
gen and M̃−1

gen performed very
similarly and were clearly better in terms of iteration and flop counts and
condition number estimates than the Dirichlet preconditioners F−1

D and M−1
D .

We conclude by investigating the robustness of the FETI–DP algorithms
for mortar discretizations in a more complicated setting, e.g., for an elliptic
problem with jump coefficients, −div(ρ(x)∇u) = f . The domain Ω was par-
titioned into four equal squares and ρ(x) was chosen to be constant in each
of these squares. The ratio of the constants in neighboring squares was 1000.
The mortar discretizations considered were similar to those used previously.

The results reported in Table 3 confirm the scalability of the FETI–DP
algorithms with respect to the number of subdomains and to the number of
nodes on each edge, for the generalized and Dirichlet preconditioners, modified
as suggested in Klawonn et al. [2002] to account for the jump coefficients,
for randomly chosen mortars. As expected, the generalized preconditioner
performs better in terms of both condition numbers and computational costs.

Due to space constraints, we do not present the numerical results for the
DW–type preconditioners, or for a Neumann–Dirichlet choice of nonmortars,
but we note that exactly the same type of convergence behavior as for the
Poisson problem was observed for the elliptic problem with jump coefficients.

Table 3. Convergence results, coefficients with jumps

Generalized Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops

16 5 11 9.2 4.7e-1 35 54 1.6e+0
16 10 13 10.8 2.6e+0 37 68 7.4e+0
16 20 14 12.1 1.6e+1 38 80 4.8e+1
16 40 15 13.3 1.3e+2 41 92 3.7e+2

36 5 12 9.6 1.5e+0 36 56 4.5e+0
36 10 14 11.3 7.2e+0 39 71 2.0e+1
36 20 15 12.9 4.5e+1 42 78 1.3e+2
36 40 16 13.6 3.3e+2 46 91 1.0e+3

64 5 14 9.9 4.0e+0 40 61 1.2e+1
64 10 15 12.1 1.6e+1 43 74 4.4e+1
64 20 17 13.4 9.4e+1 47 89 2.7e+2
64 40 19 13.9 7.2e+2 50 98 2.0e+3

128 5 14 10.3 1.0e+1 42 63 3.0e+1
128 10 15 12.0 3.6e+1 45 76 1.1e+2
128 20 17 13.5 2.0e+2 48 91 5.6e+2
128 40 19 13.9 1.5e+3 52 100 3.7e+3
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Summary. In this contribution, we are concerned with electrothermomechanical
coupling problems as they arise in the modeling and simulation of high power elec-
tronic devices. In particular, we are faced with a hierarchy of coupled physical effects
in so far as electrical energy is converted to Joule heat causing heat stresses that
have an impact on the mechanical behavior of the devices and may lead to mechani-
cal damage. Moreover, there are structural coupling effects due to the sandwich-like
construction of the devices featuring multiple layers of specific materials with dif-
ferent thermal and mechanical properties. The latter motivates the application of
domain decomposition techniques on nonmatching grids based on individual finite
element discretizations of the substructures. We will address in detail the modeling
aspects of the hierarchy of coupling phenomena as well as the discretization-related
couplings in the numerical simulation of the operating behavior of the devices.

1 Introduction

We consider the application of heterogeneous domain decomposition method-
ologies in the simulation of electrothermomechanical coupling problems. Such
multiphysics coupling problems occur in many applications such as Micro-
Electro-Mechanical-Systems (MEMS) and in high power electronics. In the
latter case, a characteristic feature of the operational behavior of the de-
vices and systems is that electric energy is converted to Joule heat causing
heat stresses which in turn lead to deformations of the underlying mechanical
structure and even to damage, if no appropriate cooling is provided.
Basically, the modeling is done in the macroscopic regime by using a contin-
uum mechanical approach. On the other hand, failure mechanisms such as
crack initiation and propagation strongly depend on microstructural details
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which additionally are taken into account by means of an empirical crack
model.
As algorithmic tools in the numerical simulation of the appropriately dis-
cretized coupled system of PDEs, we use adaptive multilevel methods and
domain decompositions on nonmatching grids. As we shall see, the decom-
position of the computational domain is in a natural way given by the ge-
ometrical structure of the devices featuring subdomains of strongly different
aspect ratios and consisting of materials with largely different thermomechan-
ical properties.
The paper is organized as follows: In section 2, as an example for a device
whose operational behavior is based on electrothermomechanical coupling, we
consider an Integrated High Voltage Module. Section 3 provides the math-
ematical modeling of the coupling problem, whereas section 4 addresses the
algorithmic tools used in the numerical simulation. Finally, in section 5 we
present simulation results illustrating the distribution of the temperature and
equivalence stresses as well as the initiation of cracks in critical parts of the
module.

2 Integrated High Voltage Modules

In high power electronics, Integrated High Voltage (IHV) Modules are used
as converters for high power electromotors. They consist of specific semicon-
ductor devices, as for instance, Insulated Gate Bipolar Transistors (IGBTs)
and power diodes serving as switches for the electric currents (see the topmost
blocks in Figure 1 referred to as Ω1 in the sequel).

Wire bonds
(300 µm)

IGBT, Diode (3300 V)

Hard cast

AIN-DCB-Substrate

Cu ground plate

Current contacts (300A ... 1800 A) Housing

Soft cast

Soldered
joints

Fig. 1. Schematic representation of an Integrated-High-Voltage Module

Due to high currents up to several kiloamperes, electric energy is converted
to Joule heat which leads to a considerable self-heating of the device. In order
to facilitate an appropriate distribution of the heat, these blocks are fixed on
several layers of different materials (copper and aluminum-nitride) attached
to each other by thin soldered joints. The union of these blocks will be denoted
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by Ω2. Finally, the copper ground plate is mounted on a cooling device. With
regard to failure, the critical parts of the device are the wire bonds connecting
the current contacts with the semiconductor devices and the soldered joints.

3 The mathematical model

The operational behavior of the IHV Module involves processes on two dif-
ferent time scales: There is a fast time scale which is the operation of the
semiconductor devices having switching times of less than 100 nanoseconds,
and there is a slow time scale with regard to the temporal evolution of the
temperature in the module which occurs in the range of minutes.
As a model simplification, these two processes are decoupled in the sense that
the semiconductor device equations, considered in Ω1, are treated first to com-
pute the generated Joule heat as an input for the heat equation considered in
Ω2.
We use the classical drift-diffusion model consisting of a potential equation
for the electric potential ψ that is coupled with the continuity equations for
the carrier concentrations n and p where Jn and Jp denote the densities of
the electrons and holes, respectively.

− ∇ · ε∇ψ + Ndop(n, p) + q(n− p) = 0 , (1)

∂n

∂t
= + q−1∇Jn + G(Jn,Jp,E) − R(n, p) , (2)

∂p

∂t
= − q−1∇Jp + G(Jn,Jp,E) − R(n, p) , (3)

Jn = − q µn n ∇ψ , Jp = − q µp p ∇ψ . (4)

Here, q stands for the elementary charge, whereas µn and µp refer to the
mobilities of the electrons and holes. Moreover, E = −∇ψ is the electric field
whereas Ndop , G and R refer to the doping profile, the generation and the
recombination. The dominant heat source is Joule heat HJ = |Jn|2/(qµnn)+
|Jp|2/(qµpp), while other sources based on the Seebeck and Nernst effect can
be neglected.
The temporal and spatial distribution of the temperature T is described by the
heat equation considered in the domain Ω2 occupied by the aluminum-nitride
and copper blocks as well as the joints.

ρ c
∂T

∂t
= ∇ · (κ ∇T ) in Q2 := Ω2 × (t0, t1) , (5)

n · κ ∇T = HJ(t) on Γ0 × (t0, t1) , (6)

n · κ ∇T = h (T ∗ − T ) on Γ1 × (t0, t1) , (7)

n · κ ∇T = 0 on Γ2 × (t0, t1) , (8)

T (·, t0) = T0(·) in Ω2 . (9)
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Here, ρ , c, and κ stand for the density, heat capacity, and heat conductivity,
respectively. The Joule heat through the part Γ0 of the upper boundary of the
computational domain Ω2 attached to the semiconductor devices serves as the
source term. We further assume a heat exchange at the lower boundary Γ1

between the copper ground plate and the cooling device where h stands for the
heat transition coefficient and T ∗ denotes the ambient temperature. On the
other boundaries of Ω2 we assume perfect insulation. We note that the thermal
properties of the materials such as the heat capacity and the heat conductivity
are quite different which means that we experience jumping coefficients across
subdomain boundaries. As mentioned before, the self-heating of the devices
leads to heat stresses causing mechanical deformations. For all parts of the
module except the wire bonds and the joints, we assume the equations of
linear elasticity:

div σ(u) =
α (1− ν) E

(1 + ν) (1− 2ν)
∇(T − T0) in Ω2 , (10)

u = 0 on Γ1 , n · σ(u) = 0 on Γ0 ∪ Γ2 . (11)

Here, u and σ(u) stand for the displacement vector and the stress tensor.
Moreover, α denotes the thermal expansion coefficient, and E and ν refer
to Young’s modulus and Poisson’s ratio which are also strongly different for
the various materials. The wire bonds and the solders are possibly subject to
plastic deformation. Here, we assume stationary plasticity with the von Mises
yield criterion where the set K of admissible stresses is given in terms of the
Frobenius norm ‖ · ‖F of the deviatoric stress tensor and the von Mises yield
stress σY by K := {σ | ‖dev(σ)‖F ≤

√
2/3 σY }. The computational domains

are those occupied by the wires and the joints, respectively.
Cracks typically occur in the bonding zone where the wires are attached to
the chips and in the soldered joints ([Ramminger, Seliger, and Wachutka,
2000]). There exist empirical crack models that are based on macroscopic
data combined with microstructural data due to the nucleation and growth of
pores. For instance, the modified Gurson-Model ([Tvergaard, 1989]) consists
of a flow rule that reduces to the von Mises yield rule in case of vanishing
voids in the microstructure of the material:

σ2
E

σ2
Y

− 1 + 2 q f cosh((2σY )−1σii) − (q f)2 = 0 . (12)

Here, σE refers to the von Mises equivalence stress and σY stands for the
yield stress whereas σii is the trace of the Cauchy stress tensor. Moreover, f
denotes the pore volume fraction and q is a material parameter.

In case of plastic deformation, micropores nucleate and grow at places
of defects in the crystallographic structure. The pore evolution consists of
two parts, namely the nucleation of pores and the growth of already existing
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pores. For the latter, the growth rate is assumed to be proportional to the
hydrostatic part of the stress tensor whereas the nucleation part is controlled
by the plastic deformation. Altogether, this leads to an evolution equation for
the pore volume fraction f :

∂f

∂t
= (1− f)

∂εpii
∂t

+ dN exp(−1

2

(εpM − εN )2

sN
)
∂εN
∂t

, f(t0) = f0 . (13)

Here,
∂εp

ii

∂t is the trace of the plastic equivalent rate tensor, εN stands for
the mean nucleation equivalent plastic strain and εpM denotes the equivalent
plastic strain of the matrix material. Moreover, sN refers to the standard
deviation and dN is a material parameter depending on the volume fraction
of void nucleating particles.

4 Algorithmic tools for numerical simulation

The discretization of the drift diffusion model (1)-(4) is done by conforming P1
elements for the potential equation and mixed hybrid finite elements involving
the lowest order Raviart-Thomas elements RT0(K),K ∈ Th, for the continuity
equations with respect to an adaptively generated hierarchy of triangulations
Th of Ω1. Denoting by Pk(D), k ∈ lN0, the set of polynomials of degree k on
D and by F inth the set of interior faces of Th, we set

RT−1
0 (Ω1; Th) :=

∏

K∈Th

RT0(K) ,

W0(Ω1; Th) := {vh : Ω1 → lR | vh|K ∈ P0(K) , K ∈ Th} ,

M0(Ω1;F inth ) := {µh : ∪F∈Fint
h
F → lR | µh|F ∈ P0(F ) , F ∈ F inth } .

The discretized continuity equations are solved by a Gummel type iteration
where each iteration step requires the solution of the following problem (cf.,
e.g., [Brezzi, Marini, and Pietra, 1989]):
Find (jh, uh, λh) ∈ RT−1

0 (Ω1; Th) ×W0(Ω1; Th)×M0(Ω1;F inth ) such that for
all qh ∈ RT−1

0 (Ω1; Th) , vh ∈ W0(Ω1; Th), and µh ∈M0(Ω1;F inth ) there holds

∑

K∈Th

(∫

K

a−1jh · qhdx +

∫

K

uh divqhdx−
∑

F∈Fh(K)

∫

F

λh[nF · qh]Jdσ
)

= 0,

∑

K∈Th

(∫

K

divjh vhdx−
∫

K

buhvh dx
)

= −
∫

Ω

fvh dx,

∑

K∈Th

∑

F∈Fh(K)

∫

F

µh [nF · jh]Jdσ = 0 .
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Here, [nF · jh]J denotes the jump of the normal component of jh across in-
nerelement faces F ∈ Fh(K). Static condensation of jh and uh in the resulting
algebraic saddle point problem leads to a Schur complement system which
can be shown to be equivalent to a nonconforming Petrov-Galerkin approach
([Brezzi, Marini, and Pietra, 1989]). Denoting by CR1(Ω1; Th) the lowest or-
der nonconforming Crouzeix-Raviart space and by B(Ω1; Th) the space of
quartic bubble functions associated with each K ∈ Th, the problem is to find
uNC ∈ CR1(Ω1; Th)⊕B(Ω1; Th) such that for all vh ∈ CR1(Ω1; Th)

∑

K∈Th

∫

K

[
Pa−1(a ∇uNC) · ∇vh + b PuNC Pvh

]
dx = (Pf, vh)0;Ω1 .

where P : L2(Ω1) → W0(Ω1; Th) and Pa−1 : L2(Ω1)
2 → RT−1

0 (Ω1; Th) are
the orthogonal L2- resp. weighted L2-projection. Taking advantage of this
equivalence, a multilevel preconditioned iterative solver can be used, where the
multilevel preconditioner is the associated conforming one, put into effect by
transforming the nonconforming Crouzeix-Raviart space onto its conforming
counterpart (for details as well as for the realized adaptive grid refinement
based on a residual-type a posteriori error estimator we refer to [Hoppe and
Wohlmuth, 1997]).

As far as the discretization of the thermomechanical coupling problem
is concerned, we discretize in time by embedded Singly Diagonally Implicit
Runge Kutta (SDIRK) methods. For discretization in space, we use domain
decomposition methods on nonmatching grids. We consider a nonoverlapping,
geometrically conforming decomposition Ω2 = ∪ni=1Ω2,i , Ω2,i ∩Ω2,j = ∅, 1 ≤
i 6= j ≤ n, of the computational domain given by the sandwich like structure of
the module (cf. Figure 1) and refer to S = ∪ni=1(∂Ω2,i\∂Ω2) as the skeleton of
the decomposition. As we can see from the schematic representation of the IHV
Module, we are faced with subdomains of different aspect ratios. Moreover,
we know that the thermal and mechanical properties of the materials in the
individual subdomains are quite different resulting in strongly discontinuous
coefficient of the heat and mechanical equations across subdomain boundaries.
Therefore, we use individual triangulations Ti of the subdomains Ω2,i that do
not necessarily match on the interfaces between adjacent subdomains and
take care of the resulting nonconformity by mortar element methods based
on discretizations of the subdomain problems by continuous, piecewise linear
finite elements denoting by S1,ΓD (Ω2,i; Ti) the associated finite element spaces.
For Γij ⊂ S, we refer to γmij and γnmij as the mortar and nonmortar inheriting
its triangulations from Ti and Tj , respectively. We construct the multiplier
space Mh(γ

nm
ij ) in the meanwhile standard way under special consideration of

cross points. Setting Vh =
∏n
i=1 S1,ΓD (Ω2,i; Ti) and Mh =

∏
Γij⊂SMh(γ

nm
ij ),

the mortar finite element approach reads as follows: Find (uh, λh) ∈ Vh×Mh

such that
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ah(uh, vh) + bh(vh, λh) = ℓ(vh) , vh ∈ Vh , (14)

bh(uh, µh) = 0 , µh ∈Mh , (15)

where a(·, ·) : Vh × Vh → R is the bilinear form associated with the FE
discretized subdomain problems and

bh(vh, µh) = −
∑

Γij⊂S

∫

Γij

µh [vh]J dσ

is the bilinear form that realizes the weak continuity constraints across the
interfaces. The resulting algebraic saddle point problem is solved by multi-
level preconditioned Lanczos iterations with a block diagonal preconditioner,
where the first diagonal block consists of subdomain preconditioners, that
can be chosen as, for instance, BPX-preconditioners for the discretized sub-
domain problems, and the second diagonal block is an interface preconditioner
being spectrally equivalent to the Schur complement resulting from static con-
densation (for details we refer to [Hoppe, Iliash, Kuznetsov, Vassilevski, and
Wohlmuth, 1998]).
The stationary plasticity problems for the joints and the wire bonds have been
solved by the standard return-mapping algorithm.

5 Simulation results

Based on the mathematical models and the numerical methods described in
the previous sections, we have performed simulations of the operational behav-
ior of the IHV Module. Figure 2 displays the distribution of the temperature
and the von Mises equivalence stresses in a cross section of the upper soldered
joints. Temperature peaks of more than 1000C and the largest equivalence
stresses occur in the center of the joints located below the IGBTs and power
diodes. The simulation results are in good agreement with experimentally
observed data.

Fig. 2. Temperature distribution (left) and distribution of the equivalence stresses
(right) in the upper soldered joint
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We further consider the initiation and propagation of cracks in the wire
bonding zone. Figure 3 shows a light microscopy of a crack opening in the wire
bonding zone (left) as well as the plastic strain behavior at the beginning
of the bonding zone (right) along the interface direction (solid lines) and
perpendicular to it (dotted lines). Close to the crack tip, the wire is under
tension in x-direction (upper curves) and under compression in y-direction
(lower curves).

Acknowledgement. The work of the authors has been supported by the Federal Min-
istry for Education and Research (BMBF) under Grant No. 03HOM3A1.

Fig. 3. Light microscopy of a crack (left) and the computed plastic strain at the
beginning of the bonding zone (right)
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Summary. This work is the first step towards a multiphysics strategy for free-
surface flows simulation. In particular, we present a strategy to couple one and
two-dimensional hydrostatic free surface flow models. We aim to reduce the compu-
tational cost required by a full 2D model. After introducing the two models along
with suitable a priori error estimates, we discuss the choice of convenient match-
ing conditions stemming from the results obtained in Formaggia et al. [2001]. The
numerical results in the last section confirm the soundness of our analysis.

1 Introduction

Final aim of our research is an efficient and accurate numerical simulation of
the motion of water in a complex system of channels such as, for instance,
the well-known Venice lagoon. A hydrodynamic configuration of this type
involves a wide spectrum of space and time scales related to the presence of
different physical phenomena. It is well known that in hydrodynamics there
exists a hierarchy of models derived from the Navier-Stokes equations for an
incompressible free-surface fluid. Essentially we can distinguish among 1D,
2D and 3D models of hydrostatic and non-hydrostatic type. In descending
order of complexity, for the 3D case we can consider either the free surface
Navier-Stokes or the hydrostatic 3D shallow water equations; concerning the
2D situation the Boussinesq, Serre or Saint-Venant equations can be adopted;
finally the 1D counterpart of these latter models can be used (see, e.g., Miglio
et al. [1999], Vreugdenhil [1998], Whitham [1974]). In particular, in this paper
we consider only shallow water models, suitable for configurations where the
vertical scales are much smaller than the corresponding horizontal ones.
Ideally one should use a full 3D model to capture all the physical features
of the problem at hand. However, this approach is characterized by a huge
computational effort. Thus, the basic idea is to reduce the computational cost
by solving the more expensive model only in some parts of the domain. In
this work we deal with the coupling of the 2D and 1D shallow water models.
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This choice turns out to be reasonable for instance in the presence of a river
bifurcation such as the one shown in Fig. 1 (right). We extend the analysis
provided in Formaggia et al. [2001], where the 3D Navier-Stokes equations
are coupled with a convenient 1D model for the description of blood flow in
a compliant vessel, to the case of free surface flows. Even if, in our case, the
dimension of the coupled models is different, we resort to a similar analysis
to derive the suitable coupling conditions.

The outline of the paper is as follows. Sect. 2 deals with the 2D model. In
Sect. 3, we provide the 1D model and a corresponding stability analysis. In
Sect. 4, a set of interface conditions for sub-critical flows is proposed in order
to couple the two models. Finally, numerical results are presented in Sect. 5.

2 The 2D Model

We consider the description of the motion of a free-surface viscous incom-
pressible fluid when the vertical scales are much smaller compared with the
corresponding horizontal ones. This allows us to consider the shallow water
theory whose leading hypothesis is the hydrostatic approximation of the pres-
sure, i.e., the pressure of the fluid is assumed to depend on the total water
depth only. Many of the 1D and 2D hydrodynamic models, successfully used
in practical applications, depart from this assumption.

The 2D model is represented by the Saint-Venant or shallow water equa-
tions whose conservative form reads as follows




∂(hU)

∂t
+∇ · (hU⊗U) + g h∇h = 0 with x ∈ Ω and t > 0,

∂h

∂t
+∇ · (hU) = 0 with x ∈ Ω and t > 0,

(1)

where x = (x, y)T , U = (u, v)T is the average velocity, h denotes the total
water depth and Ω ⊂ R2 is a bounded open set. Of course, system (1) has to
be provided with suitable initial and boundary conditions (see, e.g., Agoshkov
et al. [1993]). We assume to be in the presence of a flat bottom and the effect
of the friction is neglected. Moreover, we are interested in sub-critical flow
regimes. The theory on hyperbolic systems can be applied to compute the
eigenvalues and eigenfunctions of (1). With this aim, by considering a region
of smooth flow, we can obtain the quasi-linear form of (1)

∂W

∂t
+A (W)

∂W

∂x
+B (W)

∂W

∂y
= 0 ,

where W = (u, v, h)T ,

A =



u 0 g
0 u 0
h 0 u


 and B =



v 0 0
0 v g
0 h v


 .
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It is well known that the eigenvalues of system (1) are

µ1 = −(cos(φ)u + sin(φ) v), µ2, 3 = −(cos(φ)u + sin(φ) v) ±
√
g h ,

φ being the direction of the characteristic lines, while the associated eigen-
functions are given by

w1 =




sin(φ)

− cos(φ)

0


 , w2, 3 =



±
√
g/h cos(φ)

±
√
g/h sin(φ)

1


 .

Concerning the stability analysis, a priori results are available in the literature
for the Saint-Venant equations in the conservative form and provided with
suitable boundary conditions (see, for instance, Agoshkov et al. [1993]).

3 The 1D Model

In the case Ω is an open channel, the 2D Saint-Venant equations (1) can
be replaced by a 1D shallow water model, by assuming that the velocity is
uniform over any cross section, that the channel is sufficiently straight and
its slope sufficiently mild and uniform throughout the region. Moreover, the
streamwise bottom slope and the lateral inflow are assumed equal to zero and
the bottom friction is neglected as in the 2D model.

We focus on the case of one-dimensional channels with a rectangular cross-
section. This choice turns out not to be so restrictive in realistic situations.
Indeed, even if the cross-section is irregular, a sophisticated channel schema-
tization can be employed by resorting to rectangular sections (see Schulz and
Steinebach [2002]). In such a case the 1D model reduces to the system





∂A

∂t
+
∂Q

∂x
= 0 with x ∈ (a, b) and t > 0,

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= 0 with x ∈ (a, b) and t > 0,

(2)

where A is the area of the wet cross-section, Q is the discharge and h denotes
the total water depth. System (2) has to be supplied with proper boundary
conditions. Without reducing the generality of our analysis, we assume that
the algebraic relation

h = ψ(A) + h0, with
∂ψ

∂A
> 0 and ψ(A0) = 0, (3)

holds between the total water depth and the area. Here h0 stands for the
constant undisturbed water depth, A0 is the area of the corresponding wet
section while ψ(A) = (A−A0)/L, L being the width of the section.
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Assumption (3) allows us to rewrite (2) as




∂A

∂t
+
∂Q

∂x
= 0 with x ∈ (a, b) and t > 0,

∂Q

∂t
+ 2

Q

A

∂Q

∂x
+

(
g A

∂h

∂A
− Q2

A2

)
∂A

∂x
= 0 with x ∈ (a, b) and t > 0.

(4)
We start from the quasi-linear form (4) to study the mathematical properties
of the solutions of the 1D model. Under the assumption (3), it can be proved
that system (2) is hyperbolic since it has two real eigenvalues λ1,2 = u ± c,
where u = Q/A while

c(A) =

√
g A

∂ψ(A)

∂A
=
√
gh

is the celerity of the system. In such a case it is also possible to compute the
characteristic variables given by

W1,2 = u±
∫ A

A0

c(τ)

τ
dτ = u±

∫ A

A0

√
gτ

L

1

τ
dτ = u± 2

√
g

L

[√
A−

√
A0

]
.

3.1 Stability Analysis

In this section we provide an a priori estimate for system (2).
We assume that, for any time t > 0, the area A remains positive and that
the eigenvalues λ1 and λ2 are of opposite sign (λ1 > 0, λ2 < 0), that is we
consider a sub-critical and unidirectional flux. This is the most interesting
situation in view of the coupling with the 2D model. We endow system (2)
with the following general initial and boundary conditions:

A(x, 0) = A∗(x), Q(x, 0) = Q∗(x) with a < x < b,

W1 = g1(t) at x = a, W2 = g2(t) at x = b, with t > 0.
(5)

Let us introduce the energy associated with model (2), defined, for any t > 0,
as

E(t) =
1

2g

∫ b

a

A(x, t)u2(x, t) dx +

∫ b

a

Ψ(A(x, t)) dx,

with Ψ(A) =
∫ A
A0
ψ(τ) dτ . Thanks to (3), we can guarantee that Ψ(A) and the

energy E(t) are positive functions, for any t > 0 and for any Q and A strictly
positive.

Thus, the following conservation property can be proved.

Lemma 1. Let us assume that relation (3) holds. Then for any T > 0, we
have

E(T ) +

∫ T

0

Q
(
(h− h0) +

1

2 g
u2
)∣∣∣
b

a
dt = E(0), (6)

E(0) depending only on the initial values A∗ and Q∗.
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We refer to Miglio et al. [2003] for the proof of this result as well as for
inequality (7). Result (6) can be used to derive an energy estimate for the 1D
problem (2).

Proposition 1. Let us assume that the boundary data g1 and g2 satisfy the
following restrictions

g1(t) > −2

√
gA0

L
and g2(t) < 2

√
gA0

L
.

Then, there exists a positive function F = F
(
g1, g2,

A0

L

)
such that

E(T ) ≤ E(0) +

∫ T

0

F

(
g1(t), g2(t),

A0

L

)
dt , (7)

i.e., the 1D model problem (2) provided with conditions (5) is stable.

Remark 1. If homogeneous boundary conditions are chosen in (5), estimate
(7) simplifies to E(T ) ≤ E(0) , provided that 2

√
A0/3 <

√
A < 2

√
A0.

We remark that no energy estimate is available for a general cross-section.

4 Coupling of the Two Models

After having proved the well-posedness of both the 1D and the 2D problems,
we can analyze the coupling of the two models.

Let us consider the coupling sketched on the left of Fig. 1. We denote with
a the matching point of the two models. The cross-section at x = a is assumed
to be a rectangle and its outward normal is along the x-direction. At the right-
hand side of a, i.e., in ω, we solve the 1D model (2) which provides the physical
quantities A1D, Q1D and h1D (and, as a consequence, u1D = Q1D/A1D). At
the left-hand side of a, that is in Ω, the 2D Saint-Venant equations (1) are
solved and the associated physical quantities are A2D, Q2D and h2D to be
defined shortly.

L/2

−L/2

Ω
ωa

ω

ω
a

1

2

2

a1

Ω

Fig. 1. Coupling of 2D with 1D models



400 Edie Miglio, Simona Perotto, and Fausto Saleri

As we are linking quantities of different dimension, we can, for instance, reduce
the 2D ones to one-dimensional information by averaging the two-dimensional
terms. With this aim, let us introduce

u2D =
1

L

∫ L
2

−L
2

u(a, y) dy , h2D =
1

L

∫ L
2

−L
2

h(a, y) dy =
A2D

L
, Q2D = A2D u2D ,

i.e., the mean velocity, the mean total water depth and the mean discharge,

where A2D =
∫ L

2

−L
2

h(a, y) dy. Due to the unidirectional flow assumption, from

the 2D to the 1D model, we have a subcritical outflow for the 2D system (with
two outgoing characteristics) and a subcritical inflow for the one-dimensional
problem (with an incoming characteristic). It seems reasonable from a physical
view-point to demand the continuity of the following quantities at the interface
x = a:

• C1. cross-section area: A2D = A1D, with A1D = h2DL;
• C2. discharge: Q2D = Q1D;

• C3. entering characteristic: 2
√
h2D g + u2D = 2

√
h1D g +

Q1D

A1D
.

Notice that all the mean variables are considered in an average form on the 2D
problem. On the other hand, concerning the choice of the matching conditions,
we remark that C1. and C3. would suffice as C2. is automatically guaranteed
when C1. and C3. are satisfied.

4.1 The Sub-Domain Iteration Algorithm

To develop a splitting procedure to solve the coupled 1D-2D problem, we en-
force at the matching point x = a only those conditions which guarantee the
well-posedness of each subproblem in Ω and ω. With this aim, we exploit the
results of the stability analysis above. In particular,

• C1. is used for imposing the total depth at the outflow of the 2D model;
• C3. is used at the inflow of the 1D model.

Then each subproblem is completed with other boundary conditions:

• condition a: at the inflow of the 2D model we assign the total water depth
h(t) as a function of time;

• condition b: at the outflow of the 1D model a non-reflecting boundary con-
dition is employed.

Moreover, we recall that on the rigid walls of the channel, no slip boundary
conditions are assigned.
Thus the main steps of the algorithm are: given the solution of the coupled
problem at time tn, for k = 1, 2, . . .

1. solve the 2D problem with C1. plus condition a in order to obtain hn+1
k ,

Un+1
k ;
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2. compute 2
√
hn+1
k g + U

n+1

k , that is an approximation for the left-hand

side of C3.;
3. solve the 1D problem with C3. plus condition b.

We iterate until the coupling conditions are satisfied within a fixed tolerance.
In practice, it can be verified that, after 2 or 3 iterations, the difference be-
tween the 1D and averaged 2D values is very small.

5 Numerical Assessment

To test the effectiveness of the proposed algorithm we consider the case of a
river bifurcation as sketched on the right of Fig. 1. We want to solve the 2D
model only in Ω, i.e., near the bifurcation while the one-dimensional problem
is solved in ω1 and ω2. The numerical solution of the 2D model is obtained
by using the 2D counterpart of the approach proposed in Miglio et al. [1999].
As for the 1D model a finite volume method is employed. As initial condition
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Fig. 2. Initial elevation profile

for the elevation we choose the profile shown in Fig. 2, while the time step is
chosen equal to ∆t = 0.1s and for the space discretization of both the 1D and
2D models a mesh size h = 0.1m is used. In Fig. 3 we show two snapshots of the
approximate elevations provided by the full 2D shallow water model (on the
left) and by the coupled 2D-1D one (on the right), respectively, corresponding
to two different times (t = 250s and t = 300s). These results confirm the
soundness of the algorithm proposed in Sect. 4.1. The wave travels from the
2D to the 1D model without any significant distortion: no wave amplitude
reduction and no phase difference is evident.

Acknowledgement. This work has been supported by the project MIUR 2001 “Nu-
merical Methods in Fluid Dynamics and Electromagnetism”. We thank Prof. Luca
Formaggia for useful comments and suggestions.
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Fig. 3. Approximate elevation for the full 2D model (on the left) and for the coupled
2D-1D model (on the right) corresponding to t = 250s (top) and to t = 300s
(bottom)
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Summary. The theory of multilevel methods for solving Ritz-Galerkin equations
arising from discretization of elliptic boundary value problems is by now well de-
veloped. There exists a variety of survey talks and books in this area ( see e.g.Xu
[1992],Yserentant [1993],Oswald [1994] ). Among them the additive methods are
based on a suitable decomposition of the underlying projection operator ( thus
including also domain decomposition methods). In particular there is a close con-
nection with classical concepts in approximation theory via so- called Jackson and
Bernstein inequalities. These provide norm equivalences with the bilinear form un-
derlying the Ritz- Galerkin procedure and thus preconditioners for the arising stiff-
ness matrix.

The size of the constants in this equivalence is crucial for the stability of the
resulting iteration methods. In this note we establish robust norm equivalences with
constants which are independent of the mesh size and depend only weakly on the
ellipticity of the problem, including the case of strongly varying coefficients. Exten-
sions to the case of coefficients with discontinuities are possible, see Scherer [2003/4].
In the case of piecewise constant coefficients on the initial coarse grid there exist al-
ready estimates of the condition numbers of BPX-type preconditioners independent
of the coefficients (see Yserentant [1990], Bramble and J.Xu [1991]) however they
depend still on the mesh size (of the finest level).

1 Introduction

Given coefficients ai,k ∈ L∞(Ω), Ω ⊂ R2 consider the bilinear form

a(u, v) :=

∫

Ω

2∑

i,k=1

(ai,k(Diu)(Dkv) for u, v ∈ H1(Ω) = W 1
2 (Ω). (1)

Here W r
p (Ω) denotes the usual Sobolev space with norm (1 ≤ p <∞)

‖u‖r,p;Ω := ‖u‖p,Ω + |u|r,p;Ω, |u|r,p;Ω :=
∑

|α|=r
‖Dαu‖p;Ω.
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If a(u, v) is coercive (or L strongly elliptic) the Lax-Milgram-Theorem states
that the equation Lu :=

∑
i,k ∂i(ai,k∂ku) = f has a unique generalized solu-

tion u satisfying weakly Dirichlet boundary conditions, i.e. u ∈ H1
0 (Ω).

Let ψ1, · · · , ψN be a basis of a finite-dimensional subspace V of H1
0 (Ω).

The Ritz-Galerkin-equations compute an approximate solution uN ∈ V by

a(uN , ψk) = (f, ψk), uN :=

N∑

i=1

αiψi, 1 ≤ k ≤ N, .

These equations are solved iteratively for ν = 0, 1, 2, · · · :

u
(ν+1)
N = u

(ν)
N − ω Cr(ν), r(ν) := Au(ν) − b, b := {(f, ψk)}.

Here ω is a relaxation factor and the matrix C acts as a preconditioner for

the stiffness matrix A :=
(
a(ψi, ψk)

)
i,k

. The speed of convergence of this

iteration scheme is governed by the condition number κ(CA).
In the theory of additive multi-level- methods preconditioners for A have

been constructed for which κ(CA) = κ (C1/2AC1/2) = O(1), independent of
the mesh-size of the underlying FE-space. Thereby the matrix C is derived
via a norm equivalence with a(u, u) and the size of κ(CA) depends on the
equivalence constants.

2 Norm equivalences and Approximation processes

Given a hierarchical sequence of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ := V ⊂ X := L2(Ω), (2)

assume that there exist of bounded projections Pj : V −→ Vj satisfying

β0 a(u, u) ≤ ‖P0‖2X +

J∑

j=1

dj ‖Pju− Pj−1u‖2X ≤ β1 a(u, u) (3)

with suitable coefficients {dj} and constants β0, β1 independent of dj , u ∈ V
or J . Define via (u,Bu) := ‖P0‖2X +

∑J
j=1 dj ‖Pju − Pj−1u‖2X a positive

definite operator B for u ∈ V and let C above be the matrix representing
the inverse B−1. It is well known that then κ(CA) ≤ β1/β0, showing that C
is a suitable preconditioner. More generally one can chose the matrix C as
the discrete analogue of an operator C which is spectrally equivalent to B−1.
The derivation of the norm equivalence (3) proceeds in a meanwhile standard
manner (cf. Dahmen and Kunoth [1992], Bornemann and Yserentant [1993],
Oswald [1994]):
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1.Step: use the equivalence of a(u, v) with a Sobolev-norm, i.e.

A1 a(u, u) ≤ ‖u‖21,2,Ω ≤ A2 a(u, u), ∀u ∈ H1
0 (Ω), (4)

with positive constants A1, A2 (needed also in the Lax-Milgram theorem).

2.Step: describe the Sobolev-norm via the K-functional of J.Peetre

K(t, f ;X,Z) := inf
g∈Z

(‖f − g‖X + t|g|Z), t > 0, f ∈ X.

for normed linear spaces X,Z with Z ⊂ X and seminorm | · |Z such that Z is
complete under norm ‖ · ‖X + | · |Z . In the K-method of interpolation theory
(see Bennett-R.Sharpley [1988], chapter 5) one defines for any integer r and
0 < θ < r :

‖f‖(L2(Ω),W r
p (Ω))θ/r,p,q

:=
( ∞∑

n=0

[2nθK(2−nθ, f ;L2(Ω),W r
p (Ω))]q

)1/q

. (5)

There holds the equivalence with Besov seminorms (see Johnen and Scherer)

‖f‖(L2(Ω),W r
p (Ω))θ/r,p,q

≈ ‖f‖θ,p,q,Ω :=
( ∞∑

n=0

[2nθωr(2
−n, f)p]

q
)1/q

where ≈ denotes equivalence up to constants not depending on f . Further the
equivalence of special Besov- norms with (fractional) Sobolev norms is known
(see Triebel [1992],p.9):

‖f‖θ,2,2,Ω ≈ ‖f‖θ,2;Ω for θ > 0. (6)

3.Step: describe the interpolation norms created by the K-functional via ap-
proximation processes V, i.e. sequences of linear bounded operators {Vj} de-
fined on a Banach space X satisfying limn→∞ Vnf = f for all f ∈ X . Then
define approximation norms describing certain rates of approximation by

‖f‖θ,q;V :=
{ ∞∑

n=0

[2nθ‖Vnf − f‖X ]q
}1/q

, θ ≥ 0, 1 ≤ q ≤ ∞

and introduce Jackson- and Bernstein- inequalities:

Definition 1. An approximation process satisfies a Jackson-inequality with
respect to the pair X,Z and order α > 0 if there exists a constant CV

‖Vnf − f‖X ≤ CV 2−αn |f |Z , ∀f ∈ Z. (7)

and a corresponding Bernstein-inequality if there exists DV such that

Vnf ∈ Z, |Vnf |Z ≤ DV 2αn ‖f‖X , ∀f ∈ X. (8)
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Under these assumptions it has been shown (see Butzer and Scherer [1968],
Butzer and Scherer [1972]))

Theorem 1. For the operator sequences Vn defining an approximation process
and satisfying Jackson- and Bernstein-inequalities of order α for a pair X,Z
there holds for all θ > 0

{ ∞∑

n=0

[2nθ‖Vnf−Vn−1f‖X ]q
}1/q

≈ ||f ||θ,q,V ≈
{ ∞∑

n=0

[2nθK(2−nα, f ;X,Z)]q
}1/q

with equivalence constants only depending on α, θ, CV , DV and sup ‖Vn‖ <∞.
The upper bound in the second equivalence follows from the Jackson-type
inequality. For the lower one uses the decomposition f =

∑∞
k=n+1 Vkf−Vk−1f ,

K(2−nα, Vkf − Vk−1f ;X,Z) ≤ min (1, 2(k−n)α)‖Vkf − Vk−1f‖X (9)

and Hardy’s inequalities to estimate the arising double sum (cf. below).
We consider now the case of uniformly bounded linear projections Vj =

Pj : V −→ Vj in (3). For later use we assume Vj ⊂ Z = H2
0 (Ω), α = q = 2

and θ = 1. Then we obtain in combination with (4), (5) and (6)

Corollary 1. Given the elliptic bilinear form a(u, u) in (1) suppose that the
above projections satisfy Jackson- and Bernstein-inequalities of order 2 for the
pair L2(Ω), H2

0 (Ω). Then there holds for u ∈ V the equivalence (P−1u := 0)

J∑

j=1

4J ‖Pju− Pj−1u‖22,Ω ≈
∞∑

n=0

[2n K(2−2n, f ;L2(Ω), H2
0 (Ω))]2 ≈ a(u, u),

and the equivalence constants do not depend on the level J and u.

We apply this to the case of FE- spaces consisting of piecewise polynomial
functions of degree k in (2) with respect to the sequence of triangulations

T0 ⊂ T1 ⊂ · · · ⊂ TJ := T . (10)

The coarse initial triangulation T0 is adaptively refined by dividing each tri-
angle either into 4 congruent triangles or halving it such that each triangle in
Tk is geometrically similar to a triangle of T0.

Jackson- inequalities for projections into such spaces with respect to the
pair X = L2(Ω), Z = Hk+1

0 (Ω) of order k + 1 are well known (cf. Ciar-
let [1978]) whereas corresponding Bernstein-inequalities are only possible of
maximal order k. However the modified inequality (9) can be proved (in case
of maximal smoothness of u) with order α = k+1/2 which suffices for a proof
of Theorem 1. Such an inequality follows from a corresponding one for the Lp
modulus of continuity ωk(t, f)p (see Oswald [1994]) and the equivalence (see
Johnen and Scherer):

K(tk, f ;Lp(Ω),W k
p (Ω)) ≈ ωk(t, f)p.
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3 Weighted norm equivalences

The disadvantage of above approach is that the “equivalence constants ” in (3)
depend on the ellipticity constants A1, A2 in (4). In the following we want to
study robust norm equivalences, i.e. how they depend on these constants. (In
the following constants C will only depend on the initial coarse triangulation
T0). Thereby we restrict us to subspaces Vj consisting of piecewise linear
functions. The basic idea is to introduce for the triangulations (10)

Assumption A: There exist weights ωi, ωi such that the bilinear form (1)
satisfies on the triangles Zi of TJ the ellipticity condition

ωi

2∑

ν=1

ξ2ν ≤
2∑

ν,µ=1

aν,µ(x)ξνξµ ≤ ωi
2∑

ν=1

ξ2ν , for all x ∈ Zi. (11)

Then one wants to establish Jackson- and Bernstein- inequalities for suitable
projections Pj in (3) with respect to a “weighted norm” arising from this
assumption. This will be described shortly in the following (for more details
see Scherer [2003/4]). Ideally one should take for Pj the Ritz projection Qaj
defined on V by

a(Qaju, v) = a(u, v), u ∈ V , v ∈ Vj (12)

since then vj := Qaju − Qaj−1u with Qa−1u := 0 satisfies a(u, u) := ||u||2a =∑J
j=0 ||vj ||2a. Then the idea is to replace Qaj by projections Qωj with respect

to a weighted norm (from now on we omit subscript and superscript on ω):

(Qωj u, v)ω = (u, v)ω :=
∑

Zi∈TJ

ωi

∫

Zi

u · v dx, v ∈ Vj .

Essential for our analysis are also the average weights ωT := 1
µ(T )

∑
Zi⊂T µ(Zi)ωi

with corresponding weighted norms

‖v‖2j,ω :=
∑

T∈Tj

ωT

∫

T

|v|2

At first two Bernstein-type inequalities of order 1/2 are proved. To this end
we assume a continous weight ω(x) in Assumption A and work with average
weights ω∗i := 1

µ(Zi)

∫
Zi
ω as well as corresponding ones ω∗T for T ∈ Tj .

Lemma 1. Define the semi-norm

‖u‖1/2,ω,l :=
(∑

T∈Tl

ω∗T

∫

∂T

|u|2
)1/2

for u ∈ VJ ⊂ H1
0 (Ω). Then there holds for vj := Qaju−Qaj−1u and any w ∈ Vj
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‖Qaju−Qaj−1u‖a ≤ Ejω ‖u− w‖a + C 2j/2 ‖u‖1/2,ω,j, (13)

where Ejω := maxT∈Tj maxx,y∈T |[ω(x)−ω(y)]/ω(y)| is a modulus of continuity
of ω(x).

Lemma 2. There holds for any u ∈ Vk and k ≥ j

‖u‖1/2,ω,j ≤ C 2k/2 ‖u‖∗k,j, ‖uk‖∗k,j :=
(∑

U∈Tj

ω∗U

∫

Sk(U)

|uk|2
)1/2

.

Here Sk(U) denotes the strip along ∂U consisting of triangles T ∈ Tk.

We apply the first lemma to each term ‖vj‖2a with j ≥ j0 for some j0 ≥ 1 to
be chosen later, take u−Qωj−1u instead of u, w = Qaj−1u−Qωj−1u and obtain

J∑

j=j0

‖vj‖2a
(
1 − 2

J∑

j=j0

(
Ejω
)2) ≤ 2C

J∑

j=j0

2j
( J∑

k=j

‖uk‖1/2,ω,j
)2

. (14)

Next we use the decomposition of u −Qωj−1u =
∑J

k=j uk, with uk := Qωku −
Qωk−1u and apply the second Bernstein-type inequality. After inserting this
into the right hand side of (14) we obtain a double sum which is estimated
with a refined version of Hardy’s inequality giving

J∑

j=0

2j
( J∑

k=j

2k/2 ‖uk‖∗k,j
)2[

1 − 2Ejω

]
≤ 4

J∑

j=j0

4j ‖uj‖2j,ω (15)

In addition, by an other application of Lemma 1, one can obtain a bound for
the remaining sum

∑j0−1
j=0 ‖vj‖2a = ‖Qaj0‖2a. The final estimate is then

a(u, u) ≤ C

{
1 + 3(Ej0ω )2

[1− 2Ej0ω ]
[
1− 2

∑J
j=j0

(
Ejω
)2]

J∑

j=j0

4j‖uj‖2j,ω

}
+ ‖Qωj0−1u‖2a.

Theorem 2. If there exists j0 ≥ 1 such that
∑J

j=j0

(
Ejω
)2≤ 1/4 there holds

a(u, u) ≤ C
J∑

j=j0

4j ‖Qωj u−Qωj−1u‖2j,ω + a(Qωj0−1u,Q
ω
j0−1u).

Remarks: The assumption of the theorem can be fulfilled for continuous ω.
In case ω ∈ C1 or ω ∈ Cα a more quantitative description can be given,
e.g. for ω(x) := exp{q(x)} we have Ejω ≤ c2−j‖∇q‖∞ exp{c2−j‖∇q‖∞}. The
continuity of ω also justifies the choice ωi = ωi = ω∗i in (11) since then a(v, v)
is norm-equivalent to ã(v, v) :=

∑
Zi∈TJ

ω∗i
∫
Zi
‖∇v‖2. Finally we remark that

the above argument can be extended also to the case of a weight function ω(x)
which is continous on Ω up to a (smooth ) curve. If this curve coincides with
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the edges of the initial coarse grid the above argument can be applied to each
of the two subregions separately with corresponding moduli of continuity. But
also the more general case can be treated (see Scherer [2003/4]).

We turn now to the problem of a lower bound for a(u, u) (more details can
be found in Scherer [2003/4]). At first observe that by Hardy’s inequality

J∑

j=1

[
2j‖uj‖ω

]2
≤

J∑

j=0

[
2j‖Qaju− u‖ω

]2
≤ 4

J∑

j=1

(
2j‖Qaju−Qaj−1u‖ω

)2

.

In order to pass from ‖ · ‖ω -norm to ‖ · ‖j,ω - norm use

Theorem 3. Suppose that there exists a constant γ ∈ (0, 1] such that for any
T ∈ Tj the weights ωi satisfy

ωE / ωT ≤ µ(T ) / 2µ(E), ∀ E ⊂ T with µ(E) ≤ γ µ(T ) . (16)

Then there holds for v ∈ Vj

[1 + C γ−1]−1 ‖v‖j,ω;T ≤ ‖v‖ω;T ≤ [1 +
√

6 C] ‖v‖j,ω;T . (17)

Application of this theorem gives

J∑

j=1

[
2j‖Qωj u−Qωj−1u‖ω

]2
≤ C

J∑

j=1

(
2j‖Qaju−Qaj−1u‖j,ω

)2

. (18)

The crucial step is the following local estimate

Theorem 4. Let be U be the support of a nodal function in Vj−1, ψ
(j−1)
l say.

Then there holds ( S, S′ ∈ Tj )

‖Qaju−Qaj−1u‖j,ω,U ≤ C
(

max
S′,S⊂U

√
ωS
ωS′

)
2−j ‖∇(Qaju−Qaj−1u)‖j,ω,U .

Sketch of the proof: Using the duality technique of Aubin-Nitsche one has

‖vj‖j,ω,U = sup
g∈Lω(U)

|(g, ω · vj)U |
‖g‖j,ω,U

= sup
g∈Lω(U)

|(−∆ϕg, ω · vj)U |
‖g‖j,ω,U

.

where −∆ϕg = g̃ on Ũ ≥ U, ϕg|∂Ũ = 0 and ‖g̃‖Ũ ≤ C‖g‖U with some

absolute constant C̃. Partial integration on each S ⊂ U gives

|(−∆ϕg, ω · vj)U | ≤ |
∑

S⊂U
ωS

∫

S

(∇ϕg ,∇vj)|+ |
∑

S⊂U
ωS

∫

∂S

vj(∇(ϕg − v), n∂S)|

The bound for the first term uses ‖∇ϕg‖Ũ ≤ C
√
µ(Ũ)‖g‖U . In the second

supremum one chooses v = v∗ ∈ Vj−1 with supp v∗ ⊂ U as interpolant of ϕg.
Then (cf. Ciarlet [1978])
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‖∇(ϕg − v∗)‖∞,T ≤ C diam T
∑

|α|=3

‖Dαϕg‖T , T ∈ Tj−1,

and by the special choice g = g∗ := vj the estimate of the theorem follows.
Summing with respect to U and inserting the result into (18) yields

Theorem 5. Under assumption A and for uniformly refined triangulations
there holds for a(u,u) the lower bound

J∑

j=1

[
2j‖Qωj u−Qωj−1u‖j,ω

]2
≤ C

(
max

1≤j≤J
max
U∈Tj−1

max
S′,S⊂U

√
ωS
ωS′

)
a(u, u)

with C depending only on the shape of the triangles of the initial triangulation.

4 Application to preconditioning

Theorems 2 and 5 can be combined via Theorem 3 to the following

Theorem 6. Under assumption A assume further that ω(x) satisfies the as-
sumptions of Theorems 2 and 3. Then for uniformly refined triangulations
there holds for a(u, u) and j0 depending on ω(x)

C1 a(u, u) ≤ a(uj0 , uj0) +
J∑

j=1

[
2j‖Qωj u−Qωj−1u‖ω

]2
≤ C2 Cω a(u, u)

where Cω := max1≤j≤J maxU∈Tj−1 maxS′,S⊂U
√
ωS/
√
ωS′ and C1, C2 inde-

pendent of J and ω(x).

It seems impossible to dispense with any condition starting from Assumption
A. The most restrictive conditions appear in Theorem 2 where the choice of
j0 depends on the decrease of the moduli of continuity Ejω in j. This has been
discussed in the remarks following it. A discussion of the further condition
(16) in Theorem 3 is given in Scherer [2003/4]. The weakest one is probably
that of Theorem 5 which requires the boundedness of the constant there. The
case of non-uniformly refined meshes can be reduced to that one of uniformly
refined meshes by the technique in Bornemann and Yserentant [1993].

For preconditioning we can proceed as in the BPX approach (cf.Bramble
et al. [1990]) taking

B−1 = (Qωj0)
−1 +

J∑

j=j0+1

4−j (Qωj − Qωj−1) ≈ (Qωj0)
−1 +

J∑

j=1

4−j Qωj .

According to Yserentant [1990] this operator can be replaced by the cheaper
one
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C r := (Qωj0)
−1 r +

J∑

j=1

4−j Mjr, Mjv :=
∑

i∈Nj

(v, ψ
(j)
i )ω

(1, ψ
(j)
i )ω

ψ
(j)
i

provided the ‘quasi-interpolant’ Mjv is spectrally equivalent to Qωj uniformly

in j. This property holds if the ψ
(j)
l form a Riesz-basis with respect to the

weighted norm, i.e.

‖
∑

l∈Nj

αlψ
(j)
l ‖2ω ≈

∑

l∈Nj

|αl|2(1, ψ(j)
l )ω

The proof follows from the norm equivalence ‖ · ‖ω ≈ ‖ · ‖ω,j stated in (17).
Then the C can be taken as a discretized version of the operator C above.
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Summary. The main focus of this paper is to suggest a domain decomposition
method for mixed finite element approximations of elliptic problems with anisotropic
coefficients in domains. The theorems on traces of functions from Sobolev spaces
play an important role in studying boundary value problems of partial differential
equations. These theorems are commonly used for a priori estimates of the stability
with respect to boundary conditions, and also play very important role in con-
structing and studying effective domain decomposition methods. The trace theorem
for anisotropic rectangles with anisotropic grids is the main tool in this paper to
construct domain decomposition preconditioners.

1 Introduction

In order to present the basic idea of the algorithm, let us consider the following
simple model problem. Let a domain Ω be the union of two non-overlapping
subdomains which are rectangles, i.e., Ω = ∪2

i=1Ωi, where

Ωi = {(x, y)|i− 1 < x < i, 0 < y < 1}, i = 1, 2.

In Ω we consider the following problem. Find p such that

− div(a∇p) = f in Ω,

p = 0 on ∂Ω,
(1)

where the matrix a is given as follows: a =

(
ax 0
0 ay

)
with ax = axi and

ay = ayi being positive constants in each Ωi, i = 1, 2. Denote the interface by
γ = ∂Ω1 ∪ ∂Ω2 \ ∂Ω.

For the problem (1) we introduce a flux variable, u = −a∇p, which is of
interest in many applications. Writing α = a−1(x), the inverse matrix of a,
the problem (1) is equivalent to seeking (u, p) such that
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αu+∇p = 0 in Ω,

div u = f in Ω,

p = 0 on ∂Ω.

(2)

Multiplying by test functions and integrating by parts we obtain the fol-
lowing weak formulation of problem (2)

(αu, v) − (div v, p) = 0, ∀v ∈ H(div;Ω),

−(div u, q) = −(f, q), ∀q ∈ L2(Ω),
(3)

where H(div;Ω) = {v ∈ L2(Ω)2 : div v ∈ L2(Ω)}.
The variational formulation (3) fits the abstract framework that is gener-

ally used for mixed methods. It is well known that under the LBB condition
the abstract framework is well-posed.

We consider the rectangular Raviart-Thomas mixed finite element spaces
Vh ⊂ H(div;Ω) and Qh ⊂ L2(Ω) associated with the triangulation Th of Ω.
The lowest order rectangular Raviart-Thomas elements are defined as follows:

RT (T ) = Q1,0(T )×Q0,1(T ), Q(T ) = Q0,0(T ) for rectangle T.

Define
Vh = {v ∈ H(div;Ω) : v|T ∈ RT (T ), ∀T ∈ Th}

and
Qh =

{
q ∈ L2(Ω) : q|T ∈ Q(T ), ∀T ∈ Th

}
.

For simplicity, we will consider the uniform rectangular decomposition Th,
where mesh steps hx = 1

m , hy = 1
n for some positive integers m,n so that

Th = T1h ∪ T2h. For i = 1, 2

Vhi = {v ∈ H(div;Ωi) : v|T ∈ RT (T ), ∀T ∈ Tih} ,
Qhi =

{
q ∈ L2(Ωi) : q|T ∈ Q(T ), ∀T ∈ Tih

}
.

(4)

The standard mixed finite element approximation (uh, ph) ∈ Vh × Qh is
defined by

(αuh, v)− (div v, ph) = 0, ∀v ∈ Vh,
−(div uh, q) = −(f, q), ∀q ∈ Qh.

(5)

Note that the normal component of the members in Vh is continuous across
the interior boundaries in γ. We relax this constraint on Vh by introducing
Lagrange multipliers; see Arnold and Brezzi [1985]. Let Eh be the set of edges
which belongs to γ. The Lagrange multipliers space Λh to enforce the required
continuity on γ is defined by

Λh =

{
µ ∈ L2

( ⋃

e∈Eh

e

)
: µ|e ∈ Vh · ν|e for each e ∈ Eh

}
.
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Then, the hybridized form of domain decomposition method for mixed finite
elements is to find (uih, pih, λh) ∈ Vih ×Wih × Λh such that

2∑

i=1

(αuih, vi)−
2∑

i=1

(div vi, pih) +

2∑

i=1

< λh, vi · νi >= 0, ∀vi ∈ Vih

−
2∑

i=1

(div uih, qi) = −(f, qi), ∀qi ∈Wih

2∑

i=1

< µ, uih · νi >= 0, ∀µ ∈ Λh.

(6)

With the standard ordering of the unknowns, the matrix equation for (6)
is given by 



Ax 0 BTx CT

0 Ay B
T
y 0

Bx By 0 0
C 0 0 0







Ux
Uy
P
Λ


 =




0
0
F
0


 . (7)

2 General Approach to Preconditioning Saddle Point
Problems

Let V and Q be Hilbert spaces. Let an operator A : V → V be linear,
symmetric, positive definite, bounded and let a linear operator B map V into
Q. Denote by BT the transpose operator for B. Let us consider the following
saddle point problem: find (u, p) ∈ V ×Q such that

Aχ :=

[
A BT

B 0

] [
u
p

]
=

[
g
f

]
, g ∈ V, f ∈ Q.

For the operator A we search for a preconditioner R in the block-diagonal
form

R =

[
A 0
0 Σ

]
,

where Σ maps Q to Q.
Consider the spectral problem

Aχ = λRχ

with Σ = BA−1BT . Then the eigenvalues of the problem belongs to the set

{1−
√

5

2
, 1,

1 +
√

5

2
}.

According to Rusten and Winther [1992] and Kuznetsov and Wheeler
[1995], we have
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Lemma 1. Let R̂ be a symmetric operator. If there are positive constants c1
and c2 such that

c1(Rχ, χ) ≤ (R̂χ, χ) ≤ c2(Rχ, χ), ∀χ ∈ V ×Q,

then the eigenvalues λ of R̂−1A belong to two segments

λ ∈ [−d1,−d2] ∪ [d3, d4],

where

d1 =
1

c1
(

√
5− 1

2
), d2 =

1

c2
(

√
5− 1

2
),

d3 =
1

c2
, d4 =

1

c1
(

√
5 + 1

2
).

To solve the problem Aχ = b, we use the Lanczos method with a precondi-
tioner R̂ satisfying the lemma. Denote

θ =
max{d1, d4}
min{d2, d3}

, q =
θ − 1

θ + 1
.

Then, from general theory of iterative methods, if χ0 is an initial vector and
χn is an approximation after n iterations by the Lanczos method, the following
estimate holds:

‖χn − χ‖R̂ ≤ 2qn‖χ0 − χ‖R̂,
where

‖χ‖R̂ = (R̂χ, χ)
1
2 .

It means that the construction of an effective preconditioner for A has been
reduced to the construction of an effective preconditioner for the Schur com-
plement BA−1BT .

Remark 1. If the cost of the multiplication of A−1 by a vector is small (for
example if A is a diagonal matrix), then instead of solving the system with A
by the Lanczos method, we can solve the system with the Schur complement
BA−1BT by a preconditioned conjugate gradient method.

3 Preconditioning for the Schur complement

Let us denote by p̂ , q̂ ∈ R(n·m+n+n·m) vectors in block form:

p̂ = [p1 λ p2]
T , q̂ = [q1 µ q2]

T

where

p1 = [p1,1 p1,2 · · · p1,n p2,1 p2,2 · · · pm,1 pm,2 · · · pm,n]T ,
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λ = [λ1 λ2 · · λn]T ,
p2 = [pm+1,1 pm+2,2 · · · pm+1,n pm+2,1 pm+2,2 · · · p2m,1 · · · · p2m,n]

T ,

and q̂ is similarly denoted.
Elimination of the flux variables in (7) reduces to the Schur complement

which we denote by the matrix S according to the ordering of unknowns
[p1 λ p2]

T . Let

ãxi = axi
hy
hx
, ãyi = ayi

hx
hy
, i = 1, 2.

Then we define the (n ·m+ n+ n ·m)× (n ·m+ n+ n ·m) matrix S̃ so that

S̃p̂ = q̂,

where

−ãx1pi−1,j − ãx1pi+1,j − ãy1pi,j−1 − ãy1pi,j+1 + 2(ãx1 + ãy1)pi,j = qi,j ,

i = 1, 2, · · ·,m, j = 1, 2, · · ·, n,
−ãx2pi−1,j − ãx2pi+1,j − ãy2pi,j−1 − ãy2pi,j+1 + 2(ãx2 + ãy2)pi,j = qi,j ,

i = m+ 1,m+ 2, · · ·, 2m, j = 1, 2, · · ·, n,
−ãx1pm,j − ãx2pm+1,j + (ãx1 + ãx2)λj = µj ,

j = 1, 2, · · ·, n.
Here

p0,j = 0, p2m+1,j = 0, j = 1, 2, · · ·, n,
pi,0 = 0, pi,n+1 = 0, i = 1, 2, · · ·, 2m.

The following is an analogue of Cowsar et al. [1995] and Kwak et al. [2003]
for anisotropic case:

Lemma 2. There exist constant c1, c2, independent of ax, ay, hx, hy, such that
for any p̂

c1(Sp̂, p̂) ≤ (S̃p̂, p̂) ≤ c2(Sp̂, p̂).
With the block representation of p̂, we can consider a block form of S̃p̂

S̃p̂ =



B1 B10 0

B01 (B
(1)
0 +B

(2)
0 ) B02

0 B20 B2





p1

λ
p2




= (



B1 B10 0

B01 B
(1)
0 0

0 0 0


+



0 0 0

0 B
(2)
0 B02

0 B20 B2


)



p1

λ
p2




= (S̃1 + S̃2)p̂.
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According to the Additive Schwarz Method; see Matsokin and Nepom-

nyaschikh [1989], we can define a preconditioner ˜̃S for S̃ as

˜̃S−1 =



B̃−1

1 0 0
0 0 0

0 0 B̃−1
2


+




0 t1 0
tT1 Σ−1 tT2
0 t2 0


 .

Here B̃1, B̃2 are spectrally equivalent to B1, B2 and Σ is spectrally equivalent
to the Schur complements for S̃1 + S̃2 :

(B
(1)
0 −B01B

−1
1 B10) + (B

(2)
0 −B02B

−1
2 B20) = Σ1 +Σ2

and t1, t2 extension operators of functions from γ to Ω1 and Ω2 respectively
such that

c1(Σ1λ, λ) ≤ (S̃1t1λ, t1λ) ≤ c2(Σ1λ, λ),

c1(Σ2λ, λ) ≤ (S̃2t2λ, t2λ) ≤ c2(Σ2λ, λ),

for any λ.
For optimal convergence of the corresponding iterative method, all con-

stants of spectral equivalence should be independent of ax, ay, hx, hy.
Now we consider only one subdomain Ω1. We omit subindex for the sub-

domain and denote by p̂
p̂ = [p1 λ]

T

with block vectors p1, λ defined as before and denote by A0 the n×n matrix

A0 =




2 −1
−1 2 −1

−1 2 −1
−1 2




and by I the n×n identity matrix. Consider the following (n·m+n)×(n·m+n)
matrix S̃

S̃ = ãx




(σA0 + 2I) −I
−I (σA0 + 2I) −I

−I (σA0 + 2I) −I
−I I




:= ãx

[
B11 B12

B21 B22

]

where

σ =
ãy

ãx
, ãx = ax

hy
hx
, ãy = ay

hx
hy
, B22 = I.

Using the eigenvectors and eigenvalues of A0
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A0qi = λiqi, i = 1, · · · , n,

qi =




qi(1)
qi(2)
·
·

qi(n)



, qi(j) =

√
2

n+ 1
sin

iπj

n+ 1
, j = 1, 2, · · · , n,

λi = 4 sin2 πi

2(n+ 1)
,

we have
A0 = QΛQT (8)

Q = QT = [q1, · · ·, qn], Λ = diag{λ1, · · ·, λn}.
To compute the Schur complement for S̃

Σ = ãx(B22 −B21B
−1
11 B12)

we can use (8) and find a diagonal matrix D such that

Σ = QDQT .

Using the technique from Matsokin and Nepomnyaschikh [1989], we have

Lemma 3. The diagonal matrix D has the following elements.

D = diag{µ1(Σ), µ2(Σ), · · ·, µn(Σ)}

µi(Σ) = ãx(1− Um−1(βi)

Um(βi)
),

where βi = 1
2σλi + 1 and Uj is the Chebyshev polynomial of the second kind

of degree j so that

Uj(x) =
1

2
√
x2 − 1

((x +
√
x2 − 1)j+1 − (x +

√
x2 − 1)−(j+1)).

Using the lemma for both subdomains Ω1 and Ω2, we can define

Σ1 = QD1Q
T for subdomain Ω1

and
Σ2 = QD2Q

T for subdomain Ω2.

Then, put
Σ = Q(D1 +D2)Q

T

and so
Σ−1 = Q(D1 +D2)

−1QT .

Hence, finally we have the following theorem:
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Theorem 1. Let preconditioner ˜̃S be defined as

˜̃S−1 =



B̃−1

1 0 0
0 0 0

0 0 B̃−1
2


+




0 t1 0
tT1 Σ−1 tT2
0 t2 0,




with Σ defined as above. Then, there exist constant c1, c2, independent of
ax, ay, hx, hy, such that for any p̂

c1(Sp̂, p̂) ≤ ( ˜̃Sp̂, p̂) ≤ c2(Sp̂, p̂).

To summarize, we have presented an optimal algorithm for a model
anisotropic problem such that a condition number of the preconditioned prob-
lem is independent of parameters coefficients, grid sizes and the arithmetical
cost of implementation of this algorithm is proportional to the number of
degrees of freedom.
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Parareal Algorithm to solve Partial Differential
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Summary. After stating an abstract convergence result for the parareal algorithm
used in the parallelization in time of general partial differential equations, we analyze
the stability and convergence properties of the algorithm for equations with constant
coefficients. We show that suitably damping coarse schemes ensure unconditional
stability of the parareal algorithm and analyze how the regularity of the initial
condition influences convergence in the absence of sufficient damping.

1 Introduction

The parareal algorithm pioneered in Lions et al. [2000] and slightly modified
in Bal and Maday [2002] allows us to speed up the numerical simulation of
solutions to time dependent equations provided that we have enough proces-
sors. We refer to Baffico et al. [2002], Bal [2003], Farhat and Chandesris [2003],
Maday and Turinici [2002] for additional detailed presentations of the method
and applications; see also section 2 below. Natural questions then arise related
to the stability and convergence of the method. Here are some elements of an-
swers to these questions. In section 2 an abstract result in a general setting
shows convergence of the algorithm provided that regularity conditions are
satisfied. In the simplified setting of linear partial differential equations with
constant coefficients, more refined estimates are provided for the convergence
and stability of the parareal algorithm in section 3. A typical result we can
show is as follows: whereas the parareal algorithm is unconditionally stable for
most discretizations of parabolic equations, it is not for hyperbolic equations.

2 An abstract convergence result

Let us consider a possibly non-linear partial differential equation of the form

du

dt
= A(t, u), t > 0

u(0) = u0,
(1)
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where u(t) takes values in a Banach space B and A(t, u) is a possibly time-
dependent partial differential operator. Let us assume that we want to simu-
late this equation on an interval of time (0, T ) and define the discretization
0 = T 0 < T 1 < · · · < TN = T . We assume that the equation (1) admits a
solution operator g(T n, v), which to v ∈ B associates u(T n+1) ∈ B solution
of

du

dt
= A(t, u), T n < t < T n+1

u(T n) = v.
(2)

Let us now assume that we have at our disposal an approximate solution
operator g∆(T n, v). We then define the approximate sequence

un+1
1 = g∆(T n, un1 ), n ∈ I = {0 ≤ n ≤ N − 1}, (3)

and u0
1 = u0. Let∆T be the maximal lag between successive time steps T n and

assume that T n+1 − T n ≥ η0∆T for some positive constant η0 for all n ∈ I.
The convergence of uN to u(T n) as ∆T converges to 0 is obtained under the
following hypotheses. Let us assume that g∆ is Lipschitz in a Banach space
B0 and is an approximation of order m of g in the sense that

sup
n∈I
‖g∆(T n, u)− g∆(T n, v)‖B0 ≤ (1 + C∆T )‖u− v‖B0 , (4)

sup
n∈I
‖δg(T n, u)‖B0 ≤ C(∆T )m+1‖u‖B1, (5)

where δg(T n, u) = g(T n, u)− g∆(T n, u), C is a constant independent of ∆T ,
‖ ·‖B denotes a norm on the Banach space B and B1 is another Banach space
(usually a strict subset of B0).

If in addition, (1) is stable in B1, in the sense that u(t) ∈ B1 uniformly in
t provided that u0 ∈ B1, then we have the classical result

‖u(TN)− uN1 ‖B0 ≤ C(∆T )m‖u0‖B1 , (6)

based on the above regularity assumptions and the decomposition

u(T n+1)− un+1
1 = δg(T n, u(T n)) + g∆(T n, u(T n))− g∆(T n, un1 ).

We now consider the parareal algorithm, which allows us to speed up the
calculation of u(t) provided that we have access to a sufficiently large number
of processors. The parareal algorithm is given by

un+1
k+1 = g∆(T n, unk+1) + δg(T n, unk ), n ∈ I, k ≥ 1 (7)

with initial condition u0
k+1 = u0. The idea of the algorithm is to add to the

prediction term g∆(T n, unk+1) a correction involving the previous iteration
unk and a “fine” calculation that can be done in parallel on every time step
(T n, T n+1) of the coarse discretization since all the terms unk are known when
the calculation of unk+1 starts. This requires to have N processors available. In
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practice, we cannot simulate δg(T n, u) exactly, but rather an approximation
of the form gδ(T

n, u) − g∆(T n, u), where gδ(T
n, u) is a sufficiently accurate

approximation of g(T n, u) so that in all the results that follow we can safely
replace g(T n, u) by gδ(T

n, u). See the bibliographical references for additional
details.

We now show that the above algorithm ideally replaces the accuracy of
order m of the non-parallel algorithm by an accuracy of order km to solve
(1). Such an accuracy cannot be obtained in general solely under the above
assumptions for g and g∆. It rather requires much stronger regularity con-
straints. Let us define a scale of Banach spaces B0, B1, . . ., Bk, where in
practice Bk ⊂ Bk−1 ⊂ · · ·B1 ⊂ B0. We have then the following result:

(H1) The equation (1) is stable in all spaces Bj for 0 ≤ j ≤ k, in the sense that
‖u(t)‖Bj ≤ C‖u0‖Bj where C is independent of u0 and t ∈ (0, T ).

(H2) The operator g∆ is Lipschitz in the sense that

sup
n∈I
‖g∆(T n, u)− g∆(T n, v)‖Bj ≤ (1 + C∆T )‖u− v‖Bj , 0 ≤ j ≤ k − 1,

where C is independent of ∆T , u, and v.
(H3) The operator δg is an approximation of order m in the sense that

∑

n∈I
‖δg(T n, u)‖Bj ≤ C(∆T )m+1‖u‖Bj+1 , 0 ≤ j ≤ k − 1. (8)

Theorem 1. Under hypotheses (H1)-(H3), the order of accuracy of the par-
allel algorithm (7) is mk. More precisely, for u0 ∈ ∩0≤j≤kBj, we have

‖u(TN)− uNk ‖B0 ≤ C(∆T )mk‖u0‖Bk
,

where C is a constant independent of ∆T and u0.

Proof. The result is obtained by induction. We know it to hold when k = 1
thanks to (H1)-(H3) and assume that it holds for k given. We then apply the
result with the sequence of Banach spaces B1, . . . , Bk+1, so that

‖u(TN)− uNk ‖B1 ≤ C(∆T )mk‖u0‖Bk+1
.

By definition (7), we have

u(T n+1)−un+1
k+1 = g∆(T n, u(T n))−g∆(T n, unk+1)+δg(T

n, u(T n))−δg(T n, unk).

Using (H1)-(H3), this implies that

‖u(T n+1)− un+1
k+1‖B0 ≤ (1 + C∆T )‖u(T n)− unk+1‖B0 + C(∆T )m+1‖u(T n)− unk‖B1

≤ (1 + C∆T )‖u(T n)− unk+1‖B0 + C(∆T )m(k+1)+1‖u0‖Bk+1
.

Since u(T 0) = u0
k+1 = u0, it is then a routine calculation to obtain (8). �
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3 Stability and convergence for linear operators

The above abstract result shows that the parareal algorithm allows us to
replace a scheme of order m by a scheme of order km provided that regularity
constraints are met. In practice we need to choose Bk+1 as a strict subset of
Bk in (H3); see below. These constraints may not be optimal as they do not
account for possible dissipative effects of the coarse scheme.

To address this issue, we consider a pseudo-differential operator P (D)
with symbol P (ξ) such that ℜ(P (ξ)) ≥ 0 (otherwise consider P + α with
α sufficiently large and solve for v = e−αtu), and define A(t, u) = P (D)u.
To simplify notation, we assume that u(t) is a function on R. In the Fourier
domain, the evolution of û(t, ξ) =

∫
R
e−ixξu(t, x)dx is thus given by

∂û

∂t
(t, ξ) + P (ξ)û(t, ξ) = 0 ξ ∈ R, t > 0

û(0, ξ) = û0(ξ), ξ ∈ R.
(9)

The evolution operator is independent of time T n (= n∆T from now on to
simplify) and is in the frequency domain

g(T n, û) = e−P (ξ)∆T û. (10)

We define δ(ξ) = P (ξ)∆T and using the same notation g define the propagator

g(δ(ξ)) = e−δ(ξ). (11)

We now want to define approximate solutions to the above equation. Let
us assume that the symbol P (ξ) is approximated by PH(ξ) and that the time
propagator g(δ) is approximated by g∆(δH), where δH(ξ) = PH(ξ)∆T . For
instance g∆(δ) = (1 + δ)−1 for implicit first-order Euler. We then define the
parareal scheme as

ûn+1
k+1(ξ) = g∆(δH(ξ))ûnk+1(ξ) + (g(δ(ξ))− g∆(δH(ξ)))ûnk (ξ) (12)

for n ∈ I and k ≥ 0. The boundary conditions are û0
k+1(ξ) = û0(ξ) and

ûn0 (ξ) ≡ 0. In the above equations, ξ is a parameter so stability and error of
convergence can be analyzed for each frequency separately. We verify that the
exact solution ûn(ξ) also satisfies (12) with different initial conditions so that
the error term εnk (ξ) = ûn(ξ)− ûnk (ξ) satisfies the following equation

εn+1
k+1(ξ) = g∆(δH(ξ))εnk+1(ξ) + (g(δ(ξ)) − g∆(δH(ξ)))εnk (ξ) (13)

with boundary conditions ε0k+1(ξ) = 0 and εn0 (ξ) = ûn(ξ). We verify that
εn1 (ξ) = (gn(δ(ξ)) − gn(δH(ξ))û0(ξ). Upon defining

θnk =
1

gn−k+1
∆ (δH)

εnk
(g(δ)− g∆(δH))k−1

, θn1 =
(gn(δ)− gn∆(δH))

gn∆(δH)
û0(ξ),
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we find that θn+1
k+1 = θnk+1 + θnk and θ0k+1 = 0. The constraint ℜ(P (ξ)) ≥ 0

implies that gn(δ) is uniformly bounded and we assume that gn∆(δH) is uni-
formly bounded for n ∈ I (this is nothing but stability of the coarse scheme).
We also assume that |(g(δ)/g∆(δH))(ξ)| is uniformly bounded. This allows us
to obtain the following bound

|θn1 (ξ)| ≤ C(n|g(δ)− g∆(δH)| ∧ 1)|û0(ξ)|. (14)

Here a ∧ b = min(a, b). This implies then the following bound on the error

|εn+1
k+1 |(ξ)| ≤ C

(
n|g(δ)− g∆(δH)| ∧1

)
|g∆(δH)|n−k|g(δ)− g∆(δH)|k

(
n

k

)
, (15)

for n ∈ I and k ≥ 1, where C is proportional to |û0(ξ)| only. This estimate
gives us optimal bounds to prove convergence and stability of the parareal
scheme. For k+1 = 1 in the above formula we recover that the coarse scheme
is stable. We can also obtain the maximal order of convergence of the scheme
after k parareal iterations. Assuming that δ = δH and that g∆ is of order
m so that |(g − g∆)(δ)| ≤ C(ξ)(∆T )m+1, we deduce that |εNk | is of order
N(∆T )m+1[(∆T )m+1]k−1Nk−1 = (∆T )km. We recover that the parareal al-
gorithm replaces an algorithm of order m by an algorithm of order km.

A central difficulty with the iterative scheme is that for k ≥ 2, the error
term εnk (ξ), hence the solution ûnk , may blow up for large frequencies. We now
consider this stability analysis.

The above parallel algorithm requires to solve a fine scale problem k − 1
times to obtain an accuracy of order km on the coarse time grid (i.e. at the
times T n, n ∈ N). The best use of the available processors is thus obtained
for k = 2; see Bal [2003]. In any case the algorithm is useful when the value
of k is small. We therefore assume from now on that 1 ∼ k ≪ n. This implies
that

(
n
k

)
∼ nk.

Let us assume here that δH = δ, i.e., the spatial discretization is the same
for the coarse and fine schemes. Stability at all frequencies is thus ensured
provided that

Rk+1,n(δ) =
(
|g∆|n−k|g − g∆|k

)
(δ)nk, (16)

remains bounded for all values of δ(ξ) = P (ξ)∆T , ξ ∈ R. The first term
|g∆|n−k is clearly bounded since the coarse algorithm is stable. The second
term |g − g∆|k is also bounded. However it may not be small for values of δ
of order 1. The relation (16) indicates how the parareal algorithm blows up.
Unless high frequencies (δ of order O(1) or higher) are damped by the coarse
scheme |g∆|, an instability of size nk will appear at the iteration step k + 1.

Consider a real-valued P (ξ) > 0 for |ξ| > 0 and the centered scheme

g∆(δ) =
1− δ/2
1 + δ/2

= e−δ +O(δ3). (17)

As δ →∞, |g∆(δ)| → 1 and g(δ)→ 0. We thus observe that high frequencies
will grow like nk−1 in (16) and the parareal scheme is unstable as soon as
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k ≥ 2 although the scheme is unconditionally stable for k = 1. However we
can still apply the general theory. For instance for P (ξ) ≤ |ξ|M and a coarse
scheme of order m we can verify that all the hypotheses of Theorem 1 are
verified provided that Bk = H(m+1)Mk(R). The instability of the parareal
scheme can thus be overcome by assuming sufficient regularity of the initial
conditions.

The growth nk−1 may be compensated when the coarse scheme is dissipa-
tive. A result that covers many classical examples is the following:

Theorem 2. Let us assume that the coarse scheme is an approximation of
order m of the exact propagator and that it is dissipative in the sense that
there exist three constants C, γ > 0 and 1 ≤ β ≤ m+1 such that for all ξ ∈ R,

|g(δ(ξ)) − g∆(δ(ξ))| ≤ C(δ(ξ)m+1 ∧ 1) (18)

|g∆(δ(ξ))| ≤ (1 + C∆T )e−γ(|δ(ξ)|β∧1). (19)

Then the parallel algorithm is stable in the sense that Rk,n(δ) is bounded
uniformly in k = O(1), n ∈ N , and δ = δ(ξ) for ξ ∈ R.

Proof. Consider the case |δ| ≥ 1 first. We observe that |Rk+1,n(δ)| is bounded
by e−γnnk which is clearly bounded independent of k = O(1), n, and |δ| ≥ 1.

For |δ| ≤ 1 we obtain that |Rk+1,n(δ)| is bounded by |δ|(m+1)knke−nγ|δ|
β

.
Upon differentiating the above majorizing function with respect to |δ| we
obtain that the maximum is reached for |δ0|β = (k(m+ 1))/(γβn), so that a
bound for |Rk+1,n(δ)| is given by

|Rk+1,n(δ)| ≤ Ce−k(m+1)/β
(
n1−(m+1)/β

)k
.

The latter power of n does not grow as n→∞ provided that β ≤ m+ 1. �

The above result shows that sufficient exponential damping of the large fre-
quencies is sufficient to ensure stability. Notice that the centered scheme de-
fined in (17) does not verify the hypotheses of the theorem since large values
of δ are not damped at all by the coarse scheme. For real valued non-negative
symbols P (ξ), we can use Theorem 2 to deduce that the θ scheme

g∆(δ) =
1− (1− θ)δ

1 + θδ
, (20)

makes the parareal algorithm stable as soon as θ > 1/2. Indeed we have
then |δ(ξ)| = δ(ξ). Since g′∆(0) = −1, we verify that β = 1 and γ sufficiently
small (all the more that θ → 1/2+) does the job. This covers then all parabolic
equations (such as the Laplancian P (ξ) = ξ2) and many spatial discretizations
(such as the centered finite difference scheme P (ξ) = 2h−2[1− cos(hξ)]).

The result also applies to more general equations with complex-valued
symbol. Consider the same θ scheme given in (20). We define δ = δr + iδi.
The assumption on P (ξ) implies that δr ≥ 0. We now find that
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|g∆(δ)| =
√

(1 + (1− θ)2|δ|2 − 2(1− θ)δr)
(1 + θ2|δ|2 + 2θδr)

≤
√

(1 + (1− θ)2|δ|2)
1 + θ2|δ|2 . (21)

Asymptotically as δ → 0 we find for the θ scheme that |g∆(δ)| ≤ 1 −
θ2−(1−θ)2

2 |δ|2 + O(|δ|3). We see that we have to choose here β = 2 to ver-
ify the assumptions of Theorem 2 (instead of β = 1 when δ is real-valued).
Since m = 1, β = 2 is the only value allowed. It is then easy to find a value
of γ such that the hypotheses of Theorem 2 are satisfied. The theorem thus
addresses the case of the transport equation P (ξ) = iaξ and of the advection
diffusion equation P (ξ) = 1 + iaξ + bξ2, b > 0.

In the latter case we can actually do better. Indeed consider P (ξ) =

α0 +
∑M−1

k=1 αkξ
k + |ξ|M with αk ∈ C arbitrary and α0 > 0 such that

ℜ(P (ξ)) > 0. Then there exists a constant ρ > 0 such that |δi| ≤ ρδr,

whence |δ| ≤
√

1 + ρ2δr. We then deduce from (21) that, on (0, δ0) for

δ0 = 2((1 − θ)
√

1 + ρ2)−1, we have |g∆(δ)| ≤ (1 + θ√
1+ρ2
|δ|)−1, and still

from (21), that |g∆(δ)| < 1 − ε for ε > 0 on (δ0,∞) as θ > 1/2. So we can
choose β = 1 (this is important in Theorem 3 below) and γ small enough in
Theorem 2.

Let us now turn to convergence. We have seen that the error term at

final time T is bounded by |Rk,N (ξ)| ≤ C|δ|(m+1)kNke−Nγ|δ|
β

for |δ| < 1.
Let us assume that β = 1. We then deduce from the above analysis that
|Rk,N (ξ)| ≤ CN−km. So all frequencies are uniformly bounded byCN−km and
the algorithm has an accuracy of order (∆T )km in L(Hα(R)) for all α ∈ R. The
case β > 1 is much less favorable. Let us assume that |P (ξ)| ≤ |ξ|M for M > 0.

The bound for R is then |Rk,N (ξ)| ≤ C(∆T )km[|ξ|M(m+1)ke−γ|ξ|
Mβ(∆T )β−1

].
This implies that there is no damping for all frequencies of order up to |ξ| ∼
(∆T )(1−β)/(Mβ) ≫ 1. So the L2 norm (for instance) of the error term is
bounded by

∫

|ξ|≤(∆T )(1−β)/(Mβ)

|û0(ξ)|2|ξ|2M(m+1)kdξ ≤ C‖u0‖2M(m+1)k,

where ‖ · ‖α is the norm in the Hilbert space Hα(R). We have thus proved the
following result:

Theorem 3. Under the assumptions of Theorem 2 we have the following con-
vergence result for all α ∈ R. When β = 1, we have

‖uN − uNk ‖α ≤ C(∆T )km‖u0‖α.

When β > 1, we have for 0 ≤ τ ≤ 1,

‖uN − uNk ‖α ≤ C(∆T )kmτ‖u0‖α+τM(m+1)k.

The latter estimate follows from stability by interpolation. At τ = 1, this is
nothing but Theorem 1. However the result for τ < 1 requires stability.
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For parabolic equations (P (ξ) > 0 real-valued), we thus obtain that the
θ scheme for θ > 1/2 has a very strong convergence property as the error
is of order (∆T )km in the space where u0 is defined. This generalizes the
results obtained in Bal and Maday [2002] for θ = 1. The same result holds for
symbols of the form P (ξ) = |ξ|M + lower order terms with ℜ(P (ξ)) > 0 since
we can then choose β = 1. However for the transport equation P (ξ) = iaξ
(or symbols with purely imaginary leading term) we see that convergence of
implicit Euler (m = M = 1, β = 2) is of order (∆T )kτ‖u0‖2kτ in L2(R).

Let us conclude by a remark. In the above analysis we have assumed that
δ = δH , i.e. the spatial discretization is the same for the coarse and the fine
steps. This need not be so. For lack of space, we postpone the general analysis
to future work and only mention the result where P (ξ) = ξ2, PH(ξ) = 2(1 −
cos(Hξ))/H2, and the implicit Euler scheme g∆(δH) = (1 + δH)−1. We can
then show that ‖uN − uN2 ‖α ≤ C(∆T )2‖u0‖α+4 so that the optimal accuracy
(∆T )2 is attained for k = 2 for a coarse spatial discretization H = (∆T )1/2.
The loss of “4” derivatives comes from the fact that the coarse scheme damps
frequencies up to H−1 only. This is an intermediate result between Theorems
1 and 3. It should be compared with the case δ = δH where the spatial
discretization need be chosen as h = ∆T . So H ≫ h for the same final
accuracy (but it requires more regularity of the initial condition).
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Summary. The “parareal in time” algorithm introduced in Lions et al. [2001] en-
ables parallel computation using a decomposition of the interval of time integration.
In this paper, we adapt this algorithm to solve the challenging Navier-Stokes prob-
lem. The coarse solver, based on a larger timestep, may also involve a coarser dis-
cretization in space. This helps to preserve stability and provides for more significant
savings.

1 Introduction

The “parareal in time” algorithm was introduced in Lions et al. [2001] to allow
parallel computations based on a decomposition of the interval of time integra-
tion. This algorithm, which can be interpreted as a predictor-corrector scheme
(see Bal and Maday [2002] and Baffico et al. [2002]), involves a prediction step
based on a coarse approximation and propagation of the phenomenon and a
correction step computed in parallel and based on a fine approximation. Sig-
nificant speedups are observed (see, in particular, Bal [2003] on this aspect).
A combination of the parareal in time algorithm with more conventional do-
main decomposition approaches was presented in Maday and Turinici [2003]
and exploits both space and time concurrency.

Many applications of the method have already been performed, but this
paper is the first that targets the challenging Navier-Stokes problem. The
coarse solver is based on a large timestep but also on a coarse discretization
in space, which further reduces serial overhead.

2 The Basic Algorithm on a Simple Equation

Consider the following time dependent problem:

∂y

∂t
+Ay = 0, y(T0) = y0,
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where, for the sake of simplicity, A does not depend on time. We introduce
the propagator E such that y(τ) = Eτ (y0). Let Tn = n∆T , n = 0, ..., N
be instants at which we wish to consider snapshots of the solution. Then
y(Tn) = ETn(y0) = E∆T (y(Tn−1)), from the semigroup property of E .

In most cases E is not realizable and can only be approximated; for in-
stance, we can introduce a fine and precise propagator F defined by an Euler
scheme, either implicit or explicit. Similar to the continuous solution, we have
the approximations y(Tn) ≃ λn = FTn(y0) = F∆T (λn−1). Clearly, the ap-
proximation process is sequential.

The parareal algorithm assumes we are given another propagator denoted
as G. It is cheaper (and consequently less accurate) than F . One can think of
F as based on an Euler scheme with a very small timestep δt and G as based
on an Euler scheme with the larger timestep ∆T . We present and implement
here another possibility, as proposed in Lions et al. [2001], in which G is based
on a coarse approximation in space as well.

The iterative process λk+1
n = G∆T (λk+1

n−1) + F∆T (λkn−1)− G∆T (λkn−1) pro-
vides a converging sequence toward λn. Our interest in this predictor-corrector
scheme lies in the fact that after iteration k and before iteration k+ 1 starts,
we can compute in parallel the corrections F∆T (λkn−1)−G∆T (λkn−1) for all n;
thus the only sequential part of the algorithm is the evaluation of the coarse
operator.

3 The Parareal in Time Algorithm for Navier-Stokes

We apply the parareal scheme to the incompressible Navier-Stokes equations,

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u in Ω, ∇ · u = 0 in Ω, (1)

with prescribed boundary and initial conditions for the velocity, u. Here, p is
the pressure, Re the Reynolds number and Ω is a regular domain of IRd.

The temporal discretization is based on the high-order operator-splitting
methods developed in Maday et al. [1990] that generalize the characteristics
method of Pironneau [1982]. The left-hand side of (1) is recast as a material
derivative, which is discretized by using a stable rth-order backward difference
formula (BDFr):

∂u

∂t
+ u · ∇u =

Du

Dt
≈ 1

∆t

(
β0un+1 −

r∑

i=1

βiun+1−i

)
. (2)

For BDF1, (β0, β1) = (1, 1), and for BDF2, (β0, β1, β2) = (3
2 ,

4
2 ,
−1
2 ). The

values un+1−i represent the values of u at the foot of the characteristic asso-
ciated with each gridpoint and are computed by solving the linear convective
subproblem, (uj)t + u · ∇uj = 0, t ∈ (tn+1−i, tn+1], with initial condition
uj(tn+1−i) = un+1−i for j = n + 1 − i, i = 1, . . . , r. This leads to a linear
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symmetric Stokes problem to be solved implicitly at each step and permits
timestep sizes, ∆t, corresponding to convective CFL numbers greater than
unity, thus significantly reducing the number of Stokes solves.

3.1 Finite Element Approximation in Space

The finite element method is based on an compatible choice of spaces for
the velocity and the pressure: the Taylor-Hood method. The time discretiza-
tion is a characteristics method of order 1 for the convection and implicit for
the Stokes operator. The algebraic system resulting from the discretization
is solved through a Cahouet-Chabart algorithm. The problem solved corre-
sponds to a 2-D flow past a cylinder of diameter 2 centered at the origin. The
upstream boundary is located at a distance 5 from the center of the cylinder
and the downstream boundary at a distance 10.

A special consideration when using the parareal scheme in conjunction
with a semi-implicit timestepping scheme is that the step size be small enough
to ensure stability. This is a particular concern for the coarse solver, G, where
one wants to choose a large timestep in order to minimize the serial over-
head. Fortunately, the characteristics scheme allows this, provided that the
subintegration timestep satisfies the governing stability criterion.

3.2 Spectral Approximation in Space

The spectral element method (SEM) for the Stokes problem is also based
on a compatible choice of spaces: it is the IPM × IPM−2 discretization in-
troduced in Maday and Patera [1989]. The discretization spaces are XM :=
{v ∈ H1

0 (Ω)d,v|Ωe ∈ IPM (Ωe)d, e = 1, ..., E} for the velocity and YM := {q ∈
L2(Ω), q|Ωe ∈ IPM−2(Ω

e), e = 1, ..., E}, for the pressure. Here, IPM (Ωe), e =
1, ..., E is the space of polynomials of partial degree ≤ M on each of the E
nonoverlapping elements, Ωe, whose union composes Ω. At present, we re-
strict our attention to cases where Ω is a rectangular domain comprising a
tensor-product array of E = Ex × Ey elements allowing the use of the fast
diagonalization method. Details of the SEM formulation and implementation
can be found in Fischer [1997].

To implement the parareal scheme, we require a solver of the form un+1 =
F∆T (un). That is, given an initial value un, the solver propagates the solution
over a time interval (Tn, Tn+1] to produce a result un+1. We thus need to
“restart” the computation for each application of F and G: we use Richardson
extrapolation and combine two steps of size ∆t/2 with one of size ∆t to yield
an O(∆t3) local error at the start of each F (∆t = δt) or G (∆t = ∆T )
substep.
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4 Further Reduction of the Cost of the Coarse Operator

In nondimensional time units, the parareal single- and P -processor solution
times and parallel speedup are, respectively,

τ1 =
T

δt
, τP = K

(
1

P

T

δt
+ α

T

∆T

)
, SP :=

τ1
PτP

=
P

K
(
1 + αP δt

∆T

) , (3)

The P -processor estimates in (3) neglect communication overhead and simply
reflect the extra work resulting from additional iterations (K) and the serial
coarse propagation (αT/∆T ). The factor α reflects the relative per-step cost
of F∆T and G∆T . To achieve reasonable scalability we need K and αP δt

∆T to
be order unity.

Here, we propose to use propagators based not only on different timesteps,
but also on different spectral degrees.

4.1 The Finite Element Context

The reduction is obtained by using a fine grid defined by dividing each coarse
triangle into four triangles. The resulting number of vertices is equal to 1021
in the coarse mesh (H) and 3994 in the fine mesh (h). The coarse operator
G∆T is based on ∆T and the coarse grid H . The proposed parareal in time
scheme is then

Uk+1
n+1 = Πh

HG∆T (ΠH
h Uk+1

n ) + F∆T (Uk
n)−Πh

HG∆T (ΠH
h Uk

n), (4)

The operator that allows one to go from the coarse mesh to the fine one
(denoted as Πh

H) and reciprocally (i.e., ΠH
h ) can be either the interpolation

operator Ih (resp. IH) or the L2 projection on discretely divergence free func-
tions Πh (resp. ΠH).

4.2 The Spectral Context

We assume that we have a coarse operator G∆T based on ∆T and a spectral
degree M̃ together with a fine solver F∆T based on δt and a spectral degree
M > M̃ . The proposed parareal in time scheme is then

Uk+1
n+1 = ΠM

M̃
G∆T (ΠM̃

MUk+1
n ) + F∆T (Uk

n)−ΠM
M̃
G∆T (ΠM̃

MUk
n), (5)

where ΠM
M̃

is the L2 prolongation operator from XM̃ onto XM and ΠM̃
M is

the L2 projection operator from XM onto XM̃ .
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Fig. 1. Time history of the vertical component of the velocity at point (1.5, 0) for
the parareal algorithm with coarse operator based on coarse spatial and temporal
discretization. (a) Comparison of interpolation and L2 projection operators. (b)
Comparison K = 1, K = 2, and standard serial algorithms.

5 Results

5.1 The Finite Element Context

We have run the cylinder simulation at Re = 200, starting with an initial
condition made of a flow computed by running the coarse simulation over a
time equal to 10. We have used a fine timestep equal to 0.02 and a coarse
timestep equal to 0.2. The simulation has been run over successive time inter-
vals of size 2 corresponding to P = 10. Over these intervals, we have run the
parareal scheme with small numbers of iterations because of the small size of
the intervals.

We have first compared the two types of operators to go from one mesh
onto the other one. The simple interpolation operator appears to be unstable:
the simulation blows up, for example, with the use of the strategy three coarse
sweeps alternated with two fine sweeps, corresponding to K=2. On the con-
trary, the use of an L2-type projection operator on the discrete divergence-free
functions is stable throughout these simulations. These results are illustrated
in Fig. 1a, where we plot the time history of the vertical component of the
velocity at a point situated on the axis of the flow at a distance 1.5 down-
stream of the center of the cylinder. To check the accuracy of the method, we
have computed the solution corresponding to the fine timestep as a reference
and compared the parareal scheme with 2 coarse + 1 fine (K=1) and 3 coarse
+ 2 fine (K=2) to the reference solution. The results are plotted in Fig. 1b,
and the solution for K=2 is quite good. Note that the plot representing the
history at this point is much discriminating because of the complexity of the
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Fig. 2. Relative error in the v-component of the solution, versus time, for the SEM
solution of the Orr-Sommerfeld test problem with E = 15, M = 15, and δt = .005.
(a) single partition with K = 3, (b) tripartition with K = 1.

flow. For longer times, we have checked that the period of the flow and the
time to establish the periodic flow are very well captured by the parareal
scheme for this situation.

These are only preliminary runs, from which we conclude that the pro-
jection operator performs better than the interpolation one. We will seek to
optimize the timestep choice in order to be able to get an accurate solution
with a lower number of iterations. Let us note that these simulations have
been done effectively in parallel by using the code Freefem.

5.2 The Spectral Context

We have applied the parareal/SEM algorithm to the Orr-Sommerfeld problem
studied in Fischer [1997]. The computational domain is Ω = [0, 2π]× [−1, 1],
with periodic boundary conditions in x and homogeneous Dirichlet conditions
on y = ±1. The growth of a small-amplitude (10−5) Tollmien-Schlichting
wave, superimposed on plane Poiseuille channel flow at Re = 7500, is mon-
itored and compared with linear theory over the interval t ∈ [0, 32], which
corresponds to ≈ 1.25 periods of the traveling wave solution.

Figure 2a shows the relative L∞ (maximum pointwise) error in the y-
component of velocity versus time for an E=15 element discretization using
BDF2 with M=15, ∆tF = δt = .005 for F∆T , and M̃ = 15, ∆tG = .333 =
∆T/3 for G∆T . The solid line shows the discretization error for the standard
serial algorithm (BDF2,∆t = .005). The point plots show the error in the
solution for the first coarse sweep (g0) and for the first three fine sweeps
(f1, f2, and f3). The number of coarse and fine substeps per iteration is 32,
corresponding to a P = 32 processor simulation. For this problem, the scheme
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Fig. 3. Error histories for configuration as in Fig. 2b: (a) using varying fine/coarse
approximation orders (M ,M̃); ◦ = (13,13), × = (15,13), ∗ = (15,15); and (b) (M ,M̃)
= (15,15) without Richardson extrapolation.

converges in K = 3 iterations. Each coarse-grid step, G∆T (un), is computed
by using three steps of size ∆tG = 1/3, plus two additional steps for the
Richardson extrapolation, corresponding to α = 5. Based on (3), the estimated
speedup is S32 ≈ 6.

To reduce ∆T and, hence, K, we also consider applying the parareal
scheme to subintervals of [0, T ], where the initial condition on each inter-
val is taken to be the K = 1 solution from the preceding interval. The scheme
requires an initial G∆T sweep (k = 0), followed by a single F∆T and G∆T cor-
rection (k = 1 =: K). The errors after the G∆T sweeps are shown in Fig. 2b.
Here, three subintervals are used, with δt = .005, and ∆T = ∆tG = 67δt.
Given that there are two coarse sweeps per interval, each with a cost of
three Navier-Stokes solves (because of the Richardson extrapolation), we have
α = 6, corresponding to a speedup of S32 = 8.3.

We next consider the coarse approximation in space for G∆T , given by
(5). Here, one must be careful that the temporal errors do not dominate the
spatial errors. Otherwise, perceived benefits from reducing M̃ could equally
well be gained through reductions in both M and M̃ . We verify that this is
not the case by plotting in Fig. 3a the errors for the tripartition algorithm of
Fig. 2b using discretization pairs (M, M̃)=(15,15), (15,13), and (13,13). The
error for the (15, 13) pairing is almost the same as for the (15, 15) case. The
coarse-grid solve cost, however, is significantly reduced. For the SEM in two
dimensions, this cost scales as M̃3, so we may expect α ≈ (13/15)36, which
implies S32 = 11.2 for the three-step Richardson scheme.

The Richardson iteration was chosen for programming convenience. Other
approaches with lower cost that also have an O(∆t3) local truncation er-
ror could be used for the initial coarse step. For example, one could employ
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a semi-implicit scheme combining Crank-Nicolson and second-order Runge-
Kutta that would require only a single set of system solves, thus effectively
reducing α threefold. The corresponding speedup for α ≈ 2(13/15)3 would be
S32 = 19.7. Note that simply dropping the Richardson extrapolation in favor
of BDF1 has disastrous consequences, as illustrated by the error behavior in
Fig. 3b.
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Summary. This paper is the basic one of the series resulting from the minisym-
posium entitled “Recent Advances for the Parareal in Time Algorithm” that was
held at DD15. The parareal in time algorithm is presented in its current version
(predictor-corrector) and the combination of this new algorithm with other more
classical iterative solvers for parallelization which makes it possible to really con-
sider the time direction as fertile ground to reduce the time integration costs.

1 Introduction

In the seminal paper Lions et al. [2001] the generalization of the concept
of domain decomposition for time solution was first proposed. Even though
the time direction seems intrinsically sequential, the combination of a coarse
and a fine solution procedure have proven to converge and allow for more
rapid solution if parallel architectures are available. This has led to the name
“parareal in time” that has been proposed for this method. Since then, this
scheme has received some attention and a presentation under the format of
a predictor-corrector algorithm has been made in Bal and Maday [2002] and
also in Baffico et al. [2002]. It is this last presentation that we shall use in what
follows. Before this let us mention that a matricial form of the scheme was
also presented in Maday and Turinici [2002] were the parareal methodology
appears as a preconditioner.

Let us consider the partial differential equation (P.D.E.)

∂u

∂t
+Au = 0, over the time interval [T0, T ] (1)

where A is some functional operator, linear or not, from a Hilbert space V
into its dual space V ′. This P.D.E. is complemented with initial conditions
u(t = T0) = u0 and appropriate boundary conditions that are implicitly
incorporated in the formulation and the space V .
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It is well known that, when it exists, the solution of this P.D.E. can be
written as

u(t) = Et−T0(u0;T0) (2)

and that we have the following semigroup property for any T ∗, T0 ≤ T ∗ ≤ t

u(t) = Et−T∗(ET∗−T0(u0;T0);T
∗). (3)

that formalizes the sequential nature of the this Cauchy problem.
Associated with this formal operator, the numerical solution of this prob-

lem leads to an approximate operator F based on a discretization scheme
with time steps δt and some order m. In addition to the time discretization,
a discretization in space (with discretization parameter δx) can also be used
that leads to an error of the order δtm + δxν at any final time T .

Let us assume that a time range ∆T >> δt is being given and that we are
interested in the collection of snapshots {u(Tn)}0≤n≤N where Tn = T0 +n∆T
and TN = T . The proper approximation of these values are given by {λn =
Fn∆T (u0;T0)}0≤n≤N (hence λ0 = u0) as in (3) we note that

λn = F∆T (λn−1;Tn−1). (4)

The parareal algorithm makes it possible to define iteratively a sequence
λkn that converges toward λn as k goes to infinity. It involves a coarse solver
G, less accurate than F , but much cheaper. It can be based for example
on the time step ∆T (or any coarser time step than δt) together, as was
proposed already in Lions et al. [2001], with a coarser discretization in space
∆X (see also Fischer et al. [2003]) or even, a simpler physical model, as was
implemented in Maday and Turinici [2003]. The assumptions that are made
are that

• ‖D(F∆T − G∆T )‖ ≤ cε∆T where ε depends on both ∆T , δt, ∆X and δx,
and goes to zero when ∆T , and ∆X go to zero. The symbol D denotes
the first derivative with respect to the first variable.

• ‖DG∆T ‖ ≤ c
In the parareal algorithm, starting from λ0

n = Gn∆T (u0;T0) the sequence
λkn, k ≥ 1 is determined by

λkn = G∆T (λkn−1;Tn−1) + F∆T (λk−1
n−1;Tn−1)− G∆T (λk−1

n−1;Tn−1). (5)

and we can prove the following error

‖λn − λkn‖ ≤ C
n∑

m=k

(n
m

)
‖D(F∆T − G∆T )‖m‖DG∆T ‖n−m. (6)

from which the convergence in k follows since our hypothesis leads to

max
0≤n≤N

‖λn − λkn‖ ≤ C(T )εk. (7)
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In order to prove this result we remark that from Eqn (5) one obtains:

λkn − λn =
(
G∆T (λkn−1;Tn−1)− G∆T (λn−1;Tn−1)

)

+ (F∆T − G∆T ) (λk−1
n−1;Tn−1)− (F∆T − G∆T ) (λn−1;Tn−1) (8)

Suppose now that G∆T (·; ·) and (F∆T − G∆T ) (·; ·) are differentiable with re-
spect to the (first) variable uniformly over all its values and over all values of
the time parameter. Denoting by ekn = ‖λkn − λn‖ one can write

G∆T (λkn−1;Tn−1)− G∆T (λn−1;Tn−1)

= DG∆T (λn−1;Tn−1)(λ
k
n−1 − λn−1) + o(ekn−1)

and obtain the estimate

‖G∆T (λkn−1;Tn−1)− G∆T (λn−1;Tn−1)‖ ≤ 3/2‖DG∆T (·; ·)‖ekn−1

for any ekn−1 ≤ µg3/2. Using the same technique for (F∆T − G∆T ) (λk−1
n−1;Tn−1)

one obtains:

ekn ≤ 3/2‖DG∆T (·; ·)‖ekn−1 + 3/2‖D (F∆T − G∆T ) (·; ·)‖ek−1
n−1 (9)

provided that ekn−1 and ek−1
n−1 are smaller than some constants µg3/2 and µf−g3/2

respectively. Provided that the initial guess λ0
n, n = 1, ..., N is chosen suffi-

ciently close to the solution λn from Eqn (4), one can prove by induction the
result in Eqn (6). Then, we notice that

n∑

m=k

(n
m

)
‖D(F∆T − G∆T )‖m‖DG∆T ‖n−m ≤ ǫk

n∑

m=k

(n
m

)
(c∆T )m‖DG∆T ‖n−m

≤ ǫk(∆T )k
n∑

m=0

(n
m

)
cm‖DG∆T ‖n−m = ǫk(∆T )k(c+ ‖DG∆T ‖)n,

and thus we obtain the result in Eqn (7).
We refer also to Farhat and Chandesris [2003], Staff and Rønquist [2003]

and to Bal [2003a] for other issues about stability and approximation of the
parareal in time scheme.

2 Combination with domain decomposition – the
overlapping case

2.1 The iterative procedure

Let Ω be a domain decomposed into P subdomains that, in this section,
we shall assume to be overlapping to make things easier. More precisely let
Ω = ∪Pp=1Ω

p
with Ωp ∩ Ωq = ∅ whenever p 6= q, in addition, we assume

that there exists ωp,q – called here “bandages” – associated with any pair
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(p, q) such that Ω
p ∩ Ωq 6= ∅ so that Ω = {∪Ωp} ∪ {∪ωp,q}. Note that those

bandages may (and most often have to) overlap.
In what follows, we shall propose a space-time parallel iterative method

for solving the following type of problem

∂u
∂t −∆u = f, in Ω × [0, T ]
u(0, x) = u0(x), in Ω,
u(t, x) = g(t, x), over ∂Ω × [0, T ],

(10)

To make it easy, for the definition of the algorithm, we assume no dis-
cretization is used in space neither for the coarse nor for the fine propagator,
similarly we assume that the fine propagator does not involve any discretiza-
tion in time. We are going to define an iterative procedure that involves the fine
and accurate solution (here actually exact) only over each blockΩp×[Tn, Tn+1]
or ωp,q × [Tn, Tn+1]. The solution at iteration k will be denoted as ukp,n over

Ωp× [Tn, Tn+1] and vkp,q,n over ωp,q× [Tn, Tn+1]. By construction, the function

ukn built by “concatenation” of the various
(
ukp,n

)
p

is an element of H1(Ω) for

almost each time (continuity enforced at the interfaces). We will also have the
snapshots λkn available at each time Tn.

The coarse propagator

Once the solution is known at iteration k, the definition of the solution at
iteration k + 1 involves a coarse operator that can be defined as follows:

G∆T (λkn)− λkn
∆T

−∆(G∆T (λkn)) = f(Tn+1). (11)

The fine propagator

The fine propagator actually involves not only the knowledge of λkn but also
of ukn. It proceeds as follows

Step one. We first propagate the solution over ωp,q × [Tn, Tn+1] by solving

∂vk+1
p,q,n

∂t
−∆vk+1

p,q,n = f, in ωp,q × [Tn, Tn+1]

vk+1
p,q,n(Tn, x) = λkn(x), in ωp,q,
vk+1
p,q,n(t, x) = ukp,n(t, x) + λkn(x)− ukp,n(Tn, x),

over ∂ωp,q ∩ ∂Ωp × [Tn, Tn+1],

(12)

Note that the correction: λkn − ukp,n(Tn, .), allows us to have the boundary
conditions compatible with the initial condition for each local problem.

Step two. We now define from the various vk+1
p,q,n a current global boundary

value, named vk+1
n over (∪p∂Ωp)\∂Ω. In the case where the subdomains ωp,q

do not overlap, then vk+1
n is, over each (∪p∂Ωp) ∩ ωp,q, equal to the unique

possible value that is vk+1
p,q,n. In case of overlapping ωp,q’s, there is a conflict

between the vk+1
p,q,n that is solved by choosing a continuous convex combination

of the different vk+1
p,q,n’s.
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Step three. We now propagate the solution over Ωp × [Tn, Tn+1] by solving

∂uk+1
p,n

∂t
−∆uk+1

p,n = f, in Ωp × [Tn, Tn+1]

uk+1
p,n (Tn, x) = λkn(x), in Ωp,
uk+1
p,n (t, x) = g(x), over ∂Ωp ∩ ∂Ω × [Tn, Tn+1],
uk+1
p,n (t, x) = vk+1

n (t, x), over ∂Ωp ∩ ∂ωp,q × [Tn, Tn+1],

(13)

This allows us to define a new global solution uk+1
n over each Ω × [Tn, Tn+1]

since, as we already said, the uk+1
p,n do match at the interfaces.

The k + 1 iteration

The definition of each λk+1
n , 1 ≤ n ≤ N then proceeds similarly as for (5)

λk+1
n = G∆T (λkn) + uk+1

n (Tn+1)− G∆T (λk−1
n ). (14)

2.2 Numerical results

The first set of computations has been done on a rectangular domain ]0, 4[×]0, 1[,
decomposed into 2 equal rectanglesΩ1 =]0, 2[×]0, 1[ andΩ2 =]2, 4[×]0, 1[ plus
a rectangular “bandage” ω1,2 of various width (]1, 3[×]0, 1[ or ]1.5, 2.5[×]0, 1[).
The P.D.E. that we have solved is

∂u

∂t
− ν∆u = f, (15)

with ν = 1 and f = 50 sin(2π(x+t)) cos(2π(y+t)) over a time range T−T0 = 1.
We have used a P1-finite element discretization in space and an implicit Euler
scheme of first order in time. The fine propagator is based on a time step δt
that is 50 times smaller than the large time step. In the experiments reported
below in Table 1, the size of the large time step ∆T = 1/N varies. A priori
N is related to the number of parallel processors we have. Here this figure
should be 2N as there are two subdomains that can be run at the same time.
Table 1 summarizes the error between λkn and the finite element solution with
a very fine discretization in time. Note that in all the situations the error
after 5 (resp. 4) iterations remains constant and is (resp. is of the order of)
the error resulting from δt = 1/(50N). Note that if we double N , achieving
thus an error that is, at convergence, twice smaller, the number of iterations
remains the same. This indicates the perfect scalability of our global (parareal
+ Schwarz) scheme.

Note that to be completely legal in the former statement, we assume that
the cost of the coarse solvers should be considered as negligible with respect
to the cost of the fine solver. To do so a coarse discretization in space should
be added, we are currently working in that direction.
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Table 1

width of ω1,2= 2 width of ω1,2 = 1
k= N=15 N=30 N=60 N=120 N=15 N=30 N=60 N=120

1 0.95 0.49 0.28 0.17 0.50 0.38 0.31 0.27

2 0.076 0.040 0.031 0.020 0.10 0.068 0.065 0.042

3 0.045 0.022 0.016 0.009 0.056 0.022 0.016 0.009

4 0.045 0.024 0.014 0.005 0.041 0.022 0.016 0.005

5 0.045 0.022 0.011 0.006 0.041 0.020 0.010 0.005

6 0.045 0.022 0.011 0.006 0.041 0.020 0.010 0.005

Another indication on this scalability is that, if we maintain the accuracy,
by having the product n×N constant, then the number of iterations required
for convergence remains also constant. Hence provided that you have twice
the number of processors, then N can be multiplied by a factor of 2 and the
cost of each iteration is divided by 2. Since the number of iterations remains
constant, this means that the global time to wait is divided by 2.

We have also performed the same Schwarz method over ]0, 4[×]0, 4[ di-
vided into 4 squares of size 2 (the Ωp’s) and 2 rectangular “bandage” ωp,q:
]1.5, 2.5[×]0, 4[ and ]0, 4[×]1.5, 2.5[. The results are reported in Table 2.

Table 2

k= N=15 N=30 N=60 N=120
1 0.28 0.11 0.077 0.046
2 0.082 0.032 0.020 0.010
3 0.034 0.014 0.007 0.004
4 0.021 0.009 0.007 0.004
5 0.017 0.009 0.007 0.004
6 0.017 0.009 0.007 0.004

The same conclusion holds for this set of experiments. It is even better
since the saturated convergence is achieved for smaller values of k when N
(thus here both the accuracy and the number of processors) increases.

We refer also to Farhat and Chandesris [2003] and especially to Bal [2003b]
for other issues about scalability of this algorithm.

3 Combination with domain decomposition – the
non-overlapping case

We have generalized this approach to a non overlapping situation in the case
were we only assume Ω = ∪Pp=1Ω

p
with Ωp∩Ωq = ∅ whenever p 6= q. We have

chosen here the Neumann-Neumann strategy as in Bourgat et al. [1989] The
approach results also in the fine solution of problems set over P subdomains
times a time span of ∆T . The approach here differs from the overlapping case
in the sense that the fine propagator involves both a Dirichlet and a Neumann
solver:
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The fine propagator

Let us assume that {λkn}n are given together with the values {βkn}n corre-
sponding to a predictor for the Dirichlet value of the solution over ∪∂Ωp \∂Ω.
We first propagate the solution over each Ωp×]Tn, Tn+1[ from λkn with the
boundary conditions βkn. In order to correct these boundary conditions, as
in the Neumann-Neumann algorithm, we transform the jump in the nor-
mal derivatives of the solutions that have been computed at interface by
a harmonic lifting that provides a corrector for the boundary condition. A
relaxation parameter is adjusted (in our case through an optimal gradient
approach) in order to minimize the final jump in the solution.

The coarse propagator

The coarse propagator is similar to that of the previous section. We can remark
at this level that both in this case or in the overlapping case, there is room for
reducing the cost of this global propagation, either by coarsening the spacial
mesh size or by using a (sole) domain decomposition approach.

The numerical results

What we report here are only preliminary results that have to be extended to
more complex cases. We should also replace the gradient method by a faster
(at least a conjugate gradient or a GMRES) methods. We have considered
the same problem as for the overlapping strategy, on the rectangular domain
]0, 4[×]0, 1[. We assume it is only decomposed into Ω1 and Ω2 (without any
bandage). We have run the procedure and shown that, by keeping the fine time
step constant, thus decreasing the number of fine time step within ∆T as we
increase N , the number of iteration for convergence again remains constant.
This gives evidences of the scalability of the method. We have to remark that
the convergence rate of the iterative procedure is appreciably lower for this
non-overlapping strategy than for the overlapping one. We are convinced that
by replacing the crude gradient method that we have implemented by a better
approach, the method will perform as nicely as in the overlapping case. This
is the subject of a forthcoming paper to improve this strategy and extend it
to other classes of classical iterative-domain decomposition based- methods in
space (as FETI, Dirichlet Neuman, substructuring..).

Acknowledgement. The numerical results have been performed on the Freefem++
platform and we have benefitted from the advices of Frédéric Hecht and Olivier
Pironneau.
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of Lect. Notes Comput. Sci. Eng., pages 189–202. Springer, Berlin, 2002.

Jean-François Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina
Vidrascu. Variational formulation and algorithm for trace operator in do-
main decomposition calculations. In Tony Chan, Roland Glowinski, Jacques
Périaux, and Olof Widlund, editors, Domain Decomposition Methods, pages
3–16, Philadelphia, PA, 1989. SIAM.

Charbel Farhat and M. Chandesris. Time-decomposed parallel time-
integrators: theory and feasibility studies for fluid, structure, and fluid-
structure applications. Int. J. Numer. Meth. Engng., 58(9):1397–1434, 2003.

Paul Fischer, Frédéric Hecht, and Yvon Maday. A parareal in time semi im-
plicit approximation of the Navier Stokes equations. In Fifteen International
Conference on Domain Decomposition Methods, Berlin, 2003. Springer, Lec-
ture Notes in Computational Science and Engineering (LNCSE).

Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. A parareal in time
discretization of PDE’s. C.R. Acad. Sci. Paris, Serie I, 332:661–668, 2001.

Yvon Maday and Gabriel Turinici. A parareal in time procedure for the
control of partial differential equations. C. R. Math. Acad. Sci. Paris, 335
(4):387–392, 2002. ISSN 1631-073X.

Yvon Maday and Gabriel Turinici. Parallel in time algorithms for quantum
control: the parareal time discretization scheme. Int. J. Quant. Chem., 93
(3):223–228, 2003.

Gunnar Andreas Staff and Einar M. Rønquist. Stability of the parareal al-
gorithm. In Fifteen International Conference on Domain Decomposition
Methods, Berlin, 2003. Springer, Lecture Notes in Computational Science
and Engineering (LNCSE).



Stability of the Parareal Algorithm

Gunnar Andreas Staff and Einar M. Rønquist

Norwegian University of Science and Technology
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Summary. We discuss the stability of the Parareal algorithm for an autonomous
set of differential equations. The stability function for the algorithm is derived,
and stability conditions for the case of real eigenvalues are given. The general case
of complex eigenvalues has been investigated by computing the stability regions
numerically.

1 Introduction

This paper represents one of the contributions at a minisymposium on the
Parareal algorithm at this domain decomposition conference. The minisym-
posium was organized by Professor Yvon Maday, who is also one of the origi-
nators of the Parareal algorithm. The main objective is to be able to integrate
a set of differential equations using domain decomposition techniques in time.
We refer to the review article by Yvon Maday in these proceedings for a more
detailed introduction to the ideas and motivation behind this algorithm.

In Section 2, we briefly review the Parareal algorithm and introduce the
necessary notation. Our main focus is the stability analysis of this algorithm.
In Section 3.1, we briefly review the standard stability analysis of ordinary
differential equations, and in Section 3.2, we derive the stability function for
the Parareal algorithm. In the remaining part of Section 3, we derive the
stability conditions in the case of real and complex eigenvalues.

2 Algorithm

The Parareal algorithm was first presented in Lions et al. [2001]. An improved
version of the algorithm was presented in Bal and Maday [2002]. Further
improvements and understanding, as well as new applications of the algorithm,
were presented in Baffico et al. [2002] and Maday and Turinici [2002]; our point
of departure is the version of the Parareal algorithm presented in these papers.
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We consider a set of ordinary differential equations that we would like to
integrate from an initial time t0 = 0 to a final time T . The time interval is
first decomposed as

t0 = T0 < T1 < · · · < Tn = n∆T < Tn+1 < TN = T.

The Parareal algorithm is then given as the predictor-corrector scheme

λkn = F∆T (λk−1
n−1) + G∆T (λkn−1)− G∆T (λk−1

n−1), (1)

where subscript n refers to the time subdomain number, superscript k refers
to the (global) iteration number, and λkn represents an approximation to the
solution at time level n at iteration number k. The fine propagator F∆T
represents a fine time discretization of the differential equations, with the
property that

λn = F∆T (λn−1) , n = 1, ..., N,

while the coarse propagator G∆T represents an approximation to F∆T .
Notice that F∆T operates on initial conditions λk−1

n−1, which are known.

This implies that F∆T (λk−1
n−1) can be implemented in parallel. The coarse

propagator G∆T , on the other hand, operates on initial conditions λkn−1 from
the current iteration, and is therefore strictly serial.

3 Stability analysis

In Farhat and Chandesris [2003], an investigation of the stability for an au-
tonomous problem is presented. We will here use more of the tools provided
by the ODE theory, and extend the stability analysis a bit further.

The departure of our stability analysis is the predictor-corrector scheme
(1). A stability analysis is performed on the autonomous differential equation

y′ = µy, y(0) = y0, µ < 0 . (2)

The exact solution to this problem is y(t) = eµty0. Since µ < 0, this is a
decaying function for increasing t. The numerical solution of (2) is an approx-
imation to the exact solution. It is well known that a convergent numerical
scheme can be arbitrarily accurate by choosing sufficiently small time-steps.
A numerical scheme which results in an non-increasing approximation for the
chosen time-step is called stable. For a more precise definition of stability, the
reader is referred to Hairer et al. [2000].

3.1 Stability analysis for ordinary ODE schemes

To better understand the derivation of the stability properties of the Parareal
algorithm, we start by deriving the stability properties for two well known
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numerical schemes, namely the explicit and implicit Euler methods. Applied
to our differential equation, the two schemes can be written as

yn = yn−1 +∆Tµyn−1 = (1 +∆Tµ)ny0 = R(z)n y0 explicit Euler
yn = yn−1 +∆Tµyn = (1 −∆Tµ)−n y0 = R(z)ny0 implicit Euler

where∆T is the time-step, z = ∆Tµ andR(z) is called the stability function of
the chosen scheme. Obviously, |R(z)| ≤ 1 will prevent the numerical schemes
from blowing up for increasing n.
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−1.5

−1

−0.5

0

0.5

1
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Fig. 1. Stability domain for explicit (left) and implicit(right) Euler. The dark region
is the stability domain, i.e., those values of z in the complex plane where |R(z)| ≤ 1.

From Figure 1 we see that explicit Euler suffers from time-step restrictions,
while implicit Euler is stable for all possible choices of the time-step ∆T
(µ < 0). In the context of the Parareal algorithm, the coarse propagator G∆T
is forced to take large time-steps, which clearly indicates that implicit Euler
is a better choice then explicit Euler for the coarse propagator.

Consider now a linear system of M autonomous differential equations

y′ = Ay, y(0) = y0. (3)

Assuming that a spectral factorization is possible, we may write the system
matrix A ∈ IRM×M as

A = V DV −1

where D is a diagonal matrix containing the eigenvalues {µ1, . . . , µM} of A,
and V is a matrix containing the corresponding eigenvectors of A.

The exact solution of (3) may then be written as

y(t) = etAy0 = V etDV −1y0 ,
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while the approximation of the (3) using implicit Euler can be expressed as

yn = V (I −∆TD)−n V −1 y0 .

Obviously, a method is stable for systems of ODE’s if |R(zi)| ≤ 1, i =
1, . . . ,M , where zi = ∆Tµi and µi is the ith eigenvalue of A.

3.2 Stability analysis for the Parareal algorithm

In the following analysis, we assume that we may use different integration
schemes for the fine and the coarse propagator. Within each coarse time step
∆T , we will use several fine time steps δt with the fine propagator.

Our first aim is to write the predictor-corrector scheme (1) on the form

λkn = V H(n, k, r(Dδt), R(D∆T )V −1 λ0,

where n is the subdomain number (in time), k is the iteration number, H is
the “stability function” for the Parareal scheme, r is the stability function for
the fine propagator F∆T , R is the stability function for the coarse propagator
G∆T andD is the diagonal matrix containing all the eigenvalues for the system
matrix. To do this we first apply the predictor-corrector scheme (1) to the
model problem (2); this gives

λkn = r̄(µδt)λk−1
n−1 +R(µ∆T )λkn−1 −R(µ∆T )λk−1

n−1, (4)

where r̄(µδt) = r(µδt)s is the stability function for the fine operator after
s = ∆T

δt fine time-steps δt, and R(µ∆T ) is the stability function for the coarse
operator G∆T . For simplicity we will write r̄ = r̄(µδt) and R = R(µ∆T ).

We rearrange (4) and write

λkn = Rλkn−1 + (r̄ − R)λk−1
n−1 = Rλkn−1 + Sλk−1

n−1. (5)

Obviously, the recursion is solved like this:

λkn λkn
↓ ց ↓ R ց S

λkn−1 λk−1
n−1 λkn−1 λk−1

n−1

↓ ց ↓ ց
λkn−2 λk−1

n−2 λk−2
n−2

↓ ց ↓ ց ↓ ց
λkn−3 λk−1

n−3 λk−2
n−3 λk−3

n−3

↓ ց ↓ ց ↓ ց ↓ ց
λkn−4 λk−1

n−4 λk−2
n−4 λk−3

n−4 λk−4
n−4

We recognize the Pascal tree, and we may write (5) as

λkn =

(
k∑

i=0

(
n

i

)
(r̄ −R)iRn−1

)
λ0,
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where we identify the “stability function” H as

H(n, k, r, R) =

k∑

i=0

(
n

i

)
(r̄ −R)iRn−1.

The extension to solve the system (3) is straightforward,

λkn = V H(n, k, r, R)V −1 λ0.

Stability is achieved if

sup
1≤n≤N

sup
1≤k≤N

|H(n, k, r, R)| ≤ 1 ∀µi , i = 1, ...,M. (6)

3.3 Special case: µi real

In the case of real eigenvalues, the stability condition (6) can be expressed as

|H | =
∣∣∣∣∣

k∑

i=0

(
n

i

)
(r̄ −R)iRn−i

∣∣∣∣∣ ≤
k∑

i=0

(
n

i

)
|(r̄ −R)|i|R|n−i

≤
n∑

i=0

(
n

i

)
|(r̄ −R)|i|R|n−i

= (|r̄ −R|+ |R|)n ≤ 1 ∀µi , i = 1, ...,M,

where |r̄ − R|+ |R| is either |(r̄ − R) + R| or |(r̄ − R)− R|. 1 The condition
|(r̄−R)+R| = |r̄| ≤ 1 is the stability condition for the fine operator, and this
should be true independent of the use of the Parareal algorithm.

The condition |(r̄ −R)−R| = |2R− r̄| ≤ 1 can be rewritten as

r̄ − 1

2
≤ R ≤ r̄ + 1

2
. (7)

Theorem 1. Assume we want to solve the autonomous differential equation

y′ = µy , y(0) = y0 , 0 > µ ∈ R ,

and that −1 ≤ r,R ≤ 1 where r = r(µδt) is the stability function for the
fine propagator F∆T using time-step δt and R = R(µ∆T ) is the stability
function for the coarse propagator G∆T using time-step ∆T . Then the Parareal
algorithm is stable for all possible values of number of subdomains N and all
number of iterations k ≤ N as long as

r̄ − 1

2
≤ R ≤ r̄ + 1

2

where r̄ = r(µδt)s and s = ∆T
δt .

1 This is due to Harald Hanche Olsen, Dept. of Mathematical Sciences, NTNU
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It is not obvious from (7) which solvers will fulfil this stability condition.
However, Theorem 2 gives some insight by considering a special case.

Theorem 2. Assume we want to solve the autonomous differential equation

y′ = µy , y(0) = y0 , 0 > µ ∈ R ,

using the Parareal algorithm. Assume also that the system is stiff, meaning
that z = µ∆T ≪ −1, and that the fine propagator is close to exact. Then the
“stability function” can be written as

H(n, k,R) = (−1)k
(
n− 1

k

)
Rn ,

and stability is guaranteed if the following property is fulfilled:

R∞ = lim
z→−∞

|R(z)| ≤ 1

2
. (8)

The proofs of Theorem 1 and 2 are not included due to space limitation,
but will be included in a future article.

We have tested the condition (8) by solving the one-dimensional unsteady
diffusion equation using a spectral Galerkin method in space and a Crank-
Nicolson scheme for the fine propagator F∆T . We then tested the following
schemes for the coarse propagator G∆T : the implicit Euler method (R∞ = 0),
the Crank-Nicolson scheme (R∞ = 1), and the θ-scheme where we can vary the
degree of “implicitness,” and hence R∞; see Hairer et al. [2000] and Hairer and
Wanner [2002]. The numerical results demonstrated that rapid convergence
of the Parareal scheme is obtained for implicit Euler, while Crank-Nicolson
first gives convergence, and then starts to diverge when k increases. However,
as k approaches N , the results again start to converge; this is expected since
the Parareal algorithm gives precisely the fine solution after N iterations.
By varying the degree of “implicitness” in the θ-scheme, we observe that our
results are consistent with the “stability condition” (8).

3.4 General case: µi complex

Notice that Theorem 1 is true for ODE’s and systems of ODE’s where the
eigenvalues of the system matrix have pure real eigenvalues. For complex
eigenvalues, (6) needs to be fulfilled. This is done numerically in Figure 2 and
3 for the two-stage third order Implicit Runge-Kutta-Radau scheme (Radau3);
see Hairer and Wanner [2002]. This scheme is chosen because it represents the
typical asymptotic behaviour of a scheme which fulfils Theorem 2. The differ-
ence in behavior between the various possible schemes lies in the size of the
instability regions in the real direction, and in the number of instability re-
gions in the imaginary direction. For example, implicit Euler will have smaller
instability regions compared to Radau3.
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Fig. 2. Stability plots using Radau3 for both G∆T and F∆T . The x-axis is Re(µ∆T )
and the y-axis is Im(µ∆T ). The dark regions represent the regions in the complex
plane where (6) is satisfied. Here, N = 10, and s = 10 (left) and s = 1000 (right).
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Fig. 3. Stability plots using Radau3 for both G∆T and F∆T . The x-axis is Re(µ∆T )
and the y-axis is Im(µ∆T ). The dark regions represent the regions in the complex
plane where (6) is satisfied. Here, N = 1000, and s = 10 (left) and s = 1000 (right).

From Figure 2 and 3 we notice that the Parareal algorithm is unstable for
pure imaginary eigenvalues, as well as for some complex eigenvalues where
the imaginary part is much larger then the real part (notice the difference in
scalings along the real and the imaginary axes). No multistage scheme has yet
been found that makes the presented formulation of the Parareal algorithm
stable for all possible eigenvalues. This means that the numerical solution
of some hyperbolic problems, and convection-diffusion problems with highly
dominant convection (e.g Navier-Stokes with high Reynolds numbers), are
probably unstable using the Parareal algorithm. This is also consistent with
the results reported in Farhat and Chandesris [2003].
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4 Conclusion and final comments

For an autonomous set of differential equations, we have derived the stability
conditions for the Parareal algorithm. The stability conditions corresponding
to the case of real eigenvalues are explicitly given, while the general case has
been investigated by computing the stability regions numerically. These latter
results indicate that the Parareal algorithm is unstable for pure imaginary
eigenvalues, which is also consistent with previously reported results.

Numerical results have also been obtained using the Parareal algorithm
in the context of solving partial differential equations such as the nonlinear,
viscous Burger’s equation, and where the coarse propagator incorporates a
coarse discretization in space as well as in time. However, a discussion of
these results will be reported elsewhere due to space limitation.

Acknowledgement. We thank Professor Yvon Maday for bringing the Parareal algo-
rithm to the attention of the authors, and for many valuable discussions.
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Multilevel Homotopic Adaptive Finite Element
Methods for Convection Dominated Problems⋆

Long Chen, Pengtao Sun, and Jinchao Xu

The Pennsylvania State University, Department of Mathematics.

Summary. A multilevel homotopic adaptive finite element method is presented
in this paper for convection dominated problems. By the homotopic method with
respect to the diffusion parameter, the grids are iteratively adapted to better ap-
proximate the solution. Some new theoretic results and practical techniques for the
grid adaptation are presented. Numerical experiments show that a standard finite
element scheme based on this properly adapted grid works in a robust and efficient
manner.

1 Introduction

In this paper, we shall present a class of adaptive finite element methods
(FEMs) for the convection-dominated problems. One simple model is the fol-
lowing convection-diffusion problem:

−ǫ∆u+ b(x) · ∇u = f(x), (1)

which is posed on a bounded domain Ω ⊂ R2 with a proper boundary condi-
tion.

We are interested in adaptive finite element methods for the convection-
dominated case, namely ǫ is sufficiently smaller than b(x). It is well-known
that one major difficult for this type of problem is that a standard finite
element discretization scheme usually fail and specialized methods, such as
upwinding scheme and streamline diffusion methods, need to be adapted.
One conclusion from the study in this paper is that a standard finite element
scheme still works reasonably well if the grid is properly adapted so that sharp
boundary or internal layers presented in the solution will be fully resolved.
To obtain such a properly adapted grid, we are going to use a homotopic

⋆ This work was supported in part by NSF DMS-0074299, NSF DMS-0209497,NSF
DMS-0215392 and the Center for Computational Mathematics and Application
at Penn State.
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method with respect to the diffusion parameter ǫ. Namely, we first start our
computation for large ǫ, say ǫ = 1 and use adaptive grid technique for elliptic
problems to obtain a good initial grid. We then start to decrease the value
of ǫ and use the current grid as an initial grid to obtain a new adaptive
grid. We continue in this way until the desired value of ǫ is reached. As a
general approach, the homotopic method of this type is commonly used in
many different application areas and there have been existing works for grid
adaptation (c.f. Habashi et al. [1997]). What is of importance here is how
such a continuation procedure is carried out in a robust and efficient manner.
In this paper, we will first present an interpolation error estimate and then
develop local mesh improvement techniques such as refinement, coarsening
and smoothing and global moving mesh strategy which aims to minimize the
interpolation error.

2 Theoretical foundation

In this section, we include an interpolation error estimate from Chen et al.
[2003]. (Similar error estimates in special cases can also be found in, e.g,
D’Azevedo and Simpson [1989], Habashi et al. [1997], Huang and Sun [2003]).
This estimate can be viewed as the theoretical foundation of this paper,
namely our algorithms are aimed at minimizing (or at least reducing) this
interpolation error by iteratively modifying our grids.

The estimate.

Let Ω be a bounded domain in Rn. Given a function u ∈ C2(Ω̄), we call a
symmetric positive definite matrix H ∈ Rn×n to be a majorizing Hessian of
u if

|ξt(∇2u)(x)ξ| ≤ c0ξtH(x)ξ, ξ ∈ Rn, x ∈ Ω
for some positive constant c0.

We then use the majorizing Hessian to define a new metric

Hp = (detH)−
1

2p+nH, p ≥ 1.

There are two conditions for a triangulation TN , where N is the number
of simplexes, to be a nearly optimal mesh in the sense of minimizing the
interpolation error in Lp norm. The first assumption asks the mesh to capture
the high oscillation of the Hessian metric, namely H does not change very
much on each element.
(A1) There exist two positive constants α0 and α1 such that

α0ξ
tHτ ξ ≤ ξtH(x)ξ ≤ α1ξ

tHτ ξ, ξ ∈ Rn,

where Hτ is the average of H over τ .
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The second condition asks that TN is quasi-uniform under the new metric
induced by Hp.
(A2) There exists two positive constants β0 and β1 such that

∑
i d̃

2
τ,i

|τ̃ |2/n ≤ β0, ∀τ ∈ TN and
maxτ∈T |τ̃ |
minτ∈T |τ̃ |

≤ β1, (2)

where |τ̃ | is the volume of τ and d̃τ,i is the length of the i-th edge of τ under
the new metric Hp, respectively.

The first inequality in (2) means that each τ is isotropic i.e. shape-regular
under the metric Hp. The second inequality (2) means that all elements τ
are of comparable size (under the new metric), which is a global condition
and known as the equidistribution principal Huang [2001]. It means that the
mesh will concentrate at the region where detHp(x) is large. We proved in
Chen et al. [2003] that a triangulation which satisfies both local and global
conditions yields a good approximation.

Theorem 1. Let u ∈ C2(Ω̄), TN satisfy assumptions (A1) and (A2) and uI
is the linear finite element interpolation of u based on the triangulation TN ,
the following error estimate holds:

‖u− uI‖Lp(Ω) ≤ CN−2/n‖ n
√

det(H)‖
L

pn
2p+n (Ω)

for some constant C = C(n, p, c0, α0, α1, β0, β1). This error estimate is opti-
mal in the sense that for a strictly convex (or concave) function, the above
inequality holds in a reversed direction.

It is well known that for diffusion dominated problems, there will be some
sharp boundary layers or internal layers with width in ǫ scale. We would like
to emphasis that the error bound in Theorem 1 is independent of ǫ. Some
numerical results about the ǫ independence of the interpolation error can be
found at Chen et al. [2003].

As mentioned before, Theorem 1 will be the basis of grid adaptation algo-
rithms. Roughly speaking, for a given function u, we will adapt our grids in
such a way the assumption (A1) and (A2) will be better and better satisfied.
One important remark we need to make is that the validity of Theorem 1
allows for a few exceptions of the assumption (A2) for p <∞, see Chen et al.
[2003] for details. This is particularly important since in practice it is very dif-
ficult to guarantee that (A2) is satisfied everywhere. We note that the theory
and algorithms in D’Azevedo and Simpson [1989] and Habashi et al. [1997]
are only for p = ∞ which requires that (A2) be satisfied on each element in
the triangulation.

Postprocessing: recovery of Hessian.

In this section, we will discuss how the Hessian matrix of the solution can be
obtained when linear finite element approximation is used for the discretiza-
tion of partial differential equations. Since taking piecewise second derivatives
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to piecewise linear functions will given no approximation to Hessian matrix,
special Postprocessing techniques need to be used to obtain reasonable Hes-
sian matrix approximation from linear finite elements.

One most popular technique is a patch recovery technique proposed by
Zienkiewicz and J.Z.Zhu [1992a,b] which is based on the least squares fitting
locally. Results from their application demonstrate that it is robust and effi-
ciency. The theoretical reason for ZZ method to work is largely understood
to be related to the superconvergence phenomenon for second order elliptic
boundary value problems discretized on a finite element grid that has cer-
tain local symmetry, see Wahlbin [1995], Chen and Huang [1995], Babuska
and Strouboulis [2001]. These classic superconvergence results can be used to
justify the effectiveness of Zienkiewicz-Zhu method, see, for example, Zhang
[1999], Li and Zhang [1999] for nearly structured grids. A significant improve-
ment of this type of analysis was given recently by Bank and Xu [2003a,b].
In Bank and Xu [2003a] they gave superconvergence estimates for piecewise
linear finite element approximation on quasi-uniform triangular meshes where
most pairs of triangles sharing a common edge form approximate parallelo-
grams. They also analyze a postprocessing gradient recovery scheme, showing
that Qh∇uh is a superconvergent approximation to ∇u. Here Qh is the global
L2 projection. This result leads to a theoretical justification of ZZ method for
such type of grids, see Xu and Zhang [2004]. Recently, Carstensen and Bartels
[2002] also gave theoretical and numerical support for the robust reliability of
all averaging techniques on unstructured grids.

The gradient recovery algorithm used in the numerical examples of this
paper is based on a new approach due to Bank and Xu [2003b] where they use
the smoothing iteration of the multigrid method to develop a postprocessing
gradient recovery scheme. This scheme proves to be very efficient for recov-
ering Hessian matrix. All the above methods can be extended to anisotropic
grids with some proper modifications, but a theoretical justification of such
extensions is still lacking. Nevertheless, numerical experiments have given sat-
isfactory results.

3 Mesh adaptation

In this section, we will discuss techniques which aim at improving the mesh
quality. Here we define the mesh quality for a triangulation T by the interpo-
lation error:

Q(T , u, p) = ‖u− uI,T ‖Lp(Ω), 1 ≤ p ≤ ∞.

Local mesh optimizations.

There are mainly three types mesh improvements: (1) refinement or coarsen-
ing Bank et al. [1983], Rivara [1984], Kornhuber and Roitzsch [1990], (2) edge
swapping Lawson [1977], and (3) mesh smoothing Bank and Smith [1997],
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Jones et al. [1995]. We will derive those techniques by minimizing the inter-
polation error in Lp norm, which can be achieved by equidistributing edge
lengths under the new metric.

We compute edge lengths under the new metric Hp and mark edges whose
lengths are greater than r1d, where r1 ≥ 1 is a parameter and d is a fixed
edge length. We connect marked edges element-wise according to different
situations; See Fig. 1.

Fig. 1. Edge-based refinement

The coarsening operates like an inverse procedure of refinement. It marks
the one whose length is less than r2d for another parameter r2 ≤ 1. We then
shrink this edge to a point and connect to the vertices of the patch of the
edge.

Now we consider the edge swapping for four points {vi}4i=1 which form
two adjacent triangles and a convex quadrilateral. Let T1 = △123 ∪△134 and
T2 = △124 ∪△234, where △ijk stands for the triangle made up by vi,vj , and
vk. We choose triangulation T1 if and only if Q(T1, u, p) ≤ Q(T2, u, p), for
some 1 ≤ p ≤ ∞. In Chen and Xu [2004a], we show this criteria is equivalent
to the empty circle criteria when u(x) = ‖x‖2. Thus it is an appropriate gen-
eralization of the edge swapping used in the isotropic case to the anisotropic
case.

Local mesh smoothing adjusts the location of a vertex in its patch Ωi,
which consists of all simplexes containing vertex xi, without changing the
connectivity. Moving vertex to the new location will provably or heuristically
improve the mesh quality. Several sweeps through the whole mesh can be per-
formed to improve the overall mesh quality. By minimizing the interpolation
error in Ωi, we move xi to x∗ such that

∇u(x∗) = − 1

|Ωi|
∑

τj∈Ωi

(
∇|τj |

∑

xk∈τj,xk 6=xi

u(xk)
)
. (3)

The derivation of this formula can be found at Chen and Xu [2004a]. In the
application to numerical solution, we use Qh∇uh and uh in (3) to perform
the calculation.
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Global moving mesh strategy.

Another global approach to improve the mesh to better approximate a solu-
tion has been carried out in the study of the so-called moving mesh method
Huang [2001], Huang and Sun [2003], Huang and Russell [1999]. Let Ωc be the
computational domain with a quasi-uniform (under the standard Euclidean
metric) triangulation T cN . The mesh on Ω can be viewed as the image of a
transformation x = x(ξ) : Ωc → Ω. Then to ask the transformed mesh to
be quasi-uniform respect to the metric G(x) is more or less equivalent to ask
x = x(ξ) to be the global minimizer of the minimizing problem:

min
x

∫

Ωc

(
∑

i

(∇xi)tG(x)∇xi
)q

dξ, q > n/2.

The minimizers of the above functionals is expected to satisfy both equidistri-
bution and isotropy conditions simultaneously Chen et al. [2003]. We note that
the q = 1 case corresponds to the harmonic mapping but we ask q > n/2 here.
When n ≥ 3, these minimization problems (which is more or less p-Laplacian
with p > n) is significantly different from the harmonic mapping which has
been most commonly used in the literature for moving mesh method Liseikin
[1999], Dvinsky [1991]. If we choose G = [det(H)]−1/(2p+n)H in the func-
tional, we can get a nearly optimal mesh which minimizes the interpolation
error ‖u− uI‖Lp(Ω) by solving above functional.

4 Numerical examples

Our multilevel homotopic adaptive grid method for convection dominated
problem −ǫ∆u+ b(x) · ∇u = f(x) can be roughly described as follows.

Given ρ = ǫ0 ≫ ǫ and h = h0, generate an initial mesh Th.
1. Discretize the PDE on mesh Th and solve it to get the solution uh.
2. Global or local move Th using uh and its recovered derivatives.
3. If ρ = ǫ, locally improve the grid using the estimated new metric. Other-

wise go to (4).
4. Global refine Th, and set ρ← γρ (γ < 1), h← h/2. Go to (1).

Let’s considering the following convection dominated model problem:

{
−ǫ∆u+ ux = 1 x ∈ Ω

u = 0 x ∈ ∂Ω̄ (4)

on the unit square domain Ω = (0, 1)2 with ǫ = 0.001. By applying above
algorithm we solve this convection-diffusion problem and try to catch out the
singular sections of solution by means of moving mesh and local optimized
mesh. The following pictures in Fig. 2 describe that how the adaptive mesh
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Fig. 2. Continuation adaptive meshes and corresponding solutions

and numerical solution change in this multilevel homotopic adaptive process
step by step.

In this process of multilevel homotopic adaptive mesh, we start from a
very coarse initial grid with respect to ǫ = 0.1. On the following each level,
we decrease ǫ once by dividing by 2 firstly, then resolve the original P.D.E
(4) on this level’s mesh with the standard finite element method, and get
more significant improvements of numerical solution uh around the upper,
lower and right boundary layer. After that, we calculate the modified Hessian
matrix Hp (in this example, we choose p = 1 i.e. we measure the error in
L1 norm) of the solution via the recovery technique we mentioned in section
3. Then according to the value of Hessian matrix on each mesh element, we
move grids to upper, lower and right boundary layer by virtue of moving
mesh method. On the other hand, when we decrease ǫ, we apply global mesh
refinement for the whole domain in order to get more grids to move.

Keep running this process until ǫ equals to its original value 0.001, we then
begin to do the local mesh optimizations. Still utilizing the Hessian matrix Hp

of each mesh element, we catch and mark those edges whose lengths under
the new matrix is relative large, then apply our local refinement technique
on these marked edges and thus locally generate a finer mesh to resolve the
singularity of the solution.

Eventually the singularity of the solution of (4) is resolved, no oscillation
any more. To show the numerical optimal convergence rate of our algorithm,
we list the error in L1 norm and its convergence rate in Table 1.

Since the analytical solution to (4) is not available, we compute a solution
on a very fine Shishkin mesh Shishkin [1990] for which the near optimal con-
vergence result is known Roos [2002] and use it as the real solution to compute
the error. We apply our algorithm with different initial meshes to obtain a



466 Long Chen, Pengtao Sun, and Jinchao Xu

N error Rate

4712 2.400665E-04 0.99
7043 9.871067E-05 1.04
10102 9.144469E-05 1.01
14329 7.822302E-05 0.99
17929 9.253636E-05 0.95
22256 6.092786E-05 0.97

Table 1. Errors of FEM on adapted grids

sequence of near optimal meshes for the linear interpolant. The first column
of Table 1 is the number of nodes (unknowns) and the second one is the L1

norm of the error. In the third column, we list the ratio ln error/ lnN . It is
clear that the standard finite element on the nearly optimal meshes obtain an
optimal convergence rate.

5 Concluding remarks

In this paper, we have shown an optimal interpolation error estimates in Lp

norm and, based on the estimate, we have developed new techniques, includ-
ing local mesh optimizations and global moving mesh strategy, to improve the
mesh to better approximate the solution. Those techniques with the homotopy
with respect to diffusion coefficient are successfully applied to convection dom-
inated problem. One main observation in our work is that a properly adapted
mesh will enhance the stability of the standard finite element methods which
often fails for convection dominated problems on quasi-uniform grids. This
phenomenon has been observed in other simpler situations (see books Miller
et al. [1996], Roos et al. [1996]). In the current work, the mesh is adapted to
optimize the interpolation error. We expect that the discretization error will
inherit the optimality of the interpolation error on a nearly optimal mesh for
linear interpolant. We have obtained some preliminary results for a 1-d con-
vection dominated model problem Chen and Xu [2004b] which shows that the
optimality of the convergence rate is sensitive to the perturbation of meshes
in the smooth part.

Another critical question that needs to be addressed is that how to solve
these sequences of systems efficiently since in the adaptive procedure described
in this paper, we need to solve many systems of algebraic system of equations.
Hence how to solve these sequence of systems efficiently is crucial to the entire
adaptive procedure. It is in fact the main research interest of the authors to
develop efficient methods for such systems. We need to develop techniques
how to make use of the intermediate grids and equations together with their
discrete solutions. This is a subject of our ongoing research.
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Summary. Parallel methods are not usually applied to the time domain because
the sequential nature of time is considered to be a handicap for the development
of competitive algorithms. However, this sequential nature can also play to our
advantage by ensuring convergence within a given number of iterations. The novel
parallel algorithm presented in this paper acts as a predictor corrector improving
both speed and accuracy with respect to the sequential solvers. Experiments using
our in house fluid flow simulator in porous media, Athena, show that our parallel
implementation exhibit an optimal speed up relative to the method.

1 Time parallel reservoir simulator: Athena

Sub-stepping is common practice in reservoir simulation, in this technique
some unknowns of a given system are computed in time-steps smaller than the
normal step size, such that the overall system resolution will be comparable to
that obtained with the small time-step. We propose a novel modified algorithm
where this sub-stepping is computed in parallel following a technique of type
Parareal, as studied in Baffico et al. [2002], Lions et al. [2001], Bal and Maday
[2002]. This technique is a predictor corrector, PC, where the corrector runs
in parallel. Thus, the time domain is subject to the standard treatment of
domain decomposition Briggs et al. [1990], Keyes [2002], Brenner and Sung
[2000]; being separated into sub-domains where different numerical solvers and
discretizations may be applied. At each predictor corrector iteration the coarse
solver acts as a predictor handling the sub-domain interfaces by providing
initial boundary conditions for the parallel-fine system of equations. Each
parallel solution will be used as a corrector determining the modification of
the coarse system for the next iteration. Due to the sequential nature of time,
one of these solutions is independent from the rest. This particularity will be
exploited to modify the algorithm so as to obtain convergence rendering it
suitable to dynamic load balancing schemes Lan et al. [2002]. The motivation
for this type of parallelization is not only to improve both computational speed
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and convergence properties but aims to implement multi-grid with nested
parallelism.

The paper is organized as follows: The numerical model implemented in
our reservoir simulator Athena is presented in Section 2. This model contains a
sub-stepping technique, which will be modified to run in parallel according to
the method described in Section 3. Numerical examples illustrate in Section 4
the performance of these algorithms. Finally, conclusions of this work are given
in Section 5.

2 The numerical model and standard method in Athena

Athena is a multicomponent multi-phase flow simulator in porous media.
This simulator is based on a mathematical model consisting of three coupled
non-linear differential equations which solve for the primary variables: molar
masses, temperature and water pressure. The equations are derived from the
mass conservation, energy conservation and volume balance method. These
systems will be decoupled and discretized using Finite Volume in space and a
Backward Euler scheme in time. However, the energy equation has coefficients
dominated by the rock temperature, which is almost constant, so that their
values at time t[n+1], may be approximated by those at previous time, t[n],
leading to an explicit equation of the form

J [n]∆T[n] = −f [n] , (1)

where the temperature increment ∆T[n] = T[n+1]−T[n]. Solving the pressure
equation with the Newton-Raphson method, we get the expression

J [n(k)]∆p[n(k)] = −f [n(k)] , (2)

where n(k) denotes the kth Newton-Raphson iteration at the nth time level

∆p[n(k)] = p[n(k+1)] − p[n(k)] ,

J [n(k)] =

(
∂f

∂p

)[n(k)]

≃ D
[n(k)]

∆t[n]
+A[n] ,

and the right hand side looks like

f [n(k)] = D[n(k)] p
[n(k)] − p[n]

∆t[n]
+A[n]p[n(k)] − b[n] .

Note that at each Newton iteration we consider an approximation by updating
only the diagonal, D, of the Jacobian matrix J . Finally, the molar mass
equations are decoupled considering the cross-derivatives between different
components to be negligible. This assumption enables to solve sequentially
the following residual equations for the molar masses
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( I
∆t[n]

+A[n(k)]
ν

)
∆N[n(k)]

ν = b[n(k)]
ν , ν = 1, . . . , nc (3)

where for a chemical system consisting of nc components located on a domain
decomposed into ncv cells, I is the identity matrix and each matrix Aν has

n2
cv entries (Aν)[n(k)]

ij =
∑
l α

l [n(k)]
νi,νj , i , j ∈ {1, . . . , ncv}, which are derived from

an analytical expression.
The set of equations (1), (2) and (3), results in a compact numerical model,

since they allow to find all the primary and secondary variables for the new
time step. As the molar masses change very fast in relation to either the tem-
perature or pressure, computational stability requires small time-steps and a
greater number of Newton iterations for the mass conservation equation. In or-
der to mitigate the time step restriction that the molar mass equation, see (3),
imposes on the overall system, it is common practice to use sub-stepping. This
technique involves computing with a coarse time-step the implicit solution for
the temperature and pressure, whilst the molar masses are calculated for the
same overall time step with several smaller sub-steps. For further details about
Athena, its numerical model and implementation we refer the interested reader
to a number of previous publications Fladmark [1997], Øye and Reme [1999],
Garrido et al. [2003]. The rest of this paper will be devoted to the develop-
ment and implementation of a Parareal-type algorithm which will parallelize
the sequential sub-stepping technique.

3 General algorithm

Denoting by Ω̄ = Γ ∪Ω an arbitrary time-step where Γ = tn and Ω = Ωn =
(tn, tn+1], equation (3) is commonly solved by sub-stepping over a number, N ,
of sub-domains Ωi = (tn+(i−1)∆t, tn+i∆t], where ∆t = (tn+1−tn)/N , have
either artificial boundaries Γi, i > 1 or real one Γ1 = Γ and are discretized
independently of one another. The convergence of the sub-stepping over Ωn

determines adaptively the size of the next time step Ωn+1.
The algorithm to be presented is of the Parareal form as proposed by

Maday and Lyons Baffico et al. [2002], Lions et al. [2001], Bal and Maday
[2002] and uses a PC where the corrector runs in parallel. In what follows, the
PC will be described on equation (3) for a general time-step domain, Ω̄, and
a given component, ν. For simplicity of notation we rewrite (3) as a residual
equation of the form

J∆u = f , Ω̄ ,
u = g , Γ .

(4)

Denoting the kth PC iteration with the superscript k, the method begins by
predicting a solution of

J k∆uk = fk , Ω̄ , k = 1 ,
uk|Γ = g , Γ , k = 1 ,

(5)
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sub-stepping a number G of times, with G << N and Ω = ∪Gi=1Ωi, a coarsen-
ing of the original domain decomposition. Note that system (5) is solved over
each Ωi using the Newton-Raphson method so that J k has to be updated at
every Newton iteration. This sub-stepping gives an approximation to the in-
termediate values uk|Γi

, i = 2, . . . , G which together with the initial boundary

condition, uk|Γ = uk|Γ1
= g serve as initial guesses for the boundary conditions

of each independent system

J k|Ω̄i
∆uki = fk|Ω̄i

uki|Γi
= g +

∑i−1
j=1∆u

k
|Ωj

}
i = 1, . . . , G . (6)

This set of systems will be solved in parallel so that the ith processor solves the

ith system by sub-stepping on Ωi a number F (i) of times Ωi = ∪F (i)
j=1Ωj , giving

an approximation to the values uk|Γi
, i = 2, . . . , G. If these approximations

do not differ more than a given tolerance to those obtained previously from
system (5) convergence for time step Ω has been achieved. Else, a new PC
iteration, for systems (5) and (6) is computed, where the predictor equation (5)
is corrected with data from the previous iteration as

J k|Ω̄i
∆uk = fk|Ω̄i

+ J k−1
|Ω̄i

(uk−1
|Γi+1

− uk−1
i|Γi+1

) . (7)

Due to the non-linear nature of the PDE system under study, the correction
term J k−1

|Ω̄i
(uk−1
|Γi+1

− uk−1
i|Γi+1

) is also non-linear and needs to be updated at

every Newton iteration. This correction is equivalent to a Jacobi iteration for a
linearized system with matching discretization along the artificial boundaries.

Another modification of this scheme can be obtained by adding in equa-
tion (5) all the corrections obtained from previous iterations to obtain schemes
of the Parareal form

J k|Ω̄i
∆uk = fk|Ω̄i

+

k−1∑

j=1

J j|Ω̄i
(uj|Γi+1

− uji|Γi+1
) . (8)

Even more, after the first iteration the active domain is redefined to be
the reduced

Ω = Ω̄|Ω̄1 , (9)

uk|Γ1
= g and the initial boundary condition satisfies

uk|Γ2
= u1

1|Γ2
. (10)

Assuming that after iteration k = G− 1 it is satisfied

uk|Γ1
= g, . . . , uk|ΓG

= uG−1
G−1|ΓG

(11)

where Ω = Ω̄| ∪G−1
i=1 Ω̄i; at the Gth iteration both predictor and corrector

are defined over the same active domain and share the same initial boundary
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a. Gas saturation b. Oil saturation

Fig. 1. Hydrocarbon migration simulated by Athena for 100 y with 0.0047 y as time
step

condition, so that the best approximation is given by the solution to the fine-
parallel system, uGG|ΓG+1

. Therefore, this algorithm converges in at most G

iterations, where G denotes the amount of systems to be solved in parallel
and its accuracy is determined by the corrector approximation.

4 Numerical examples

In this section we will illustrate with two different experiments the scalability
and performance of the algorithm implemented for the molar mass equations
within the Athena fluid flow migration simulator. We have carried out the
experiments on a Linux cluster, with PIII processors to explore the behavior
of the methods.

Before proceeding with the numerical experiments, the geological domain
and boundary conditions shall be described. The three dimensional domain
has 50 m depth on the ends, and a size of 1000 m×100 m×70 m. There are four
different layers in the z direction: shale, sandstone, shale and sandstone again.
The lithology for the sandstone has a porosity of φ = 0.5 and a permeability
of Kx = 500 mD, Ky = 500 mD and Kz = 500 mD while the corresponding
values for the shale are φ = 0.5 and Kx = 5 · 10−6 mD, Ky = 5 · 10−6 mD
and Kz = 5 · 10−6 mD. The domain is initially filled with water and the
boundary conditions consist of an explicitly given flux of oil and gas with
value 5 · 10−5 mol/m2s going inwards on the left hand side and an outwards
water flux with value 6.5 · 10−4 mol/m2s in the right hand side. There are
also temperature boundary conditions of 450◦K at the top and 460◦K at the
bottom. The domain is uniformly subdivided in each direction as is shown in
Fig. 1, which serve as an illustration of the Athena output for a simulated
time of 100 years.

We consider the algorithm as described in Section 3 where, due to im-

plementation issues in our particular simulator, the modification term, S
[n],k

|Ω̄i
,
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will be an approximation of that given in (7) by using the current matrix

J k|Ω̄i
∆uk = fk|Ω̄i

+ J k|Ω̄i
(uk−1
|Γi+1

− uk−1
i|Γi+1

) . (12)

Computational results: Load balance

In this experiment we are mainly interested in the scalability of the imple-
mentation. By varying the number of processors used, we want to explore the
speedup compared to the sequential program. When increasing the number
of processors the wall clock time is expected to decrease, but there is a limit
where adding more processors will not decrease the wall clock time. Besides
this MPI implementation has a master-slave structure where the number of
sub-domains equals the number of parallel (slave) processors used and the
master deals with the non-parallelizable part of the algorithm.

The domain is partitioned considering a fixed underlying grid with a to-
tal of s =

∑
sG = 24 cells. Therefore, letting the number of sub-domains to

double, G = 2i, with i = 0, . . . , 4 implies that the number of cells in each
sub-domain halves, sG = 24−i. Besides, since each sub-domain uses only one
processor, increasing the number of sub-domains is equivalent to increase the
overhead. In in the left of Fig. 2 the run time for the slaves is plotted against
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Fig. 2. Space domain with 200 cells. Run time vs. the number of sub-domains.
In the left hand side, communication (.- increasing), calculation (.- decreasing) and
addition of both times (- -) for the slaves. In the right, the parallel speedup for the
addition of slave and master run times.

the number of sub-domains, considering the run time values to be the average
of all parallel processors. It can be seen that as the number of sub-domains
(or processors) doubles, the calculation time at each processor halves (see the
monotonic decreasing curve), whilst the time for collective broadcasting in-
creases (see the monotonic increasing curve). The relevant values correspond
to the addition of both communication and calculation times; these are plot-
ted by the curve marked with squares which indicates that the method is
competitive up to a certain parallelization degree when the communication
time overrides the computational time.
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Fig. 3. Space domain with 800 cells. Run time vs. the number of sub-domains.
In the left hand side, communication (.- increasing), calculation (.- decreasing) and
addition of both times (- -) for the slaves. In the right, the parallel speedup for the
addition of slave and master run times.

The speedup for the overall method, addition of master (coarse solver) and
slave (parallel-fine solver) run times, is displayed in the right of Fig. 2 where
the best time is clearly obtained when G = sG, which can easily be proven to
coincide with the case when optimal load balance occurs.

Computational Results: Overhead

Given a fixed spatial discretization, the previous section studies the scalability
in time as the underlying time-mesh remains constant whilst the ratio coarse
to fine cells varies. We aim to demonstrate that the scalability properties hold
as the spatial domain increases, therefore decreasing the space overhead. Even
when the communication is seen in the left of Fig. 3 to became negligible with
respect to the time for calculations, the master-slave structure of the algorithm
gives a fixed overhead due to the communication master-slave and it can be
seen in the right of Fig. 3 that the total run time is best when the load balance
reaches optimality.

5 Conclusions

In this paper a convergent parallel algorithm has been derived in a construc-
tive manner. It acts as a predictor corrector and the numerical experiments
indicate that even for highly non-linear problems this parallel formulation
improves both speed and accuracy with respect to the standard sequential
solvers. Besides, the sequential nature of time allows to ensure convergence
within a given number of iterations. The implementation of this algorithm in
our fluid flow simulator, Athena, has optimal speed-up.

A Galerkin-type of algorithm based on Additive Schwarz Bjørstad et al.
[2002], Xu and Zikatanov [2002, 2003], Cai et al. [2002] is under current con-
sideration for space-time parallelization.
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Summary. We introduce some nonlinear positive and negative interpolation oper-
ators. The interpolation need to preserve positivity or negativity of a function. In
addition, the interpolation must be pointwise below or above the function. Some of
the operators also have the pointwise monotone property over refined meshes. It is
also desirable that the interpolation have the needed approximation and stability
estimates. Those operators could be used in the convergence analysis for domain
decomposition and multigrid methods for obstacle problems.

1 Introduction
We are interested in the convergence rate analysis of multigrid and domain
decomposition methods for variational inequalities, i.e. we want to solve a
convex minimization problems with some convex constraints, c.f. Kornhu-
ber [1994], Tai [2003]. It is well known that both domain decomposition and
multigrid methods can be regarded as space decomposition and subspace cor-
rection techniques. For a given space decomposition technique, we need two
constants to measure the quality of the decomposition. One constant is called
the constant for the strengthened Cauchy-Schwarz inequality. The other con-
stant is for the partition lemma, which is also called Lions’s lemma. For linear
problems, these constants are well established, see Xu [1992]. The concepts of
using these constants to analyse the convergence rate for space decomposition
techniques was extended to nonlinear problems in Tai [1994b], Tai and Xu
[1999], Tai [1994a], Tai and Xu [2002], Tai and Tseng [2002], Tai [2003]. To
be more specific, we shall consider the following problem in this work:

min
v∈K

F (v). (1)

For simplicity, we just assume that

K = {v| v ∈ H1
0 (Ω), v ≥ 0}, F (v) =

∫

Ω

1

2
|∇v|2 − fv. (2)

⋆ Financial support from the Norwegian Research Council is gratefully acknowl-
edged.
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In order to use domain decomposition or multigrid methods for the above
problem, we need to construct finite element or finite difference meshes that
are nested and refined (the problem with non-nested mesh is much more
complicated and shall not be considered here). For the partition lemma for
the above problem, we need to interpolate functions from K to the different
meshes or we need to interpolate functions from fine meshes to coarser meshes.
The interpolation operators need to satisfy the following properties:

1. (Positivity): It shall preserve the positivity or negativity, i.e. the inter-
polation of a positive function shall be positive or the interpolation of a
negative function shall be negative.

2. (Approximation): The interpolation shall have the needed approximation
properties.

3. (Stability): The interpolation shall be stable in the needed norms.
4. (Pointwise above or below): The interpolation of a given function shall be

pointwise below or above the function.
5. (Monotonicity with mesh refinement): When interpolating a function to

finer or coarser meshes, it is desirable that the interpolation over a finer
mesh should be pointwise bigger or smaller than the interpolation over a
coarser mesh.

For problem (1)–(2), the standard nodal point linear Lagrangian finite element
interpolation operators are not applicable in many context. In Nochetto and
Wahlbin [2002] and Chen and Nochetto [2000], some interpolation operators
are given which preserve positivity. These operators are linear and satisfy the
approximation and stability requirements, but do not have properties that
the interpolation is below or above the interpolated functions and also do
have pointwise monotonicity with respect to refined meshes. In Nochetto and
Wahlbin [2002], it was proved that linear positive interpolation operators may
not exist if we require more than first order accuracy at extreme points. In
this work, we shall introduce some operators which are not linear, but satisfy
all the needed properties.

2 Some nonlinear positive interpolation operators
Let Th be a quasi-uniform triangulation of the domain Ω ⊂ Rd, d = 1, 2, 3
with a mesh size h and Sh ⊂ H1

0 (Ω) be the corresponding piecewise linear
finite element space on Th. In the analysis, we need to use finite element spaces
with different mesh sizes. It will be assumed that h is always the smallest mesh
size. For an H > h, we consider the case that Th is a refinement of TH . In the
following, the definition of some nonlinear interpolation operators from Sh to
SH will be given. Denote by NH =

{
xi0
}n0

i=1
all the interior nodes for TH . For

a given xi0, let ωi be the union of the mesh elements of TH having xi0 as one
of its vertexes, i.e.

ωi := ∪{τ ∈ TH , xi0 ∈ τ̄}. (3)

Let
{
φi0
}n0

i=1
be the associated nodal basis functions satisfying φi0(x

k
0) = δik,

φi0 ≥ 0, ∀i and
∑

i φ
i
0(x) = 1. It is clear that ωi is the support of φi0.
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In the following, standard notations for Sobolev norms will be used, i.e.
‖ · ‖0 stands for the L2(Ω) norm, ‖ · ‖1 and | · |1 are the norms and seminorms
for H1(Ω), etc.

2.1 A nonlinear positive interpolation operator below the function

Given a nodal point xi0 ∈ NH and a v ∈ Sh, let

Iiv = min
ω̄i

v(x). (4)

The interpolated function is then defined as

I⊖Hv :=
∑

xi
0∈NH

(Iiv)φ
i
0(x).

From the definition, it is easy to see that

I⊖Hv ≤ v, ∀v ∈ Sh, (5)

I⊖Hv ≥ 0, ∀v ≥ 0, v ∈ Sh. (6)

Moreover, the interpolation for a given v ∈ Sh on a finer mesh is always no
less than the corresponding interpolation on a coarser mesh due to the fact
that each coarser mesh element contains several finer mesh elements, i.e.

I⊖h1
v ≤ I⊖h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (7)

In addition, the interpolation operator also has the following approximation
properties, c.f. p. 767 of Tai [2003].

Theorem 1. For any u, v ∈ Sh, it is true that

‖I⊖Hu− I⊖Hv − (u− v)‖0 ≤ cdH |u− v|1, (8)

‖I⊖Hv − v‖0 ≤ cdH |v|1, (9)

|I⊖Hu− I⊖Hv|1 ≤ cd|u− v|1, (10)

where cd = C if d = 1; cd = C
(
1 +

∣∣log H
h

∣∣ 12
)

if d = 2 and cd = C
(
H
h

) 1
2 if

d = 3. Here and later, the generic constant C is used to denote constants that
are independent of the mesh parameters.

2.2 A nonlinear negative interpolation operator above the function

However, if we define

Iiv = max
ω̄i

v(x) I⊕Hv :=
∑

xi
0∈NH

(Iiv)φ
i
0(x). (11)
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Then it is easy to see that

I⊕Hv ≥ v, ∀v ∈ Sh, I⊕Hv ≤ 0, ∀v ≤ 0, v ∈ Sh. (12)

Moreover, the interpolation for a given v ∈ Sh on a finer mesh is always no
bigger than the corresponding interpolation on a coarser mesh, i.e.

I⊕h1
v ≥ I⊕h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (13)

From theorem 1, it is easy to see that the following is correct (Tai [2003]).

Theorem 2. There exists an interpolation operator I⊕H : Sh 7→ SH such that

I⊕Hv ≥ v, ∀v ∈ Sh,
I⊕Hv ≤ 0, ∀v ≤ 0, v ∈ Sh,
‖I⊕Hu− I⊕Hv − (u− v)‖0 ≤ cdH |u− v|1,
‖I⊕Hv − v‖0 ≤ cdH |v|1, |I⊕Hu− I⊕Hv|1 ≤ cd|u− v|1, ∀v ∈ Sh.

2.3 A nonlinear interpolation operator above or below the function

For some cases, we need an interpolation operator which has the properties
of I⊕H in some part of the domain Ω and has the properties of I⊖H in the rest
of Ω. The operator we shall define in the following is a simplified version of
the operator used in p.133 of Tai et al. [2002]. For any given v ∈ Sh, we let

v+(x) = max(0, v(x)), v−(x) = min(0, v(x)).

It is easy to see that v(x) = v+(x) + v−(x). The new interpolation operator
is then defined as:

IHv :=
∑

xi
0∈NH

(min
ω̄i

v+ + max
ω̄i

v−)φi0(x). (14)

We have minω̄i v
+ ≥ 0 and v−|ωi = 0 if v ≥ 0 in ωi. We have maxω̄i v

− ≤ 0
and v+|ωi = 0 if v ≤ 0 in ωi. In case that v has both negative and positive
values in ωi, then we have minω̄i v

+ = 0 and maxω̄i v
− = 0. For a given v, we

let

Ω+ = {x| v(x) ≥ 0}, Ω0 = {x| v(x) = 0}, Ω− = {x| v(x) ≤ 0}.

It is easy to see that

IHv ≥ 0 in Ω+, IHv ≤ 0 in Ω−, IHv = 0 in Ω0.

Moreover, we have that

IHv ≤ v in Ω+, IHv ≥ v in Ω−.
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If we interpolate a function into a sequence of refined meshes, then the in-
terpolation value is increasing on finer meshes over the region Ω+ and the
interpolation value is decreasing on finer meshes over the region Ω−. These
pointwise monotone properties are visualized in Figure 1. Similarly, the fol-
lowing approximation and stability properties are valid:

‖IHu− IHv − (u− v)‖0 ≤ cdH |u− v|1, ∀u, v ∈ Sh,
|IHu− IHv|1 ≤ cd|u− v|1, ∀u, v ∈ Sh.

The proof for the above estimations can be done similarly as in Tai [2003].
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a) Plot of I⊖h . b) Plot of I⊕h .
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c) Plot of Ih.

Fig. 1. Plots of the interpolation operators over a sequence of refined meshes.
If the mesh is refined, the interpolation I⊖Hv increases, while I⊕Hv decreases. The
interpolation IHv increases in Ω+ and decreases in Ω−. I⊖Hv is always below v,
while I⊕Hv is always above v. IHv is below v in Ω+ and above v in Ω−.

3 Some other nonlinear interpolation operators
The interpolation operators given in §2 only preserve constants locally and
this can only have first order of convergence. In this section, we will introduce
an operator which preserves linear functions locally and thus it can have
higher oder approximation accuracy, but we will lose the pointwise monotone
property enjoyed by the operators defined in §2.
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For a given v ∈ Sh, let vI0 = IHv to be the standard nodal Lagrangian
interpolation of v into SH . For the coarser mesh SH , let x0

i and ωi be as
defined in §2, c.f. (3). We shall construct a new interpolation function v0 by
defining its nodal values as

v0(x
0
i ) = vI0(x0

i )−max
x∈ωi

(
vI0(x) − v(x)

)
, ∀x0

i . (15)

For simplicity, we define ρ0(x) ∈ SH to be the coarse mesh function having
the nodal values

ρ0(x
0
i ) = max

x∈ωi

(
vI0(x)− v(x)

)
, ∀x0

i .

It is easy to see that v0 = vI0 − ρ0. Moreover, ρ0(x) ≥ vI0(x) − v(x), which
implies

v0(x) = vI0(x) − ρ0(x) ≤ vI0(x)− (vI0(x)− v(x)) = v(x).

In addition,
‖v0 − v‖0 ≤ ‖vI0 − v‖0 + ‖ρ0‖0.

As ρ0 ∈ SH , it is known that the L2-norm is equivalent to

‖ρ0‖20 = CHd
n0∑

i=1

|ρ0(x
0
i )|2.

Using a linear mapping to transform ωi into a domain of unit size and applying
the well-known estimate of Bramble and Xu [1991], we get that

‖ρ0‖20 ≤ CHd
n0∑

i=1

‖vI0 − v‖20,∞,ωi
≤ CH2c2d|v|21.

In the above inequality, we have used the regularity of the meshes, i.e. under
the minimum angle condition, the number of elements around a nodal point
is always less than a constant. Using the inverse inequality, we know that
‖ρ0‖1 ≤ CH−1‖ρ0‖0. In case that we want to use the H2 norm for v, we have

‖ρ0‖20 ≤ CHd
n0∑

i=1

‖vI0 − v‖20,∞,ωi
≤ CH2|v|22.

Denote v0 by IaHv. Combining these estimates with standard estimates for
v − vI0 , we have proved the following lemma.

Theorem 3. Let SH and Sh be defined as above. There exists an interpolation
operator IaH : Sh 7→ SH such that

IaHv ≤ v, ‖IaHv‖1 ≤ cd‖v‖1,
‖IaHv − v‖0 ≤ cdH |v|1, ‖IaHv − v‖0 ≤ H2|v|2,
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From the inequality

|max
ω̄i

u−max
ω̄i

v| ≤ ‖u− v‖0,∞,ωi ,

it is also easy to prove the following estimates using the techniques of Tai
[2003]

Theorem 4. For any u, v from Sh, we have

‖IaHu− IaHv − (u− v)‖0 ≤ cdH |u− v|1,
‖IaHu− IaHv − (u− v)‖0 ≤ cH2|u− v|2,

‖IaHu− IaHv‖1 ≤ cd‖u− v‖1.

In addition, the operator IaH have the following property which is not valid
for the operators given in §2:

IaH(v + vH) = IaHv + vH , ∀v ∈ Sh, vH ∈ SH , (16)

i.e. the operator IaH is invariant for functions from the coarse mesh space SH .
The interpolation IaHv is always below the function v, but it may not

preserve positivity. It is also easy to define another operators which are always
above the function or above the function in part of the domain and below the
function in the rest of the domain.

4 Applications to multigrid decomposition
Assume that we have a sequence of shape regular meshes Thj that are produced
by refining a coarse mesh. The mesh sizes hj , j = 1, 2, · · · , J are decreasing
and satisfies c1γ

2j ≤ hj ≤ c2γ
2j and 0 < γ < 1. Let Mj be the piecewise

linear finite element spaces over the meshes. For a given v ≥ 0 and v ∈ MJ

we shall decompose it into v =
∑J
j=1 vj such that vj ≥ 0 ∀j. In addition,

we also need that ‖vj‖1 ≤ cd‖v‖1. Such a decomposition is needed for the
proof of the partition lemma for Tai [2003] and Tai et al. [2002]. Using the
operators defined in §2, we see that the following functions vj satisfy the
needed properties:

vj = I⊖hj
v − I⊖hj−1

v, j = 1, 2, · · ·J − 1, vJ = v − I⊖hJ−1
v.

In order to show that vj ≥ 0 we need to use the pointwise monotone properties.
In order to show the stability of vj in H1 we need the corresponding estimates
for I⊖. In fact, the operators defined in §2 and §3 can be used in different
context in the convergence analysis of domain decomposition and multigrid
methods for problems like (1).

The interpolation operator I⊕H is needed for the analysis given above if we
change the constraint set K given in (2) to K = {v| v ∈ H1

0 (Ω), v ≤ 0}. The
interpolation operator IH is needed if we shall work with two-obstacles, i.e.
one obstacle above the solution and one obstacle below the solution.
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On Scalable Algorithms for Numerical Solution
of Variational Inequalities Based on FETI and

Semi-monotonic Augmented Lagrangians
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CZ-70833,Ostrava,CzechRepublic,zdenek.dostal@vsb.cz,david.horak@vsb.cz

Summary. Theoretical and experimental results concerning a new FETI based al-
gorithm for numerical solution of variational inequalities are reviewed. A discretized
model problem is first reduced by the duality theory of convex optimization to the
quadratic programming problem with bound and equality constraints. The latter is
then optionally modified by means of orthogonal projectors to the natural coarse
space introduced by Farhat and Roux in the framework of their FETI method. The
resulting problem is then solved by a new variant of the augmented Lagrangian
type algorithm with the inner loop for the solution of bound constrained quadratic
programming problems. Recent theoretical results are reported that guarantee scal-
ability of the algorithm. The results are confirmed by numerical experiments.

1 Introduction

The FETI method was originally proposed by Farhat and Roux [1992] for
parallel solution of linear problems described by elliptic partial differential
equations. Its key ingredient is decomposition of the spatial domain into non-
overlapping subdomains that are ”glued” by Lagrange multipliers, so that
after eliminating the primal variables, the original problem is reduced to a
small, relatively well conditioned, typically equality constrained quadratic
programming problem that is solved iteratively. Observing that the equal-
ity constraints may be used to define so called ”natural coarse grid”, Farhat
et al. [1994] modified the basic FETI algorithm so that they were able to prove
its numerical scalability.

If the FETI procedure is applied to an elliptic variational inequality, the re-
sulting quadratic programming problem has not only the equality constraints,
but also the non-negativity constraints. Even though the latter is a consider-
able complication as compared with the linear problem, the resulting prob-
lem is still easier to solve than the contact problem in displacements as it
is smaller, better conditioned and only bound constrained. Promising experi-
mental results by Farhat and Dureisseix [2002], who used a coarse grid initial
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approximation, supported this claim and even indicated numerical scalability
of their method. Scalability was later proved for an algorithm that combined
FETI with optimal dual penalty Dostál and Horák [2003b]. A different ap-
proach yielding experimental evidence of scalability was based on the aug-
mented Lagrangian method was used by Dostál et al. [2000a,b], Dostál and
Horák [2003a]. It should be noted that the effort to develop scalable solvers for
variational inequalities was not restricted to FETI. For example, using ideas
related to Mandel [1984], Kornhuber [1997], Kornhuber and Krause [2001],
Wohlmuth and Krause. [2002] gave an experimental evidence of numerical
scalability of the algorithm based on monotone multigrid. Probably the first
theoretical results concerning development of scalable algorithms were proved
by Schoeberl [1998b,a].

Here we review recent improvements to show scalability for this type of
algorithms. We start our exposition by describing a simple model problem
and the FETI methodology Dostál et al. [2000a] that turns the variational
inequality into the quadratic programming problem with bound and equality
constraints. Then we briefly review recent results concerning a new variant of
the augmented Lagrangian method. Finally we report the results of numerical
experiments that are in agreement with the theory and indicate high and
numerical scalability of the algorithm presented.

2 Model problem

Let Ω = Ω1 ∪Ω2, Ω1 = (0, 1)× (0, 1) and Ω2 = (1, 2)× (0, 1) denote open
domains with boundaries Γ 1, Γ 2 and their parts Γ iu, Γ

i
f , Γ

i
c formed by the sides

of Ωi, i = 1, 2, so that Γ 1
u = {0} × (0, 1), Γ 2

u = {2} × (0, 1), Γ ic{1} × (0, 1),
and Γ if are formed by the other sides of Ωi, i = 1, 2. Let H1(Ωi), i = 1, 2

denote the Sobolev space of the first order in the space L2(Ωi) of functions
on Ωi whose squares are integrable in the sense of Lebesgue. Let

V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γ iu

}

denote the closed subspaces of H1(Ωi), i = 1, 2, and let

V = V 1 × V 2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}

denote the closed subspace and the closed convex subset of H = H1(Ω1) ×
H1(Ω2), respectively. The relations on the boundaries are in terms of traces.
On H we shall define a symmetric bilinear form

a(u, v) =

2∑

i=1

∫

Ωi

(
∂ui

∂x

∂vi

∂x
+
∂ui

∂y

∂vi

∂y

)
dΩ

and a linear form
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ℓ(v) =

2∑

i=1

∫

Ωi

f ividΩ,

where f i ∈ L2(Ωi), i = 1, 2 are the restrictions of

f(x, y) =





−3 for (x, y) ∈ (0, 1)× [0.75, 1)
0 for (x, y) ∈ (0, 1)× [0, 0.75) and (x, y) ∈ (1, 2)× [0.25, 1)

−1 for (x, y) ∈ (1, 2)× [0, 0.25)



 .

Thus we can define a problem to find

min q(u) =
1

2
a(u, u)− ℓ(u) subject to u ∈ K. (1)
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Fig. 1. Model problem and its solution

The solution of the model problem may be interpreted as the displacement
of two membranes under the traction f . The membranes are fixed on the outer
edges as in Figure 1 and the left edge of the right membrane is not allowed
to penetrate below the right edge of the left membrane. Since the Dirichlet
conditions are prescribed on parts Γ iu, i = 1, 2 of the boundaries with positive
measure, the quadratic form a is coercive which guarantees existence and
uniqueness of the solution Hlaváček et al. [1988].

3 Domain decomposition and discretized problem with a
natural coarse grid

To enable efficient application of the domain decomposition methods, we can
optionally decompose each Ωi into square subdomains Ωi1, . . . , Ωip, p = s2 >
1, i = 1, 2. The continuity in Ω1 and Ω2 of the global solution assembled from
the local solutions uij will be enforced by the ”gluing” conditions uij(x) =
uik(x) that should be satisfied for any x in the interface Γ ij,ik of Ωij and
Ωik. After modifying appropriately the definition of problem (1), introducing
regular grids in the subdomains Ωij that match across the interfaces Γ ij,kl,
indexing contiguously the nodes and entries of corresponding vectors in the
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subdomains, and using the finite element discretization, we get the discretized
version of problem (1) with the auxiliary domain decomposition that reads

min
1

2
u⊤Au− f⊤u s.t. BIu ≤ 0 and BEu = 0. (2)

In (2), A denotes a positive semidefinite stiffness matrix, the full rank
matrices BI and BE describe the discretized inequality and gluing conditions,
respectively, and f represents the discrete analog of the linear term ℓ(u).
Denoting

λ =

[
λI

λE

]
and B =

[
BI

BE

]
,

we can write the Lagrangian associated with problem (2) briefly as

L(u, λ) =
1

2
u⊤Au− f⊤u+ λ⊤Bu.

It is well known that (2) is equivalent to the saddle point problem

Find (u, λ) s.t. L(u, λ) = sup
λI≥0

inf
u
L(u, λ). (3)

After eliminating the primal variables u from (3), we shall get the minimiza-
tion problem

min Θ(λ) s.t. λI ≥ 0 and R⊤(f −B⊤λ) = 0, (4)

where

Θ(λ) =
1

2
λ⊤BA†B⊤λ− λ⊤BA†f, (5)

A† denotes a generalized inverse that satisfies AA†A = A, and R denotes
the full rank matrix whose columns span the kernel of A. We shall choose
R so that its entries belong to {0, 1} and each column corresponds to some
floating auxiliary subdomain Ωij with the nonzero entries in the positions
corresponding to the indices of nodes belonging to Ωij .

Even though problem (4) is much more suitable for computations than (2),
further improvement may be achieved by adapting some simple observations
and the results of Farhat et al. [1994], Mandel and Tezaur [1996]. Let us denote

F = BA†B⊤, G̃ = R⊤B⊤, ẽ = R⊤f, d̃ = BA†f,

and let λ̃ solve G̃λ̃ = ẽ, so that we can transform the problem (4) to mini-
mization on the subset of the vector space by looking for the solution in the
form λ = µ+ λ̃. Since

1

2
λ⊤Fλ− λ⊤d̃ =

1

2
µ⊤Fµ− µ⊤(d̃− Fλ̃) +

1

2
λ̃⊤Fλ̃− λ̃⊤d̃,

problem (4) is, after returning to the old notation, equivalent to
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min
1

2
λ⊤Fλ− λ⊤d s.t Gλ = 0 and λI ≥ −λ̃I (6)

where d = d̃ − Fλ̃ and G = T G̃ denotes a matrix arising from the orthonor-
malization of the rows of G̃ by the Schmidt process defined by the regular
matrix T .

Our final step is based on observation that the problem (6) is equivalent
to

min
1

2
λ⊤PFPλ− λ⊤Pd s.t Gλ = 0 and λI ≥ −λ̃I (7)

where
Q = G⊤G and P = I −Q

denote the orthogonal projectors on the image space of G⊤ and on the kernel
of G, respectively, so that Pλ = λ for feasible λ.

4 Semi-monotonic augmented Lagrangian method and
scalability

In this section we shall describe a recent modification Dostál [2003] of the
algorithm introduced earlier by Dostál et al. [2003]. The algorithm treats each
type of constraints separately, so that efficient algorithms using projections
and adaptive precision control Dostál and Schoeberl [2004] may be used for
the bound constrained QP problems.

Let us recall that the augmented Lagrangian for (7) and its gradient are
given by

L(λ, µ, ρ) =
1

2
λ⊤PFPλ− λ⊤Pd+ µ⊤Gλ+

1

2
ρ||Qλ||2

g(λ, µ, ρ) = PFPλ− Pd+G⊤(µ+ ρGλ).

The projected gradient gP = gP (λ, µ, ρ) of L at λ is given componentwise by

gPi = gi for λi > −λi or i /∈ I and gPi = g−i for λi = −λi and i ∈ I

with g−i = min(gi, 0), where I is the set of indices of constrained en-
tries of λ. The Hessian of the augmented Lagrangian L(λ, µ, ρ) is given by
Hρ = PFP + ρQ.

Algorithm 1. Semi-monotonic augmented Lagrangian method (SALM).

Step 0. Set η > 0, 1 < β, ρ0 > 0, M > 0, µ0 and k = 0.
Step 1. Find λk so that ‖gP (λk, µk, ρk)‖ ≤ min{M‖Gλk‖, η}.
Step 2. If ‖gP (λk, µk, ρk)‖ and ‖Gλk‖ are sufficiently small, then stop.
Step 3. µk+1 = µk + ρkGλ

k

Step 4. If L(λk+1, µk+1, ρk+1) < L(λk, µk, ρk) + ρk+1

2 ‖Gλk+1‖2
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Step 4a. then ρk+1 = βρk
Step 4b. else ρk+1 = ρk

end if.
Step 5. Increase k by one and return to Step 1.

An implementation of Step 1 is carried out by the minimization of the aug-
mented Lagrangian L subject to λI ≥ −λI by the MPRGP algorithm Dostál
and Schoeberl [2004]. The MPRGP algorithm with the choice of parameters

Γ = 1 and α ∈ (0, ‖Hρ‖−1] generates the iterations {λ̃ki, i = 1, 2, . . .} for the

unique solution λ
k

of the auxiliary minimization problem so that the rate of
convergence in the energy norm defined by ‖λ‖2Hρ = λ⊤Hρλ may be expressed
by means of the least eigenvalue α1 of ‖Hρ‖ in the form

‖λ̃ki − λk‖2Hρ ≤ 2ηi

α1

(
L(λ̃k0, µk, ρk)− L(λ

k
, µk, ρk)

)
, η = 1− αα1

4
. (8)

Algorithm 1 has been proved Dostál [2003] to converge for any set of
parameters that satisfy the prescribed relations. It has also been shown that
if ρk ≥M2/α1, then

L(λk+1, µk+1, ρk+1) ≥ L(λk, µk, ρk) +
ρk+1

2
‖Gλk+1‖2,

so that it is possible to give an upper bound on ρk in terms of α1. The
experiments have shown that the penalty parameter should be sufficiently
high to enforce fast convergence of the outer loop. Let us recall that a large
penalty parameter need not delay too much the convergence of the inner loop
as the image spaces of the projectors P and Q are invariants subspaces of Hρ

so that the arguments of Dostál [1999] may be applied. Moreover, it has been
proved Dostál [2003] that there is a bound on the number of outer iterations
that are necessary to achieve prescribed relative feasibility error ǫ‖Pd‖. The
bound may be expressed in terms of the extreme eigenvalues of the Hessian
of the augmented Lagrangian. Since it has been established by Mandel and
Tezaur [1996] and more recently by Klawonn and Widlund [2001] that the
smallest eigenvalue and the spectral condition number of the restriction of
PFP to the kernel of G are O(1) for fixed ratio H/h, it is possible to prove
the following theorem.

Theorem 1. Let C, ρ and ǫ denote given positive numbers, and let {λkH,h}, {µk}
and {ρk} be generated by Algorithm 1 with Step 1 implemented by the MPRGP
algorithm initiated by λ0

H,h = 0, µ0 = 0, η = ‖Pd‖ and ρ0 > 0 for the solution
of the problem (7) arising from the regular discretization of (1) with the de-
composition and discretization parameters H and h, respectively. Then there
is an integer k independent of h and H such that H/h ≤ C implies

‖gP (λkH,h, µ
k, ρk)‖ ≤ ǫ‖Pd‖ and ‖GλkH,h‖ ≤ ǫ‖Pd‖. (9)
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We have implemented Algorithm 1 for solution of (1). Results of com-
putations to the relative precision 1e-4 are in Table 1. The largest problem
discretized by more than two million nodal variables required 167 seconds of
32 processors of SGI Origin. The finest discretization of (1) that we have run so
far comprised 8464272 nodal variables and its solution required 65 iterations
and 1281 seconds of 64 processors with decomposition into 128 subdomains.
The results are the same as in Dostál and Horák [2003a,b] as no update of
the penalty parameter was observed in either case.

Table 1. Numerical scalability of AL for H/h=128 and ρ=1e+3

dimension 33282 133128 532512 2130048

subdomains 2 8 32 128

iterations 28 59 36 47

5 Comments and conclusion

We have reviewed our recent results related to application of the augmented
Lagrangians with the FETI based domain decomposition method to the so-
lution of variational inequalities using recently developed algorithms for the
solution of special QP problems. In particular, we have shown that the solu-
tion of the discretized problem to a prescribed precision may be found in a
number of iterations bounded independently of the discretization parameter.
Numerical experiments with the model variational inequality are in agreement
with the theory and indicate that the algorithm may be efficient. Let us point
out that similar development may be done also on the ground of DP-FETI.
We shall describe it elsewhere together with applications to contact problems
of elasticity.
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Summary. We consider the numerical simulation of multi-body contact problems
in linear elasticity. For the discretization of the transmission conditions at the in-
terface between the bodies by means of a transfer operator nonconforming domain
decomposition methods (mortar methods) are used. Here, we focus on the difficulties
related to the discrete choice of the transfer operator. We explain in detail how the
transfer operator can be implemented in the case of three-dimensional nonplanar
contact boundaries. For the numerical solution of the arising nonlinear systems of
equations monotone multigrid methods are used, which do not require any regular-
ization of the nonpenetration condition at the contact interface.

1 Introduction

The mathematical formulation of quasistationary contact problems in linear
elasticity is given as a system of elliptic partial differential equations with suit-
able boundary conditions. Of particular importance are the boundary condi-
tions at the interface between the bodies coming into contact. They have to be
chosen in a way that the bodies do not penetrate each other. For linear elastic
materials and small displacements, usually linearized nonpenetration condi-
tions are considered, giving rise to inequality constraints for displacements and
normal stresses at the contact interface. For an overview, see, e.g., Kikuchi
and Oden [1988]. For a more detailed description we refer to Eck [1996]. By
means of this inequality constraints at the interface, the corresponding elliptic
boundary value problem becomes nonlinear and nondifferentiable.

The discretization of the boundary conditions requires a discrete transfer
operator, mapping the displacements and stresses from one body to the other
and vice versa. Here, for the construction of the discrete transfer operator
for displacements and stresses, we use nonconforming domain decomposition
methods (mortar methods). They have been successfully applied to contact
problems and give rise to discretization schemes of optimal order, see, e.g.,
Ben Belgacem et al. [1999], Hild [2000], Wohlmuth and Krause [2003].
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For contact boundaries in three space dimensions, the bodies on the dis-
crete level are represented by polyhedral meshes. At the contact interface,
there is no a priori knowledge about the small–scale relationship of the meshes
to each other, which is of crucial importance for the construction of the dis-
crete transfer operator for the discretization by mortar methods. We explain
how a mapping between the boundary meshes can be constructed and imple-
mented for nonplanar contact boundaries in three space dimensions.

The paper is organized as follows. In Section 2, we give the formulation of a
two body contact problem in linear elasticity as a partial differential equation
and the discretization by mortar methods. In Section 3, the construction of the
discrete transfer operator is depicted and numerical examples are given. For
the solution of the arising nonlinear systems of equations, we use monotone
multigrid methods for contact problems using mortar methods, see Kornhuber
and Krause [2001], Krause [2001] and Wohlmuth and Krause [2003]. In this
case, no regularization of the inequality constraints at the interface is required.
The nonlinear system of equations can be solved with multigrid complexity.

2 Problem Formulation and Discretization

For simplicity, we restrict ourselves to the case of two deformable bodies in R3.
We identify the two bodies in their reference configurations with two domains
Ωnon, Ωmor ⊂ R3 with sufficiently smooth boundaries. The naming stems from
the fact that Ωnon and Ωmor will later be used as nonmortar and mortar side,
respectively. Under the influence of boundary conditions and volume forces,
the bodies undergo displacements u = (us,um) : Ωnon ×Ωmor → R3.

The boundary of Ω := Ωnon∪Ωmor is partitioned into three disjoint subsets
ΓD, ΓN , and ΓC . The set ΓC represents the region where contact might occur.
It therefore consists of two parts ΓC = Γnon ∪ Γmor with Γnon ⊂ ∂Ωnon and
Γmor ⊂ ∂Ωmor. We assume meas(ΓD ∩Ωnon),meas(ΓD ∩Ωmor) 6= ∅.

The materials are supposed to be linear elastic, homogeneous, and isotropic
and the stress tensor σ is assumed to depend linearly on the strain tensor
ǫij = 1

2 (ui,j + uj,i) via Hooke’s law σij = Eijklǫkl. We use the subscript , i to
signify the i-th partial derivative. The material constants are Young’s modulus
E > 0 and the Poisson ratio 0 < ν < 1/2.

In Ωnon ∪Ωmor the equilibrium conditions from linear elasticity hold and
on ΓD∪ΓN we have Dirichlet and Neumann boundary conditions, respectively,
i.e.,

−σij(u),j = fi in Ωnon ∪Ωmor,

u = 0 on ΓD, (1)

σij(u) · nj = pi on ΓN .

Here, f = (fi) is the density of volume forces, p = (pi) are prescribed surface
tractions and n is the outward surface normal on ΓN .
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In order to model the contact between the two bodies, further conditions
have to be prescribed at ΓC . To this end, we introduce the contact mapping
Φ : Γnon → Γmor. We assume Φ to be a C1-diffeomorphism. It allows us to
define the initial gap function g : Γnon → R with g(x) = |Φ(x) − x| and the
relative normal displacement

[u]Φ =
(
u|Γmor ◦ Φ− u|Γnon ,nnon

)
(2)

for a given displacement u ∈
(
H1

0;ΓD
(Ω)

)d
. Here, nnon is the unit normal

on the nonmortar contact boundary and H1
0;ΓD

(Ω) is the Sobolev–space that

contains only those functions from H1(Ω) which satisfy homogeneous Dirich-
let boundary conditions on ΓD. On ΓC , we then have the linearized contact
conditions

[u]Φ ≤ g, (3)

see Eck [1996]. Furthermore, the Kuhn–Tucker like conditions

σnnon(u|Γnon) = σnmor(u|Γmor) ≤ 0 (4)

0 =
(
[u]Φ − g

)
· σn(us) (5)

σT (u|Γnon) = σT (u|Γmor) = 0, (6)

are required to hold on ΓC , where σn = niσijnj and (σT )i = σijnj − σnni,
i = 1, . . . , d, are the normal and tangential parts of σ, respectively. Condi-
tion (4) ensures that the surface forces at the contact boundary have the char-
acter of a pure pressure. Equation (5) states that there can be non-vanishing
surface pressure at ΓC only if there is contact and equation (6) corresponds
to frictionless contact.

We now discretize the two–body contact problem by finite elements. On
both subdomains, shape regular triangulations are used, which are allowed to
be completely unstructured and contain arbitrary element types. For simplic-
ity we assume that Ωnon and Ωmor are polyhedral. By hnon and hmor we denote
the largest diameter of an element occurring in Ωnon respective Ωmor. We use
piecewise linear functions on simplices and trilinear functions on hexahedra.
We set

Xs;hnon =
{
v
∣∣ v ∈ C(Ωnon), v is (tri)linear on each T ∈ T and v|ΓD = 0

}

and Xm;hmor is defined equivalently. We set

Xs;hnon = (Xs;hnon)
3 and Xm;hmor = (Xm;hmor)

3.

One of the main difficulties is the discretization of the boundary condi-
tions (3)–(6) at the contact interface for irregular geometries. The contact
boundaries have non-matching grids, are nonplanar and do not coincide. The
straight forward approach is to enforce the constraints (3)–(6) pointwise. For
linear elliptic problems with linear boundary conditions Bernardi et al. [1994]
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showed that this yields discretizations which are in general nonoptimal, i.e.,
the a priori error in the energy norm does not behave as O(hs) if the solution
is H1+s. Optimality can be recovered by enforcing the transmission conditions
at the interface in a weak sense. This is done by enforcing the boundary con-
ditions with respect to a space of suitably chosen functionals, the Lagrange
multipliers.

We first rewrite (1) as a saddle point problem. By definition, see (2), the
jump [u]Φ is contained in the trace space H1/2(Γnon). We introduce a space M
of Lagrange multipliers that will serve to enforce nonpenetration. We choose
M = H−1/2(Γnon) and define the positive cone

M+ =
{
µ ∈M

∣∣ 〈µ · n, w〉Γnon ≥ 0, w ∈ W+
}

with W+ =
{
w ∈ H1/2(Γnon)

∣∣ w ≥ 0 a.e.
}
. Then (1) with (3)–(6) can be

restated as, see, e.g., Ben Belgacem et al. [1999], Wohlmuth and Krause [2003]:
Find a pair (u,λ) ∈ (X,M+) with

a(u,v) + b(λ,v) = f(v) for all v ∈ H1
0;ΓD

,

b(µ,u) ≤ 〈µ · n, g〉Γnon for all µ ∈M+. (7)

The bilinear form b(·, ·) occurring in (7) is defined by

b(µ,v) = 〈[v]Φ,µ · n〉Γnon .

For the discretization Mh of M we use dual Lagrangian multipliers, see,
Wohlmuth [2001]. Let ψp, φq, θq̃ be basis functions of the discrete multi-
plier space Mh and the discrete trace spaces X |Γnon and X |Γmor , respectively.
Then, the algebraic representation of (7) involves the discrete transfer oper-
ator S : X |Γmor −→ X |Γnon ,

Sv = D−1MTv, (8)

where

Dpq = Id3×3

∫

Γnon

ψpφq ds and Mpq̃ = Id3×3

∫

Γnon

ψp · (θq̃ ◦ Φ) ds.

Now, the dual multipliers are characterized by the biorthogonality relation
∫

Γnon

ψpφq ds = δpq

∫

Γnon

φds, p, q ∈ VΓnon .

Thus, D becomes a block diagonal matrix, and its inverse can easily be com-
puted. This is in contrast to the standard mortar approach, where the finite
element trace space is used as space of discrete Lagrangian multipliers. Then,
D is a sparse matrix, which is not as easy to invert as a block–diagonal one.

In Wohlmuth and Krause [2003] the monotone multigrid method for con-
tact problems from Kornhuber and Krause [2001] has been generalized to
multi body contact problems using dual mortar methods. Thus, the arising
nonlinear systems of equations can be solved with high accuracy and with
multigrid efficiency.
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3 Implementation and Numerical Results

A crucial component of the discretization is the mapping Φ given in (3).
Its purpose is to identify the nonmortar and the mortar side of the contact
boundary ΓC . It also appears in the definition (8) of the transfer operator S.

We first describe our data structure and then the concrete construction
of Φ. In the following, we assume Γnon and Γmor to be triangulated surfaces
and their mutual distance to be small. Then Φ is a piecewise smooth home-
omorphism. We store Γnon as a list of vertices VΓnon and triangles TΓnon . We
additionally define a plane graph for each T ∈ TΓnon . The graph on T is the
image of the edge graph of Φ(T ) ⊂ Γmor under Φ−1. Thus, each vertex of Γmor

appears as a graph node on a triangle T of Γnon. This graph node stores its
local position on T and its target position as a vertex in Γmor. That way, Φ
can be evaluated for any point x ∈ Γnon using a point location algorithm and
linear interpolation.

For our implementation of the contact mapping Φ we choose Φ−1 to be
the projection of Γmor onto Γnon in normal direction of Γmor. We define a
continuous normal vector field n : Γmor → R3. If ṽ ∈ VΓmor , we set n(ṽ) to the
average of the triangle normals of the triangles that have ṽ as a vertex. All
other values of n are then defined via linear interpolation.

The actual construction of Φ consists of three steps.
1.: Computing Φ−1(ṽ) for all ṽ ∈ VΓmor

The vertices of Γmor appear as nodes
in the graph defined on Γnon. Given a vertex ṽ ∈ VΓmor , its exact position on
Γnon can be found by considering the ray r normal to Γmor beginning in ṽ.
If r intersects one or more triangles of Γnon, the intersection closest to ṽ is
the one to choose. If there are no intersections we decide that ṽ should not
be part of Γmor. Special care has to be taken if v = Φ−1(ṽ) is on an edge or a
vertex of a triangle of Γnon. Then, several graph nodes of different types have
to be added to the data structure on Γnon to keep it consistent (see Sander
and Krause [2003]). The search for all possible intersections can be sped up
by the use of a suitable spatial data structure.
2.: Computing Φ(v) for all v ∈ VΓnon

In a second step we have to find the
images of the vertices of Γnon under Φ. This is an inverse normal projection.
For a given v ∈ VΓnon we have to find Φ(v) ∈ Γmor such that v − Φ(v) is
normal to Γmor. Let T̃ be a triangle of Γmor with the vertices a, b, c. Denote
by na,nb,nc the respective normal vectors. Then checking whether the inverse
normal projection has a solution on T̃ amounts to see if the nonlinear system
of equations

ηλna + ηµnb + η(1− λ− µ)nc − v = 0 (9)

has a solution with λ, µ, η ≥ 0 and λ + µ ≤ 1. In the affirmative case, (λ, µ)
yields the intersection point in barycentric coordinates on T̃ . System (9) may
theoretically have more than one solution, but this did not lead to any prac-
tical problems. It can be solved efficiently with a standard Newton algorithm.
3.: Adding the edges We enter the edges of Γmor into the graph on Γnon by
running over all edges ẽ = (p̃, q̃) in Γmor and entering them one by one. We
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Fig. 1. A Hertzian contact problem

try to ‘walk’ on Γnon along Φ−1(ẽ) from p = Φ−1(p̃) to q = Φ−1(q̃). Since p
and q will generally not be on the same triangle of Γnon, we have to find the
points where the path from p to q crosses edges of Γnon. For an edge e of Γnon

we have to check whether there are points x ∈ e and x̃ ∈ ẽ with x− x̃ normal
to Γmor. This can be formulated as a nonlinear system of equations

λq̃ + (1− λ)p̃ + ηλnq̃ + η(1− λ)np̃ − µq− (1− µ)p = 0 (10)

which can be solved with a Newton solver. We have found an intersection if
(10) has a solution with 0 ≤ λ, µ ≤ 1 and 0 ≤ η.

Assuming that the Newton solver terminates after a constant number of it-
erations, the projection algorithm described above requires O(Nb logNb) time.
Here Nb is the number of unknowns on the contact boundary. Asymptotically,
Nb behaves like N2/3, where N is the total number of nodes. The construction
of Φ therefore takes O(N2/3 logN2/3) time. Thus, the overall complexity of
the simulation process is still dominated by the nonlinear monotone multigrid
method, which requires O(N) time.

Our first numerical example is a Hertzian contact problem. An elastic half–
sphere is pressed against an elastic cube, see Figure 1. We model both objects
with unstructured tetrahedral grids. Using the boundary parametrization de-
scribed in Sander and Krause [2003], during the adaptive refinement process
the geometry of the sphere is successively approximated. This is done by mov-
ing the boundary nodes which are newly created during the refinement pro-
cess, to their actual position on a corresponding high–resolution half–sphere.

On top of the half–sphere, Dirichlet boundary conditions are applied cor-
responding to a point load on the upper pole of the corresponding sphere. Ho-
mogeneous Dirichlet boundary conditions are applied at the vertical faces of
the cube and homogeneous Neumann conditions everywhere else. As material
parameters we use E = 7 · 103 and ν = 0.3 for the sphere and E = 6.896 · 105

and ν = 0.45 for the cube.
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Fig. 2. Femur and tibia meeting in the knee joint

The discrete problem is solved using the monotone multigrid solver de-
scribed by Kornhuber and Krause [2001], Wohlmuth and Krause [2003]. We
perform 3 steps of adaptive mesh refinement using a residual–based error indi-
cator. We compare our nonlinear monotone multigrid method with a standard
linear multigrid method. After the nonlinear contact problem has been solved,
the computed boundary stresses are taken as boundary data for the linear
multigrid method. By means of the linear multigrid method the same solu-
tion is computed as by the nonlinear monotone multigrid method. We use 3
pre– and postsmoothing steps on each level k > 0. The problems on level 0 are
solved by applying one iteration step of an algebraic variant of our nonlinear
monotone multigrid method. On subsequent levels k ≥ 1 the ν-th iterate uνk
is accepted if the stopping criterion ‖uνk − uν−1

k ‖ ≤ 10−12 is satisfied. Nested
iteration is used. In Table 1, the number of iterations for the nonlinear contact
problem and the equivalent linear problem with known boundary stresses are
given. For the nonlinear contact problem we observe similar convergence rates
as for the corresponding linear problems. The increasing number of iterations
might be due to just applying one iteration step of the algebraic multigrid
method as basesolver and by decreasing mesh quality caused by recovering
the original geometry. In Figure 1, the adaptively refined grid on Level 3 and
isosurfaces of the computed displacements are shown.

Table 1. Comparison of nonlinear monotone and linear multigrid method

level elements dofs nonlinear iterations linear iterations no. of. contact nodes

0 7.246 4.968 13 16 14
1 18.403 11.577 33 38 39
2 85.567 47.985 66 80 146
3 438517 234.123 100 100 580
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Our second example is an application from biomechanics and demonstrates
the applicability of our algorithm. The geometry consists of parts of the hu-
man proximal femur and tibia meeting in the knee joint. We again use an
unstructured tetrahedral grid. The geometry is known in a very high resolu-
tion, we can use this to provide a parametrized boundary. The left picture
of Figure 2 shows the deformed geometry, in the right picture isolines of the
computed displacements are depicted.

Visualization has been done using the visualization environment AMIRA

from the Zuse–Institute–Berlin Berlin (ZIB). The monotone multigrid method
is implemented in the framework of the finite element package UG, see Bastian
et al. [1997], Krause [2001].
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J.-L. Lions, editors, Collège de France Seminar. Pitman, 1994.

C. Eck. Existenz und Regularität der Lösungen für Kontaktprobleme mit Rei-
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Summary. (and Introduction) In this paper, we present a family of domain
decomposition based on Aitken like acceleration of the Schwarz method seen as an
iterative procedure with linear rate of convergence. This paper is a generalization
of the method first introduced in Garbey and Tromeur-Dervout [2001] that was
restricted to Cartesian grids. The general idea is to construct an approximation of the
eigenvectors of the trace transfer operator associated to dominant eigenvalues and
accelerate these components after few Schwarz iterates. We consider here examples
with the finite volume approximation on general quadrangle meshes of Faille [1992]
and finite element discretization.

1 A General Framework for the Aitken-Schwarz Method

Let us consider formally a linear differential problem

L[U ] = f in Ω, U|∂Ω = g. (1)

We assume that the problem is well posed and has a unique solution U . To
simplify the presentation, we restrict ourselves to a domain decomposition
of two overlapping subdomains Ω1

⋃
Ω2 = Ω, and we consider the additive

version of the Schwarz algorithm (Smith et al. [1996]).We assume implicitly in
the following notations that the Dirichlet boundary condition in (1) is satisfied
by all intermediate subproblems. The Additive Schwarz (AdS) version of the
algorithm writes,

L[u n+1
1 ] = f in Ω1, u

n+1
1|Γ1

= u n2|Γ1
, (2)

L[u n+1
2 ] = f in Ω2, u

n+1
2|Γ2

= u n1|Γ2
. (3)

Because L is linear, the following operator T a is linear:

(u n1|Γ1
− U|Γ1

, u n2|Γ2
− U|Γ2

)→ (u n+1
1|Γ1

− U|Γ1
, u n+1

2|Γ2
− U|Γ2

). (4)
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Let us proceed with the discretized version of the problem (1), with solution
Uh. For i = 1, 2, let Γ hi be the set of mesh nodes corresponding to approxi-
mation of U on Γi, E

h
i a finite vector space used to approximate the solution

restricted to the artificial interface Γ hi , and {bji , j = 1...N} a set of basis func-
tions for this vector space. We suppose that both vector space Eh1 and Eh2
have the same dimensions and define now the following two linear operators

T al : u n1|Γ1
− UΓ1 → u n+1

2|Γ2
− UΓ2 (5)

T ar : u n2|Γ2
− UΓ2 → u n+1

1|Γ1
− UΓ1 . (6)

Using the discrete representation of the interface Γ hi in Ehi , for i = 1, 2, we
have

(u n+1
2,j − Uj,Γ2)j=1,..,N = Pl (u n1,j − Uj,Γ1)j=1,..,N , (7)

and
(u n+1

1,j − Uj,Γ1)j=1,..,N = Pr (u n2,j − Uj,Γ2)j=1,..,N , (8)

with Pl (resp. Pr) square matrix of T al (resp. T ar ). The matrix of the trace
operator T a has then the characteristic anti diagonal structure

P =

(
0 Pr
Pl 0

)

The Additive Aitken Schwarz algorithm is then

• Step AdS0: compute Pl and Pr.
• Step AdS1: from initial artificial interface condition u 0

1 and u 0
2 compute

the first Schwarz iterate (2, 3).
• Step AdS2: from u 0

i and u 1
i (i = 1, 2) and the linear system (7,8), get the

exact interface value Uj,Γ1 and Uj,Γ2 .

• Step AdS3: starting from the interface condition U|Γ1
=
∑

j=1..N Uj,Γ1b
j
1

and U|Γ2
=
∑
j=1..N Uj,Γ2b

j
2, apply one last Schwarz iterate (2,3) to get

Uh.

Iff ||PlPr|| < 1, the additive Schwarz algorithm converges and the matrix P
associated to (7,8) is non singular. This Aitken-Schwarz algorithm is then an
exact solver.

Step AdS0 is the critical step of this algorithm; a straightforward and very
expansive way to obtain P consist in computing before hand in parallel the
solution of 2N independent sequences of homogeneous problem; alternatively,
one may reconstruct these matrices using 2(N +1) consecutive iterates of the
Schwarz method, but existence of the solution and stability of the numerical
process is not guaranteed(Garbey and Tromeur-Dervout [2002]).

To find a numerically efficient method to compute P or an approximation
of P is the key problem that we will address in the next sections. We are going
to simplify the problem and show that our algorithm can be formulated with
an approximation of the eigenvectors of the trace transfer operator that has
the dominant eigenvalues.
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2 Quasi-Diagonal Aitken-Schwarz Procedure

Let us assume that Pl (resp. Pr) can be diagonalized in the basis of eigenvec-
tors Vj corresponding to eigenvalues Λlj (resp. eigenvectors Wj corresponding
to eigenvalues Λrj .)

Let us denote by (ũ ni,j)j=1,...,N (resp. (û ni,j)j=1,...,N) (i = 1, 2) the compo-
nents of u ni|Γi

in basis {Vj , j = 1, ..., N} (resp. {Wj , j = 1, ..., N}).
Then, we have

(ũ n+1
2,j − Ũj|Γ2

)j=1,..,N = Dl (ũ n1,j − Ũj|Γ1
)j=1,..,N , (9)

with Dl
j,j = λlj , and in the basis of eigenvectors Wj ,

(û n+1
1,j − Ûj|Γ1

)j=1,..,N = Dr (û n2,j − Ûj|Γ2
)j=1,..,N , (10)

with Dr
j,j = λrj , j = 1..N . In order to compute Uj|Γi

, i = 1..2, we express
both identities (9) and (10) in the same basis. We obtain in vector notations
u = (uj)j=1..N , in bij , i = 1, 2 basis,

UΓ1 − ΛrUΓ2 = u 1
1 − Λr u 0

2 , (11)

−Λl UΓ1 + UΓ2 = u 1
2 − Λl u 0

1 , (12)

where Λl = V Dl V −1, and Λr = W Dr W−1.
The Quasi Diagonal Additive Schwarz algorithm writes

• Step QD-AdS0: compute approximate main eigenvectors (V̂j)j=1..q (resp.

(Ŵj)j=1..q) and corresponding approximate eigenvalues (Λ̂lj)j=1..q (resp.

(Λ̂rj)j=1..q) of Pl (resp. Pr).

• Step QD-AdS1: from initial artificial interface conditions u 0
1 and u 0

2 , com-
pute the first Schwarz iterate (2, 3).

• Step QD-AdS2: decompose u 0
1 and u 1

1 into the main components u 0
e,1 and

u 1
e,1 (projection on span[V̂1, ..., V̂q]) and the residuals

u
0/1
r,1 = u

0/1
1 −∑j=1..q u

0/1
e,j V̂j . Decompose u

0/1
2 in a similar way using

the projection on span[Ŵ1, ..., Ŵq]

• Step QD-AdS3: from the formula (11) restricted to span[Ŵ1, ..., Ŵq] and

(12) restricted to span[V̂1, ..., V̂q] with corresponding approximated eigen-

values, get the (approximated) interface value Ûe,1/2,j , ∀j = 1..q.
• Step QD-AdS4: recompose the interface conditions from the following ap-

proximations (i = 1, 2)

U|Γ1
≈ Û|Γ1

=
∑

j=1..q

(u 1
1,e,j − Λ̂lju 0

1,e,j)/(1− Λ̂lj) V̂j + u 1
r,1,

(similarly for U|Γ2
, with Λ̂r and span[Ŵ1, ..., Ŵq]), and apply one Schwarz

iterate (2,3) to get an approximation of Uh.
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The following theorem summarizes the impact of the error on eigenvectors,
the error on eigenvalues and the truncation parameter q on the approximation
of the artificial interfaces obtained with the quasi-diagonal additive Aitken
Schwarz algorithm.

Theorem 1. Let {V1, ..., Vq} (resp. {W1, ...,Wq}) be a set of q independent
eigenvectors of the trace transfer operator Pl (resp. Pr). We suppose ||Pl/r || =
O(1). Let {V̂1, ..., V̂q} (resp. {Ŵ1, ..., Ŵq}) be a set of q independent vectors

such that the matrix ǫl (resp. ǫr) of column vectors ǫl,j = V̂j − Vj (resp.

ǫr,j = Ŵj −Wj), has norm ||ǫl/r|| = o(1).

Let us assume that δ
l/r
j = |λ̂l/rj −λ

l/r
j | = o(1), ∀j = 1...q, and that dist(u 0

1 −
U|Γ1

, span[V̂1, ..., V̂q]) + dist(u 0
2 −U|Γ2

, span[Ŵ1, ..., Ŵq]) = µ, with µ = o(1),
then

||(Û|Γ1
− U|Γ1

, Û|Γ2
− U|Γ2

)|| =
Ct ||(Id− Λl Λr)−1|| O(||ǫ||) +O(||β||) +O(µ), (13)

with β 2q-vector of components (βlj =
δl

j

|1−λl
j |
, βrj =

δr
j

|1−λr
j |

).

Proof. See Garbey [2003]

This theorem suggests to get an approximation of the eigenvectors of the
matrices Pl, Pr corresponding to the dominant eigenvectors that is numerically
cheap to compute. The Quasi-diagonal Aitken acceleration plays the role of a
coarse grid preconditioner and can be iterated until convergence. We introduce
in the following two examples of this construction, with respectively finite
element discretization and then finite volume approximation.

3 Finite Element on Tensorial Product of Two-D Grid

We consider the homogenous Dirichlet boundary value problem (1) that has
a separable second order operator L = L1 + L2:

L1 = −∂x(a1∂x) + b1∂x + c1, L2 = −∂y(a2∂y) + b2∂y + c2. (14)

a1, b1, c1 are functions of x, and a2, b2, c2 are functions of y. Ω is a rectangle
with a strip domain decomposition into rectangles. Interfaces of the domain
decomposition are therefore parallel to the y direction. The number of subdo-
mains is arbitrary.

Let us consider the semi-discretisation of the operator in y variable, with
an irregular mesh in y (yi,i = 0, ..., N + 1), Lk2 a discretization of L2 on the
y-mesh, and ui(x) (resp. f i(x)) an expected approximation of u(x, yi) (resp.
f(x, yi)). The semi-discrete approximation of a subdomain problem analogous
to problem (2) or (3) is solved on a rectangle denoted by R=[e,w]x[n,s] in order
to simplify the notations:
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L1u
i(x) + Lk2u

i(x) = f i(x), x ∈]e, w[ (15)

ui(w) and ui(e) given, u0(x) = uN+1(x) = 0. (16)

We introduce the eigenvalue problem:

Lk2Φj = λjΦj , Φ
0
j = ΦN+1

j = 0. (17)

We set the hat transform :

ui(x) =
N∑

j=1

ûj(x)Φij ; i = 1, · · · , N (18)

with a similar expansion for f i(x). Applying this hat transform to (15-16)
gives formally:

N∑

j=1

Φij [(L1 + λj)ûj(x)− f̂j(x))] = 0,

N∑

j=1

Φij ûj(e/w) given

Following the notation of Theorem 1, the eigenvectors functions Vj and Wj

of the trace transfer operator are identical and equal to the Φj , j = 1 · · ·N,
functions. More precisely we have the following result for an arbitrary number
of P subdomains,

Theorem 2. Assume problem (17) has N linearly independent real eigenvec-
tors associated to real eigenvalues.Then each semi-discrete approximation of
each subdomain problem is constituted of N uncoupled continuous one dimen-
sional linear problems j = 1, · · · , N :

[L1 + λj ]ûj(x) = f̂j(x), ûj(e/w) given (19)

The hat trace transfer operator is affine on R2N(P−1) with a block-diagonal
matrix of N blocks.

Proof. See Baranger et al. [2003]

From Theorem 1 one can estimate the number of eigenvectors q that is
worth to compute.

Problem (15-16) is closely related to finite difference point of vue. We now
show that similar results can be obtained from the variational formulation of
the problem.

Let us consider a semi discrete finite element approximation of the vari-
ational problem associated to (14). On a y-mesh we have a finite element
space with basis function ϕm,m = 1, · · · , N . The unknown function is
uk(x, y) =

∑N
m=1 um(x)ϕm(y) with um(w/e) = 0. We obtain then the semi

discrete variational problem:
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∑

m

∫ e

w

[a1∂xum∂xv + · · · ]dx
∫ n

s

ϕmϕjdy...

+
∑

m

∫ e

w

umvdx

∫ n

s

[a2∂yϕm∂yϕj + · · · ]dy =
∫
R
fvϕjdxdy.

(20)

Then the semi discrete variational problem (20) is: for all m = 1, · · · , N find
um in H1

0 (w, e) such that for all v in H1
0 (w, e) and i = 1, · · · , N

∑

m

[βimα
1(um, v) + αimβ

1(um, v)] = β1(fi, v) (21)

with

α1(u, v) =

∫ e

w

(a1uxvx+b1uxv+c1uv)dx, α
2(u, v) =

∫ n

s

(a2uyvy+b2uyv+c2uv)dy

fi(x) =

∫ n

s

fϕidy, β
1(u, v) =

∫ e

w

uvdx, β2(u, v) =

∫ n

s

uvdy,

γim = γ2(ϕi, ϕm) (γ = α, β).

Using the generalized Fourier transform (18) we obtain from equation (21):

∑

m

∑

j

[βimα
1(ûj , v) + αimβ

1(ûj , v)− βimβ1(f̃j , v)]Φjm = 0 (22)

Choosing the Φ’s as the eigenvectors of the spectral problem:

∑

m

αimΦjm = λj
∑

m

βimΦjm, j = 1, · · · , N (23)

gives to equation (22) the uncoupled form:

α1(ûj , v) + λjβ
1(ûj, v) = β1(f̃j , v). (24)

We obtain then a result analogous to Theorem 2. We are going now to show
a second variant of this construction for finite volume approximation with
general quadrangle meshes.

4 An Example with Finite Volume on General
Quadrangle Meshes

We consider an approximation of (1) with the finite volume approximation on
general quadrangle meshes of Faille [1992]. For simplicity we restrict ourselves
to the Poisson operator with homogeneous Dirichlet boundary conditions. We
also consider the multiplicative version of the Schwarz (MuS) algorithm with
two subdomains. Those restrictions are not necessary, but they make the
understanding of the construction easier. For general quadrangle meshes, an
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eigenvector basis of the trace transfer operator T h on the interface unh|Γh →
un+1
h|Γh , cannot be constructed analytically as in the previous section. We recall

that
unh|Γh − U|Γh → un+1

h|Γh − U|Γh

is a linear operator and we denote by P h its matrix. Eh is the finite vector
space used to approximate the solution restricted to the interface Γ h.

To represent the functions of Eh in a more compact way, we choose the
space of approximation Eq1 = span[sin(τ), sin(2 τ), ..., sin(q τ)] where τ ∈
(0, π) is a natural parameterization of the interface Γ. We introduce then the

operator Th/q from Eh,01 to Eq1 that gives the least square approximation of

grid function of Γ h with q-sine expansion:

∑

k=1..q

akj sin(k τ).

Vice versa the operator Tq/h collocates the sinus expansions of Eq1 at grid

points of Γ h. The operator Th/qP
hTq/h is linear. Let us denote by P q its

matrix.
If the trace of the sub-domain solution at the artificial interface is regular

enough, its approximation in Eq will have a much lower dimension than an
approximation in Eh for the same level of accuracy (Gottlieb and Shu [1997]).
Furthermore for the approximation of the Poisson problem or the Helmholtz
operator, in deformed rectangle, the sinus basis is somehow a natural basis.

We compute therefore directly the matrix P q with q much smaller than
the number of grid points. The column of P q are obtained by processing q
independent Schwarz iterates starting from sin(kτ) for the artificial boundary
condition. We choose the set of basis function Vj = Wj , j = 1...q to be the
eigenvectors of P q.

Figure 1 gives the convergence history of our method for a Poisson solver
discretized with the Finite Volume method of Faille [1992] in a complex shape
domain. The continuous line is the convergence history of MuS with no accel-
eration. The curve ’o’ (resp. ’+’, ’*’) is for 2 waves (resp. 4, 8). We see that
the convergence improves as the number of modes increases.

The trigonometric representation of the interface may not be the best so-
lution in the general case, and there are many piecewise polynomial spaces of
functions that might be more appropriate depending on the space of approxi-
mation of the PDE solution. This should be the topic of further investigations.

5 Conclusion

We have shown how to generalized the Aitken-Schwarz method from Carte-
sian grid with finite differences to other discretization such as finite element
on tensorial product of grid or finite volumes on general quadrangle meshes.
Let us emphasis that the implementation of our method can reuse the initial



512 Jacques Baranger, Marc Garbey, and Fabienne Oudin-Dardun

1 2 3 4 5 6 7 8 9 10
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Convergence of Steffensen − Additive Schwarz with compact interface representation

Fig. 1. Central Finite Volume discretisation: compact grid interface, overlap is 5
per cent, grid is 81 × 81.

coding of the Schwarz method with no change. As a matter of fact, the compu-
tation of dominant eigenvectors of the trace transfer operator can be seen as
a pre-processing step. This step may involve few independent parallel execu-
tions of one Schwarz iteration with the original code. Further the Aitken-like
acceleration procedure itself operates on the trace generated by the Schwarz
code and does not require any change in the data structure of the original
code. As shown in Garbey and Tromeur-Dervout [2002] this approach gives
efficient parallel implementation with slow network. This is the philosophy of
our ongoing work on metacomputing of elliptic problems.
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Bôıte courrier 187, 75252 Paris Cedex 05. France. (ismail@ann.jussieu.fr).
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Summary. The Fat Boundary Method (FBM) is a fictitious domain like
method for solving partial differential equations in a domain with holes Ω \ B -
where B is a collection of smooth open subsets - that consists in splitting the initial
problem into two parts to be coupled via Schwartz type iterations: the solution, with
a fictitious domain approach, of a problem set in the whole domain Ω, for which fast
solvers can be used, and the solution of a collection of independent problems defined
on narrow strips around the connected components of B, that can be performed fully
in parallel. In this work, we give some results on a semi-discrete FBM in the frame-
work of a finite element discretization, and we present some numerical experiments.

1 The Fat Boundary Method

The Fat Boundary Method (FBM) was introduced by Maury [2001] to solve
partial differential equations in a domain with holes. For simplicity we present
the method in the case of the Poisson problem. Let us denote by Ω ⊂ IRn a
Lipschitz bounded domain andB ⊂ Ω a collection of smooth subsets (typically
balls). The boundaries of Ω and B are respectively denoted by Γ and γ. Our
purpose is to solve the problem: Find u ∈ H1

0 (Ω \B), such that

−∆u = f in Ω \B. (1)

Solving this problem by FBM consists in splitting it into a local resolution
in a neighborhood of B, where we can use a fine mesh (in a thin layer around
the holes, the dashed subdomain denoted by ω in figure 1), and a global
resolution based on a cartesian mesh covering the whole domain Ω. This
makes it possible the use of fast solvers and good preconditioners.

The link between the global and the local problem is based on the interpo-
lation of a globally defined field on an artificial boundary which delimits the
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γ ’

Γ

Ωω γ

B

Fig. 1. Domains in the two-dimensional case

local subdomain, and the prescription of the jump of the normal derivative
across the boundary of B. More precisely, we introduce a smooth artificial
boundary γ′ around B, and we denote by ω the (narrow) domain delimited
by γ and γ′ (∂ω = γ ∪ γ′). We then introduce the functional space

H1
γ(ω) = {v ∈ H1(ω), v|γ = 0}. (2)

We can replace problem (1) by two coupled new problems, one of which
is set in ω, and the other one in the whole domain Ω: Find (û, v) ∈ H1

0 (Ω)×
H1
γ(ω), such that





a :

{
−∆v = f in ω,

v = û on γ′,

b : −∆û = f +
∂v

∂n
δγ in Ω,

(3)

where f is the extension of f by 0 in B, and where ∂v
∂nδγ ∈ H−1(Ω) stands for

the continuous linear form: w ∈ H1
0 (Ω) 7→

∫

γ

∂v

∂n
w. More precisely, we have

this result (Maury [2001])

Theorem 1. Problems (1) and (3) are equivalent, i.e.

• If u is a solution of (1), then the couple (u, u|ω) is a solution of (3).
• If (û, v) is a solution of (3), then û|Ω\B

is a solution of (1).

The local problem (3-a) and the global one (3-b) are coupled, and this
suggests the use of a fixed point algorithm. Let θ ∈]0, 1[ be a relaxation
parameter. We introduce the following operators: Tθ(·, ·; f):H1

0 (Ω) × H1
γ(ω)

−→ H1
0 (Ω) × H1

γ(ω) defined by Tθ(û, v; f) = (Û , V ) where V ∈ H1
γ(ω) and

Û ∈ H1
0 (Ω) are solutions of

−∆V = f in ω, V = θv + (1 − θ)û on γ′, (4)

−∆Û = f +
∂V

∂n
δγ in Ω. (5)
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By definition of Tθ, (û, v) is solution of (3) if and only if Tθ(û, v; f) = (û, v).
The following convergence result holds. (See Maury [2001] for the proof)

Theorem 2. There exists θ0 < 1 such that for all θ ∈]θ0, 1[ the fixed point
procedure

(ûn+1, vn+1) = Tθ(ûn, vn; f)

converges to the fixed point of the operator Tθ(·, ·; f).

2 The semi-discrete case

A preliminary step towards the analysis of the discrete FBM – where both (4)
and (5) are solved numerically – consists in assuming that the local problem
(4) is solved exactly, and in focusing then on the discretization of the global
problem (5). Letting Uh ⊂ H1

0 (Ω) be a finite dimensional approximation
space of finite element type, we propose the following semi-discrete fixed point
iteration scheme: let T hθ (·, ·; f) : Uh ×H1

γ(ω) −→ Uh ×H1
γ(ω) be defined by

T hθ (uh, v; f) = (Uh, V ) with V ∈ H1
γ(ω) and Uh ∈ Uh respectively defined by

−∆V = f in ω, V = θv + (1− θ)uh on γ′, (6)
∫

Ω

∇Uh · ∇wh =

∫

Ω

fwh +

∫

γ

∂V

∂n
wh ∀wh ∈ Uh. (7)

We are interested in studying the existence and uniqueness properties of
the solution to the fixed point equation

(uh, v
⋆) = T hθ (uh, v

⋆; f), (8)

as well as in giving an estimate on the error u− uh in Ω.
We briefly sketch here the main steps of the analysis. The first step, in order

to analyze the scheme (8) is to introduce an auxiliary fixed point problem.
Let us denote by πh : H1

0 (Ω) −→ Uh the Galerkin Projection defined by
∫

Ω

∇(πhu) · ∇wh =

∫

Ω

∇u · ∇wh, ∀wh ∈ Uh. (9)

Let, for θ ∈ (0, 1), T ⋆θ (·, ·; f) : H1
0 (Ω)×H1

γ (ω) −→ H1
0 (Ω)×H1

γ (ω) be defined
as follows: T ⋆θ (u, v; f) = (U, V ) with (U, V ) ∈ H1

0 (Ω) ×H1
γ(ω) solution to

−∆V = f in ω, V = θv + (1− θ)πhu on γ′, (10)

−∆U = f +
∂V

∂n
δγ , in Ω. (11)

Then we consider the problem

(u⋆, v⋆) = T ⋆θ (u⋆, v⋆; f). (12)

The relation between (12) and (8) is the object of the following lemma
(Bertoluzza et al.).
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Lemma 1. Let (u⋆, v⋆) be a solution to the auxiliary fixed point problem (12).
Then (πhu

⋆, v⋆) is a solution to problem (8). Respectively let (uh, v
⋆) be a

solution to problem (8) then, letting u⋆ ∈ H1
0 (Ω) be the unique solution to

−∆u⋆ = f +
∂v⋆

∂n
δγ , in Ω, (13)

(u⋆, v⋆) is a solution of problem (12).

The key ingredient of the analysis of the auxiliary problem is the following
lemma (Bertoluzza et al.), stating that, under suitable assumptions the oper-
ator T ⋆θ (·, ·; 0) is a contraction, and whose proof is heavily based on functions
which are harmonic in Ω \ γ.

Lemma 2. Let (u, v) ∈ R(T ⋆θ ), and let (U, V ) = T ⋆θ (u, v; 0). Then, if the
provided h is sufficiently small, there exists θ0 ∈]0, 1[ such that if θ > θ0, for
some positive k < 1, |U |1,Ω ≤ k|u|1,Ω, and |V |1,ω ≤ θ|v|1,ω + C|u|1,Ω.

Existence and uniqueness of the solution of the auxiliary problem (12)
(and therefore, thanks to Lemma 1 of the original semidiscrete problem (8))
easily follows. Let us now estimate the error û−uh. Since the mesh is a priori
chosen independently of the position of γ, it is clear that, since û has on γ a
discontinuity of the normal derivative the best global regularity that we can
expect of û is û ∈ H3/2−ǫ(Ω) and therefore the best error estimate that we
can expect is ‖û − uh‖1,Ω ≤ Ch1/2−ǫ‖u‖3/2−ǫ (h denoting the mesh size of
the triangulation which we assume to be regular and quasiuniform). However,
assuming that ∂B is sufficiently regular, if f |Ω\B ∈ Hs−2 the function û = u

is in Hs(Ω \ B) and then, using the technique introduced by Nitsche and
Schatz [1974] in order to estimate local convergence rates, we can hope for a
better convergence rate in any open set Ω∗ strictly embedded in Ω \B. More
precisely, assuming that we are using finite elements of order m (either Pm
or Qm) the following theorem holds (Bertoluzza et al.)

Theorem 3. Assume that f ∈ Hs−2(Ω \ B), with 2 ≤ s ≤ m + 1, and let
Ω∗ ⊂⊂ Ω. Then, for h sufficiently sufficiently small we have

‖u− uh‖1,Ω∗ ≤ Chs‖f‖s−2,Ω\B

3 Numerical Experiments and Conclusions

We want to verify that, as stated by Theorem 3, if we use P1 finite elements,
FBM is of order one in every subdomain Ω̌ ⊂⊂ Ω \B. Figure 2 shows the
dependence of the errors (in H1 and L2 norms) upon the mesh step size h. All
tests are carried out using an uniform cartesian grid. We denote global errors
the ones computed in the whole domain Ω and local errors the ones computed
in the subdomain Ω̌ of Ω \B. The domain Ω is the box ]− 1

2 ,
1
2 [3, the “hole”
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B is the ball B(0, R), where R = 0.25, and the subdomain Ω̌ is Ω \B(0, 0.3).
The exact solution u is chosen to be equal to sin(2π(x2 + y2 + z2−R2)). The
analytical solution was selected to be radial in order to eliminate the error
due to the local resolution, and thus to be in conformity with the theoretical
result.
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Fig. 2. Errors plots.

3.1 Capability to deal with many holes

This numerical experiment illustrates the capability to deal with a domain
with “many” holes. We consider the box ] − 1, 1[3 with 163 disjoint balls
disposed in a pseudo-random way. Figure 3-(left) shows the isosurface u = 0
of the computed solution, which solves the problem: −∆u = 1 in Ω \B and
u = 0 on ∂(Ω \B) = Γ ∪ γ. Figure 3-(right) shows the same experiment but
with a little larger number of particles: 343 balls disposed in a structured way.

3.2 Numerical Simulation of convection-diffusion around two
moving balls

We consider a parallelepiped Ω in which there are two moving rigid balls
B1 ∪ B2 = B. Their trajectories are imposed in advance. On five faces of
the box we maintain a temperature equal to 1 and at the sixth face we take
homogeneous Neumann boundary conditions. On the surfaces of the two balls
we impose (via Dirichlet boundary condition) a null temperature. Heat is
convected using a potential field. One expects to have a “trail” of “fresh
zones” following the balls in their movements. The problem we solve is the
following
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Fig. 3. Isosurface u = 0: (left)- 163 balls. (Right)- 343 balls





∂T
∂t − ν∆T +∇φ · ∇T = 0 in Ω \B,

T = 0 on γ,
T = 1 on Γ \ (z = zmin),
∂T
∂n = 0 on (z = zmin),

(14)

where φ solves





−∆φ = 0 in Ω \B,
∂φ
∂n = 0 on γ,
∂φ
∂n = 0 on Γ \ (z = zmin, z = zmax),
φ = 1 on (z = zmin),
φ = 1 on (z = zmax).

(15)

Figure 4 shows the computed solution at different time iterations.

3.3 Flow past a sphere

We consider the incompressible Navier-Stokes equations in the parallelepiped
Ω =]− 3

2 ,
3
2 [×]− 3

2 ,
3
2 [×]− 1, 5[ containing a spherical obstacle B((0, 0, 1), 1

2 ).
The time discretisation is done using the Finite-Element Projection/Lagrange-
Galerkin method (see Achdou and Guermond [2000]) which is a projection
algorithm combined with the characteristics method (see Pironneau [1982]).
At each time step we have to solve, by FBM, elliptic problems for the velocity
and the pressure. Figure 5 shows the velocity field on the plan y = 0 of a flow
past a sphere at Reynold’s number equal to 100. In order to see the vortices,
figure 6 presents a zoom close to the sphere. See Ismail [2003] for more details
on numerical simulations of flows past spheres.

3.4 Conclusions

The numerical results confirm the theoretical estimates and shows the wide
applicability of FBM. The future work will consist on the theoretical side in
taking into account also the error due to the local resolution, thus studying
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Fig. 4. Convection-Diffusion around moving balls.

the full discrete scheme. On a practical level we are working on adapting the
method to take into account free motion of the bodies in order to be able to
simulate fluid-particle flows.
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Modelling of an Underground Waste Disposal
Site by Upscaling and Simulation with Domain

Decomposition Method
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Summary. We derive an upscaled but accurate 2D model of the global behavior of
an underground radioactive waste disposal. This kind of computation occurs in safety
assessment process. Asymptotic development of the solution leads to solve terms of
order 1 on more regular and steady-state auxiliary problems. Neumann-Dirichlet
domain decomposition methods, with non matching spectral grids, are performed to
solve those auxiliary problems. Fourier and Chebychev polynomials approximation
of the solution are used depending on boundary conditions implemented on subdo-
mains. Since spectral representation of the solution or its derivatives allows accurate
mappings between the interfaces of the different grids, we speed up the convergence
of the Neumann-Dirichlet method by the Aitken acceleration which is sensitive to
the accuracy of the representation of the iterate solution on the artificial interfaces.
In order to enforce regularity for the spectral approximation, some regular exten-
sions and filtering techniques on the artificial interfaces for the right hand side of
the problem and the iterate solution are implemented.

1 Field decomposition method applied to an
underground waste disposal

The disposal site can be described as a repository array made of a large number
of units inside a low permeability layer, called host layer, e.g clay. This clay
layer is embedded between layers with higher permeability (Bourgeat et al.
[2003]). There is a large number of units, each of them has a small size (10
m) compared with the layer size (100 m). So a direct numerical simulation
of the whole field, based on a microscopic model, is not realistic. The ratio
between the width l of a single unit and the layer length L can be considered
as a small parameter ǫ in the detailed microscopic model. The study of the
renormalized model behavior, as ǫ tends to 0, by means of the homogenization
method and boundary layers, gives an asymptotic model which could be used
as a global repository model for numerical simulations. According to this
rescaling, the units have a height of order ǫβ , β > 1, and are embedded in a
layer of thickness ǫ. The leaking of a disposal unit is represented by a hole in
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the periodic computational domain with a given flux on the boundaries. The
radioactive pollutant is transported both by the convection due to the water
flowing slowly through the rocks (creeping flow) and by the diffusion due to
the dilution into the water. The transport of concentration of an underground
pollutant is modelled by the advection-diffusion equation (where the advection
velocity is assumed to be given) that follows:

ωR∂c

∂t
−∇ · (A∇c) + (U · ∇)c+ λωRc = q inΩ (1)

where: Ω is the porous medium, c a radioactive component concentration in
the water, ω the medium porosity, R the retardation coefficient, U Darcy’s
velocity, A the diffusive term, λ the radioactive decay, q the source term.

We normalize the geometric dimensions taking into account the ratio ǫ.
The process is then described by the following advection-diffusion type equa-
tion:

ωǫ∂cǫ
∂t

−∇ · (Aǫ∇cǫ) + (vǫ.∇)cǫ + λωǫcǫ = 0 inΩTǫ (2)

cǫ(0, x) = c0(x), x ∈ Ωǫ (3)

n · σ = n · (Aǫ∇cǫ − vǫcǫ) = Φ(t) on Γ Tǫ (4)

cǫ = 0 on S1 (5)

n · (Aǫ∇cǫ − vǫcǫ) = 0 on S2 (6)

where Ωǫ is the adimensionalized domain around the units, ΩTǫ = Ωǫ×]0, T [,
Γ Tǫ = ∂Bǫ×]0, T [ where Bǫ is the set of the units, S = ∂Ωǫ, S1 (respect. S2)
represents the bottom (respect. the top) of S, cǫ is a radioactive component
concentration in the water, ωǫ is the adimensionalized medium porosity, vǫ is
the adimensionalized convection, Aǫ the adimensionalized diffusion tensor, λ
the radioactive decay, Φ the incoming flux of radioactive element.

It was proved in (Bourgeat et al. [2003]) this cǫ exists is unique and has
a weak limit c. This weak limit c gives the global long time behavior of the
process only if the flux Φ is not too large. On the one hand, we expect some
fast oscillations of the solution in the vicinity of the containers and therefore
we introduce in that region the fast variable y = x

ǫ . On the other hand,
cǫ is expected to have the same behavior as the weak limit c without any
oscillations far from the units area. These behaviors suggest to use matched
asymptotic expansions:

The domain is split in two parts:

• Gǫ =]− δ/2, δ/2[×]− ǫ log(1/ǫ), ǫ log(1/ǫ)[, the inner domain
• Ω/Ḡǫ, the outer domain.

δ is defined such that ∂Ω
⋂
∂Gǫ = Ø

In Gǫ, we look for an asymptotic expansion of cǫ such as:
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cǫ ≃ c0ǫ + ǫ(χkǫ (
x

ǫ
)
∂c0ǫ
∂xk

+ wǫ(
x

ǫ
)Φ− c0ǫρkǫ (

x

ǫ
)v1
k) ≡ c1ǫ (7)

where we assume the summation from 1 to 2 over the index k. The function c0ǫ
mimics the behavior of the concentration far from the source. χkǫ represents
the correction on the diffusive term in the near field, ρkǫ , the correction on
the convective term and wǫ the correction on the source. Their behaviors are
described by the way of the following type of auxiliary problem:





−∇ · (A∇u) = f inGǫ
n · (A∇u) = g on ∂Mǫ

u is 1-periodic in y1
limy2→∞A∇u = r

(8)

In order to evaluate the validity of this asymptotic expansion, accurate
simulations of these behaviors are needed.

2 Numerical solutions of the auxiliary problems

The behavior of the 1-order terms of the homogenization is represented by
a diffusive problem on a domain admitting a hole and periodic conditions in
the x-direction. These problems need accurate discretisation, since they rep-
resent the oscillations at the beginning of the leak, and will influence the rest
of the simulation. Spectral discretization leads to have structured data-blocks
on spectral meshes, then the domain is decomposed into three subdomains,
Ω1, Ω2 and Ω3 in order to take into account the hole. The physical domain
size in x-direction [0, 1] is mapped with a linear mapping to the computational
domain (Ω1 and Ω3) size in x direction [0, π]. The decomposition of the com-
putational domain is illustrated in figure 1. Ω2 has Neumann boundary condi-
tions in the x-direction leading to use Chebychev discretisation while Ω1 and
Ω3 have periodic boundary conditions in x-direction leading to use Fourier
discretisation. Thus, meshes between subdomains do not match so spectral
mapping techniques are used to represent the solution on both meshes on
the artificial interfaces. This accurate representation of the iterate solution on
the artificial interfaces generated by the domain decomposition method will
allow us to use the Aitken acceleration method developed in (Garbey and
Tromeur-Dervout [2002]).

2.1 Computation in subdomains

The diffusion tensorA is assumed to depend only on the vertical direction. The
solution in subdomains Ω1 and Ω3 is computed on an extended subdomain in
order to avoid the 0-mode singularity (because the problems are defined up
to a constant). Thus, we compute ũ : [0, 2Π ]× [−1, 1] → R, an odd periodic
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function, which is equal to u, solution of problem (8) on [0, Π ] × [−1, 1].
The extended solution is then, using Chebychev discretisation in y-direction,
approximated by: PM ũ(xi, yj) =

∑
0≤k≤M

∑
0≤l≤N ˆ̃uk,lTl(yj) sin(kxi), where

xi = 2iΠ
M , i = 0, . . . ,M, and yj = cos( jΠN ), j = 0, . . . , N . So we obtain for

subdomain Ω1:

∇ · (A(y)∇ũ) =
∑

0≤k≤M
(
∂

∂y
(A2(y)(

∂

∂y
))− k2A1(y))ûk(y) sin(kx) inΩ1,

A(y)∇ũ =
∑

0≤k≤M
A2(y)

∂

∂y
(ûk(y)) sin(kx) on Γ1,

where ûk(y) =
∑

0≤j≤N ˆ̃uk,jTj(y). Due to the linearity, the solution PM ũ can
be decoupled according to the directions. Thus, the subdomain problem is
decoupled in M mode-problems of size (N + 1) × (N + 1) leading to a well
suited situation for the parallelization.

Some difficulties appear due to the boundary condition on G1 = {y =
yN = −1}, coming from the decomposition domain:

{
∂u1(x,y)

∂y = ∂u2(x,y)
∂y , on Γ1 = [x1, x2]× {−1}

n · (A∇u1) = g(x, y), onG1 \ Γ1

The boundary condition on G1 is singular. In order to use a discrete Fourier
transform, smoothing methods have to be applied. First, a C2 Hermite inter-
polation based on two points is computed in the vicinity of x1 and x2 like in
Garbey and Tromeur-Dervout [1998]. Then the “raised cosinus filter ” (Got-
tlieb and Shu [1996]) is applied on the modes of the traces on the extended
boundary condition including G1,(in the same way as ũ) in order to minimize
the Gibbs phenomenon. The third domain Ω3 is treated in the same way.
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On the second subdomain Ω2, a Chebychev-Chebychev discretisation is used
in both directions. Now, the pseudospectral discretisation of the differential
operator leads to solve a ((N1N2) × (N1N2)) full but time independent lin-
ear system with a PLU factorization . Parallel ADI techniques are also under
implementation to save time.

2.2 Methodology on Neumann-Dirichlet Domain Decomposition
and Aitken Acceleration method

The Neumann-Dirichlet domain decomposition method leads to solve for the
auxiliary problems:

∇ · (A∇un+1/2
1 ) = f inΩ1 (9)

∂

∂n
u
n+1/2
1 =

∂

∂n
un2 on Γ1 (10)

∇ · (A∇un+1/2
3 ) = f inΩ3 (11)

∂

∂n
u
n+1/2
3 =

∂

∂n
un2 on Γ2 (12)

∇ · (A∇un+1
2 ) = f inΩ2 (13)

un+1
2 = u

n+1/2
1 on Γ1 (14)

un+1
2 = u

n+1/2
3 on Γ2 (15)

Using Aitken acceleration method for the Schwarz DDM based on the lin-
ear convergence or divergence of the iterative method (Garbey and Tromeur-
Dervout [2002]), the convergence of the solution on the artificial interface can
be speed up in few iterations. The linear convergence can only be obtained for
the iterated solution Fourier modes on the artificial interfaces. The solution u
on Γ1 and Γ2 on the Chebychev grid being not periodic, u|Γ1 is left-extended
on [0, π] with a fifth-degree Hermite interpolation. Then we seek an odd solu-
tion on the extended domain [0, 2π].

The distance between the artificial interfaces Γ1 and Γ2 is small. Thus
these interfaces are coupled for low modes. Let us consider the sequence ûnk =
(ûnk,1|Γ1

, ûnk,3|Γ2
)t k = 0, · · · ,M . The operator Tk,

(ûnk − Û∞k )→ (ûn+1
k − Û∞k ) (16)

where U∞k is the k mode of the exact solution, is linear. As long as the artificial
interfaces are coupled, the matrix Pk , k = 0, · · · ,M associated to the operator
Tk is full.

From (16), we have:

ûi+2
k − ûi+1

k = Pk(û
i+1
k − ûik), i = n− 1, n; k = 0, · · · ,M. (17)

We notice that, for each mode, only three iterations are needed to determine
the coefficients of the matrix Pk with( 17). If the operator Id − Pk is not
singular, then the Aitken acceleration will be written as follows for each mode:
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Û∞k = (Id− Pk)−1(ûn+1
k − Pkûnk ), k = 0, · · · ,M. (18)

Finally, a backward Fourier transform on these Û∞k gives the solution in the
physical space on the artificial interfaces. The extension of the solution on the
artificial interfaces is a C2 function and it is enough to get a three order rate
for the discretisation error of our approximation.
Remark 1: as the smoothing procedure introduces some non linearities, more
than one acceleration has to be applied on the Neumann-Dirichlet algorithm.
Remark 2: the linear behavior of the mode error for this Schwarz DDM with
smoothing procedures is not obtained directly (because of the Gibbs phe-
nomenon), so that the Aitken speed-up can be applied only after some itera-
tions.

3 Numerical Results

We first checked the accuracy of the method on an analytical solution u :
(x, y) → sin(x)sin(y) of an elliptical problem defined on the computational
domain Ω. Figures 2 and 3 show the Aitken acceleration (at iteration 20)
effect on usual Schwarz convergence (the error is the ‖.‖∞ of the difference
between two successive iterations for each mode).
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Fig. 2. Aitken acceleration of the mode-error (after 16 iterations) for the analytical
problem

The error in the table 1 shows the ‖.‖∞ of the difference between the ex-
act trace and the computed solution on artificial interfaces. The method is
of order-2.5 of consistency instead of an expected order-3. Nevertheless, the
acceleration of the convergence thanks to the Aitken speed-up is satisfactory
(30 iterations instead of 100) for the same accuracy.
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Fig. 3. Aitken acceleration of the error in the physical space (after 16 iterations)
for the analytical problem

Table 1. Precision and velocity of the algorithm

Accel./ modes nb. y-discr. Precision iterations nb. Time(s)

No acceleration 40 32 0.05 100 22,77
No acceleration 80 32 1.e-4 100 27,07
No acceleration 178 32 7.e-5 100 41,64
No acceleration 256 32 4.e-5 100 58,82
Acceleration 178 32 7.e-5 30 13,44

If we now apply our methodology on one of the auxiliary problems, for in-
stance the corrector ρkǫ on the convective term, Fig. 4 shows the isolines of the
computed solution of the problem (19), for k=2, obtained with the present
methodology in 12 iterations.

We recall that ρkǫ follows the equation:





−∇ · (A∇ρkǫ ) = 0 inGǫ
n · (A∇ρkǫ + ek) = 0 on ∂Mǫ

ρkǫ is 1-periodic in y1
limy2→∞∇ρkǫ = 0

(19)

4 Conclusion

Our aim was to develop a methodology adapted to a physical problem, which
cannot be easily simulated directly. The field decomposition splits the solution
into regular problems according to the physical situation. In order to speed up
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this Schwarz method by Aitken process, spectral methods are helping to obtain
an accurate representation of the Neumann-Dirichlet algorithm iterations on
a non-matching grid. This methodology has been applied on a problem with
an analytical solution and clearly accelerates the speed of convergence of the
Schwarz method. The same methodology was also applied successfully on
all the auxiliary problems of the 1-order of the asymptotic expansion. The
computation of the 0 order term of the model is currently under development
(the Aitken-Schwarz method is applied on mixed finite element / spectral
element systems).
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Non-Overlapping DDMs to Solve Flow in
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Summary. For flow problems in multi-layered porous media, one can define a natu-
ral non-overlapping domain decomposition (DD). The simplest way to obtain DDMs
is to distribute interface conditions (pressure and flux continuity) for each pair of
adjacent subdomains and to use the Dirichlet-Neumann (D-N) algorithm. A differ-
ent way is the use of two Robin conditions (RC) also distributed for each subdomain
(Robin-Method). The main inconvenience of both methods is that the convergence
is not ensured. To obtain efficient methods, we retain from previous works two basic
ideas: an acceleration of Aitken type for the D-N algorithm and finding optimized
coefficients for the Robin-Method. In the present paper, we analyze these improved
algorithms in 1-D and 2-D framework for flow problems in heterogeneous porous
media and we present a numerical comparison.

1 Introduction

Flow in heterogeneous porous media is to be solved in many hydrological
or engineering applications, as oil recovery (Faille et al. [2001]), earthquake
prediction (Calugaru et al. [2002]), radioactive wastes, etc. The reservoir is
usually a multi-layered domain composed by some superposed aquifers sep-
arated by less permeable layers. In addition, fractured zones can divide the
domain in blocks which can slide between each other. The steady one phase
flow equation in saturated porous media is derived from the mass conservation
law and the linear Darcy’s law and can be written (in its simplest form) as:

−div (k∇u) = f (1)

where the unknown u is the pressure, k is the permeability and f denotes a
possible sink/source term. Obviously, the flow problem is obtained by adding
some boundary conditions. For the multi-layered porous media, each layer is
assumed homogeneous and the permeability is a piecewise constant function.
Therefore, the interfaces between the layers represent the discontinuities of the
permeability, but the intrinsic variables (pressure and flux) are continuous in
all the domain, notably on interfaces.
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2 Non-overlapping DDMs

From the DD point of view, the geological layers induce a natural non-
overlapping decomposition. The DD being already set, we must define appro-
priate algorithms to obtain efficient DDMs. For simplicity of the description,
we consider only two layers, i.e. the domain Ω is decomposed in two subdo-
mains Ω1, Ω2, with Γ the common interface and ki the permeability of layer
i. The steady flow problem can be written as a transmission problem:

−k1∆u1 = f in Ω1 , −k2∆u2 = f in Ω2 (2)

u1|Γ = u2|Γ , k1∂u1/∂n1|Γ = −k2∂u2/∂n2|Γ (3)

with appropriate boundary conditions on ∂Ω.
The multiplicative D-N algorithm requires to solve successively (n ≥ 0):

{
−k1∆u

n+1
1 = f in Ω1

un+1
1 |Γ = un2 |Γ

{
−k2∆u

n+1
2 = f in Ω2

−k2∂u
n+1
2 /∂n2|Γ = k1∂u

n+1
1 /∂n1|Γ

Since it uses both physical interface conditions (3), this algorithm seems the
simplest and the most adapted to the physics of the problem.

An alternative to the D-N algorithm is the Robin-Method in which
weighted sums of physical conditions are used:

α1 u1|Γ + β1 k1∂u1/∂n1|Γ = α1 u2|Γ − β1 k2∂u2/∂n2|Γ
α2 u2|Γ + β2 k2∂u2/∂n2|Γ = α2 u1|Γ − β2 k1∂u1/∂n1|Γ (4)

The use of RC for non-overlapping DD has been firstly proposed by P.-L. Li-
ons (Proc. DDM3, 202-223, 1990). It is easy to prove that, if α1β2+α2β1 6=0,
then conditions (3) and (4) are algebraically equivalent. In addition, condi-
tions αiβi ≥ 0 have to be verified to obtain well-posed sub-problems. Since
conditions (3) can be obtained from (4) by considering α1=β2=1, α2=β1=0,
the D-N algorithm could be seen like a particular case of Robin-Method.

Both algorithms present the same inconvenience: the convergence is not en-
sured. Indeed, as shown in the next sections, the convergence of the Dirichlet-
Neumann algorithm depends on the interface conditions distribution between
the domains, while the convergence of the second algorithm depends on the
choice of the Robin’s coefficients αi, βi.

3 Improved non-overlapping DDMs

To cure such an inconvenience, several methods have been already proposed
in DD literature (with or without overlap) for linear elliptic problems.

A recent method is an acceleration of Aitken type of the iterative solutions
obtained by Schwarz algorithm and restricted to the interfaces. This method
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has been introduced by Garbey and Tromeur-Dervout (Proc. DDM12, 325-
339, 2000), and studied theoretically and numerically by Garbey and Tromeur-
Dervout [2002] for the additive Schwarz algorithm and 1-D decompositions.
Some numerical experiences have also been described for the D-N algorithm.
The basic idea of the Aitken technique is to accelerate independently each
mode of the sine expansion of the iterative solutions restricted to the inter-
faces. In these papers, the method is developed at semi-discrete level (the
problem is uniformly discretized in the interface direction). Some develop-
ments have been proposed to generalize Aitken acceleration for irregular grids
(Baranger et al., Proc. DDM13, 287-294, 2001) or for non-matching grids
(Baranger et al., Proc. DDM14, 341-348, 2002). The case of 2-D decomposi-
tions is treated considering some 1-D decompositions in a recursive manner
(Garbey and Tromeur-Dervout, Proc. DDM13, 53-65, 2001) or accelerating
the signals obtained by representing the discrete interface solutions in Fourier
spaces (Calugaru and Tromeur-Dervout, Proc. Parallel CFD 2003, to appear).

A second method is to find RC which allow a fast convergence. This idea
has been introduced by Després et al. [1992] for Helmholtz and Maxwell prob-
lems, and by Nataf et al. [1994] for convection-diffusion equations. It has been
also used for flow problems in heterogeneous porous media (Faille et al. [2001]).
In general, one can suppose βi = 1 and then only αi coefficients are searched.
Optimized Robin conditions (ORC) could be also introduced as the best ze-
roth order approximations of optimal interface conditions (see for instance,
Gander et al. [2002] for Helmholtz equation). In this context, it is possible
to define other interface conditions (as for example, second order approxima-
tions), but which are not investigated in this paper.

A third method (the first in chronological order) was proposed by Funaro,
Quarteroni and Zanolli (SIAM J. Num. Anal., 25(6), 1213-1236, 1988) and
consists of modifying the multiplicative D-N algorithm by using a relaxation
procedure at the end of each iteration. If the relaxation parameter is conve-
niently chosen, then the convergence is obtained.

In the next sections, for flow problems in multi-layered porous media, we
investigate only two multiplicative algorithms: the D-N algorithm accelerated
by an Aitken technique (A-D-N) and the Robin-Method. The convergence of
these methods is studied in 1-D and 2-D frameworks and a numerical com-
parison is presented.

4 Convergence in 1-D framework

Let us consider the problem (2)-(3) for Ω = (a, b), with Dirichlet boundary
condition uD and Γ = {λ} ⊂ (a, b) the common interface.

The (multiplicative) Robin-Method reads:
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−k1(u
n+1
1 )

′′

= f in (a, λ)
un+1

1 (a) = uD(a)

α1 u
n+1
1 (λ) + β1 k1(u

n+1
1 )

′

(λ) = α1 u
n
2 (λ) + β1 k2(u

n
2 )

′

(λ)





−k2(u
n+1
2 )

′′

= f in (λ, b)
un+1

2 (b) = uD(b)

α2 u
n+1
2 (λ) − β2 k2(u

n+1
2 )

′

(λ) = α2 u
n+1
1 (λ) − β2 k1(u

n+1
1 )

′

(λ)

where u0
2(λ), (u

0
2)

′

(λ) are arbitrarily chosen.
To analyze the convergence of this algorithm, it suffices by linearity to

consider homogeneous problem (f ≡ 0, uD ≡ 0) and to analyze convergence
to zero. Solving successively the above ODEs and denoting d1=λ−a, d2=b−λ,
we obtain un+2

1 (λ)=ρ(α1, β1, α2, β2)u
n
1 (λ), with the convergence rate:

ρ(α1, β1, α2, β2) =
α1d2 − β1k2

α1d1 + β1k1
· α2d1 − β2k1

α2d2 + β2k2
(5)

4.1 Aitken-Dirichlet-Neumann algorithm

For he D-N algorithm the convergence rate becomes: ρDN = −d2/d1 · k1/k2.
Therefore, the convergence of the D-N algorithm is determined only by the
ratios of subdomains lengths and of permeabilities. These values being fixed,
if the algorithm diverges, it is not possible to adjust any parameter to achieve
convergence. The only one possibility is the inter-changing of the interface
conditions, but this technique is not easy to handle in practice, where complex
basins presenting many porous blocks with extreme contrasts in permeability
have to be taken into account. Moreover, in some situations the inter-changing
of the interface conditions may lead to an ill-posed problem (only Neumann
conditions on all boundaries of a subdomain), which is the typical “danger”
of the D-N algorithm.

To transform the D-N algorithm into an attractive algorithm, we use the
Aitken acceleration of the traces of the iterative solutions on the common
interface. This method is based on the linear behavior of the error at interfaces
for the D-N algorithm applied to a linear elliptic operator, as it is here. Indeed,
as shown by Garbey and Tromeur-Dervout [2002] in linear cases, the error of
the multiplicative D-N algorithm satisfies:

un+1
2 (λ) − u∞2 (λ) = δ(un2 (λ) − u∞2 (λ)) for all n ∈ N (6)

The first step of the Aitken technique is to compute the damping factor δ.
For the considered problem, its value is already known (it is exactly ρDN ).
Then, we can pass directly to the Aitken acceleration step, which gives the
exact value u∞2 (λ) from (6) as follows: u∞2 (λ)=(u1

2(λ)−δu0
2(λ))/(1−δ), after

one D-N iteration. An additional iteration suffices to obtain solution in all
domain. In conclusion, for the considered problem, we need only two iterations
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of D-N algorithm. For other problems, the second step remains non-changed,
but only the first step (computation of δ) is modified. This can be done in
analytical way, when the operator is still relatively simple. Elsewhere, one can
compute the damping factor δ numerically, by performing two iterations of
D-N algorithm (and using the obtained iterative solutions on the interface in
(6), for n = 0, 1). Therefore, in the general linear case, we need three iterations
of D-N algorithm to obtain the exact solutions in all domain.

4.2 Optimized Robin-Method

In 1-D framework, the coefficients that minimize the convergence rate are
obtained immediately from (5). Indeed, considering β1=β2=1, we obtain
ρORC=0 for the following optimal coefficients: α1,opt = k2/d2, α2,opt = k1/d1.
Consequently, after only one iteration one obtains exact interface values. As
for the A-D-N algorithm, an additional iteration (using exact interface val-
ues) allows the complete computation of the solution. Then, for the considered
problem, this method requires only two iterations.

If we have a different problem to solve, the convergence rate expression
must be analytically deduced and one obtains a relation similar to (5). For
usual operators, optimal coefficients can be directly deduced from such an ex-
pression in order to obtain a null convergence rate. Then, the exact solution is
still obtained after only two iterations. However, a more complicated operator
can lead to a more complicated expression of the convergence rate, and it is
possible to be not able to deduce analytically the optimal coefficients or/and
the optimal rate is not zero. In this case, a numerical optimization procedure
can be used or/and the method is not exact, but iterative.

5 Convergence in 2-D framework

Consider now the problem (2)-(3) in 2-D framework. Firstly, we consider an
infinite domain Ω = R2, with Ω1 = (−∞, 0)×R, Ω2 = (0,∞)×R and suppose
that the solution is bounded. Using the Fourier transform in the y direction
(with ξ the frequency variable), the Robin-Method yields in Fourier space:
{
−k1[(û

n+1
1 )xx(x, ξ) − ξ2ûn+1

1 (x, ξ)] = f̂(x, ξ), in (−∞, 0)× R

α1û
n+1
1 (0, ξ) + β1k1(û

n+1
1 )x(0, ξ) = α1û

n
2 (0, ξ) + β1k2(û

n
2 )x(0, ξ), ξ ∈ R

{
−k2[(û

n+1
2 )xx(x, ξ) − ξ2ûn+1

2 (x, ξ)] = f̂(x, ξ), in (0,∞)× R

α2û
n+1
2 (0, ξ)− β2k2(û

n+1
2 )x(0, ξ) = α2û

n+1
1 (0, ξ)− β2k1(û

n+1
1 )x(0, ξ), ξ ∈ R

As in 1-D framework, solving successively the above ODEs with bounded-
ness conditions for ûn+1

1 , ûn+1
2 , we obtain the convergence rate:

ρ(α1, β1, α2, β2, ξ) =
α1 − β1k2|ξ|
α1 + β1k1|ξ|

· α2 − β2k1|ξ|
α2 + β2k2|ξ|

, ∀ξ ∈ R (7)
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5.1 Aitken-Dirichlet-Neumann algorithm

For the D-N algorithm, the convergence rate becomes: ρDN (ξ) = −k1/k2, for
all ξ ∈ R, i.e. all frequency components have the same convergence rate.
Then, the algorithm converges or diverges according to the distribution of
interface conditions in the two subdomains. This convergence rate being also
valid in the physical space, the Aitken acceleration can be applied directly to
the iterative solutions in each point within the subdomains.

However, the results obtained in analysis of unbounded cases can be not
relevant for the bounded case. We can illustrate this situation, considering the
domain is bounded only in x direction, as for instance, Ω = (0, 1) × R, with
common interface Γ = {λ} ×R, 0 < λ < 1. On the lateral boundaries, homo-
geneous Dirichlet conditions are imposed. Using the same Fourier analysis as
above, one obtains the convergence rate:

ρDN (ξ) =
k1

k2
· 1− e

2|ξ|

1 + e2|ξ|
· 1 + e−λ|ξ|

1− e−λ|ξ| , ∀ξ ∈ R (8)

In this semi-bounded case, each frequency component has its own own linear
damping factor. The Aitken acceleration is no longer possible in the physical
space, but can be applied for each frequency component by using the numerical
1-D procedure described in §4.1.

For realistic domains (bounded in both directions), we use the Aitken tech-
nique as follows: let {Pi}i=1,...,N the discrete representation of the common
interface Γ (we consider a regular discretization in Γ direction). When D-N
algorithm is applied, at discrete level we obtain the traces of iterative discrete
solutions, denoted

{
un2,i
}
i=1,...,N

which are transformed in periodic signals,

and then represented in mode’s Fourier space. Then, the Aitken acceleration
is possible for each mode, since each mode is damped linearly. Using acceler-
ated modes, the solution is recomposed in the physical space.

5.2 Optimized Robin-Method

Let β1=β2=1 in (7). Applying the technique introduced by Nataf and co-
authors in papers cited above, for the considered problem, we obtain optimized
Robin coefficients α1,opt, α2,opt by solving the min-max problem:

min
α1,α2 > 0

(
max
ξ ∈R

∣∣∣∣
α1 − k2|ξ|
α1 + k1|ξ|

· α2 − k1|ξ|
α2 + k2|ξ|

∣∣∣∣
)

(9)

Since real computations are performed on bounded domains and discretized
operators, the range of ξ can be bounded in an interval (ξmin, ξmax). Even
with this simplification, the problem (9) is still difficult to solve analytically.
The method given by Faille et al. [2001] divides the previous problem into
two auxiliary min-max problems for α1 and respectively for α2, which are
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formulated as for homogeneous media. The problems are similar to optimal
parameter search in ADI Peaceman-Racheford method and have the solutions:

α1,opt = k2

√
ξminξmax , α2,opt = k1

√
ξminξmax (10)

Another method retained here is to solve (9) at discrete level, for the hetero-
geneous case, by considering α1=α2≡α. For instance, we replaced L∞−norm
by the discrete L1-norm of frequency components in (ξmin, ξmax) and then,
the αopt,L1 is obtained by seeking the minimum for a fine mesh for α.

6 Numerical results

We consider the problem (2)-(3) for Ω1 = (0, π)2, Ω2 = (π, 2π) × (0, π),
f(x, y) = 2k1k2 sinx sin y and the Dirichlet condition u = 10. The exact solu-
tion is u1(x, y) = 10 + k2 sinx sin y, u2(x, y) = 10 + k1 sinx sin y. We consider
k1 = 10, k2 = 1, and u0

2(π, y) = (u0
2)x(π, y) = 0, for y ∈ (0, π).

Figure 1 shows the evolution of the error with respect to the iterations for
the investigated algorithms. One can observe that even if the D-N algorithm
diverges rapidly, the Aitken acceleration (A-D-N on the Figure 1) allows a
fast convergence of the algorithm.
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Figure 1. Figure 2.

The Robin-Method can diverge if the RC are chosen arbitrarily, as for
instance, using αi = ki (curve IRCarb). Now, let us consider optimized RC.
Two optimized Robin-Methods have been investigated: the ORChom method
which gives α1,opt = 3, α2,opt = 30 from (10) and the ORCL1 method which
gives αopt,L1 ≃ 7. For the two methods, the obtained results are relatively
close: in 10 iterations the error is reduced by a factor of 107.

Both ORC are obtained by solving (9). However, this problem being de-
duced with a Fourier analysis at continuous level for unbounded domain, the
obtained ORC are not necessarily optimal at the discrete level for the bounded
domain used in the numerical experiment. To verify how the coefficients ob-
tained with ORCL1 method approach the optimal discrete coefficients, Figure
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2 shows the error reduction obtained numerically, after 4 iterations, using var-
ious values for α = α1 = α2. We observe that the coefficient obtained by the
optimization procedure (∼ 7), is not very close of the discrete optimum, but
it can give values which are effective for numerical experiments. Using the dis-
crete optimum (∼ 8.5), the obtained error after 10 iterations (curve ORCnum)
is better with a factor 102 with respect to the ORCL1 method.

7 Conclusions

We studied two non-overlapping methods for flow problem in heterogeneous
porous media: A-D-N method and Optimized Robin-Method. Both methods
use the Fourier analysis but at different level. In the A-D-N method, the
discrete solution is represented in modes’s space, accelerated and transformed
back in the physical space. For the second method, the Fourier analysis is used
only to determine optimized Robin coefficients. Both methods show good con-
vergence properties, especially the Aitken method. However, there are several
possibilities to improve the Optimized Robin-Method, as the use of a Krylov
acceleration, or the use of second order optimized interface conditions (OIC2).
It is also possible to apply Aitken acceleration to the Robin-Method (not
necessarily optimized), because it is still linear. The two methods, although
studied here for only 2 subdomains have been already used to an arbitrary
number of subdomains, in 1-D or 2-D framework (Calugaru and Tromeur-
Dervout, Proc. Parallel CFD 2003, to appear, for the A-D-N method and
Faille et al. [2001] for the Robin-Method). We are currently investigating a
comparison of these extensions in the context of parallelization methods.
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Summary. The main goal of this paper is to discuss the numerical simulation
of propagation phenomena for time harmonic electromagnetic waves by methods
combining controllability and fictitious domain techniques. These methods rely on
distributed Lagrangian multipliers, which allow the propagation to be simulated on
an obstacle free computational region using regular finite element meshes essentially
independent of the geometry of the obstacle and on a controllability formulation
which leads to algorithms with good convergence properties to time-periodic solu-
tions. This novel methodology has been validated by the solutions of test cases as-
sociated to non trivial geometries, possibly non-convex. The numerical experiments
show that the new method performs as well as the method discussed in Bristeau
et al. [1998] where obstacle fitted meshes were used.

1 Introduction

Lagrange multiplier based fictitious domain methods have proved to be effi-
cient techniques for the solution of viscous flow problems with moving bound-
aries (see Glowinski [2003], Chapter 8, Glowinski et al. [2001]). The main
goal of this article is to discuss the generalization of this methodology to
the simulation of wave propagation phenomena. A motivation for using the
fictitious domain approach is that it allows–to some extent–the use of uni-
form meshes, which is clearly an advantage far from the scatters. In order to
capture efficiently time-periodic solutions, the fictitious domain methodology
is coupled to exact controllability methods close to those utilized in Bristeau
et al. [1998], Glowinski and Lions [1995]. Various formulations of a wave prop-
agation model problem, including a fictitious domain one, will be discussed
in Sections 3 and 4. The computation of the gradient of a cost function asso-
ciated to the control formulation will be briefly addressed in Section 5. The
conjugate gradient solution of the control problem will be discussed in Section
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6, while the space/time discretization will be discussed in Section 7. Finally,
the results of numerical experiments will be presented in Section 8.

2 Formulation of the wave-propagation problem.

Let ω be a bounded domain of IRd (d = 2, 3); we denote by γ the boundary
∂ω of ω. Consider now T (> 0). We are looking for the T−periodic solutions
of the following wave equation:

ϕtt −∆ϕ = 0 in (IRd \ ω)× (0, T ), ϕ = g on γ × (0, T ), (1)

completed by additional conditions such as lim
|x|→+∞

ϕ(x, t) = 0. The time-

periodicity conditions take then the following form:

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ), (2)

where ϕ(t) denotes the function x → ϕ(x, t). From a computational point of
view, we imbed ω in a bounded simple-shape domain Ω of boundary Γext (see
Figure 1) and consider

Γext

γ

Ω

ω

Fig. 1. Imbedding of ω.

the following wave problem:

ϕtt −∆ϕ = 0 in (Ω \ ω)× (0, T ),

ϕ = g on γ × (0, T ),
∂ϕ

∂n
+
∂ϕ

∂t
= 0 on Γext × (0, T ),

(3)

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ). (4)

3 A fictitious domain formulation of problem (3), (4).

Problem (3), (4) is equivalent to
Find {ϕ, λ} verifying:
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∫

Ω

ϕttvdx +

∫

Ω

∇ϕ ·∇vdx +

∫

Γext

∂ϕ

∂t
vdΓ +

∫

ω

λvdx = 0, ∀v ∈ H1(Ω),
∫

ω

µ(ϕ− g̃)dx = 0, ∀µ ∈ L2(ω),
(5)

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ), (6)

g̃(t) being an ω-extension of g(t) such that g̃(t) ∈ H1(Ω).

4 A virtual control/least squares formulation of problem
(5), (6).

A virtual control/least squares formulation of problem (5), (6) reads as follows:

Find e ∈ E such that
J(e) ≤ J(w), ∀w (= {w0, w1}) ∈ E, (7)

with E = H1(Ω)× L2(Ω), and

J(w) =
1

2

∫

Ω

[|∇(w0 − y(T ))|2 + |w1 − yt(T )|2]dx, (8)

y being the solution for a.e. t of
∫

Ω

yttzdx+

∫

Ω

∇y · ∇zdx+

∫

Γext

∂y

∂t
zdΓ +

∫

ω

λzdx = 0, ∀z ∈ H1(Ω),
∫

ω

µ(y − g̃)dx = 0, ∀µ ∈ L2(ω),
(9)

y(0) = w0, yt(0) = w1. (10)

Problem (7), being linear-quadratic, can be solved by a conjugate gradient
algorithm operating in E. To implement such an algorithm we need to know
J ′(w), ∀w ∈ E. The derivation of J ′(w) will be addressed in the follow-
ing section, while the conjugate gradient solution of problem (7)-(10) will be
discussed in Section 6.

5 Derivation of J ′(w).

It can be shown that if we define p by
∫

Ω

pttzdx+

∫

Ω

∇p · ∇zdx−
∫

Γext

∂p

∂t
zdΓ +

∫

ω

λ∗zdx = 0,

∀z ∈ H1(Ω),∫

ω

pµdx = 0, ∀µ ∈ L2(ω),

p(T ) = yt(T )− w1,∫

Ω

pt(T )zdx =

∫

Γext

p(T )zdΓ −
∫

Ω

∇(y(T )− w0) ·∇zdx, ∀z ∈ H1(Ω),

(11)
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then we have the following representation for J ′(w):

< J ′(w),v > =

∫

Ω

∇(w0 − y(T )) · ∇v0dx−
∫

Ω

pt(0)v0dx+

∫

Γext

p(0)v0dΓ

+

∫

Ω

(w1 − yt(T ))v1dx+

∫

Ω

p(0)v1dx, ∀v = {v0, v1} ∈ E.
(12)

Relations (11) and (12) are largely “formal”; however it is worth mentioning
that the discrete variants of them make sense and lead to algorithms with fast
convergence properties.

6 Conjugate gradient solution of problem (7).

As in Section 4, we suppose that E = H1(Ω) × L2(Ω). A conjugate gradient
algorithm for the solution of (7) is given by:
Step 0: Initialization

e0 = {e00, e01} ∈ E is given. (13)

Solve the following forward wave problem:

∫

Ω

y0
ttzdx+

∫

Ω

∇y0 ·∇zdx+

∫

Γext

∂y0

∂t
zdΓ +

∫

ω

λ0zdx = 0, ∀z ∈ H1(Ω),
∫

ω

µ(y0 − g̃)dx = 0, ∀µ ∈ L2(ω),

(14)
y0(0) = e00, y

0
t (0) = e01.

Solve next the following backward wave-problem

∫

Ω

p0
ttzdx+

∫

Ω

∇p0 ·∇zdx−
∫

Γext

∂p0

∂t
zdΓ +

∫

ω

λ∗0zdx = 0, ∀z ∈ H1(Ω),
∫

ω

p0µdx = 0, ∀µ ∈ L2(ω),

(15)
p0(T ) = y0

t (T )− e01,∫

Ω

p0
t (T )zdx =

∫

Γext

p0(T )zdΓ −
∫

Ω

∇(y0(T )− e00) ·∇zdx, ∀z ∈ H1(Ω).

Next, define g0 = {g0
0, g

0
1} ∈ E (= H1(Ω)× L2(Ω)) by

∫

Ω

∇g0
0 ·∇zdx =

∫

Ω

∇(e00−y0(T ))·∇zdx−
∫

Ω

p0
t (0)zdx+

∫

Γext

p0(0)zdΓ, ∀z ∈ H1(Ω),

(16)
g0
1 = p0(0) + e01 − y0

t (T ),

and then
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w0 = g0. � (17)

For n ≥ 0, suppose that en, gn, wn are known; we compute their updates
en+1, gn+1, wn+1 as follows:
Step 1: Descent
Solve
∫

Ω

ynttzdx+

∫

Ω

∇yn ·∇zdx+

∫

Γext

∂yn

∂t
zdx

∫

ω

λ
n
zdx = 0, ∀z ∈ H1(Ω),

∫

ω

µyndx = 0, ∀µ ∈ L2(ω),

(18)
yn(0) = wn0 , y

n
t (0) = wn1 .

Solve the backward wave problem

∫

Ω

pnttzdx+

∫

Ω

∇pn ·∇zdx−
∫

Γext

∂pn

∂t
zdΓ +

∫

ω

λ
n∗
zdx = 0, ∀z ∈ H1(Ω),

∫

Ω

pnµdx = 0, ∀µ ∈ L2(ω),

(19)
with pn(T ) and pnt (T ) given by

pn(T ) = ynt − wn1 ,∫

ω

pnt (T )zdx =

∫

Γ

pn(T )zdx−
∫

Ω

∇(yn(T )− wn0 ) ·∇zdx, ∀z ∈ H1(Ω),

respectively.
Next define gn = {gn0 , gn1 } ∈ H1(Ω) × L2(Ω) by

∫

Ω

∇gn0 ·∇zdx =

∫

Ω

∇(wn0 − yn(T )) ·∇zdx−
∫

Ω

pnt (0)zdx

+

∫

Γext

pn(0)zdΓ, ∀z ∈ H1(Ω),
(20)

gn1 = pn(0) + wn1 − ynt (T ),

and then ρn by

ρn =

∫

Ω

[|∇gn0 |2 + |gn1 |2]dx
/∫

Ω

(∇gn0 ·∇wn0 + gn1w
n
1 )dx. (21)

We update then en and gn by

en+1 = en − ρnwn, (22)

gn+1 = gn − ρngn. (23)
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Step 2: Test of the convergence and construction of the new descent
direction

If

∫

Ω

(|∇gn+1
0 |2 + |gn+1

1 |2)dx
/∫

Ω

(|∇gn0 |2 + |gn1 |2)dx ≤ ε, take e = en+1; else,

compute

γn =

∫

Ω

(|∇gn+1
0 |2 + |gn+1

1 |2)dx
/∫

Ω

(|∇gn0 |2 + |gn1 |2)dx (24)

and update wn by
wn+1 = gn+1 + γnw

n. � (25)

Do n = n+ 1 and g0 to (18).
Algorithm (13)-(25) requires the solution of two waves problems at each it-
eration and also of an elliptic problem such as (20). For more comments see
Bristeau et al. [1998], Glowinski and Lions [1995].

7 Finite difference/finite element implementation.

Compared to what has been done in Bristeau et al. [1998], Glowinski and
Lions [1995] the main difficulty is clearly the numerical implementation of
the distributed Lagrange multiplier based techniques used to force Dirichlet
boundary conditions. We shall consider the forward wave equations only since
the backward ones can be treated by similar methods. Dropping the super-
script, the forward wave problems to be solved are all of the following type:
∫

Ω

yttzdx+

∫

Ω

∇y ·∇zdx+

∫

Γext

∂y

∂t
zdΓ +

∫

ω

λzdx = 0, ∀z ∈ H1(Ω), (26)

∫

Ω

µ(y − g̃)dx = 0, ∀µ ∈ L2(ω), (27)

y(0) = e0, yt(0) = e1. (28)

Approximating spaces L2(Ω) and H1(Ω) are pretty classical tasks. Let us
suppose that Ω is a bounded polygonal domain of IR2; we introduce a trian-
gulation Th of Ω and define a space Vh approximating both H1(Ω) and L2(Ω)
by

Vh = {zh|zh ∈ C0(Ω), zh|T ∈ P1, ∀T ∈ Th}. (29)

Next, in order to implement the fictitious domain methodology, we proceed
as follows: we introduce first a set Σh of control points belonging to ω and
defined as follows:

Σh = Σω
h ∪Σγ

h , (30)

where, in (30), Σω
h is the set of the vertices of Th belonging to ω and whose

distance at γ is more than Ch, C being a positive constant, and where Σγ
h is

a set of points of γ. We suppose that Σh = {pj}Nh

j=1, where Nh = Card(Σh).
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Following Glowinski [2003], Glowinski et al. [2001], we shall use as “multiplier”
space, Λh defined by

Λh = {µh|µh = ΣNh
j=1µjδ(x− pj), µj ∈ IR}. (31)

Collecting the above results leads to the following collocation based approxi-
mation of problem (26)-(28):

∫

Ω

yn+1
h + yn−1

h − 2ynh
τ2

zhdx+

∫

Ω

∇ynh ·∇zhdx+

∫

Γext

yn+1
h − yn−1

h

2τ
zhdΓ

+
∑Nh

j=1 λ
n+1
j zh(pj) = 0, ∀zh ∈ Vh,

(32)
yn+1
h (pj)− g̃h(pj , (n+ 1)τ) = 0, ∀j = 1, ..., Nh, (33)

y0
h = e0h, y

1
h − y−1

h = 2τe1h; (34)

in (32)-(34), g̃h, e0h, e1h are approximations–all belonging to Vh–of g̃, e0 e1,
respectively.
The finite dimensional linear variational problem (32), (33) is of the form

Ax+Btλ = b,
Bx = c,

(35)

where matrix A is symmetric and positive definite. To solve the saddle point
problem (35), we can use for example the Uzawa/conjugate gradient algorithms
discussed in, e.g., Glowinski and Lions [1995], Fortin and Glowinski [1982].
Suppose, for simplicity, that functions g and g̃ are time independent. Taking
zh = (yn+1

h − yn−1
h )/2τ in (32) we can easily show that scheme (7.7)-(7.9) is

stable if τ verifies a stability condition such as

τ ≤ c−1h, (36)

where c (which has the dimension of a velocity) is a positive constant inde-
pendent of ω. Related distributed Lagrange multiplier based fictitious domain
methods for the solution of wave propagation problems with obstacles are
discussed in Bokil [2004].

8 Numerical experiments.

In order to validate the methods discussed in the above sections, we will ad-
dress the solution of three test problems already solved in Bristeau et al.
[1998] and Glowinski and Lions [1995] using controllability and obstacle fitted
finite element meshes. These problems concern the scattering of planar inci-
dent waves by a disk, a convex ogive, and a non-convex reflector (air-intake
like).
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First Test Problem: For this problem, ω is a disk of radius .25m. This
disk is illuminated by an incident planar wave of wavelength .125m (which
corresponds to a 2.4×GHz frequency) coming from the right, the incidence
angle with horizontal being zero. The artificial boundary Γext is located at a
3 wave length distance from ω. On Figure 2, we have visualized the uniform
finite element triangulation used over Ω to define the discrete spaces Vh and
Λh. It consists of 19,881 vertices and 39,200 triangles; the number of control
points used to define Λh is 19,881. The value of ∆t corresponds to 80 time
steps per period, the space discretization hx = hy = 8.928571 · 10−3 and
∆s = 1.6071 · 10−2 the length between two adjacent point on the disk. The
decay of the discrete cost functional is a function of the number of iterations of
the discrete analogue of algorithm (13)-(25) is shown on Figure 3. Comparing
to the results reported in Glowinski and Lions [1995] shows that the conver-
gence performances are not modified by the addition of the fictitious domain
procedure. The computed scattered field has been visualized on Figure 4.

Fig. 2. Uniform finite el-
ement triangulation used
for the fictitious domain
method

Fig. 3. Disk: convergence of
the fictitious domain algo-
rithm

Second Test Problem: For this problem, ω is an ogive-like obstacle of
length .6m and thickness .16m, respectively. The wavelength of the incident
wave is 0.1m. The artificial boundary is located at a 3 wave-length distance
from ω. The finite element triangulation is uniform and has 11,571 vertices
and 22,704 triangles. The convergence for a zero degree of incidence monochro-
matic wave is shown on Figure 5. The imaginary component of the scattered
field is shown on Figure 6.

Third Test Problem: Denote by λ the wavelength of the propagation
phenomena. For this problem ω is an idealized air intake; it has a semiopen
cavity geometry defined by two horizontal plates (length 4λ and thickness
equal 0.2λ) and a vertical one (length 1.4λ and thickness λ/5). We have
f = 1.2GHz implying a .25m wavelength. The artificial boundary is located
again at a distance of 3λ from ω. The uniform finite element triangulation
has 20,202 points and 39,820 triangles. The convergence to the solution for
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Fig. 4. Disk: visualization
of the scattered field

Fig. 5. Ogive: convergence
of the fictitious domain al-
gorithm

Fig. 6. Ogive: imaginary
component of the scattered
field

Fig. 7. Idealized air intake:
convergence of the fictitious
domain algorithm

an illuminating monochromatic wave of incidence α = 30◦ is shown on Figure
7. We observe from Figure 7 that the convergence of the method combin-
ing controllability and fictitious domain is faster than the one of the “pure”
controllability method discussed in Glowinski and Lions [1995]. In order to
compare the first method with those discussed in Glowinski and Lions [1995],
we have visualized on Figures 8 and 9 the scattered field obtained with the
methods of Glowinski and Lions [1995] and of this article on Figures 4, 6, and
8. We can observe the extension of the scattered field inside the scatters.

9 Conclusion and Future.

The fictitious domain based methods discussed in this article appear to be
competitive with the boundary fitted one discussed in Glowinski and Lions
[1995]. One of the main advantages of the fictitious domain approach is that
it is well-suited to those shape optimization problems with several scatters
where we have the shape and position of the obstacles in order to minimize
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Fig. 8. Idealized air intake:
scattered field obtained by
the method of reference

Fig. 9. Idealized air in-
take: scattered field ob-
tained by the fictitious do-
main method

for example a Radar Cross section. Only the acoustic wave equation has been
considered in this investigation, but we consider generalizing the methods
discussed here to Maxwell equations in two and three dimensions.
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An Accelerated Block-Parallel Newton Method
via Overlapped Partitioning
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Summary. This paper presents an overlapped block-parallel Newton method for
solving large nonlinear systems. The graph partitioning algorithms are first used to
partition the Jacobian into weakly coupled overlapping blocks. Then the simplified
Newton iteration is directly performed, with the diagonal blocks and the overlapping
solutions assembled in a weighted average way at each iteration. In the algorithmic
implementation, an accelerated technique has been proposed to reduce the number
of iterations. The conditions under which the algorithm is locally and semi-locally
convergent are studied. Numerical results from solving power flow equations are
presented to support our study.

1 Introduction

This paper considers the problem of solving the large sparse system of non-
linear equations

F(x) = 0, (1)

where F(x) = (f1, . . . , fN)T is a nonlinear operator from IRN to IRN . Such
systems often arise from scientific and computational engineering problems.
It is well-known that Newton methods and its variations (see Ortega and
Rheinboldt [1970], etc.) coupled with some direct solution technique such as
Gaussian elimination are powerful solvers for these systems when one has
a sufficiently good initial guess x0 and when N is not too large. When the
Jacobian is large and sparse, inexact Newton methods (see Dembo et al. [1982],
Brown and Saad [1990], Cai and Keyes [2002], etc.) or some kind of nonlinear
block-iterative methods (see Zecevic and Siljak [1994],Yang et al. [1997],Chen
and Cai [2003], etc.) may be used.

An inexact Newton method (IN) is a generalization of Newton method for
solving system (1), in which, each step {sk} satisfies ‖F′(xk)sk + F(xk)‖ <
‖rk‖, regardless of how {sk} is determined. In past years, Krylov subspace
methods, such as Arnoldi’s method (see Saad [1981]), GMRES (see Saad and
Schultz [1986]) and so on, have been studied intensively and applied in IN
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for solving large scale linear systems approximately. This combined method
is called inexact Newton-Krylov methods or nonlinear Krylov subspace pro-
jection methods. Many works on parallel Newton-Krylov methods have been
done by Gropp et al. [2000], Knoll and Keyes [2003], etc.

Parallel nonlinear block-iterative method is another powerful solver for
large sparse nonlinear systems, which chiefly consists of block Newton-type
and block quasi-Newton methods. The classical nonlinear block-Jacobi algo-
rithm and nonlinear block-Gauss-Seidel algorithm (see Ortega and Rheinboldt
[1970]) are two original versions. A block-parallel Newton method via overlap-
ping epsilon decompositions was presented by Zecevic and Siljak [1994]. Yang
et al. [1997] described a parallelizable Jacobi-type block Broyden method, and
more recently a partially overlapped Broyden method has been proposed by
Chen and Cai [2003].

In this paper, we consider a parallelizable block simplified Newton method
via overlapped partitioning, which is essentially an additive Schwarz method
(block-Jacobi algorithm) with overlapping. In the implementation, an accel-
erated technique (see Sect. 2) is proposed for each iteration to reduce the
number of iterations. Sect. 3 gives the sufficient conditions under which the
new method is locally and semi-locally convergent. The numerical results for
solving power flow equations are presented in Sect. 4. Finally, we draw con-
clusions and discuss the future work on this subject in Sect. 5.

2 The Algorithm

In the following discussion, x∗ ∈ IRN is an exact solution of system (1), i.e.,
F(x∗) = 0. Let x0 be an initial guess of x∗, and suppose the components of
x and F are conformally partitioned as follows:

{F} = {F1, . . . ,FM}, {x} = {x1, . . . ,xM}, (2)

where Fi = (f(i,1), . . . , f(i,ni))
T : IRN → IRni , xi = (x(i,1), . . . , x(i,ni))

T ∈ IRni

for i = 1, . . . ,M . Let Si = {(i, 1), . . . , (i, ni)}, then the partition satisfies that⋃M
i=1 Si = {1, 2, . . . , N} and Si ∩ Si+1 6= ∅ for i = 1, . . . ,M − 1, which means

that the adjacent blocks have partial overlaps. This partition may be obtained
by graph-theoretic decomposition algorithms. Several overlapped strategies
based on the general graph partitioning scheme included in Chaco, a publicly
available graph partitioning software package developed by Hendrickson and
Leland [1995], have been chiefly discussed by Chen and Cai [2003].

Let J0 be the Jacobian matrix of F at x0, i.e., J0 = ∂F(x)
∂x |x=x0 , and for

i = 1, . . . ,M let J0
i = ∂Fi(x)

∂xi
|x=x0 ∈ IRni×ni be a nonsingular matrix. An

algorithm for the Overlapped Block Simplified Newton method is as follows:

Overlapped Block Simplified Newton (OBSN) algorithm.

1. a. Partition J0 into M blocks J0
i , i = 1, . . . ,M .
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b. Select weighted average parameter α = {αi}M−1
i=1 , 0 ≤ αi ≤ 1.

2. For k = 0, 1, . . . until convergence:
For i = 1, . . . ,M , do:

a. Solve J0
i s
k
i = −rki .

b. Assemble the solutions: xk+1
i = xki + ŝki , where for j = 1, . . . , ni,

ŝk(i,j) =





αis
k
(i,j) + (1− αi)sk(i+1,j), (i, j) ∈ Si ∩ Si+1;

αi−1s
k
(i−1,j) + (1− αi−1)s

k
(i,j), (i, j) ∈ Si−1 ∩ Si;

sk(i,j), others.

c. Calculate rk+1
i = Fi(x

k+1). If ‖rk+1‖ is small enough, stop.

Step 2 of the above algorithm can be essentially replaced by the Newton-
type iteration:

xk+1 = G(xk) = xk − (A(J0
D, α))−1F(xk), (3)

where J0
D denotes the partially overlapping block diagonal Jacobian and the

matrix (A(J0
D, α))−1 is determined by J−1

1 , . . . ,J−1
M and α. To obtain local

convergence for OBSN, one only needs to prove the convergence of the itera-
tion (3). However, OBSN is proposed here for solving large sparse nonlinear
systems in parallel. The reason is that Step 2 of the algorithm is easily paral-
lelizable despite the use of a direct or an iterative solver.

For most practical problems, increasing the number of blocks will yield a
severe increase in the number of iterations for the block-iterative method even
the blocks with overlapping. In order to obtain an efficient parallel implemen-
tation for OBSN, it is critical to reduce the number of iterations. We therefore
propose an accelerated technique based on the zero-nonzero structure of the
partitioned Jacobian J0. Suppose the set

S̄ = {〈i, j〉 : J0
ij 6= 0, J0

ij 6∈ J0
D, i, j = 1, . . . , N}, (4)

to be nonempty, then for all 〈p, q〉 ∈ S̄, append an updated formula following
Step 2.(b) in OBSN as follows:

{
xk+1

(p) = xk+1
(p) + γŝk(q),

xk+1
(q) = xk+1

(q) + γŝk(p),
(5)

where γ ∈ (0, 1) is an accelerated parameter. The algorithm with the updated
formula (5) is referred to as AOBSN algorithm.

Note that OBSN is essentially a variation of nonlinear block-multisplitting
method presented by Frommer [1989] or additive Schwarz methods (block-
Jacobi algorithm) with overlapping. The main difference is that the Jacobian
matrix of F need not be computed at each iteration and there is overlapping
only between adjacent blocks in OBSN. Here, the restriction of overlapping
just makes the selection of α much easier. The numerical results in Sect. 4
also show that the convergence performance of OBSN is much improved by
the formula (5) with γ rather than by α.
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3 Local and Semi-local convergence

Let ‖ · ‖ be a norm on IRN and Ω̄(x, r) be a close ball of radius r about x.
We can immediately obtain the local convergence theorem for OBSN.

Theorem 1. Let F : D ⊂ IRN → IRN be Fréchet differentiable at the zero
x∗ ∈ D of F, and suppose that Ji(x) : Ω0 ⊂ D → L(IRni) is defined on some
open neighborhood Ω0 ⊂ D of x∗ and is continuous at x∗ with nonsingular
Ji(x

∗) for i = 1, . . . ,M . Then there exists a close ball Ω = Ω̄(x∗, δ) ⊂ Ω0, δ >
0, on which for any x0 ∈ Ω the mapping G : x ∈ Ω → x−(A(J0

D, α))−1F(x) ∈
IRN is well-defined and G has at x∗ the Fréchet derivative

G′(x∗) = I− (A(J0
D, α))−1J(x∗). (6)

If ρ(G′(x∗)) < 1, then the sequence {xk} generated by OBSN is well-defined
for any x0 ∈ Ω and it converges to x∗.

Proof. Set η = max
i=1,...,M

‖Ji(x∗)−1‖ and for given ε > 0, 2ηε < 1, choose

δ > 0 such that Ω = Ω̄(x∗, δ) ⊂ Ω0 and ‖Ji(x) − Ji(x
∗)‖ ≤ ε for any

x ∈ Ω, i = 1, . . . ,M . Then Ji(x) is invertible for all x ∈ Ω, and

‖(Ji(x))−1‖ ≤ η

1− ηε < 2η, x ∈ Ω, i = 1, . . . ,M, (7)

that is, the mapping G(x) = x − (A(J0
D, α))−1F(x) is well-defined on Ω for

any x0 ∈ Ω. In addition, ρ(G′(x∗)) < 1 which implies the x∗ is an attractor
of the iterative formula (3), so the sequence xk generated by OBSN is well-
defined for any x0 ∈ Ω and it converges to x∗. ⊓⊔

Furthermore, we can also obtain the semi-local convergence theorem for
OBSN from Theorem 12.5.5 in Ortega and Rheinboldt [1970] by the Newton-
type iteration (3). The proof is trivial.

Theorem 2. Let F : D ⊂ IRN → IRN be Fréchet differentiable and Lips-
chitz continuous with Lipschitz constant τ on a close ball Ω̄(x0, r) ⊂ D. Also
suppose that there exist κ, η, and µ with h = κτη(1 − µ)2 ≤ 1

2 such that

‖(A(J0
D, α))−1‖ ≤ κ, (8)

‖(A(J0
D, α))−1F(x0)‖ ≤ η, (9)

‖I− (A(J0
D, α))−1J(x0)‖ ≤ µ < 1, (10)

Set

r− =
1− µ
κτ

(1 −
√

1− 2h), (11)

r+ =
1− µ
κτ

(1 +
√

1− 2h). (12)

If r ≥ r−, then the sequence {xk} generated by OBSN keeps in Ω̄(x0, r) and
it converges to the unique root x∗ of F in Ω̄(x0, r′) with r′ = min{r, r+}.
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4 Numerical Results

In this section, OBSN and AOBSN are applied to the load flow problem
in power systems. The relative importance of α, γ on the convergence of
(A)OBSN for the IEEE 118-bus system (Problem 1) are studied, and some
values are suggested for obtaining good performance with (A)OBSN. Then,
the parallel numerical results for the IEEE 662-bus system (Problem 2) on a
PC cluster are presented.

For an n-bus system without the slack bus, the load flow problem is de-
scribed by a system of nonlinear algebraic equations:

F(x1, . . . ,xn;P,Q) = 0 (13)

where
Fi = (FPi , FQi)

T , xi = (fi, ei)
T , (14)

FPi = Pi − Re(Ei

n∑

k=1

Y ∗ikE
∗
k), (15)

FQi = Qi − Im(Ei

n∑

k=1

Y ∗ikE
∗
k). (16)

In the above equations, Ei = ei + jfi represents the unknown complex node
voltage, Pi + jQi represents the injected power and Yik = Gik + jBik repre-
sents the admittance. For PV buses, where the voltage magnitude Vi is fixed,
equation (16) is replaced by FQi = V 2

i − (e2i + f2
i ).

In practice, good initial guess can be easily obtained in the load flow
computation, especially in the load flow track case. So an approximate start x0

which is obtained by adding random values ranging from −0.01 to 0.01 to the
solutions is considered to evaluate the cases where good initial approximations
are provided. In all tests, Gaussian elimination was used to solve the linear
subproblems exactly and the nonlinear error tolerance was 10−3.

4.1 Influence of α, γ on Convergence

For the power flow equations (13), using the similarity of the structure of
matrix B = (Bik)n×n and the Jacobian J0 (see Zecevic and Siljak [1994]),
we applied the partially overlapped partitioning to B to achieve the partition
of J0 which reduces the problem dimension by a factor of 2. The linear-KL
partitioning coupled with the boundary-linear strategy (see Chen and Cai
[2003]) was chosen as the partition scheme for (A)OBSN in this study. The
choice was observed to be better compared to scattered, spectral partitioning
and multilevel-KL schemes (see Hendrickson and Leland [1995]) coupled with
the boundary-linear strategy. For simplicity, we only considered the case for
α1 = · · · = αM−1 = α.
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Fig. 1 shows the influence of α on the convergence of OBSN and AOBSN
(α = 0.5) for Problem 1 in ten differently approximate start cases. From the
figure, we can see that the influence of α on the convergence of OBSN is more
sensitive to x0 than that on AOBSN. In addition, the rate of convergence of
OBSN is significantly improved by the updated formula (5) with the acceler-
ated parameter γ = 0.5. Note that the influence of α on the convergence of
AOBSN is much less than that of γ, so α can be fixed (for example, α = 0.5)
if AOBSN is used to solve the power flow equations.
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Fig. 1. Influence of α on the con-
vergence of (A)OBSN for Problem
1 (ten approximate starts, M = 8)
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Fig. 2. Influence of γ on the con-
vergence of AOBSN for Problem 1
(ten approximate starts, M = 8)

Fig. 2 shows the influence of accelerated parameter γ on the convergence
of AOBSN (α = 0.5) for Problem 1 in the same ten start cases. The figure also
shows that the convergence performance of OBSN is significantly improved
by the accelerated technique with γ = 0.1, . . . , 0.8. Similar conclusions can be
drawn for other ten initial approximations obtained even by a larger disturbed
parameter as well.

4.2 Parallel Implementation of AOBSN for Problem 2

Using the above scheme, we partition the matrix B of Problem 2 into 2, 4, 8,
16, 32 and 64 blocks (see Fig. 3 for some cases). Fig. 4 shows the number of
iterations of three algorithms mentioned above for Problem 2. We can see that
AOBSN has much better convergent performance than the Block Simplified
Newton method (BSN) and OBSN, and its number of iterations is less sensitive
to the number of blocks. It should be pointed out that AOBSN usually requires
more iterations than Newton methods and its simplified version. However, by
virtue of the reduction of dimensionality, AOBSN can result in significant
computational savings.

In the parallel implementation, we assigned the individual blocks or a
group of blocks into per processor in an adequate load balancing way. All
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Fig. 3. Zero-nonzero structure of B and the partitioned B for Problem 2
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numerical tests were run on an SMP-Cluster (36 nodes, CPU of per node:
4×Intel Xeon PIII700MHz, Myrinet, MPI). The programs were written in C
using double precision floating point numbers. Fig. 5 shows the parallel com-
putation time of AOBSN in 8, 16 and 32 block cases. The total execution time
reduces with the number of processors and reaches its minimal value when
the number of processors is 8 or 16 in 8 or 16 block cases, respectively. The
communication time approximately increases with the number of processors
and exceeds the computation time with 32 processors in 32 block case, which
indicates that Problem 2 is not sufficiently large to be efficiently mapped onto
more than 16 processors on the SMP-Cluster.

5 Conclusions and Discussion

This paper has presented an overlapped block-parallel Newton method (OBSN)
for solving large nonlinear systems. In the implementation, an accelerated ver-
sion (AOBSN) is also proposed to reduce the number of iterations. The nu-
merical results of solving power flow equations confirm that AOBSN is indeed
effective, particularly for problems where a good initial guess is available.

As mentioned in the previous sections, OBSN and AOBSN are nonlinear
methods depending on several parameters, including the partition scheme,
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M,α, γ, etc. In this paper, the relative importance of α, γ on the convergence
of (A)OBSN were studied for the power flow problem, and some values for
obtaining good results with (A)OBSN were suggested. A theoretical study
on how these parameters influence the convergence of the algorithms will be
carried out in our future work.
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Summary. Balancing and dual Domain Decomposition Methods (DDMs) are used
in practice on parallel computing environments with the number of generated sub-
domains being generally larger than the number of available processors. The present
study describes partitioning concepts used to: (a) generate subdomains for such
DDMs and (b) organize these subdomains into subdomain clusters, in order to as-
sign each cluster to a processor. The discussion concerns distributed computing en-
vironments with dedicated homogeneous processors, as well as with heterogeneous
and/or non-dedicated processors. The FETI method is used to obtain numerical
results demonstrating the merits of the described partitioning algorithms.

1 Introduction

The practical use of dual DDMs on parallel computing environments with
independent numbers of subdomains and processors constitutes today a basic
feature of these solution approaches (Lesoinne and Pierson [1998], Farhat et al.
[2000], Charmpis and Papadrakakis [2003]). The dominant objective during
the mesh partitioning task is to produce subdomains with specific geometric
characteristics, in order to improve the conditioning of the arising interface
problem. The number of generated subdomains is in general larger than the
number of available processors, since the computational performance of dual
DDMs is improved both in terms of overall execution time and storage re-
quirements by using mesh partitions with increased numbers of subdomains.
This happens because increased numbers of subdomains result in smaller pro-
files for stiffness and preconditioning matrices. The reduced storage demand of
these matrices plays its favorable role in decreasing computational times both
during the factorization of the matrices and their application in the iterative
solution of the interface problem.

Since dual DDMs are applied in general to partitions with ns > np (ns is
the number of generated subdomains and np is the number of utilized proces-
sors), an additional computational step has to be performed just after mesh
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partitioning, in order to appropriately organize the ns subdomains into np
subdomain clusters and then assign each cluster to one of the np processors.
This additional computational step is termed as Subdomain Cluster GENer-
ation (SCGEN) and can be viewed as a second partitioning task.

The issues discussed in the present study are expected to apply to all dual-
type and balancing DDMs. Dual-type DDMs are all methods that are either
purely based on a dual substructuring formulation (i.e. all FETI versions and
variants) or include a dual substructuring kernel in the framework of a DDM
of another category. Regarding the balancing DDM, its basic formulation is
equivalent to a primal alternative of the FETI method (Fragakis and Pa-
padrakakis [2003]), which indicates that both dual-type and balancing DDMs
are similarly affected by the number and shape of the subdomains and the
generated subdomain clusters. Therefore, in the sequel of the present work the
term DDMs is used to refer collectively to dual-type and balancing DDMs.

The present study overviews the partitioning concepts used to generate
subdomains and subdomain clusters for DDMs. The discussion focuses on
a recently proposed heuristic approach, which handles the SCGEN task as a
graph partitioning optimization problem (Charmpis and Papadrakakis [2003]).
The effectiveness of heuristic SCGEN is demonstrated using the FETI method
on a distributed computing environment with dedicated homogeneous proces-
sors. The applicability of this SCGEN technique is extended also to the case
of heterogeneous and/or non-dedicated processors.

2 Mesh partitioning

DDM efficiency is governed by the convergence rate of the iterative algorithm
employed for the solution of the arising interface problem. Since convergence
is accelerated as the subdomains’ aspect ratios improve, DDM performance
is sensitive to the geometric characteristics of the subdomains. Therefore, the
dominant mesh partitioning criterion that must be optimized to efficiently use
DDMs is to produce subdomains with aspect ratios as good as possible. The
two-step mesh partitioning strategy described in detail by Farhat et al. [1995]
has been followed in the present work to produce subdomains with appropriate
geometric characteristics: first the fast and simple Greedy algorithm generates
a reasonable mesh partition, then the non-deterministic simulated annealing
optimizer post-processes the initial partition to improve mainly the aspect
ratios of the subdomains.

3 Subdomain Cluster GENeration (SCGEN)

Two basic requirements are specified, in order to control the SCGEN pro-
cess and direct it towards the generation of subdomain clusters with suitable
properties. We expect the SCGEN task to produce: (a) balanced subdomain
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clusters, in order to avoid excessive processor idle times and (b) small inter-
face size between subdomain clusters, in an effort to reduce communication
overhead during the iterative solution of the DDM interface problem. Thus,
two distinct but complementary tasks have to be performed in order to obtain
an efficient parallel DDM solution:

• The dominant objective during mesh partitioning is to ensure a favorable
numerical DDM behavior. This is achieved by producing subdomains with
good aspect ratios, in order to accelerate the convergence of the iterative
DDM solution.

• SCGEN focuses on parallel execution aspects of the DDM, since it fa-
cilitates the exploitation of the available parallel computing environment
by providing the utilized processors with balanced subsets of the DDM
problem and small interface size between these subsets.

The following SCGEN approaches can be used to generate equally loaded
subdomain clusters:

• The simple Linear SCGEN approach simulates the way early FETI runs
with ns > np were organized, since it clusters the subdomains according
to their position (numbering) in the list of subdomains: the first ns/np
subdomains are assigned to cluster 1, the next ns/np to cluster 2, etc.

• Evidence of the importance of the SCGEN task was given with the Greedy
SCGEN approach (Farhat et al. [2000]), which implements a partitioning
algorithm based on the Greedy domain decomposer and exploits to some
extent the adjacency information between subdomains.

• The heuristic SCGEN approach uses graph partitioning optimization soft-
ware like METIS, JOSTLE, Chaco, etc., in order to handle in a more ex-
plicit and effective way the objectives and constraints of the SCGEN task
(Charmpis and Papadrakakis [2003]).

DDM performance is affected by the quality of the generated subdo-
main clusters. All three aforementioned SCGEN approaches assign roughly
ns/np subdomains to each cluster resulting in reasonably balanced proces-
sor workloads. However, the Linear and Greedy algorithms often produce
rather lengthy interfaces between subdomain clusters, especially when large-
size problems with irregular geometry are considered. On the other hand,
heuristic partitioning is capable of detecting (near-)optimum SCGEN solu-
tions exhibiting small interface sizes and is therefore the most effective and
reliable option for the SCGEN task of DDMs.

4 Graph representation of mesh partition

In order to be able to exploit standard graph partitioning software in the con-
text of heuristic SCGEN, the mesh partitioning output (which defines ns sub-
domains with optimal aspect ratios tailored for the DDMs) must be translated



558 Dimos C. Charmpis and Manolis Papadrakakis

into graph data. A graph consists of vertices (associated with computational
tasks), which are connected through edges (representing data dependencies
between vertices). Vertices and/or edges may be assigned with weights, which
implicitly specify the amount of computation associated with each vertex and
the communication overhead associated with each edge. Hence, the goal of
standard graph partitioning algorithms is to generate subsets of a given graph
in a way that the sum of the vertex-weights in each subset is as balanced as
possible and the sum of the edge-weights on the interface between the subsets
(usually referred to as ‘edgecut’) is minimized.

In the context of the SCGEN task, the obtained mesh partitioning output
is translated into an undirected graph G = G(V,E), in which vertices vi ∈ V
represent subdomains and edges e(vi, vj) ∈ E are associated with subdomain
connectivity (V and E denote the sets of vertices and edges, respectively).
Thus, such a graph G consists of ns vertices and contains two edges for each
pair of neighboring subdomains (the adjacency of two subdomains associated
with vertices vi and vj is described by both edges e(vi, vj) and e(vj , vi)). The
vertices and edges of G are associated with weights, which allow the transfer
of more complete information from the mesh partitioning output to its graph
representation. Hence, each vertex of G is weighted by the total number of
degrees of freedom (d.o.f.) in the corresponding subdomain, i.e. each vertex
weight implicitly specifies the computing workload of the associated subdo-
main. Furthermore, each edge is weighted by the number of interface d.o.f. or
Lagrange multipliers between the two vertices (i.e. subdomains) the edge in-
terconnects, in order to provide G with information regarding communication
overheads during the DDM solution. A characteristic graph representation of
a mesh partition is illustrated in Fig. 1.

Fig. 1. A finite element mesh (left) and a mesh partition with its graph represen-
tation (right)
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5 SCGEN using METIS

The construction of the mesh partition’s weighted graph reduces the SCGEN
task to a standard graph partitioning optimization problem. The objective
of the optimization process is to minimize the interface between subdomain
clusters, while the requirement of generating balanced subdomain clusters
is imposed as a constraint in the partitioning process. This constraint opti-
mization task is performed in the present work using the publicly available
graph partitioning software METIS by Karypis and Kumar [1998]. Hence, the
constructed weighted graph of a mesh partition is used as input to METIS,
which aims in partitioning the ns vertices of the graph into np balanced parts
with minimum edgecut. Hence, METIS swaps subdomains between subdo-
main clusters until a locally optimal SCGEN result is reached. The output
obtained contains the requested np subdomain clusters, in which the num-
ber of d.o.f. is as balanced as possible and the number of interface d.o.f. or
Lagrange multipliers between subdomain clusters is small (if not minimum).

When the available parallel computing environment consists of heteroge-
neous computers, each utilized processor has to be assigned with an amount
of workload proportional to its processing speed. This additional requirement
has to be taken into account during the SCGEN process, in order to avoid
imbalanced DDM computations. A similar situation arises when other users
are running a variety of jobs on the available computers resulting in a non-
dedicated parallel computing environment, which suffers workloads caused by
several processes and therefore utilizes processors that do not have the same
processing availability. SCGEN partitions tailored for heterogeneous and/or
non-dedicated processors are obtained in the present work with the use of spe-
cialized METIS routines (denoted as WMETIS), which can handle prescribed
partition weights. The SCGEN solutions yielded by WMETIS heuristics en-
sure that the computing workload associated with each generated subdomain
cluster is proportional to the processing speed or availability of the corre-
sponding processor.

6 Numerical tests

The performance of the described SCGEN approaches is investigated using
a six-storey building, which is modeled with a solid mesh of 11485 hexahe-
dral 20-noded elements resulting in 249015 d.o.f. Seven mesh partitions with
optimal subdomain aspect ratios are generated for this 3D building test prob-
lem. Fig. 2 illustrates the finite element mesh and a characteristic partition of
the 3D building. The numerical investigation is conducted on a cluster of 12
ethernet-networked homogeneous PCs (each with a Pentium III 500 MHz pro-
cessor and 256 MB RAM) using the Linux operating system and the message
passing software PVM. A network-distributed one-level FETI implementation
described by Charmpis and Papadrakakis [2002] and enhanced by Charmpis
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Fig. 2. 3D building test problem: finite element mesh (left) and mesh partition with
ns = 250 subdomains (right)

Fig. 3. Edgecuts obtained for several ns-values (np = 12)

and Papadrakakis [2003] is executed on the PC cluster using the Dirichlet
preconditioner stored in single precision arithmetic and a PCPG convergence
tolerance ǫ = 10−3.

Fig. 3 reports edgecut-results for the 3D building test problem obtained
by the SCGEN approaches on the dedicated PC cluster. According to these
results, the heuristic METIS approach possesses a clear advantage over the
Linear and Greedy algorithms giving by far smaller interface sizes between
subdomain clusters.

Table 1 presents the time allocation for characteristic FETI runs and
demonstrates the effect of low-edgecut SCGEN solutions on FETI perfor-
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Table 1. Wall-clock time allocation of FETI runs (ns = 250, np = 12)

SCGEN Mesh Formation of PCPG
algorithm partitioning SCGEN FETI matrices solution

Linear 4.8s - 40.9s 204.4s
Greedy 4.8s 0.05s 41.1s 132.9s
METIS 4.8s 0.06s 39.2s 69.0s

Fig. 4. Time allocation of the PCPG solver executed on dedicated or non-dedicated
PCs with METIS or WMETIS SCGEN

mance. METIS markedly outperforms the Linear and Greedy SCGEN algo-
rithms, since the large edgecut-values generated by the last two partitioners
lead to excessive communication costs during the solution of the FETI inter-
face problem by the iterative PCPG procedure. Furthermore, Table 1 shows
that SCGEN requires a fraction of computing time compared to the overall
solution effort even in the case of the METIS heuristic, therefore using parallel
graph partitioning software to accelerate the SCGEN task is not necessary.

The left graph of Fig. 4 illustrates the reasonably balanced PCPG compu-
tations observed on the 12 dedicated PCs with the use of METIS SCGEN. In
order to demonstrate the effectiveness of WMETIS SCGEN, a dummy com-
putational process is started on each of PCs 7-10 and two dummy processes
on each of PCs 11 and 12. This results in an artificially non-dedicated par-
allel computing environment, since the utilized PCs do not exhibit the same
processing availability due to the waste of computing power caused by the im-
posed processor workloads. As shown in the middle graph of Fig. 4, METIS
SCGEN cannot effectively handle the reduced processing capability of PCs
7-12 and causes severely imbalanced PCPG computations. This deficiency is
alleviated by employing WMETIS SCGEN (see right graph of Fig. 4), which
produces subdomain clusters using properly adjusted partition weights and
is therefore capable of restoring the balancing of PCPG computations among
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all processors. It is noted that the communication times of Fig. 4 do not cor-
respond only to message passing through the ethernet network, but include
also the times needed to pack the communicated data into send buffers and
unpack them from receive buffers.

7 Concluding remarks

The use of graph partitioning optimization algorithms allows the detection of
(near-)optimum SCGEN solutions within large-size and irregularly structured
search spaces. Such algorithms can effectively handle arbitrarily partitioned
unstructured problems, while advantages over other SCGEN alternatives can
be provided even for problems meshed and decomposed in a structured way
(Charmpis and Papadrakakis [2003]). This consistent performance of heuris-
tic SCGEN leads to distributed DDM runs with minimum communication
overheads and reasonably balanced computations on dedicated homogeneous
processors, as well as on heterogeneous and/or non-dedicated processors.
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Summary. We present iterative subdomain methods based on a domain decom-
position approach to solve the coupled Stokes/Darcy problem using finite elements.
The dependence of the convergence rate on the grid parameter h and on the physical
data is discussed; some difficulties encountered when applying the algorithms are
indicated together with possible improvement strategies.

1 Introduction and problem setting

The simulation of incompressible flows in heterogenous media is an interest-
ing topic with many applications: considering the particular case of free fluids
which can filtrate through porous media, we recall for example the hydrolog-
ical environmental applications and mass transfer in biomechanics.

The Stokes/Darcy coupled system provides a linear model to describe such
phenomena. We consider a bounded domain Ω ⊂ Rd (d = 2, 3) formed by two
non-overlapping subdomains Ωf and Ωp separated by a surface Γ = Ωf ∩Ωp.
Ωf is the region occupied by the fluid whose motion is described by the Stokes
equations which can be written in adimensional form as:

−Re−1
f △uf +∇pf = f

∇ · uf = 0
in Ωf , (1)

where uf and pf are the adimensional velocity and pressure, respectively,
while Ref is the Reynolds number defined as Ref = LfUf/ν, ν > 0 being
the fluid kinematic viscosity and Lf , Uf a characteristic length and velocity,
respectively.

The filtration through the porous region Ωp is modeled using Darcy’s
equations, whose adimensional form reads:

up = −εRep∇pp
∇ · up = 0

in Ωp, (2)
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where up and pp are the adimensional fluid velocity and pressure, respectively,
Rep is the Reynolds number Rep = δpUp/ν, Up being a characteristic velocity
through the porous medium and δp a characteristic pore size. Finally, ε =
δp/Lp is the adimensional ratio between the micro and the macro scales in
Ωp.

Across the interface Γ the continuity of normal stresses and fluxes is re-
quired; precisely, we impose:

uf · n = up · n
−n · T(uf , pf ) · n = pp
−τ j · T(uf , pf ) · n = αuf · τ j

on Γ (3)

where T(uf , pf) is the stress tensor, n is the unit normal outward vector to
∂Ωf and τ j ·n = 0 (j = 1, . . . , d− 1); α is a dimensionless coefficient depend-
ing essentially on ν and the hydraulic conductivity of the porous medium. For
an extensive discussion about these coupling conditions we refer to Discac-
ciati et al. [2002], Jäger and Mikelić [1996], Layton et al. [2003], Payne and
Straughan [1998].

The mathematical analysis of the coupled problem has been addressed in
previous works concerning both the continuous case and the finite element
approximation (see Discacciati and Quarteroni [2003], Layton et al. [2003]).

In order to solve the coupled problem, an iterative substructuring method
was proposed and analyzed in Discacciati and Quarteroni [2004]. Here, we test
it on a model problem in order to investigate its effectiveness and robustness,
with particular emphasis on the role that physical and grid parameters play on
the convergence properties. We consider the computational domain Ω ⊂ R2,
withΩf = (0, 1)×(1, 2),Ωp = (0, 1)2 and interface Γ = (0, 1)×{1}. We rewrite
Darcy’s equation as −∇ · (εRep∇pp) = 0 in Ωp, and consider the following
analytic solution: uf = (y2−2y+1, x2−x)T , pf = 2(x+y−1)/Ref+1/(3εRep)
and pp = (x(1 − x)(y − 1) + y3/3− y2 + y)/(εRep) + 2x/Ref .

Concerning the finite element discretization, P2−P1 Taylor-Hood elements
have been used for Stokes equations, while P2 Lagrangian elements have been
adopted for Darcy’s problem. All the computational meshes are conforming
on Γ .

2 Dirichlet-Neumann (DN) methods

Considering the interface conditions (3)1 and (3)2, we can choose as scalar
interface variable λ either λ = uf · n on Γ or λ = pp on Γ . These two choices
define two different DN-type methods, which can be outlined as follows, re-
spectively:

Algorithm DN1

0. choose λ = uf · n on Γ and an initial guess λ(0) on Γ ;
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For k = 0, 1, . . . until convergence, Do

1. solve Darcy’s equation with b.c. −εRep∇p(k+1)
p · n = λ(k) on Γ ;

2. solve Stokes problem with b.c. −n·T(u
(k+1)
f , p

(k+1)
f )·n = p

(k+1)
p and

(3)3 on Γ;

3. λ(k+1) = θu
(k+1)
f · n + (1− θ)λ(k) on Γ , θ ∈ (0, 1) ;

End For

Algorithm DN2

0. choose λ = pp on Γ and an initial guess λ(0) on Γ ;

For k = 0, 1, . . . until convergence, Do

1. solve Stokes problem with b.c. −n · T(u
(k+1)
f , p

(k+1)
f ) · n = λ(k) and

(3)3 on Γ;

2. solve Darcy’s equation with b.c. −εRep∇p(k+1)
p · n = u

(k+1)
f · n on

Γ ;

3. λ(k+1) = θp
(k+1)
p + (1 − θ)λ(k) on Γ , θ ∈ (0, 1) ;

End For

The two DN methods are equivalent to preconditioned Richardson meth-
ods to solve the symmetric Steklov-Poincaré equations associated to the cou-
pled problem, and they allow to characterize optimal preconditioners for
Krylov type methods (e.g. the Conjugate Gradient) for the corresponding
interface problems (see Discacciati and Quarteroni [2004]).

2.1 Numerical results

We consider Ref = 1, εRep = 1 and tol = 10−5; in Table 1 we report the num-
ber of iterations for both the Richardson and the Preconditioned Conjugate
Gradient (PCG) method. These convergence results are satisfactory as they
show the optimality of the preconditioners with respect to the grid parameter
h.

Number of DN1 PCG DN2 PCG
mesh elements (θ = 0.7) λ = uf · n (θ = 0.7) λ = pp

172 9 4 10 4
688 9 4 10 4
2752 9 4 10 4
11008 9 4 10 4

Table 1. Number of iterations on different grids with Ref = 1 and εRep = 1

However, if the fluid viscosity and the hydraulic conductivity decrease,
small relaxation parameters θ must be adopted to guarantee convergence, in
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accordance with the theoretical estimate of the upper bound θmax given in
Discacciati and Quarteroni [2004]. Unfortunately, in some cases θ should be
so small that in practice it prevents the numerical scheme from converging.
To quote an example, if Ref = 103 and εRep = 10−2, then θ should be
unreasonably small (smaller than 10−4 !) in DN1 to prevent divergence.

This difficulty should not be ascribed to the non-optimal choice of the
relaxation parameter θ. In fact, if we apply the PCG method which embeds
the choice of the optimal acceleration parameter (see, e.g., Quarteroni et al.
[2000] p. 150), the iterative algorithm converges, but the optimal properties
of the preconditioners are lost, since the number of iterations depends on the
mesh parameter h, as reported in Table 2.

Mesh elements PCG iterations (λ = uf · n)

688 82
2752 102
11008 148

Table 2. Number of iterations on different grids with Ref = 103 and εRep = 10−2

On the basis of the numerical results we have obtained we can conclude
that DN methods are effective only when the ratio Ref/(εRep) is sufficiently
small, while dealing with large values causes some difficulties. However, the
latter are the very values of interest in real-life applications and, therefore, a
robust numerical method is required.

3 Dirichlet-Neumann for a time-dependent problem

We introduce a formal argument to better understand the results obtained
in Sect. 2.1 and to set up a more effective numerical scheme. This approach
will be treated from a precise mathematical viewpoint in a forthcoming work
Discacciati [2004].

The underlying idea is that our difficulties in solving the Stokes/Darcy
problem may come from the different structure of equations (1)1 and (2)1,
which become even more dissimilar when Ref ≫ 1 and εRep ≪ 1. In fact, in
that case, under the physically reasonable hypothesis that △uf and ∇pp are
sufficiently small, (1)1 reduces almost to CfI +∇pf = f , while (2)1 becomes
up+CpI = 0, where Cf and Cp denote two positive constants≪ 1. We rewrite
(2)1 as

(εRep)
−1up +∇pp = 0 in Ωp , (4)

and formally comparing (4) to (1)1, we are led to modify the latter by adding
a mass term like (εRep)

−1up as follows:



Iterative Methods for Stokes/Darcy Coupling 567

β(εRep)
−1uf −Re−1

f △uf +∇pf = f̃ , β ∈ R+ , (5)

possibly with a consequent modification of the right hand side (see Remark
1) that we have denoted by f̃ . In this way we obtain a generalized Stokes
momentum equation, and note that now (5) has the same behaviour of (4) in
the cases of our interest, that is when Ref ≫ 1 and εRep ≪ 1.

We expect that the mass term β(εRep)
−1uf would help improving the

positivity of the discrete Steklov-Poincaré operator which acts as a precondi-
tioner in the DN1 method. With this aim, we have carried out some numerical
tests using the PCG algorithm with λ = uf · n as interface variable to solve
the modified problem (2), (5). The convergence results reported in Table 3
show that the numerical scheme has really improved.

Ref εRep β Iterations on the mesh with
688 el. 2752 el. 11008 el.

0.1 17 14 13
103 10−2 1 10 9 7

10 5 5 4

0.1 19 21 19
106 10−4 1 11 10 10

10 5 5 4

Table 3. Number of iterations to solve problem (2), (5) for different values of Ref ,
εRep and β

Remark 1. Equation (5) can be regarded as a discretization in time of the
time-dependent Stokes momentum equation ∂tuf − Re−1

f △uf +∇pf = f in
Ωf . Precisely, if we consider

β(εRep)
−1uf,n+1 −Re−1

f △uf,n+1 +∇pf,n+1 = f̃n+1 n ≥ 0

with f̃n+1 = f(x, tn+1)+β(εRep)
−1uf,n, we have a backward Euler discretiza-

tion in time with β(εRep)
−1 playing the role of the inverse of a time step.

From the physical viewpoint, since the fluid velocities in Ωf are much
higher than the ones through the porous medium (see Ene and Sanchez-
Palencia [1975]), a time-dependent model better represents the phenomena
occurring during the filtration process.

3.1 The tDN algorithm

Let [0, T ] be a characteristic time interval; using for the sake of simplicity
the first-order backward Euler scheme, denoting by ∆t > 0 the time step and
N = T/∆t, the iterative method that we propose to solve the time-dependent
coupled problem reads (the subscript n refers to the nth time level):
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Algorithm tDN

For n = 0, . . . , N − 1 Do

0. choose an initial guess λ
(0)
n+1 for the normal velocity on Γ at

the (n+ 1)th time level;

For k = 0, 1, . . . until convergence, Do

1. solve Darcy’s equation with b.c. −εRep∇p(k+1)
p,n+1 · n = λ

(k)
n+1 on Γ ;

2. solve Stokes problem

(∆t)−1u
(k+1)
f,n+1 −Re−1

f △u
(k+1)
f,n+1 +∇p(k+1)

f,n+1 = (∆t)−1uf,n + fn+1

∇ · u(k+1)
f,n+1 = 0

in Ωf

with b.c. −n · T(u
(k+1)
f,n+1, p

(k+1)
f,n+1) · n = p

(k+1)
p,n+1 and (3)3 on Γ ;

3. λ
(k+1)
n+1 = θu

(k+1)
f,n+1 · n + (1− θ)λ(k)

n+1 on Γ , θ ∈ (0, 1) ;

End For

End For

3.2 Numerical tests

We consider the horizontal section of a channel 12 m long and 8 m wide which
is partially occupied by a porous medium with discontinuous conductivity, as
represented in Fig. 1 (left). A parabolic inflow profile is imposed on the left
hand side boundary with maximal velocity equal to 0.1m/s. On the right
an outflow condition is imposed. The time interval is t ∈ [0, 0.5] and the
time step ∆t = 10−3 s; for space discretization three different computational
meshes have been adopted.

In a first case we have considered Ref = 8 · 105 and a discontinuous

coefficient εRep = 10−3 in Ω
(1)
p , εRep = 10−7 in Ω

(2)
p .

In Fig. 1 (right) we have represented the computed solution at time t =
0.05 s, while in Fig. 2 a zoom of the velocity field through the porous medium is
shown; it can be seen that the velocity is almost null in the less permeable areas
of the porous medium. Finally, Table 4 (left) reports the number of iterations
obtained for three computational grids at different time levels, showing that
the number of iterations is low and independent of h.

The same test has been performed considering different values of the pa-

rameters: Ref = 8 · 102, εRep = 10−1 in Ω
(1)
p and εRep = 10−5 in the less

permeable part of the porous medium Ω
(2)
p . The convergence results show that

the number of iterations is essentially independent of these parameters, as it
can be seen comparing the previous convergence results with those reported
in Table 4 (right).
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Fig. 1. Computational domain (left) and computed velocity field at t = 0.05 s
(right)
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Fig. 2. Zoom of the velocity field through the porous medium

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 21 21 21
0.003 20 19 19
0.006 12 11 11
0.009 10 10 10
0.01 10 10 10

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 22 22 22
0.003 20 20 20
0.006 15 15 15
0.009 15 15 15
0.01 15 15 15

Table 4. Number of iterations on different grids with Ref = 8 · 105, εRep = 10−3

and 10−7 (left); with Ref = 8 · 102, εRep = 10−1 and 10−5 (right)

4 Conclusions and perspectives

Numerical results show that considering a time-dependent problem allows to
set up a far more efficient DN algorithm for problems with parameters in
a range of physical interest. However, as we have shown, the value of ∆t
generally depends on εRep and Ref , and in some cases we could be forced to
consider very small time steps ∆t≪ 1. This could be quite annoying since one
might be interested in considering long time scales, for example in modeling
the filtration of pollutants in groundwater.
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This limitation on ∆t drives us to reconsider the steady coupled model. In
fact, should we find an algorithm whose behaviour were as much as possible
independent of the physical parameters, then not only we would be able to
solve the steady problem itself, but we could also use it in the framework of the
time-dependent model where ∆t would be chosen under the sole requirements
of stability and accuracy. A possible approach we are currently considering is
a Robin-Robin type method following the ideas presented in Lube et al. [2001]
for Oseen equations; its analysis and numerical results will be presented in a
future work.

Acknowledgement. I wish to thank Prof. A. Quarteroni, Prof. A. Valli and Dr. N.
Neuss for their suggestions and the helpful discussions concerning the subject of this
work.
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Summary. In this work we discuss parallel preconditioning techniques for the bido-
main equations, a non-linear system of partial differential equations which is widely
used for describing electrical activity in cardiac tissue. We focus on the solution of
the linear system associated with the elliptic part of the bidomain model, since it
dominates computation, with the preconditioned conjugate gradient method. We
compare different parallel preconditioning techniques, such as block incomplete LU,
additive Schwarz and multigrid. The implementation is based on the PETSc library
and we report results for a 16-node HP cluster. The results suggest the multigrid
preconditioner is the best option for the bidomain equations.

1 Introduction

The set of bidomain equations (see Keener and Sneyd [1998]) is currently the
mathematical model that best reflects the electrical activity of the heart. The
non-linear partial differential equations (PDEs) model both the intracellular
and extracellular domains of cardiac tissue from an electrostatic point of view.
The coupling of the two domains is done via non-linear models describing the
current flow through the cell membrane. Such models are based on experi-
mental data that quantify different ionic contributions, as first proposed by
Hodgkin and Huxley [1952].

Unfortunately, the bidomain equations are computationally very expen-
sive. Modern membrane models involve more than 20 non-linear equations.
One way to avoid the solution of a large non-linear PDE system at every time
step is to use an operator splitting approach (Vigmond et al. [2002], Sundnes
et al. [2001], Keener and Bogar [1998], Weber dos Santos [2002]). The nu-
merical solution reduces to the solution of a parabolic equation, a non-linear
system of ordinary differential equations, and an elliptic system. It is the latter
that dominates computation (Vigmond et al. [2002]).

An efficient way of solving the large linear algebraic system that arises
from the discretization of the bidomain equations has been a topic of re-
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search since 1994 (see Hooke et al. [1994]). Many different approaches have
been employed with the preconditioned conjugate gradient method (CG) be-
coming the standard choice for an iterative method. Diagonal preconditioner
was used for the bidomain equations by Eason and Malkin [2000], Skouib-
ine and Krassowska [2000]. Incomplete LU factorization (ILU) was imple-
mented by Pavarino and Franzone [2004], Street and Plonsey [1999], Vig-
mond et al. [2002]. The Symmetric-Successive-Over-Relaxation (SSOR) pre-
conditioner was investigated by Pennacchio and Simoncini [2002], Weber dos
Santos [2002]. In Weber dos Santos [2002] it was shown that incomplete fac-
torization and SSOR achieved comparable results and were at least two times
faster than the diagonal preconditioner.

Another way of reducing the computation time is cluster computing. The
use of such parallel environment is supported by standard communication
libraries such as the Message Passing Interface library [1994] (MPI). The
solution of the bidomain equations has been efficiently implemented with MPI
on small clusters (16 to 32 processors), see Pavarino and Franzone [2004],
Pormann [2000], Yung [2000], Weber dos Santos [2002].

In this work we focus on the solution of the linear algebraic system as-
sociated with the elliptic part of the bidomain model. We employ CG and
compare different parallel preconditioning techniques, such as block incom-
plete LU (ILU), the additive Schwarz method (ASM), and multigrid (MG).
Both overlapping and non-overlapping domain decomposition techniques are
investigated. The implementation is based on the PETSc C library (Balay
et al. [2002]), which uses MPI. The results taken from a 16-node HP-Unix
cluster indicate that the multigrid preconditioner is at least 13 times faster
than the single-level Schwarz-based techniques.

2 Mathematical formulation

We simulated a two-dimensional piece of cardiac tissue in contact with a
perfusing bath as previously described by Weber dos Santos et al. [2003], We-
ber dos Santos and Dickstein [2003]. The model that we present here was
successfully used to reproduce an in-vitro experiment which explored the ef-
fects of lapine cardiac tissue micro-structure (see Weber dos Santos et al.
[2003]). The simulated square region Ω = Ωt ∪Ωo with Ω̄t ∩ Ω̄o = Γto, where
Ωo accounts for the perfusing bath and Ωt for the cardiac tissue sample. The
geometric information of Ωt was extracted by image processing techniques and
is represented by a mask vector M , Mi,j = 1.0, for (i, j) ∈ Ωt, Mi,j = 0.0,
otherwise. In Figure 1 the tissue regions are represented by the gray color.

The bath was modeled as an isotropic conductor with conductivity σo.
The electric potential φo : Ωo × [0, tf ] → ℜ satisfies σo∆φo = 0. The cardiac
tissue is modeled by the bidomain equations.
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Fig. 1. Tissue geometry and fiber orientation extracted from a histological picture
(courtesy of E. Hofer and D. Sanchez-Quintana) (left). Solution of the extracellular
potential (φe and φo) at time 2.6ms (right).

χ

(
Cm

∂φ

∂t
+ f(φ, υ)

)
= ∇.(σi∇φ) +∇.(σe∇φe), (1)

∇.((σe + σi)∇φe) = −∇.(σi∇φ), (2)

∂υ

∂t
= g(φ, υ), φ = φi − φe, (3)

where φe and φi: Ωt × [0, tf ] → ℜ are the extracellular and intracellular
potentials; φ: Ωt× [0, tf ]→ ℜ is the transmembrane voltage; υ: Ωt× [0, tf ]→
ℜm represents the ionic current variables; σi and σe are conductivity tensors
of the intracellular and extracellular spaces; Cm and χ are capacitance per
unit area and surface to volume ratio respectively; f : ℜ × ℜm → ℜ and g:
ℜ×ℜm → ℜm model ionic currents and specify the cell membrane model. We
used the rabbit atrial model (m = 27) of Lindblad et al. [1996].

An image processing technique (see Weber dos Santos et al. [2003]) was ap-
plied to extract the cardiac fiber orientation θ: Ωt → ℜ. Conductivity tensors
were derived from the curved cardiac fibers based on θ by applying

σ∗ =

(
σ∗l cos2 θ + σ∗t sin

2 θ (σ∗l − σ∗t) cos θ sin θ
(σ∗l − σ∗t) cos θ sin θ σ∗t cos2 θ + σ∗l sin

2 θ

)
,

where σ∗l and σ∗t are longitudinal and transversal fiber conductivities (∗ =
i, e). The boundary conditions for the bath to tissue interface were set to (see
Krassowska and Neu [1994])

φe = φo, (4)

σe∇φe.η = σo∇φo.η, (5)

σi∇φi.η = 0, onΓto × [0, tf ]. (6)

The other boundaries are assumed to be electrically isolated, modeled by
imposing homogeneous Neumann-like conditions
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σi∇φi.η = σe∇φe.η = σo∇φo.η = 0, on∂Ω × [0, tf ]. (7)

The numerical results presented in the next sections were obtained with the
following parameters: Cm = 1µF/cm

2
, χ = 2000 /cm, σil = 3 mS/cm, σit =

0.31 mS/cm, σel = 2 mS/cm, σet = 1.35 mS/cm and σo = 20 mS/cm. Ω is a
square of sides equal to 2.6mm.

3 Operator splitting and boundary conditions

We approached the non-linear system of PDEs with an operator splitting
technique (Strang [1968]). The solution reduced to a three-step scheme that
involved the solution of a parabolic PDE, an elliptic system, and a non-linear
system of ordinary differential equations at each time step. Since the CFL
condition of the parabolic PDE severely restricted the time step, we solved this
equation via the Crank-Nicolson method. The large non-linear ODE system
was solved via a forward-Euler scheme:

1. (1− ∆t

2
Ai)ϕ

k+1/2 = (1 +
∆t

2
Ai)ϕ

k +∆t Ai(ϕe)
k, (8)

2. ϕk+1 = ϕk+1/2 −∆t f(ϕk+1/2, νk)/(χCm) (9)

νk+1 = νk +∆t g(ϕk+1/2, νk) (10)

3. (Ai +Ae)(ϕe)
k+1 = −Aiϕk+1, (11)

Aoϕo
k+1 = 0, (12)

where Ai, Ae and Ao are the ∇.(σi∇)/(χCm), ∇.(σe∇)/(χCm) and σo∆
operators; ∆t is the time step; ϕk, ϕke , ϕ

k
o and νk are time discretizations of

φ, φe, φo and υ, respectively, for time equal to k∆t, with 0 ≤ k ≤ tf/∆t. A
von Neumann analysis of the linearized system shows that the above scheme
is unconditionally stable.

The elliptic equations of the third step are coupled by the boundary condi-
tions (4), (5) and (6). The implementation of these and the other homogeneous
Neumann-like conditions deserve further discussion. Without loss of general-
ity, we initially focus on equation (11). By writing the boundary condition in
the form −(σi + σe)∇ϕk+1

e .η = g, the compatibility condition is

∫

∂Ω

σi∇ϕk+1.η =

∫

Ω

∇.(σi∇ϕk+1) = −
∫

Ω

∇.((σi + σe)∇ϕk+1
e )

= −
∫

∂Ω

(σi + σe)∇ϕk+1
e .η,⇒

∫

∂Ω

(σi∇ϕk+1 − g).η = 0. (13)

Explicit schemes (see Latimer and Roth [1998], Skouibine and Krassowska
[2000], Saleheen and Kwong [1998]) have been implemented with boundary
conditions σi∇ϕk+1.η = −σi∇ϕke .η, σe∇ϕk+1

e .η = 0 on ∂Ω, applied to (8)
and (11), respectively. Condition (13) becomes

∫
∂Ω
σe∇(ϕk+1

e − ϕke).η = 0
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and thus does not always hold. Perhaps such violation was not critical for the
explicit schemes, since the CFL condition restricts ∆t to very small values. In
Sundnes et al. [2001], the following conditions were applied to (8) and (11):
σi∇ϕk+1.η = 0, −(σi + σe)∇ϕk+1

e .η = 0 on ∂Ω, which satisfy (13). These
conditions are equivalent to (7) only if σi = ασe, α ∈ ℜ, i.e., when both intra-
and extracellular domains have equal anisotropy ratios. Therefore, they were
used as approximations of (7), but did not properly implement the electric
isolation for the general case of unequal anisotropy ratios, which is the case
with cardiac tissue.

We implemented the following boundary conditions

σi∇ϕk+1.η = −σi∇ϕke .η, (14)

−(σi + σe)∇ϕk+1
e .η = σi∇ϕk+1.η on ∂Ω, (15)

applied to (8) and (11), respectively. (14)-(15) are natural approximations
of (7) and satisfy the compatibility condition (13). In addition, since we use
the finite element method, conditions (14)-(15) are naturally implemented by
the numerical scheme. The same properties apply to our bath-tissue interface
conditions and to the homogeneous Neumann condition for φo:

σo∇ϕk+1
o .η = σe∇ϕk+1

e .η, (16)

σi∇ϕk+1.η = −σi∇ϕk+1
e .η, onΓto. (17)

σo∇ϕk+1
o .η = 0 on∂Ω. (18)

All boundary conditions cancel each other in the variational formulation:

∫

Ωt

v∇.((σi + σe)∇ϕk+1
e ) +

∫

Ωo

vσo∆ϕ
k+1
o = −

∫

Ωt

v∇.(σi∇ϕk+1),

∫

Ωt

∇v(σi + σe)∇ϕk+1
e −

∫

∂Ω+Γto

v(σi + σe)∇ϕk+1
e .η +

∫

Ωo

∇vσo∇ϕk+1
o

−
∫

∂Ω+Γto

vσo∇ϕk+1
o .η = −

∫

Ωt

∇vσi∇ϕk+1 +

∫

∂Ω+Γto

vσi∇ϕk+1.η,

where v is a test function. Using (15)-(18), all boundary integrals vanish:

∫

Ωt

∇v(σi + σe)∇ϕk+1
e +

∫

Ωo

∇vσo∇ϕk+1
o = −

∫

Ωt

∇vσi∇ϕk+1,

which is used to generate the finite element numerical approximation

Ax = b, (19)

where A is the stiffness matrix, b is the load vector and x is the discretization
of φe and φo. A uniform mesh of squares and bilinear polynomials were used.
Spatial discretization was set to ∆x = 3.3µm and the time step to ∆t = 10µs.
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4 Parallel preconditioners

We used CG to solve the linear system (19). We compare different precon-
ditioners: ILU, additive Schwarz method (ASM) and multigrid (MG). The
solution of (19) is implemented in parallel using the PETSc C library v2.1.5
(Balay et al. [2002]), which uses MPI. CG is parallelized via a linear domain
decomposition. The spatial domain is decomposed into proc domains with
equal sizes, where proc is the number of processors involved in the simulation.

The non-overlapping parallel version of the ILU preconditioner uses block
Jacobi, i.e., an incomplete factorization is performed over the main diagonal
block of the local part of the matrix A, thus avoiding extra communication.
ILU has as parameter the level of fill-in, fill.

The ASM preconditioner implements an overlapping decomposition of the
spatial domain Ω. Each processor block overlaps to the neighboring domain
block by the amount ovl. An ILU is performed over each processor block. A
greater ovl means more communication is necessary between the processors.
The way the overlapping regions affect the residual can be controlled by the
parametermethod (basic, restrict, interpolate or none, see Balay et al. [2002],
Cai and Sarkis [1999]).

The MG preconditioner performs a few iterations of PETSc’s native geo-
metric multigrid method. The parameter levels indicates the number of dif-
ferent spatial grids involved in the solution. Based on the finest regular grid
G0, coarser regular grids were successively generated with half of the nodes
on each direction (Gl, l = 0 to levels− 1). For each grid pair, Gl and Gl+1, a
prolongation rectangular matrix, Pl, was generated using a bilinear interpo-
lation scheme. The restriction operators were set to PTl and used to generate
coarser tissue masks and conductivity tensors. For every grid level, a matrix
Al was generated by applying the finite element method. The smoother used
for all but the coarsest level was a number of iterations, smooth, of the CG
method which was, in turn, also preconditioned by ILU. For the coarsest level,
we used a direct LU solver with nested dissection reordering. This was not
done in parallel, i.e., it was repeated on every processor, avoiding any com-
munication. In addition to the parameters levels, smooth and fill, we could
control the type of multigrid (multiplicative, additive, full and kaskade) and
the cycle (v or w) (Balay et al. [2002]).

All complete and incomplete factorizations were performed only once, in
the first time step of the simulation, so that the cost was amortized over
the whole simulation. For the global preconditioned CG algorithm associated
with (19) the stop criterion adopted was based on the unpreconditioned and
absolute L2 residual norm, ||Axi − b||2 < tol, where xi was the solution at
iteration i and tol was a tolerance which was set to 10−3. Although this is not
the most efficient stop criteria for the CG, it is the fairest one when comparing
different preconditioning methods.
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5 Results

We performed several comparisons of the different preconditioners on a 16-
node HP Unix cluster, each node equipped with McKinley 900 MHz processors
and 2 GB of DRAM and connected by a 1Gbit/s Ethernet switch. The elec-
trical activity was initiated on the left side of the 2.6 × 2.6 mm tissue-bath
preparation (640,000 nodes) and propagated to the right (see figure 1). The
performance measurements reported in this section are relate to the solution
of the elliptic system which is responsible for around 70% of the whole sim-
ulation time. We simulate 10ms of electrical activity (100 time steps). It is
interesting to note that if the parabolic equation (8) was solved with an ex-
plicit method such as the forward-Euler method, the CFL condition would
severely restrict ∆t. An approximation of the CFL condition can be derived
by assuming equal anisotropy ratios (σi = ασe) and straight fibers:

∆t ≤ χCm∆x
2

2(σl + σt)
= 0.07µs, (20)

where σ∗ = σi∗σe∗/(σi∗ + σe∗) , (∗ = l, t). Numerically we verified that with
∆t = 0.07µs the forward-Euler scheme already did not converge. Thus, the
semi-implicit based scheme allows ∆t to be more than 100 times greater than
one restricted by an explicit based method.

5.1 Parameter tuning

Several preconditioner parameters were tuned: fill for ILU; method, ovl and
fill for ASM; levels, type, cycle, smooth and fill for MG. Table 1 shows for
different numbers of processors, the optimal parameter values, those combi-
nations yielding the fastest execution time. The parameter fill was set to 0,
1, 2, 5, 10, and 15; method to basic, interpolate, restrict and none; ovl to 1,
2, 4, 6, 8 and 10; levels to values from 2 to 7; type to multiplicative, additive,
full and kaskake; cycle to v and w; and smooth to values from 1 to 3. In
addition, all parameters were tuned for best execution time on 1, 8 and 16
processors. A total of 3042 simulations were performed during more than two
weeks of computation time.

ILU ASM MG
proc fill method ovl fill levels type smooth fill

1 15 3 kaskade 1 0

8 5 basic 4 10 6 kaskade 1 0

16 5 basic 4 10 6 kaskade 1 0

Table 1. Values of parameters leading to the quickest solution time as a function
of the number of processors (proc).
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For the ILU preconditioner, as proc increased from 1 to 16, the optimal
value for fill decreased from 15 to 5, i.e., as the domain was decomposed, it
became less effective to increase fill since the preconditioner became more
expensive, but did not speed up the convergence. This was improved by ASM
which took advantage of higher values of fill by increasing communication,
i.e., increasing ovl. The optimal values were ovl = 4 and fill = 10. For MG,
the optimal value of levels depended on proc. On a single processor, levels = 3
was fastest. In parallel, since the coarsest grid was solved sequentially, the
cost of fewer grid levels rivaled the gains of parallelism. Therefore, as proc
increased, the optimal levels also increased to 6. The other MG parameters
indicate that the cheapest MG method was the best option, i.e, the kaskade
method with a single iteration of the CG smoother preconditioned by ILU(0).
On the other hand, the best ASM method was the expensive basic one which
included all off-processor values in the interpolation and restriction processes.

5.2 Performance comparison and parallel speedup

Table 2 shows the execution time and number of CG iterations/time step
as well as memory consumption (mem(MB))/processor for all preconditioners
with the optimal parameters. The ASM preconditioner achieved better perfor-
mance results than the non-overlapping ILU. ASM was 1.4 (1.5) times faster
than ILU but required 20% (55%) more memory than ILU on 8 (16) procs.
MG was between 15.5 (proc = 1) and 20.6 (procs=8) times faster than ILU
and it required between 44% less memory (proc=1) and 7% more memory
( procs=8) than ILU. Compared to ASM, MG was 14.9 (13.7) times faster
than ASM and required 11% (32%) less memory than ASM on 8 (16) proces-
sors. All preconditioners achieved low parallel speedup (execution time with

1 proc 8 procs 16 procs
t(s) it mem(MB) t(s) it mem(MB) t(s) it mem(MB)

ILU 96.2 98.7 1157.2 28.8 428.5 96.6 20.1 540.8 50.1

ASM 20.9 205.9 116.2 13.7 228.3 77.7

MG 6.3 7.7 649.6 1.4 11.3 103.4 1.0 13.6 52.5

Table 2. Best results of the preconditioners for different numbers of processors.
Execution time per time step in seconds, t(s); CG iterations per time step, it; and
memory usage per processor in MBytes, mem(MB).

proc=1/execution time) results with procs=16: 4.8 for ILU; 7.0 for ASM (re-
lated to ILU with proc=1); and 6.3 for MG. The reason was mainly due to
the increase of the CG iterations with proc. The number of iterations was in-
creased by a factor of 5.6 (2.4) by increasing proc from 1 to 16 for ILU (ASM).
MG suffered less from this problem with an increase of only 1.7 times. Never-
theless, the speedup was poor. We believe the explanation lies for MG in the
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sequential direct solver. The cost of this was not reduced by increasing proc,
and, thus, limited the total parallel speedup. For smaller proc, all precondi-
tioners presented reasonable speedup, around 4.5 with proc=8.

5.3 Conclusions

In this work, we employed the conjugate gradient algorithm for the solution of
the linear system associated with the elliptic part of the bidomain equations
and compared different parallel preconditioning techniques, such as ILU, ASM
and MG. The results taken from a 16-node HP-Unix cluster indicate that
the multigrid preconditioner is at least 13 times faster than the single-level
Schwarz based techniques and requires at least 11% less memory.
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Summary. The goal of this paper is the construction of a data-sparse approxima-
tion to the Schur complement on the interface corresponding to FEM and BEM
approximations of an elliptic equation by domain decomposition. Using the hierar-
chical (H-matrix) formats we elaborate the approximate Schur complement inverse
in an explicit form. The required cost O(NΓ logq NΓ ) is almost linear in NΓ – the
number of degrees of freedom on the interface. As input, we use the Schur comple-
ment matrices corresponding to subdomains and represented in the H-matrix for-
mat. In the case of piecewise constant coefficients these matrices can be computed
via the BEM representation with the cost O(NΓ logq NΓ ), while in the general case
the FEM discretisation leads to the complexity O(NΩ logq NΩ).

1 Introduction
In Hackbusch [2003], a direct domain decomposition method was described for
rather general elliptic equations based on a traditional FEM. Using H-matrix
techniques, almost linear4 cost in the number NΩ of degrees of freedom in
the computational domain could be achieved. Here we concentrate on the in-
version of the Schur complement matrix. We distinguish three approaches to
construct and approximate the Schur complement matrix: (a) Methods based
on a traditional FEM for rather general variable coefficients (cf. Hackbusch
[2003]); (b) Approximation by boundary concentrated FEM for smooth coef-
ficients in subdomains (cf. Khoromskij and Melenk [2003]); (c) BEM based
methods for piecewise constant coefficients (cf. Hsiao et al. [2001], Khoromskij
and Wittum [2004], Langer and Steinbach [2003]). Below we focus on the cases
(a) and (c). In the latter case, which is not covered by Hackbusch [2003], we
have the standard advantages of BEM compared to FEM. Furthermore, be-
sides the approximation theory (cf. Theorem 1), we can show (cf. Hackbusch

4 By “almost linear” we mean O(N logq N) for a fixed q.
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et al. [2003, submitted]) the approximability of the Schur complement in the
H-matrix format5. In both cases we give numerical results.

In a polygonal domain Ω ⊂ R2, we consider the elliptic operator L : V →
V ′ for V = H1

0 (Ω) and V ′ = H−1(Ω), with the corresponding V -elliptic
bilinear form aΩ : V × V → R,

aΩ(u, v) =

∫

Ω

(

d∑

i,j=1

aij∂ju∂iv + a0uv)dx, a0 > 0. (1)

The corresponding variational equation is: Find u ∈ V such that

aΩ(u, v) = 〈f, v〉 := (f, v)L2(Ω) for all v ∈ V, (2)

where f ∈ H−1(Ω). We suppose the domain Ω to be composed of M ≥
1 possibly matching, but non-overlapping polygonal subdomains Ωi, Ω =
∪Mi=1Ωi. We denote the interface (skeleton) of the decomposition of Ω by Γ =
∪Γi (Γi := ∂Ωi). Because we focus on the solution of an interface equation,
we suppose that the right-hand side f is supported only by the interface, such
that

〈f, v〉 =

M∑

i=1

〈ψi, v〉Γi , ψi ∈ H−1/2(Γi). (3)

An equation with general f can be reduced to the case (3) by a subtraction
of particular solutions in the subdomains which can be performed in parallel.

We may write the bilinear form aΩ(·, ·) in (1) as a sum of local bilinear

forms, aΩ(u, v) =
M∑
i=1

aΩi(Riu,Riv), where Ri : V → Vi := H1(Ωi) is the

restriction of functions onto Ωi and the integration in aΩi : Vi × Vi → R

is restricted to Ωi. Furthermore, aΩi is supposed to be Vi-elliptic for Vi :=
H1

0 (Ωi), i.e., there exist 0 < C1 ≤ C2 such that (for suitable constants µi > 0)

C1µi|u|2H1(Ωi)
≤ aΩi(u, u) ≤ C2µi|u|2H1(Ωi)

for all u ∈ H1(Ωi). (4)

We introduce the space VΓ ⊂ V of piecewise L-harmonic functions by VΓ :=
{v ∈ V : aΩ(v, z) = 0 for all z ∈ V0}, with V0 := {v ∈ V : v(x) =
0 for all x ∈ Γ}. Note that V = V0 + VΓ is the orthogonal splitting with
respect to scalar product aΩ(·, ·). The variational equation (2) with f satis-
fying (3), we next reduce to an interface equation (in fact, u ∈ VΓ ). To that
end, let us introduce the following trace space on Γ , YΓ := {u = z|Γ : z ∈ V },
||u||YΓ = inf

z∈V :z|Γ =u
||z||V , with the energy norm ||z||V =

√
aΩ(z, z). Next

we define the local Poincaré-Steklov operator (Dirichlet-Neumann map) on
Γi = ∂Ωi, Ti : H1/2(Γi) → H−1/2(Γi) by λ ∈ H1/2(Γi), Ti(λ) := γ1,iu.
Here γ1,iu is the conormal derivative of u on Γi and u solves (2) in Ωi such

5 Details will be presented in the forthcoming paper (full version).
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that u|Γi = λ. Now we reduce (2) to the equivalent interface problem: Find
z = u|Γ ∈ YΓ such that

bΓ (z, v) :=

M∑

i=1

〈Tizi, vi〉Γi = 〈ΨΓ , v〉 :=

M∑

i=1

〈ψi, v〉Γi , ∀ v ∈ YΓ , (5)

where bΓ (·, ·) : YΓ × YΓ → R is a continuous bilinear form, ΨΓ ∈ Y ′Γ and
zi = z|Γi

, vi = v|Γi
.

To apply H-matrix approximations to the discrete version of (5), we
represent the inverse operator L−1 using the interface map BΓ defined by
〈BΓu, v〉Γ = bΓ (u, v) for all u, v ∈ YΓ . The following statement describes the
structure of the inverse L−1 : Y ′Γ → V .

Lemma 1. The representation L−1 = Eharm
Ω←ΓB−1

Γ holds, where Eharm
Ω←Γ : YΓ →

VΓ is the L-harmonic extension from YΓ to VΓ .

Proof. The bilinear form bΓ (·, ·) : YΓ × YΓ → R is symmetric, continuous
and positive definite and thus the same holds for BΓ and B−1

Γ : Y ′Γ → YΓ .
Therefore the operator L−1 = Eharm

Ω←ΓB−1
Γ is well-defined. Next, we check that

u = L−1ΨΓ solves (2). Green’s formula yields

aΩ(u, v) =

M∑

i=1

aΩi(Riu,Riv) =

M∑

i=1

〈Tiu, vi〉Γi =

M∑

i=1

〈ψi, v〉Γi ∀v ∈ V. (6)

This also provides B−1
Γ ΨΓ = u|Γ completing the proof.

In the general case, we consider a conventional FEM approximation of (2)
by piecewise linear elements on a regular triangulation that aligns with Γ . Let

Ah ∈ RIΩ×IΩ be the Galerkin-FEM stiffness matrix Ah =

(
AII AIIΓ

AIΓ I AIΓ IΓ

)
,

corresponding to the chosen FE space Vh ⊂ V . Here IΓ is the index set
corresponding to the interface degrees of freedom and I = IΩ \ IΓ is the
complementary one. Eliminating all interior degrees of freedom correspond-
ing to I, we obtain the so-called FEM Schur complement matrix BΓ,h :=
AIΓ IΓ − AIΓ IA

−1
II AIIΓ ∈ RIΓ×IΓ , where AII = blockdiag{A1, ...,AM} is

the stiffness matrix for L subject to zero Dirichlet conditions on Γ , hence
A−1
II = blockdiag{A−1

1 , ...,A−1
M } can be computed in parallel. In a standard

way, each of the “substructure” matrices A−1
i can be represented by the H-

matrix format (cf. Hackbusch [2003]).
Using BΓ,h, the original FEM system AhU = F is reduced to the interface

equation

BΓ,hUΓ = FΓ , UΓ , FΓ ∈ RIΓ , where UΓ = U |IΓ . (7)

We construct the approximate direct solver for the Schur complement sys-
tem (7) focusing on the cases of general and of piecewise constant coeffi-
cients. In the latter case, the matrix BΓ,h can be computed by BEM with
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cost O(NΓ logqNΓ ), where NΓ = card(IΓ ), while for general coefficients the
cost is O(NΩ logqNΩ) (cf. Hackbusch [2003]). Furthermore, BΓ,h is proved
to be of almost linear cost in NΓ concerning operations for storage and for
the matrix-by-vector multiplication. Due to the H-matrix arithmetic, our ap-
proximate Schur complement inverse matrix B−1

Γ,h again needs almost linear
complexity O(NΓ logqNΓ ).

Notice that our approach can be also viewed as an approximate direct
parallel solver based on the domain decomposition Schur complement method.

2 FEM- and BEM-Galerkin Approximations
Introduce the FE trace space YN := Vh|Γ ⊂ YΓ with N = NΓ = dimYN .
Based on the representation in Lemma 1 and using the H-matrix approxima-
tion to the operators involved, we can construct an approximate direct solver
of almost linear complexity in NΓ that realises the action B−1

Γ ΨΓ . For this
purpose we split the numerical realisation of L−1 = Eharm

Ω←ΓB−1
Γ into three in-

dependent steps: (i) Computation of a functional ΨΓ,h ∈ Y ′Γ approximating
ΨΓ ; (ii) An H-matrix approximation to the discrete interface operator B−1

Γ ;
(iii) Implementation of a discrete L-harmonic extension operator Eharm

Ω←Γ .

In Step (i) we define ΨΓ,h ∈ Y ′N by 〈ΨΓ,h, v〉Γ :=
M∑
i=1

〈ψih, v〉Γi ∀v ∈ YN .
Given ΨΓ,h ∈ Y ′N , we consider the Schur complement system approximating
the interface equation (5). Let us define the local Schur complement operator
Ti,N corresponding to the discrete Li-harmonic extension based on the FEM
Galerkin space Vih := Vh|Ωi , by λ, v ∈ YN |Γi : 〈Ti,Nλ, v〉Γi = AΩi(ui, v),
where ui ∈ Vih, AΩi(ui, z) = 0 for all z ∈ Vih ∩H1

0 (Ωi) and with an arbitrary
v ∈ Vih such that v|Γi = v. With the aid of the local FEM-Galerkin discreti-
sations Ti,N of the Poincaré-Steklov maps Ti, the discrete operator BΓ,N and
the corresponding interface equation are given by

z ∈ YN : 〈BΓ,Nz, v〉Γ :=

M∑

i=1

〈Ti,Nzi, vi〉Γi = 〈ΨΓ,h, v〉Γ for all v ∈ YN ,

where vi := v|Γi and z is a desired approximation to the trace u|Γ . The
corresponding matrix representation to the interface operator BΓ,N reads as

〈BΓ,NU,Z〉IΓ =

M∑

i=1

〈Ti,NUi, Zi〉IΓi
:= 〈BΓ,NJU,JZ〉Γ , BΓ,N ∈ RIΓ×IΓ ,

(8)
where J : RIΓ → YN is the natural bijection from the coefficient vectors
into the FE functions. Ti,N is the local FEM Schur complement matrix and
Ui, Zi ∈ RIΓi , i = 1, ...,M , are the local vector components defined by Ui =
RΓiU, Zi = RΓiZ, where the connectivity matrix RΓi ∈ RIΓi

×IΓ provides the
restriction of the vector Z ∈ RIΓ onto the index set IΓi . Let Ai be the local

stiffness matrix corresponding to aΩi(·, ·), Ai =

(
AII AIΓi

AΓiI AΓiΓi

)
, where I and



Direct Schur Complement Method by Hierarchical Matrix Techniques 585

Γi correspond to the interior and boundary index sets in Ωi, respectively. Then
we obtain the FEM Schur complement matrix Ti,N := AΓiΓi−AΓiIA

−1
II AIΓi ,

(AII : stiffness matrix for Li subject to zero Dirichlet conditions on Γi). Thus,
A−1
II can be represented in the H-matrix format (cf. Hackbusch [2003]).
Let us consider the explicit representation of BΓ,N in (8) using the BEM-

Galerkin approximation with Lagrange multipliers (cf. Hsiao et al. [2001]).
Introduce the classical boundary integral representations involving operators
Vi, Di and Ki, defined by

(Viu)(x) =

∫

Γi

g(x, y)u(y)dy, (Kiu)(x) =

∫

Γi

∂

∂ny
g(x, y)u(y)dy,

(K′iu)(x) =

∫

Γi

∂

∂nx
g(x, y)u(y)dy, (Diu)(x) = − ∂

∂nx

∫

Γi

∂

∂ny
g(x, y)u(y)dy ,

where g(x, y) is the corresponding singularity function (cf. Hackbusch [1995]).
In the following, we consider the model case aΩi(u, v) := µi

∫
Ωi
∇u∇vdx, µi >

0. Introduce the modified Calderon projection CΓi by

CΓi

(
ui
δi

)
:=

(
µiD 1

2I +K′i
− 1

2I −Ki µ−1
i Vi

)(
ui
δi

)
=

(
δi
0

)
(9)

(cf. Khoromskij and Wittum [2004] and references therein), applied to the
Li-harmonic function u which satisfies −∆u = 0 in Ωi with u|Γi

= ui and
δi = µi∂u/∂n (see also Costabel [1988], Hackbusch [1995], Wendland [1987]).
Note that the Schur complement equation corresponding to (9) reads as

Tiui := µi
(
Di +

(
1
2I +K′i

)
V−1
i

(
1
2I +Ki

))
ui = δi, (10)

providing an explicit symmetric representation to the Poincaré-Steklov map
in terms of boundary integral operators.

Let us consider the skew-symmetric interface problem for M > 1 (see (11)

below). Introducing the trace space ΣΓ := YΓ ×ΛΓ with ΛΓ :=
M∏
i=1

H−1/2(Γi)

and the weighted norm ‖P‖2ΣΓ
= ‖u‖2YΓ

+
M∑
j=1

µ−1
j ‖λj‖2H−1/2(Γj)

, P = (u, λ) ∈

ΣΓ , λ = (λ1, . . . , λM ), we define the interface bilinear form cΓ : ΣΓ×ΣΓ → R

by cΓ (P,Q) :=
M∑
i=1

〈CΓiPi, Qi〉Γi for all P = (u, λ), Q = (v, η) ∈ ΣΓ , with CΓi

given by (9). Using the representation 〈CΓiPi, Qi〉Γi := µi(Diu, v)+
((1

2I + K′i)λ, v) − ((1
2I + Ki)u, η) + µ−1

i (Viλ, η) in each subdomain, the orig-
inal equation for u (cf. (2)) will be reduced to the skew-symmetric interface
equation: Given ΨΓ ∈ Y ′Γ , find P ∈ ΣΓ such that

cΓ (P,Q) = 〈ΨΓ , v〉Γ for all Q = (v, η) ∈ ΣΓ . (11)

Let Λh :=
M∏
i=1

Λih, where Λih is the FE space of piecewise linear functions.

Introducing the FE Galerkin ansatz space Σh := YN × Λh, we arrive at the
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corresponding BEM-Galerkin saddle-point system of equations: Given ΨΓ ∈
Y ′Γ , find Ph = (uh, λh) ∈ YN × Λh such that

cΓ (Ph, Q) = 〈ΨΓ , v〉Γ for all Q = (v, η) ∈ YN × Λh. (12)

We further assume Vi, i = 1, ...,M , to be positive definite.

Theorem 1. (i) The bilinear form cΓ : ΣΓ × ΣΓ → R is continuous and
ΣΓ -elliptic. (ii) Let Ph solve (12), then the optimal error estimate holds:

‖Ph−P‖2ΣΓ
≤ c inf

(w,µ)∈Σh

[
M∑

i=1

µi‖ui − wi‖2H1/2(Γi)
+

M∑

i=1

µ−1
i ‖λi − µi‖2H−1/2(Γi)

]
.

(iii) Let Ti,BEM be the local BEM Schur complement given by

Ti,BEM := µi
(
Dih +

(
1
2Iih + K′ih

)
V−1
ih

(
1
2Iih + Kih

))
, (13)

where Dih, Kih, Vih are the Galerkin stiffness matrices of the boundary inte-
gral operators and Iih is the corresponding mass matrix. Then the BEM Schur

complement takes the explicit form BΓ,N =
M∑
i=1

R⊤Γi
Ti,BEMRΓi ∈ RIΓ×IΓ due

to 〈BΓ,NZ, V 〉IΓ =
M∑
i=1

〈Ti,BEMZi, Vi〉IΓi
=

M∑
i=1

〈R⊤Γi
Ti,BEMRΓiZ, V 〉IΓ .

Proof. Statements (i), (ii) are proven in Theorems 2, 3 in Hsiao et al. [2001],
while (iii) is the direct consequence of the BEM-Galerkin approximation (12).

3 H-Matrix Approximation to B−1

Γ,N and Numerics

Now we discuss the H-matrix approximation to Ti,N and B−1
Γ,N . In the FEM

case let AII be presented in the hierarchical format. Then we need the for-
matted multiplication and addition to obtain Ti,N = AΓiΓi −AΓiIA

−1
II AIΓi ,

leading to the cost O(NΩi logqNΩi). The matrix Ti,BEM can be computed in
O(NΓi logq NΓi) operations. Note that the H-matrix representations of Ti,N

and T−1
i,N can be applied within the so-called BETI iterative method Langer

and Steinbach [2003].
Our goal is an algorithm of almost linear complexity in NΓ := dimYN real-

ising the matrix-by-vector multiplication by B−1
Γ,N . Having all localH-matrices

Ti,N available, we first compute theH-matrix representation of BΓ,N . To that
end, we construct an admissible hierarchical partitioning P2(IΓ ×IΓ ) based on
the cluster tree TIΓ of the skeleton index set IΓ (cf. Figure 1, left). After some
levels the clusters correspond to one-dimensional manifolds. Since a lower
spatial dimension leads to better constants in the complexity estimates (cf.
Grasedyck and Hackbusch [2003], Hackbusch et al. [2003, submitted]), this
property makes the algorithm faster.

To calculate a low-rank approximation of blocks in the hierarchical par-
titioning P2(IΓ × IΓ ), we propose an SVD recompression of any block b ∈
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Rank
1 3 5 7 9 11 13 15 17 19

1e−11

1e−9

1e−7

1e−5

1e−3

1e−1

1e1 n = 66049
n = 263169
n = 1050625

Fig. 1. Clustertree TIΓ (left); adaptive choice of the local rank (right).

P2(IΓ × IΓ ) obtained as a sum of fixed number of subblocks extracted as
rank-k submatrices in the local Schur complements. This fast algorithm (of
almost linear cost) exploits the hierarchical format of the local matrices Ti,N

(same for Ti,BEM ) and will be presented in the next example. The following
tables show numerical results for the scaled Laplacian in Ωi with randomly
chosen coefficients µi ∈ (0, 1] (cf. (4)). Presented are the times for computing
Ti,N , Ti,BEM , for the inversion of B = BΓ,N and for its matrix-by-vector
multiplication (MV) as well as for the accuracy of this inversion (computed
on a SunFire 6800 (900 MHz)). The computing times Ti,BEM for NΩ ≈ 4 ·106

and NΩ ≈ 16 · 106 are 13.7 s and 36.8 s, respectively6. The results correspond
to a decomposition of a square into 6× 6 subsquares. One can see the almost
linear complexity of the inversion algorithm. If we are interested in an effi-
cient preconditioning, the local rank k can be chosen adaptively to achieve
the required accuracy ε (cf. Fig. 1 (right) represents ε depending on k).

6 × 6 domains (k = 9)

NΩ NΓ t(Ti,N ) t(Ti,BEM ) t(B−1
Γ,N ) t(MV ) ‖I −BB−1

H ‖2
16 641 1 245 0.6 s 0.06 s 10.7 s 1.3610-2 s 7.710-6
66 049 2 525 12.2 s 0.5 s 30.3 s 3.9810-2 s 8.010-6

263 169 5 085 105.1 s 1.7 s 94.2 s 9.4310-2 s 4.610-5
1 050 625 10 205 696.2 s 4.9 s 218.1 s 1.8510-1 s 7.110-5

We present numerical results illustrating an acceleration factor of a direct
multilevel DDM due to the recursive Schur complement evaluation (see §5.2 in
Hackbusch [2003]). To reduce the cost of the local Schur complement matrices
Ti,N in each subdomain Ωi, one can apply the same domain decomposition
algorithm as in §3 to the local inverse A−1

i . This leads to a reduction of the
computational time. The following table corresponds to a 4×4 decomposition.
We consider q + 1 ≥ 1 grids Ni = N04

i with the problem size Ni = N04
i, i =

0, 1, ..., q, and with N0 = 16641, so that N3 = 1050625. On each subdomain of
level ℓ = 2, ..., q one has the matrix size Nℓ−2, thus one can recursively apply

6 t(Ti,BEM ) includes only the dominating cost of two matrix-matrix multiplications
and one matrix inversion in the H-matrix format (cf. (13)).
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the algorithm on level ℓ− 2 to compute the local inverse matrix A−1
i,ℓ on level

ℓ. The complexity bound satisfies the recursion W (A−1
i,ℓ ) = 16W (A−1

i,ℓ−2) +

W (B−1
Γ,ℓ−2), W (·): cost of the corresponding matrix operation. Based on the

table below, the simple calculation WML(A−1
4,ℓ) = 16(16× 0.1 + 0.8) + 16.9 ≈

1min shows an acceleration factor about 33 compared with 2020 sec depicted
in the last line of our table. Similarly, an extrapolation using the two smaller
grids exhibits that our direct solver applied to the problems with nΩ = 4 ·106

and nΩ = 16 · 106 would take about 113 sec. and 1080 sec., respectively, for
each subdomain.

4 × 4 domains (k = 9)

NΩ NΓ t(Ti,N ) t(B−1
Γ,N ) t(MV ) ‖I −BB−1

H ‖2
16 641 753 3.8 s 3.7 s 3.2010-3 s 4.210-6
66 049 1 521 43.2 s 16.9 s 9.1010-3 s 7.710-6

263 169 3 057 317.4 s 48.3 s 4.1810-2 s 1.310-5
1 050 625 6 129 2 020.1 s 118.8 s 8.9210-1 s 2.110-5
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Balancing Neumann-Neumann Methods for
Elliptic Optimal Control Problems
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Summary. We present Neumann-Neumann domain decomposition preconditioners
for the solution of elliptic linear quadratic optimal control problems. The precon-
ditioner is applied to the optimality system. A Schur complement formulation is
derived that reformulates the original optimality system as a system in the state
and adjoint variables restricted to the subdomain boundaries. The application of
the Schur complement matrix requires the solution of subdomain optimal control
problems with Dirichlet boundary conditions on the subdomain interfaces. The ap-
plication of the inverses of the subdomain Schur complement matrices require the
solution of subdomain optimal control problems with Neumann boundary conditions
on the subdomain interfaces. Numerical tests show that the dependence of this pre-
conditioner on mesh size and subdomain size is comparable to its counterpart applied
to elliptic equations only.

1 Introduction

We are interested in domain decomposition methods for the solution of large-
scale linear quadratic problems

minimize
1

2
yTMy + cTy + yTNu +

α

2
uTHu + dTu, (1a)

subject to Ay + Bu + b = 0, (1b)

arising from the finite element discretization of elliptic optimal control prob-
lems. In (1) y ∈ Rm, u ∈ Rn are called the (discretized) state and the (dis-
cretized) control, respectively, and Ay+Bu+b = 0 is called the (discretized)
state equation. Throughout this paper we assume that

A. A ∈ Rm×m is invertible, B ∈ Rm×n, N ∈ Rm×n, M ∈ Rm×m is
symmetric, H ∈ Rn×n is symmetric and the reduced Hessian Ĥ =
αH−BTA−TN−NTA−1B + BTA−TMA−1B is positive definite.
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The assumption that Ĥ is positive definite is equivalent to the assumption
that the Hessian of (1a) is positive definite on the null-space of the linear con-
straints (1b). Under the assumption A, the necessary and sufficient optimality
conditions for (1) are given by




M N AT

NT αH BT

A B 0






y
u
p


 =




c
d
b


 . (2)

The system matrix in (2) is also called a KKT (Karush-Kuhn-Tucker) matrix.
Large-scale linear quadratic problems of the form (1) arise as subproblems in
Newton or sequential quadratic programming (SQP) type optimization algo-
rithms for nonlinear PDE constrained optimization problems. The solution of
these subproblems is a very time consuming part in Newton or SQP type opti-
mization algorithms and therefore the development of preconditioners for such
problems is of great interest. Domain decomposition methods for steady state
optimal control problems were considered in Benamou [1996], Bounaim [1998],
Dennis and Lewis [1994], Biros and Ghattas [2000], Lions and Pironneau [1998]
and other preconditioners for the system matrix in (2) are discussed, e.g., by
Ascher and Haber [2003], Battermann and Sachs [2001], Hoppe et al. [2002],
Keller et al. [2000]. Although (2) is a saddle point problem, its structure is
quite different from the saddle point problems arising, e.g., from the Stokes
problem (see, e.g.,Pavarino and Widlund [2002]) or from mixed finite element
discretizations of elliptic PDEs.

We present a Neumann-Neumann (NN) domain decomposition precondi-
tioner for the solution of discretized elliptic linear quadratic optimal control
problems. The preconditioner is applied to the optimality system (2). A Schur
complement formulation is derived that reformulates (2) as a system in the
state and adjoint variables restricted to the subdomain boundaries. The ap-
plication of the Schur complement matrix requires the solution of subdomain
optimal control problems with Dirichlet boundary conditions on the subdo-
main interfaces. The application of the inverses of the subdomain Schur com-
plement matrices require the solution of subdomain optimal control problems
with Neumann boundary conditions on the subdomain interfaces. Our nu-
merical tests in Section 4 show that the dependence of this preconditioner on
mesh size and subdomain size is comparable to that of its counterpart applied
to elliptic PDEs only. Numerical tests also indicate that, unlike several other
KKT preconditioners, the proposed NN preconditioner is rather insensitive to
the choice of the penalty parameter α. Unlike several other KKT precondi-
tioners, our preconditioner does not require a preconditioner for the reduced
Hessian Ĥ, which is often difficult to obtain. Due to page limitations, we only
present the algebraic view of the preconditioner. For more details we refer to
Heinkenschloss and Nguyen [2004].
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2 The Example Problem

We are interested in the solution y ∈ H1(Ω), u ∈ L2(∂Ω) of the optimal
control problem

minimize
1

2

∫

Ω

(y(x)− ŷ(x))2dx+
α

2

∫

∂Ω

u2(x)dx, (3a)

subject to a(y, ψ) + b(u, ψ) =

∫

Ω

f(x)ψ(x)dx ∀ψ ∈ H1(Ω), (3b)

where a(y, ψ) =
∫
Ω
∇y(x)∇ψ(x)+y(x)ψ(x)dx and b(u, ψ) = −

∫
∂Ω

u(x)ψ(x)dx.
The desired state ŷ ∈ L2(Ω) and f ∈ L2(Ω) are given functions, and α > 0 is
a given parameter. It is shown in Lions [1971] that (3) has a unique solution.

We discretize (3) using conforming finite elements. Let {Tl} be a triangu-
lation of Ω. We divide Ω into nonoverlapping subdomains Ωi, i = 1, . . . , d,
such that each Tl belongs to exactly one Ωi. We approximate the state y by a
function yh =

∑
k ykψk which is continuous on Ω and linear on each Tl. Our

discretized controls uh are not chosen to be continuous and piecewise linear
on ∂Ω (see the left plot in Figure 1). A domain decomposition formulation
based on such a discretization would introduce ‘interface controls’ (dotted hat
function in the left plot in Figure 1) defined on a ‘band’ of width O(h) around
∂Ω∩∂Ωi∩∂Ωj , i 6= j. Since the evaluation of u ∈ L2(∂Ω) on ∂Ω∩∂Ωi∩∂Ωj
does not make sense, we avoid interface controls. We discretize the control u
by a function uh =

∑
k ukµk which is continuous on each ∂Ωi, i = 1, . . . , d,

and linear on each ∂Ω ∩ ∂Ωi ∩ Tl. The discretized control uh is not assumed
to be continuous at ∂Ω ∩ ∂Ωi ∩ ∂Ωj, i 6= j. In particular, for each point
xk ∈ ∂Ω∩∂Ωi∩∂Ωj , i 6= j, there are two discrete controls uki , ukj belonging
to subdomains Ωi and Ωj , respectively (see the right plot in Figure 1). Hence,
our control discretization depends on the partition {Ωi}di=1 of the domain Ω.

��XX�
�
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HH��XX

..
..
..
..
..
..........

∂Ω ∩ ∂Ωi ∂Ω ∩ ∂Ωjxk

��XX�
�

XX
��HH��XX

∂Ω ∩ ∂Ωi ∂Ω ∩ ∂Ωjxk

Fig. 1. Sketch of the Control Discretization for the Case Ω ⊂ R2

3 The Domain Decomposition Preconditioners

We define

Ki
ΓΓ =

(
Mi

ΓΓ (Ai
ΓΓ )T

Ai
ΓΓ

)
, Ai =

(
Ai
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

)
, Mi =

(
Mi

II Mi
IΓ

Mi
ΓI Mi

ΓΓ

)
,
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i = 1, . . . , d, and KΓΓ =
∑d

i=1 Ki
ΓΓ xΓ =

(
yΓ
pΓ

)
, gΓ =

(
cΓ
bΓ

)
. Further-

more, for indices i with ∂Ωi ∩ ∂Ω 6= ∅, we define

Ki
II =




Mi
II Ni

II (Ai
II)

T

(Ni
II)

T Hi
II (Bi

II)
T

Ai
II Bi

II


 ,Ki

ΓI =

(
Mi

ΓI Ni
ΓI (Ai

IΓ )T

Ai
ΓI Bi

ΓI

)
,

Bi =

(
Bi
II

Bi
ΓI

)
, Ni =

(
Ni
II

Ni
ΓI

)
, xiI =




yiI
uiI
piI


 , giI =




ciI
diI
biI


 ,

and for indices i with ∂Ωi ∩ ∂Ω = ∅, we define

Ki
II =

(
Mi

II (Ai
II)

T

Ai
II

)
, Ki

ΓI =

(
Mi

ΓI (Ai
IΓ )T

Ai
ΓI

)
, xiI =

(
yiI
piI

)
, giI =

(
ciI
biI

)
.

Most of this notation is a direct adaption of the notation used for domain
decomposition of PDEs (see, e.g., Smith et al. [1996]). For example, yiI is the
subvector containing the coefficients yk of the discretized state belonging to
nodes xk in the interior of Ωi. Note that in our particular control discretiza-
tion, all basis functions µk for the discretised control uh have support in only
one subdomain boundary ∂Ωi (see the right plot in Figure 1). Consequently,
there is no uΓ .

After a symmetric permutation, (2) can be written as




K1
II (K1

ΓI)
T

. . .
...

Kd
II (Kd

ΓI)
T

K1
ΓI · · · Kd

ΓI KΓΓ







x1
I
...

xdI
xΓ


 =




g1
I
...

gdI
gΓ


 . (4)

Frequently, we use the compact notation

(
KII KT

ΓI

KΓI KΓΓ

)(
xI
xΓ

)
=

(
gI
gΓ

)
, (5)

or even Kx = g instead of (4). We make the following assumptions.

B. Ai
II ∈ Rm

I
i×mI

i is invertible and Mi
II ∈ Rm

I
i×mI

i is symmetric, i =

1, . . . , d. For i with ∂Ωi∩∂Ω 6= ∅, Hi
II ∈ Rn

I
i×nI

i is symmetric and Ĥi
II =

αHi
II−(Bi

II)
T (Ai

II)
−TNi

II−(Ni
II)

T (Ai
II)
−1Bi

II+(Bi
II)

T (Ai
II)
−TMi

II(A
i
II)
−1Bi

II

is positive definite.
C. Ai ∈ Rmi×mi is invertible and Mi ∈ Rmi×mi is symmetric, i = 1, . . . , d.

For i with ∂Ωi ∩ ∂Ω 6= ∅, Hi
II ∈ Rn

I
i×nI

i is symmetric and Ĥi = αHi
II −

(Bi)T (Ai)−TNi−(Ni)T (Ai)−1Bi+(Bi)T (Ai)−TMi(Ai)−1Bi is positive
definite.
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Assumptions A, B, C are satisfied for our example problem.
Assumption B guarantees that KII is invertible. Hence, we can form the

Schur complement system
SxΓ = r, (6)

where S = KΓΓ −KΓIK
−1
II KT

ΓI and r = gΓ −KΓIK
−1
II gI . The Schur com-

plement matrix S can be written as a sum of subdomain Schur complement
matrices. Let R̃y

i , i = 1, . . . , d, be the restriction operator which maps from
the vector of coefficient unknowns on the artificial boundary, yΓ , to only those
associated with the boundary of Ωi. Let

R̃i =

(
R̃y
i

R̃p
i

)
, R̃p

i = R̃y
i (7)

The Schur complement can be written as S =
∑

i R̃
T
i SiR̃i, where Si = Ki

ΓΓ−
Ki
ΓI(K

i
II)
−1(Ki

ΓI)
T . It is shown in Heinkenschloss and Nguyen [2004] that the

application Si to a vector R̃i(y
T
Γ ,p

T
Γ )T corresponds to solving a subdomain

optimal control problem in Ωi with Dirichlet boundary conditions for the
state on ∂Ωi \ ∂Ω and then extracting Neumann data of the optimal state
and corresponding adjoint on ∂Ωi \ ∂Ω.

Theorem 1. If Assumptions A and B are valid, then the Schur complement
matrix S has m−∑d

i=1m
I
i positive and m−∑d

i=1m
I
i negative eigenvalues. If

Assumptions B and C are valid, then the subdomain Schur complement matrix
Si, i = 1, . . . , d, has mi −mI

i positive and mi −mI
i negative eigenvalues.

Proof. Recall that S = KΓΓ −KΓIK
−1
II KT

ΓI . It is easy to verify that

(
KII KT

ΓI

KΓI KΓΓ

)
=

(
KII 0
KΓI I

)(
K−1
II 0
0 S

)(
KII KT

ΓI

0 I

)
.

The matrix K is a symmetric permutation of the system matrix in (2) and,
hence, both matrices have the same eigenvalues. It is well known that the sys-
tem matrix in (2) and, hence, K hasm+n positive andm negative eigenvalues

(see, e.g., Keller et al. [2000]). Similarly, the matrix KII has
∑d

i=1m
I
i + nIi

positive and
∑d

i=1m
I
i negative eigenvalues. By Sylvester’s law of inertia, the

number of positive [negative] eigenvalues of K is equal to the number of posi-
tive [negative] eigenvalues of K−1

II plus the number of positive [negative] eigen-

values of S. Since n =
∑d

i=1 n
I
i , this implies that S has m−∑d

i=1m
I
i positive

and m−∑d
i=1m

I
i negative eigenvalues.

The second assertion can be proven analogously.

If Assumption C is valid, then S−1
i exists. It is shown in Heinkenschloss

and Nguyen [2004] that the application S−1
i to a vector R̃i(v

T
Γ ,q

T
Γ )T corre-

sponds to solving a subdomain optimal control problem in Ωi with Neumann
boundary conditions for the state on ∂Ωi \ ∂Ω and then extracting Dirichlet
data of the optimal state and corresponding adjoint on ∂Ωi \ ∂Ω.
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It is now relatively easy to generalize the Neumann-Dirichlet and Neumann-
Neumann preconditioners used in the context of elliptic PDEs to the optimal
control context. We focus on Neumann-Neumann (NN) preconditioners.

Let Dy
i be the diagonal matrix, whose entries are computed as follows. If

xk ∈ ∂Ωi, then (Dy
i )
−1
kk is the number of subdomains that share node xk. Note

that
∑

iD
y
i = I. Furthermore, let D̃p

i = D̃y
i and

Di =

(
Dy
i

Dp
i

)
.

If assumptions B, C are valid, then we can form Si and S−1
i . In this case the

one-level NN preconditioner is given by

P =
∑

i

DiR̃
T
i S−1

i R̃iDi. (8)

It is well known that the performance of one-level NN preconditioners for
elliptic PDEs deteriorates fast as the number of subdomains increases. The
same is observed for the NN preconditioner (8) in the optimal control context
(see Section 4). To avoid this, we include a coarse grid. More precisely, we
adapt the balanced NN preconditioner due to Mandel [1993] to the optimal
control context. Following the description in [Smith et al., 1996, Sec. 4.3.3],
the balanced-NN for the optimal control problem is given by

P =
(
I− R̃T

0 S−1
0 R̃0S

)( d∑

i=1

DiR̃
T
i S−1

i R̃iDi

)(
I− SR̃T

0 S−1
0 R̃0

)
+R̃T

0 S−1
0 R̃0,

(9)
where S0 = R̃0SR̃T

0 and R̃0 is defined as in (7) with R̃y
0 being the restriction

operator which returns for each subdomain the weighted sum of the values of
all the nodes on the boundary of that subdomain. The weight corresponding to
an interface node is one over the number of subdomains the node is contained
in.

4 Numerical Results

We consider (3) with Ω = (−1, 1)2, f(x) = (2π2 +1) sin(πx1) sin(πx2), ŷ(x) =
sin(πx1) sin(πx2). Numerical observations show that the condition number for
the system matrix in (2) computed for a fixed discretization is proportional
to α−1. Hence, (3) becomes more difficult to solve as α > 0 approaches zero.

The domain Ω is partitioned into equal-sized square subdomains in a
checkerboard pattern. The side length of each subdomain is denoted by H .
Regular meshes consisting of triangular elements of various widths, denoted
by h, are generated. The preconditioned system PSxΓ = P(gΓ −KΓIK

−1
II gI)

is solved using the symmetric QMR (sQMR) algorithm of Freund and Nachti-
gal [1995]. The preconditioned sQMR iteration is stopped if the ℓ2-norm of
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the residual is less than 10−8. The subdomain problems are solved exactly
using a sparse LU decomposition.

Tables 1, 2 show the number of preconditioned sQMR iterations needed
to solve for various discretizations h and various subdomain sizes H . As ex-
pected, the performance of the NN preconditioner (8) without coarse grid gets
worse quickly as the number of subdomain increases while the balanced NN
preconditioner (9) remains effective. The number of sQMR iterations for the
balanced NN preconditioner

remain nearly constant for a fixed H/h ratio.
The observed performance of the NN preconditioners (8), (9) applied to

the optimal control problems is similar to the performance of the NN precon-
ditioners applied to the elliptic PDE (3b) with fixed u. A notable result is
that both preconditioners depend only weakly on the regularization parame-
ter α. As α is reduced from 1 to 10−8, the iteration count for the balanced
NN preconditioner grows by only a factor of about two.

Table 1. Number of preconditioned sQMR iterations, α = 1. Left: NN precondi-
tioner (8). Right: Balanced NN preconditioner (9).

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 12 15 19 24 26 28
1/4 53 69 94 107 119
1/8 170 226 287 345
1/16 509 679 798
1/32 1578 2233

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 5 6 8 10 11 12
1/4 5 9 12 14 15
1/8 5 10 13 15
1/16 5 9 13
1/32 4 9

Table 2. Number of preconditioned sQMR iterations, α = 10−8. Left: NN precon-
ditioner (8). Right: Balanced NN preconditioner (9).

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 15 16 16 21 21 23
1/4 58 61 63 74 76
1/8 217 191 202 214
1/16 583 536 584
1/32 1255 1249

H \h 1/4 1/8 1/16 1/32 1/64 1/128

1/2 9 10 13 15 17 20
1/4 11 17 21 26 30
1/8 13 18 24 30
1/16 12 19 24
1/32 11 16
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Summary. In this paper, we present several domain decomposition preconditioners
for high-order Spectral Nédélec element discretizations for a Maxwell model prob-
lem in H(curl), in particular overlapping Schwarz preconditioners and Balancing
Neumann-Neumann preconditioners. For an efficient and fast implementation of
these preconditioners, fast matrix-vector products and direct solvers for problems
posed on one element or a small array of elements are needed. In previous work, we
have presented such algorithms for the two-dimensional case; here, we will present
a new fast solver that works both in the two- and three-dimensional case. Next,
we define the preconditioners considered in this paper, present numerical results
for overlapping methods in three dimensions and Balancing Neumann-Neumann
methods in two dimensions. We will also give a condition number estimate for the
overlapping Schwarz method.

The model problem is: Find u ∈ H0(curl, Ω) such that for all v ∈ H0(curl, Ω)

a(u,v) := (αu,v) + (β curl u, curl v) = (f ,v). (1)

Here, Ω is a bounded, open, connected polyhedron in R3 or a polygon in R2,
H(curl, Ω) is the space of vectors in (L2(Ω))2 or (L2(Ω))3 with curl in L2(Ω)
or (L2(Ω))3, respectively; H0(curl, Ω) is its subspace of vectors with vanishing
tangential components on ∂Ω; f ∈ (L2(Ω))d for d = 2, 3, and (·, ·) denotes the inner
product in L2(Ω) of functions or vector fields. For simplicity, we will assume that α
and β are piecewise constant.

1 Discretization

We have previously presented the discretization for the two-dimensional case
and some fast solvers for it in Hientzsch [2001] and Hientzsch [2003], and we
will here concentrate on the three-dimensional case. As in the two-dimensional
case, we use a hN -extension of Nédélec elements, parametrized by the values
of the vector field on Gauss-Lobatto-Legendre grids inside the elements, with
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only the appropriate tangential continuity between elements (Nédélec [1980,
1986], Monk [1994], Belgacem and Bernardi [1999], Hientzsch [2001, 2003]).
The integrals in the bilinear form and the right hand side are all evaluated
by Gauss-Lobatto-Legendre quadrature of arbitrary order. On the reference
element, the system reads:

Eu = f̃ or



E11 E12 E13

ET12 E22 E23

ET13 E
T
23 E33





u1

u2

u3


 =



f̃1
f̃2
f̃3




with

E11 = αM1,1
x ⊗M1,1

y ⊗M1,1
z + βM1,1

x ⊗K1
y ⊗M1,1

z + βM1,1
x ⊗M1,1

y ⊗K1
z

E22 = αM2,2
x ⊗M2,2

y ⊗M2,2
z + βK2

x ⊗M2,2
y ⊗M2,2

z + βM2,2
x ⊗M2,2

y ⊗K2
z

E33 = αM3,3
x ⊗M3,3

y ⊗M3,3
z + βK3

x ⊗M3,3
y ⊗M3,3

z + βM3,3
x ⊗K3

y ⊗M3,3
z

E12 = −β(M1,2′

x Dmx
2
)⊗ (DT

my
1
M1′,2
y )⊗M1,2

z

E13 = −β(M1,3′

x Dmx
3
)⊗M1,3

y ⊗ (DT
mz

1
M1′,3
z )

E23 = −βM2,3
x ⊗ (M2,3′

y Dmy
3
)⊗ (DT

mz
2
M2′,3
z )

M i,j
dir is a mass-matrix for direction dir, integrating products between

components i and j. Primes indicate differentiated components. Ki
dir =

DT
mdir

i
M i′,i′

dir Dmdir
i

is the weak 1D Laplacian, Dn is the differentiation matrix

of order n, and ui is of order mx
i ×my

i ×mz
i .

Subassembling such elements in a rectangular array of elements results in a
system of the same form, only that the different mass matrices, laplacians, and
derivatives are changed into the appropriate matrices for the entire array. In
particular, the matricesM1,1

y ,M1,1
z ,K1

y ,K
1
z ,M

2,2
x ,M2,2

z ,K2
x,K

2
z ,M

3,3
x ,M3,3

y ,
K3
x, and K3

y are subassembled; all other mass-matrices are block-diagonal,
and the differentiation matrices in the cross-terms are mixed, mapping from
continuous to discontinuous spaces.

The element-by-element computation of the matrix-vector product with
the stiffness matrix can be implemented by dense matrix-matrix multiplica-
tions of the factors of the tensor products with the vector field laid out in
array form. These multiplications use an optimized BLAS3 kernel and run at
close to maximal efficiency on modern computer architectures.

For general geometries, mapped elements are used. The matrix-vector
product associated to the discretization can again be implemented by ten-
sor products and entry-by-entry (Hadamard) matrix products, and therefore
also has a fast implementation. For some more details in the 2D case, see
[Hientzsch, 2002, Section 4].

2 Fast direct solvers in 2D and 3D

We have previously developed a fast direct solver in Hientzsch [2001] and
Hientzsch [2003] for the two-dimensional case, where the system in the two
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components is reduced to a generalized Sylvester equation in one component
which is then solved either by a fast diagonalization method or by more stable
methods for generalized Sylvester equations. It seems that this solver cannot
be extended to three dimensions in the general case.

Instead of a diagonalization technique, we will try to change bases so that
a block-diagonal matrix with small blocks is obtained. In two dimensions, the
general block is 2× 2, in three dimensions, it is 3× 3, coupling modes across
components. In three dimensions, we look for a basis change matrix

V =



V 2
x ⊗ V 1

y ⊗ V 1
z 0 0

0 V 1
x ⊗ V 2

y ⊗ V 1
z 0

0 0 V 1
x ⊗ V 1

y ⊗ V 2
z




so that in VTEV all 3 × 3 blocks in the block tensor product matrix are
diagonal (or if they are rectangular, diagonal with an extra block of zeros).
Then, in the new basis, the system splits into many 3× 3 or smaller systems.

We will only treat the x-direction, the same construction can be repeated
for all three directions. Looking at the entries of E, we realize that we can
diagonalize all blocks, if we can diagonalize

V 2,T
x M1,1

x V 2
x , V 2,T

x M1,2′

x Dmx
2
V 1
x ,

V 1,T
x DT

mx
2
M2′,2′

x Dmx
2
V 1
x , V 1,T

x M2,2
x V 1

x ;

if the second and third component have the same size in x, they are discretized
in the same way, and the other discretization parameters are chosen so that
mass matrices match. These conditions are not overly restrictive; a large class
of generalized Nédélec elements and some newly proposed elements are of that
form. In two dimensions, no such degree conditions appear, and the block
diagonalization works in the general case.

The question is now if we can find V 1
x and V 2

x such that these four ma-
trices are diagonal. If we first consider the terms only in V 1

x , we see that one
reasonable choice would be to take the eigenbasis of the following generalized
eigenvalue problem:

DT
mx

2
M2′,2′

x Dmx
2
u = λM2,2

x u.

Now if Dmx
2
V 1
x could be chosen as V 2

x and had the right size, we would be
done. Because the two components do not necessarily have the same size in x,
we start with V 2

x = I1,2
x Dmx

2
V 1
x , choosing an appropriate I1,2

x as interpolation.
For diagonalization to succeed, we need

DT
mx

2
M2′,2′

x Dmx
2

= DT
mx

2
I1,2,T
x M1,1

x I1,2
x Dmx

2
= DT

mx
2
I1,2,T
x M1,2′

x Dmx
2

which can be satisfied by appropriate choice of discretization parameters and
mass matrices, if mx

1 ≥ mx
2 − 1. (If V 1

x contains a constant vector, we need to
remove this vector before differentiating.) Still, the V 2

x so constructed is not
yet a basis in general, since there may not be enough vectors in it. We con-
struct a full basis for the complement of the range and complement V 2

x with it.
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In special cases, we can give a basis for the complement explicitly, otherwise
we start with carefully choosing vectors which we then make orthogonal to
I1,2
x Dmx

2
V 1
x and each other. The same method works for subassembled prob-

lems, and also for essential boundary value problems (also for mixed problems
if each face of the box has only one type of boundary condition).

Using the block diagonalization just derived, all factor matrices in the
tensor products only have non-zero entries on their diagonals (some factor
matrices are rectangular). Therefore, in this basis, the solution of the system
decouples into the solution of arrays of 3× 3, 2× 2 and 1× 1 problems. The
coefficients in the Gaussian elimination for these symmetric small systems can
be precomputed, and the solution reduces to element-wise multiplication and
addition.

For instance, a natural boundary value problem on one generalized Nédélec
element can be solved in MATLAB like fashion:

[fev1,fev2,fev3]=applBasChgT(baschg,fm1,fm2,fm3);

[uev1,uev2,uev3]=nedtwoblslv(blslv,fev1,fev2,fev3);

[u1,u2,u3]=applBasChg(baschg,uev1,uev2,uev3);

where applBasChg and applBasChgT apply the basis change and its transpose
and the resulting array of 3× 3 problems is solve in nedtwoblslv:

function [uev1,uev2,uev3]=nedtwoblslv(blslv,fev1,fev2,fev3);

rhs=fev3+blslv.t34.*fev2+blslv.t35.*fev1;

uev3=rhs./blslv.t33;

rhs=fev2+blslv.t24.*fev1-blslv.t23.*uev3;

uev2=rhs./blslv.t22;

rhs=fev1-blslv.g12.*uev2-blslv.g13.*uev3;

uev1=rhs./blslv.g11;

return

These element and block solvers run very efficiently; see figure 1.

3 Overlapping Schwarz Methods

To define Schwarz preconditioners (see Smith et al. [1996]), we have to specify
subspaces and solvers on them. For the two-dimensional set-up, see Hientzsch
[2001] and Hientzsch [2003]. Here we will concentrate on the three-dimensional
case. First, a collection of subdomains Ωi is defined, each subdomain being
either one spectral element or a union of several spectral elements. The typical
size of a subdomain is denoted H , and each spectral element has a uniform
degree N in all components. (The analysis goes through and the methods
are implemented for more complicated settings; we chose this case here for
simplicity and ease of presentation.) Now, overlapping subregionsΩ′j,δ ⊂ Ω are
defined, with an overlap of δ. These subregions can be constructed in several
ways, e.g., by extending subdomains by a fixed overlap δ in all directions, or
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Fig. 1. Fast direct solution of a natural boundary value problem on one Nédélec 2
element of degree N by block tensor block diagonalization in 3D.

by finding vertex centered subdomains that overlap by δ. The theory does not
require the Ω′j,δ to be unions of spectral elements, they can also just contain
rectangular subsets of spectral elements. Most of our early computations (and
the numerical results that we show in this paper) were performed on 2×2×2
vertex centered assemblies of subdomains (taken as single spectral elements).

The local spaces Vj are the linear span of the basis functions associated
with Gauss-Lobatto-Legendre points in Ω′j,δ. In general, the support of func-
tions in Vj will be larger than Ω′j,δ, but if one only considers the Gauss-
Lobatto-Legendre grid, they vanish on grid points outside Ω′j,δ. On the local
spaces, we use exact solvers which corresponds to inversion of a submatrix of
K. In the 2 × 2 × 2 case, or in all cases where the overlapping regions only
contain entire spectral elements, the local solver corresponds to the solution
of a standard tangential value problem on the box made from these elements.
In any case, the local solver can be implemented using the direct fast solvers
introduced in the previous section.

The coarse space V0 is a low-order Nédélec spectral element space of uni-
form degree N0 defined on the coarse (subdomain level) mesh. We use the
direct solvers of the last section as exact solvers. In the standard way, the
local and the coarse solvers define local projections Ti and T0 that can be
used to implement different overlapping Schwarz methods. In this paper, we
only consider the additive operator: a two-level additive Schwarz method Tas2
defined by

Tas2 = T0 +
∑

i≥1

Ti

We recall that this preconditioner gives optimal results in two dimensions;
both iteration numbers and condition numbers are bounded by small constants
for an increasing number of subdomains and degree, if there is a generous
overlap that does not cut through spectral elements. It is also very robust
against changes in α and β over a wide range of magnitudes. For minimal
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overlap that cuts through elements, iteration and condition numbers increase
with increasing degree consistent with a linear growth; the dependence on
the relative overlap could be both consistent with linear or quadratic growth
(Hientzsch [2003, 2002]).

Table 1 and figure 2 suggest similar behavior in three dimensions.
We refer to Hientzsch [2002] for a proof of a condition number estimate

which improves on the one given in Hientzsch [2003], in that it does not depend
on the coefficients α and β, to wit for the case of overlapping regions made
out of entire spectral elements

κ(Tas2) ≤ C
(

1 +

(
H

δ

)2
)

and for the general case, with γ ≤ 1 in two dimensions, and with γ ≤ 2 in
three dimensions,

κ(Tas2) ≤ CNγ

(
1 +

(
H

δ

)2
)

In both cases, C is independent of N , H , δ, α and β.

Table 1. Comparison of different methods for α = β = 1, 5 × 5 × 5 subdomains,
Nédélec 2 elements of degree 10, 2 × 2 × 2 overlapping subdomains, reduction of
residual norm by 10−6.

# of levels iter κest(K) ||error||∞ tCPU in s

one 25 17.39 4.23e-06 187.26

two (N0 = 2) 22 8.89 3.62e-06 165.07

two (N0 = 3) 21 8.94 8.10e-06 155.62

two (N0 = 4) 21 8.46 9.79e-06 157.18

two (N0 = 5) 20 8.16 1.28e-05 154.51

4 Balancing Neumann-Neumann

Balancing Neumann-Neumann preconditioners are examples of iterative sub-
structuring methods. Here, one iterates on the Schur complement system
SuS = fS with respect to the shared degrees of freedom uS on the subdomain
interfaces. To apply the matrix-vector product SuS, one adds up the local con-
tributions from the local Schur complements S(i) from each subdomain. This
requires the solution of an essential (Dirichlet) boundary value problem per
element. Balancing Neumann-Neumann preconditioners are hybrid methods,
with alternating balancing and Neumann-Neumann steps (see, e.g., [Smith
et al., 1996, Section 4.3.3]). The Neumann-Neumann step requires the appli-
cation of the inverse of the local Schur complement which can be implemented
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Fig. 2. Two-Level additive overlapping Schwarz method, α = β = 1, 2× 2× 2 over-
lapping subdomains, reduction of residual norm by 10−6, M ×M ×M subdomains
of degree N . On the left, N = 6. On the right, M = 5.

by the solution of a local Neumann problem, and also requires some diago-
nal scaling. The balancing step constitutes the coarse level correction, and
directly inverts the Schur complement restricted to well-chosen coarse basis
functions. We use the fast direct solvers from the second section to solve the
Dirichlet and Neumann problems; for the coarse grid correction, in general,
a general purpose factorization routine has to be used. We use the standard
partition-of-unity diagonal scaling. Experiments have been run with different
coarse basis functions and variable damping of the coarse grid corrections.
We have been able to develop seemingly optimal and efficient damped coarse
grid corrections for the two-dimensional case, and made some progress for
some lower-order cases in the three-dimensional case, but we do not yet have
general optimal balancing steps for the three-dimensional case.

Finally, we present in figure 3 some numerical experiments for two cases
in two dimensions for several different balancing steps. We intend to present
more complete experiments for two and three dimensions and theory for the
two-dimensional case in future work.

As coarse grid functions we have chosen the standard partition of unity,
either one function for the whole subdomain (BNN1), one for each component
(BNN2), or one for each edge/face (BNN3). γ is the damping factor for the
coarse grid correction. In figure 3, we see that in both cases, one coarse grid
function per subdomain is not enough, even if we allow damping, but that
one coarse grid function per edge gives an efficient method.
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J. Comput. Appl. Math., 53(1):117–137, 1994. ISSN 0377-0427.
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Summary. The aim of this work is to reduce the development costs of new domain
decomposition methods and to develop the parallel distributed software adapted to
high performance computers. A new approach to development of the domain de-
composition software system is suggested; it is based on the object-oriented analysis
and middleware CORBA, MPI. In this paper, the main steps of domain decom-
position are determined, the object-oriented framework is described, and then it
is extended for parallel distributed computing. The given examples demonstrate
that the software developed in such a way provides mathematical clarity and rapid
implementation of the parallel algorithms.

1 Introduction

The idea of domain decomposition (DD) used not to be applied to parallel
algorithms and it gave rise to substructuring (Przemieniecki [1968]), subcon-
struction, macroelement, superelement, fragment, module-element, reduced
element, Schwartz (Sobolev [1936]), capacity matrix and other methods. Usu-
ally these methods have been applied to reduce an initial problem in the do-
main with a complex boundary to the sequence of problems in the subdomains
with sufficiently simple boundaries. Nowadays the parallel implementations of
DD allow improving the computational performance.

The most of DD software is based on one or another approach to the
approximation of a differential problem, mostly on the finite element (FE)
method. The complexity of FE models results in the necessity of using suit-
able programming techniques such as the object-oriented (OO) analysis. At
present, there are many publications on the FE OO models (Zimmermann
et al. [1992]), but OO analysis is rarely applied to the DD. There are some
references to the OO scientific software: Diffpack, PETSc, SPOOLES, Over-
ture. Diffpack (Cai [1998]) is an OO environment aimed at solving partial
differential equations (PDE). Overture (Brown et al. [1999]) provides the
OO framework for solving PDE on overlapping grids. The fundamental ab-
stractions are divided into functionality groups: data structures, linear and
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nonlinear solvers, PDE, utilities. Recently, DD and multigrid methods have
been included. The MPI-based libraries PETSc (Portable Extensible Toolkit
for Scientific computation) and SPOOLES (Sparse Object-Oriented Linear
Equations Solver) use the OO style for matrix representation of PDE. In this
work the fundamental OO framework consisting of the general FE and DD
entities is suggested, and then it is extended by introducing new objects that
implement specific algorithms including parallel ones.

For parallel distributed implementation of the DD framework, it is appro-
priate to apply the existing techniques and middleware. MPI and CORBA
are the most commonly used ones. MPI (Message Passing Interface) is used
in massively parallel systems. An MPI-based program describes one of the
identical processes handling its own portion of the data (SIMD). MPI pro-
vides blocking/nonblocking communications between the groups of processes.
C++ can be used to implement a parallel distributed object; for that, it is
necessary to implement dynamic creation of an object and remote method
invocation. The main shortcomings from the point of view of flexibility are
the following: the procedure orientation and the primitiveness of the program
starting system.

CORBA (Common Object Request Broker Architecture) is used to cre-
ate OO distributed applications. CORBA provides synchronous/asynchronous
remote method invocations and allows creating complex, high performance,
cross platform applications. The performance measurements of TAO (CORBA)
and MPICH (MPI) middleware were taken on Gigabit Ethernet; they showed
the same throughput, with MPICH giving lower latency. The recently pub-
lished results of comparison of OmniORB and MPICH on Myrinet and SCI
communications (Denis et al. [2003]) prove ours. CORBA is an interesting al-
ternative to MPI for flexible and high performance implementation of complex
models.

2 Representation of the main steps of DD in the OO
framework

The OO analysis was applied for creating an abstract software model, the
C++ language was used for programming. Inheritance and polymorphism
provided the flexibility of the framework. Data encapsulation brought about
creating three subsystems: modeling classes, numerical classes, and analysis
classes. The OO model of analysis is shown in Figure 1. Let us determine the
main steps of DD and consider them from the point of view of OO program-
ming.

1. Building the finite element model. The DomainBuilder class is
the base class of design model editors. It provides the methods to create and
edit the domain represented by the Domain class, which contains a geome-
try and a FE mesh consisting of nodes (Node), different types of elements
(Triangle, Tetrahedron, Hexahedron and others), and boundary conditions
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Fig. 1. The object-oriented model of analysis

(Nodal/ElemanalLoad, SP/MPConstraint and others). The DomainBuilder

derived classes operate the data from files and CAD systems.
2. Partitioning the domain into subdomains. It is appropriate to rep-

resent a FE mesh as a graph of the element connectivity and then to apply any
graph partitioning algorithm. The object of the DomainPartitioner class gets
the element graph Graph built by the object of the PartitionedDomain class
and divides it by any graph partitioning algorithm represented by the object of
the GraphPartitioner class. The GraphPartitioner subclasses are based on
the algorithms implemented in METIS and ParMETIS libraries (Karypis and
Kumar [1998]). The Subdomain class extends the Domain interface to make
distinction whether the nodes in the subdomain are internal or external. The
PartitionedDomain and Subdomain derived classes are designed to partition
the domain into both non-overlapping and overlapping subdomains. For ad-
ditive Schwartz methods, the best of all would be the synchronous handling
of the objects in the intersection; in this case the objects are instantiated
once. For multiplicative Schwartz methods, it is the other way round; in each
Subdomain object the copies of the objects that are included into the intersec-
tion are created to be independently calculated and periodically synchronized.

3. Assignment of both local and global equation numbers to nodal
degrees-of-freedom. To make such a mapping there is a need to apply any
graph numbering algorithm to the mesh node graph. The mapping can have
a significant influence on the amount of computation required to solve the
system of equations and on the amount of memory required to store it.

The AnalysisModel is a container for storing and providing access to the
objects of the DOFGroup and AnalysisElement classes. The DOFGroup objects
represent the degrees-of-freedom at the nodes and new degrees-of-freedom in-
troduced into the analysis to enforce the constraints. The AnalysisElement
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objects represent the elements and subdomains or they are introduced to add
stiffness and/or load to the system of equations in order to enforce the con-
straints. The DOFGroups and AnalysisElements remove from the Node and
Element objects the need to worry about the mapping between the degrees-
of-freedom and equation numbers. They also have the methods for forming
tangent and residual vectors that are used to form the system of equations.
Besides, they handle the constraints.

The DOFNumberer is responsible for mapping the numbers of equation to
the degrees-of-freedom in the DOFGroup objects.

4. Assembling the systems of equations using elemental and
nodal contributions determined by the integration scheme chosen.
Assembling the systems of equations is also based on the FE graphs and on
defining the contributions for the different types of element as well. According
to the integration scheme, the local systems of equations are formed by the
FE contributions. For the DD methods that need assembling the global sys-
tem of equations, it seems efficient to represent all subdomains as the graph
of special-purpose elements (superelements) in order to apply the approach
stated above. Different FE contributions and various integration schemes give
a wide range of assembling methods for DD. On multiprocessors the contri-
butions from internal elements of the subdomain can be calculated on the
processor that handles the subdomain; to determine them from external ones
it is necessary to use different approaches to distributed computing.

The Integrator is responsible for defining the contributions of the DOF-
Group and AnalysisElement objects to the system of equations and for up-
dating the response quantities in the DOFGroup objects with the appropriate
values given the solution to the system of equations.

5. Imposing boundary conditions. Applying the constraints may in-
volve transformation of the elemental and nodal contributions or adding new
terms and unknowns to the matrix equations.

The ConstraintHandler class is responsible for handling the constraints
by creating appropriate DOFGroup and AnalysisElement objects. It also al-
lows to introduce the multiple constraints arising from adaptive refinement.

6. Solving the system of equations. Different DD methods are similar
in the presence of the local and possibly, global systems of equations and in
the performance of the local and sometimes, global matrix-vector operations
according to the solution algorithm.

The Analysis class is a container for all of the analysis objects men-
tioned above. It is responsible for starting the analysis steps specified in the
SolutionAlgorithm class. The Analysis class is associated with either a do-
main or a subdomain and allows describing either a global solution or one
branch of the solution in the subdomain. In the second case, several sets of
analysis objects are executed simultaneously.

The LinearSOE class stores the matrix, the right hand side and the solu-
tion of a linear system of equations. LinearSOE derived classes correspond
to the systems with different types of matrices (band, profile, etc). The
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LinearSolver class is responsible for performing the numerical operations on
the equations. LinearSolver subclasses encapsulate linear algebra libraries
LAPACK, PETSc, SuperLU.

7. Update of nodal degrees-of-freedom with the appropriate re-
sponse quantities.

8. Determining the rated conditions in finite elements.

Nowadays it is generally accepted that the effective solution of applied
problems is almost impossible without using an adaptive process when the
obtained solution is examined to determine the strategy of further calcula-
tions: mesh refinement with the same connectivity (r -version of FEM), local
mesh refinement (h-version), increase of the degree of approximation basis
functions (p-version) or whatever combinations (h-p, h-r versions). The best
choice gives the maximum precision with the minimum computational costs.
The OO model for adaptive analysis allows to build the optimal computational
model with the given precision and minimum computational costs.

9. A-priori error estimation. The additional data included in the
AdaptiveAnalysis class are the following: error estimation ErrorEstimation,
error indicator ErrorIndicator, refinement strategy Refinement. Error-
Estimation subclasses represent a-priori and a-posteriori error estimations
based on: residual, interpolation, projection, extrapolation, dual method.

10. Determining the objects to be more precise. The ErrorIndica-
tor subclasses provide the selection of the part of the domain to refine: global
refinement, strategy of maximum, equidistribution, guaranteed error reduc-
tion.

11. Repartitioning the mesh in accordance with the criterion of
refinement. Mesh repartitioning gives rise to redistributing the work among
the processors, with each processor busy in actual loading as long as possible,
in other words, to load balancing. The main difference between the dynamic
load balancing and static one is the necessity to redistribute the work among
the processors; it brings about considerable computational costs (Kopyssov
and Novikov [2001]).

Different improvements of the solution are inherited from the Refinement

class: relocation of the nodes in 2D/3D area (r -version), local refinement and
coarsening for 2D triangle meshes (h-version), increasing the degree of in-
tegrated Legendre polynomials for 3D hierarchical hexahedral elements (p-
version).

The dynamic load balancing is implemented by including the Refinement

object to DomainPartitioner. Using them on every iteration, one could ef-
ficiently redistribute the FE mesh objects, with Refinement providing graph
weights handling, and GraphPartitioner partitioning the graph.
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3 Extension for parallel distributed computing

To provide the interprocess communication between objects on multiproces-
sor computers, it is necessary to implement the remote method invocation. In
addition, it is required to implement the migration of the objects representing
the distributed data and the asynchronous invocation of the methods of the
objects representing parallel functions. Some parallel distributed implementa-
tions of objects were examined on MPI and CORBA middleware (Kopyssov
et al. [2003]). A new approach is suggested to develop parallel distributed OO
software for DD. It is based on CORBA, the AMI (Asynchronous Method
Invocation) callback model (Schmidt and Vinoski [1999]) and integration of
MPI applications.
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Fig. 2. CORBA implementation of Subdomain class

The CORBA implementation of data and function objects consists of:
IDL interface. The objects to be called remotely are specified as IDL

interfaces (interface), with the migrated objects specified as IDL structures
(struct). According to the IDL interface CORBA generates the C++ tem-
plates (stubs, servants, AMI handlers) designed to develop parallel distributed
objects. Figure 2 shows the interface and the client-server (gray filled) tem-
plates for the Subdomain class.

Client-server library. It is based on the C++ library for the DD and
CORBA client-server templates. The client classes are inherited from the DD
ones and aggregate the stubs of the CORBA interfaces, with the virtual func-
tions of the DD objects overloaded: the input parameters are converted from
the DD types to those of CORBA, the method of the remote CORBA ob-
ject is invoked, the output parameters are converted backward and returned
as the result of the remote invocation. The server classes are inherited from
the DD ones and aggregate the CORBA servants, with the pure virtual func-
tions of servants implemented: the input parameters are converted from the
CORBA types to those of DD, the method of the DD object is called, the
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output parameters are converted backward to be sent to the client side. The
asynchronous method invocation is implemented with the help of the AMI
templates: the client objects send the object reference to the aggregated AMI
handlers within asynchronous invocation and return control to the main pro-
cess. Having addressed to the result objects, the main process is blocked until
the remote methods finish and return their results to the AMI handlers. Fig-
ure 2 shows the base client-server classes (denoted by Object_ prefix) and the
example of their use for implementing the client-server classes Subdomain.

Components. The components are the executable modules that include
the CORBA objects for DD. It is available to launch the components with the
help of MPI as the set of identical CORBA servers, which provide distributed
data and carry out the operations in parallel via MPI communications; the
server with a null identifier synchronizes all others.

The parallel distributed OO model for DD is the extension of the original
model, of several objects in particular: Subdomain (Figure 2), Node, Element,
Nodal/ElementalLoad, SP/MPConstraint and some others. There are some
development principles.

Remote method invocation. The DomainBuilder subclass creates the
server finite-element objects on the governing computing node. On other nodes
the Subdomain_Server objects are launched, with an array of Subdomain_-
Client objects, that aggregates the stubs to them, being created on the gov-
erning node. Thus, without any modifications of the C++ library, the DD
steps could be performed in the distributed address space through the _Client
and _Server objects.

Object migration. In the initial OO model for DD the DomainPartition-
er handles the pointers to the C++ objects when it is called to distribute the
data among the subdomains. The object migration is more complicated; it
includes creating the destination remote server object, copying the data of
the source object and removing the source one. For that, it is necessary to
modify the DomainPartitioner class: it has to include virtual functions with
an empty body to collect garbage; the Partition method has to include the
calls to them. The DomainPartitioner subclass overloads these functions and
thus, it removes all the transferred objects in the end of partitioning.

Asynchronous method invocation. The principal operations to be
performed simultaneously in the subdomains are forming the blocks of the
global system of equations (if it is need) and solving the local systems of
equations. For that, the Subdomain_AMIClient object is instantiated; it ag-
gregates the AMI handler Subdomain_ReplyHandler for this methods. Invok-
ing the remote method, the Subdomain_AMIClient object does not wait for its
completion and returns control to the main process. As the main process needs
the results, it calls the Subdomain_AMIClient object that, in its turn, blocks
the main process until the Subdomain_ReplyHandler receives the result from
the remote Subdomain_Servant object.
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4 Examples

The parallel distributed OO framework for DD is intended for representation
of a wide range of DD methods by using different: types of FE; mesh par-
titioning algorithms; ordering, storage and solution methods for the system
of equations; means of handling of boundary conditions; error estimations;
refinement strategies. Let us consider the substructuring method as an ex-
ample of usage of the framework. It is suited to demonstrate the features of
the analysis classes for both a partitioned domain and a subdomain, and the
scope for the parallel distributed computing as well.
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Fig. 3. The object-oriented model of substructuring

After the initial partitioning of the domain, analysis classes are used twice
(see Figure 3): to solve the problem in the subdomains and on the interface. In
the subdomain the objects aggregated by the DDAnalysis cooperate under the
DDSolutionAlgorithm control in the following way: ConstraintHandler and
DOFNumberer take Subdomain as the input data to create the AnalysisModel.
The Integrator performs static condensation and forms the matrix and the
right hand side for the Schur complement system block LinearSOE from the
AnalysisModel.

After that, the interface problem is solved by the AdaptiveAnalysis ob-
ject with its own SolutionAlgorithm, PartitionedDomain, AnalysisModel,
DOFNumberer, ConstraintHandler, Integrator, LinearSOE, LinearSolver
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Fig. 4. Initial partition: 8 subdomains,
5959 nodes, 11740 elements

Fig. 5. Partition after 5 adaptive re-
finements: 42470 nodes, 84621 elements

objects. In that case, the AnalysisModel includes the AnalysisElement ob-
jects corresponding to the subdomains; the Integrator forms the system of
equations from the interface. The LinearSolver object solves the global in-
terface problem.

The Subdomain objects get the equations numbers from the response quan-
tities obtained in the previous calculations on the whole AnalysisModel. The
SubstructuringSolver objects solve the internal systems of equations. The
Integrator objects update the response quantities.

The results of numerical experiments are presented in Figure 4-6. It is
2D/3D strain stress analysis; iterative/direct substructuring method is used;
solution is adaptively refined by h-version/p-version of FEM.

5 Conclusions and Further research directions

The analysis allowed us to represent the main steps of DD in the form of
objects and their relations. The main features of the OO framework for DD
have been described. The framework was extended on CORBA middleware
for parallel distributed computing. The given examples demonstrated its ex-
pressiveness and flexibility.

Further research directions are as follows:

1. extension of the OO framework for DD by new algorithms
2. inclusion of geometrical data and encapsulation of CAD systems
3. implementation of parallel algorithms of mesh generation; integration of

existing mesh generators
4. development of the visual editor for DD

Acknowledgement. The work is supported by Russian Foundation for Basic Research
(grants 02-07-90265, 03-07-06119, 03-07-06120, and 03-07-90002) and UB of RAS.
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Fig. 6. Domain partition for p-version of FEM based on substructuring
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A Domain Decomposition Based Two-Level
Newton Scheme for Nonlinear Problems

Deepak V. Kulkarni and Daniel A. Tortorelli⋆

University of Illinois,
Department of Mechanical and Industrial Engineering
Urbana, Illinois 61801

Summary. We present two non-overlapping domain decomposition based two-level
Newton schemes for solving nonlinear problems and demonstrate their effectiveness
by analyzing systems with balanced and unbalanced nonlinearities. They both have
been implemented in parallel and show good scalability. The implementations ac-
commodate non-symmetric matrices and unstructured meshes.

1 Introduction

One can refer to the paper by Keyes [1992] and the book by Smith et al. [1996]
for in-depth reviews of domain decomposition (DD) methods. Of particular
interest here are non-overlapping schemes such as iterative substructuring
(Bjørstad et al. [2001]) and FETI methods (Farhat et al. [2001]).

When solving non-linear boundary value problems (BVPs) via domain
decomposition it is common to use Newton type algorithms and then to apply
existing DD approaches to the ensuing linearized problems (Knoll and Keyes
[2002]). The NK-Schwarz scheme (Keyes [1995]) as the name suggests, uses
a Krylov scheme equipped with a Schwarz preconditioner to solve this linear
update equation.

If the non-linear effects are unbalanced, i.e., the nonlinearity has a signif-
icant spatial variation, then the Jacobian becomes ill-conditioned and hence
the NK-Schwarz scheme is not effective cf. Cai and Keyes [2002]. A scheme
that proves effective for problems with unbalanced nonlinearities is the multi
level Newton Schwarz (MLN-Schwarz) scheme that was originally introduced
to solve multi-physics problems (Bächtold et al. [1995], Aluru and White
[1999]). Kim et al. [2003] implemented a serial version of the MLN-Schwarz to
solve fluid-structure interaction problems which had the flavor of a multiplica-
tive Schwarz approach. The scheme employs a global consistency equation in

⋆ Both the authors would like to acknowledge the support provided by NSF under
grant no. DMR 01-21695
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the place of the standard residual equation. In the case of unbalanced non-
linearities, the Jacobian for the global consistency equation appears to be
better conditioned (Cai and Keyes [2002]). However, the MLN-Schwarz re-
quires the full solution of the sub-domain residual equations for each global
Newton iteration. Hence the scheme is not efficient for problems with balanced
nonlinearities.

Another scheme that is used to resolve BVPs with unbalanced nonlin-
earities is the ASPIN method. Cai et al. [2001] introduced this as a nonlin-
early preconditioned version of the NK-Schwarz scheme. In comparison to
the MLN-Schwarz, the ASPIN method has been implemented in parallel and
accommodates both overlapping and non-overlapping domains. However, like
the MLN-Schwarz scheme, the ASPIN method is inefficient for problems with
balanced nonlinearities.

In this work we present two non-overlapping DD schemes to solve non-
linear BVPs. The first scheme, which we call the modified Newton Krylov
Schur (MNK-Schur) approach, is based on a Newton Krylov Schur (NK-Schur)
approach. Since our method uses a two-level Newton scheme, it efficiently
solves problems with unbalanced nonlinearities thereby incorporating the ad-
vantages of both the NK-Schwarz and ASPIN methods. The second method
modifies the MLN-Schwarz method to obtain a non-overlapping DD scheme.
We show that this scheme is in fact a special case of our MNK-Schur approach.

2 Two-level Newton Krylov Schur Approach

For our finite element (or similar) computations we partition the domain into
n non-overlapping sub-domains and represent the discretized nodal response
vector u and global residual vector R(u) for the entire domain Ω as:
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where uI corresponds to the interface nodal Degrees Of Freedom (DOF) and
uSj corresponds to the internal sub-domain and Neumann boundary nodal
DOF of sub-domain j. In the above equation the interface residual R is as-
sembled as
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where RI
j (u

S
j ,u

I) represents the contribution of sub-domain j to the inter-
face nodal residual vector. Note that the residual R(u) is a reordering of
the residual that one would form without decomposition techniques. We ap-
ply Newton’s method to the nonlinear residual equation (1)2 and obtain the
update equation:
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On applying block Gauss elimination we obtain the Schur’s complement rep-
resentation of the above. We first solve for the interface increment ∆uI from
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then we solve for the sub-domain increments from
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∆uSj = −RS
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∂uI
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and finally we update the interface and sub-domain DOF vectors as

uI =uI +∆uI ; uSj =uSj +∆uSj (6)

The process repeats until convergence of equation (1)2.
The algorithm as described above is equivalent to a NK-Schur approach.

However, as discussed in the previous section this algorithm has poor con-
vergence if the Jacobian in equation (3) is ill-conditioned. To alleviate this
problem we augment the algorithm with a lower level sub-domain Newton
scheme to obtain our MNK-Schur algorithm. After updating uS and uI at
every Newton iteration (cf. equation (6)) we perform additional sub-domain
iterations keeping the interface unknowns fixed via

[
DRS

j

DuSj

]
∆uSj = −RS

j ; uSj = uSj +∆uSj (7)

We may or may not iterate until sub-domain convergence is obtained, i.e.,
until RS

j ≈ 0. In either case we revert to the NK-Schur approach and repeat
equations (3)-(7) until R(u) ≈ 0 (cf. equation (1)2).

Remark 1: If a particular sub-domain is linear, the tangent matrices ∂RS
j /∂u

S
j ,

∂RS
j /∂u

I , ∂RI/∂uI , ∂RI/∂uSj remain constant in all applications
of equations (4), (5) and (7)

Remark 2: Various criteria can be used to determine if additional sub-
domain iterations are required. In our implementation we perform sub-
domain iterations if |RS

i | > |RS
j |avg and |RS

j | > εsub−domain where

|RS
j |avg is the average norm of all sub-domain residuals (where the RS

j are
evaluated after the update of equation (6) is completed) and εsub−domain
is a tolerance.
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Remark 3: The Newton iteration at the sub-domain level of the MLN-
Schwarz and ASPIN methods is precisely the augmented sub-domain iter-
ation introduced in our MNK-Schur method (cf. equations (7)). We intro-
duce here, a non-overlapping multi level Newton Schur (MLN-Schur) ap-
proach. The global consistency equations of the MLN-Schwarz and ASPIN
methods are replaced by the interface residual equation (2) now expressed
as

R
(
uI ; û1(u

I), û2(u
I), · · · , ûn(uI)

)
=

n∑

j=1

RI
j

(
ûj(u

I),uIj
)

= 0 (8)

The update equation for the above problem is

[
DR

DuI

]
∆uI = −R ; uI = uI +∆uI (9)

where, upon applying chain rule to (8) and differentiating the sub-domain
residual equation (here expressed as RS

j (ûSj (uI),uI) = 0) we obtain

DR

DuI
=

n∑

j=1


∂R

I
j

∂uI
−
∂RI

j

∂uj

[
∂RS

j

∂uSj

]−1
∂RS

j

∂uI


 (10)

We notice immediately that DR/DuI is the Schur’s complement matrix
of equation (4). However the right hand side of the above MLN-Schur
update equation (9) does not contain the sub-domain residual RS

j present
in the MNK-Schur update equation (4). This is to be expected in the
MLN-Schur scheme because the sub-domain problem is resolved making
RS
j ≈ 0. Thus the MLN-Schur scheme is a special case of the MNK-Schur

scheme.

3 Implementation

We use a direct solver to resolve the linear sub-domain update equations (5)
and (7). It is noted that the use of a direct solver enables us to store the
factored sub-domain Jacobian. Obviously, the sub-domain computations are
independent of each other and therefore easily parallelized.

We employ an iterative method (e.g. GMRES, Saad and Schultz [1986])
to solve the interface update equation (4) in parallel. The iterative scheme
requires multiple evaluations of the matrix-vector product

[
DR/DuI

]
s until

equation (4) converges. Expanding this product we see that

DR

DuI
s =

n∑

j=1

[
∂RI

j

∂uI
s− ∂RI

∂uSj

xj︷ ︸︸ ︷[
∂RS

j

∂uSj

]−1{
∂RS

j

∂uI
s

}]
(11)
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It is emphasized that each matrix-vector product required by the iterative
solver involves a back solve with the already factored sub-domain Jacobian
matrices to obtain xj . In fact the interface Jacobian matrix DR/DuI is never
assembled, only its effect on the vector s is evaluated, i.e., at the interface level

this is a matrix free method. However, we form a preconditioner P = [ D̃R

DuI ]−1

where
D̃R

DuI
=

n∑

j=1

[
∂RI

j

∂uIj
−
(
∂RI

j

∂uSj
D−1
j

∂RS
j

∂uIj

)]
(12)

and Dj is the diagonal of the sub-domain Jacobian ∂RS
j /∂u

S
j .

The proposed scheme is summarized in algorithm (1) where εsub−domain,
εglobal and εiterative are prescribed tolerances.

Algorithm 1 Modified Newton Krylov Schur Algorithm

Partition the mesh
Initialize uI , uS, compute RI

j , RS
j , ∂RI

j/∂u
I
j , ∂RS

j /∂u
I
j , ∂RI

j/∂u
S
j , factor

∂Rs
j/∂u

S
j and assemble the interface preconditioner, cf. equation (12)

repeat {Newton iterations}
repeat { iterative solver computation of ∆uI }

• Evaluate (DR/DuI) s via equation (11)
• Update s

until |(DR/DuI )s + R −
Pn

j=1

ˆ

∂RS
j /∂u

S
j

˜−1
RS

j | < εiterative (cf. eq. (4))
• Solve j = 1, 2, . . . , n local sub-domain update equations (5)
• Update uI and uS

j via equation (6)
repeat { sub-domain Newton iterations}

• Solve Newton update equation (7) and store ∂RS
j /∂u

S
j in factored form

• Update sub-domain response uS
j via equation (7)

until |RS
j | < εsub−domain or |RS

j | < |RS
j |avg

• Compute RI
j , RS

j , ∂RI
j/∂u

I
j , ∂R

S
j /∂u

I
j , ∂R

I
j/∂u

S
j ,

ˆ

Diag(∂Rs
j/∂u

S
j )

˜−1

• Assemble the interface preconditioner, cf. equation (12)
until |R(u)| < εglobal

4 Results

We have developed parallel domain-decomposition codes using MPI (Forum
[1994]) to implement the proposed methodologies. We use METIS (Karypis
and Kumar) to partition the domain, SuperLU (Demmel et al.) for the sparse
solution of the sub-domain problems and PETSc (Balay et al.) for the itera-
tive solution of the interface problem. All computations are performed on a
distributed shared memory Origin 2000 machine.

The preconditioner matrix is in general dense and could be computation-
ally expensive to factorize. For problems in which (dim(uI)/max(dim(usj))) <



620 Deepak V. Kulkarni and Daniel A. Tortorelli

1, i.e., for problems with few sub-domains, we use an LU factorization to ob-
tain P otherwise we use a Jacobi method2 to approximate P.
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Fig. 1. Domain Partitioning
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Fig. 2. Single processor efficiency

We consider a steady-state heat conduction problem to demonstrate the
proposed algorithms. The nonlinear isotropic heat conduction coefficient κ is
defined as: κ(T ) = κ0(1 + γ T ) where T is the temperature and κ0 and γ
are parameters, the latter of which controls the nonlinearity of the problem.
Figure (1) shows the rectangular domain partitioned into 64 sub-domains. We
impose zero flux conditions on the north and south boundaries and Dirichlet
conditions of T = 500 and T = 0 on the west and east boundaries respectively.
The discretization contains approximately 100,000 elements and 50,000 DOF.

4.1 Single processor efficiency

Figure 2 shows the timing results obtained using the MNK-Schur approach
with varying number of sub-domains on a single processor. The problem uses
κ0 = 1 and γ = 0.01 and exhibits a balanced nonlinearity. The clock time for
the single sub-domain case is obtained using the dgssv sparse direct solver of
SuperLU (Demmel et al.). As seen from the figure, even on a single processor
the DD based MNK-Schur approach performs better than a standard Newton
scheme (i.e., the single sub-domain case) equipped with a sparse direct solver.

The timing results obtained for such single processor cases are used as
baseline results for evaluating the scalability of the parallel implementations.

4.2 Parallel Scalability

To study the parallel scalability of the MNK-Schur algorithm we analyze the
problem described in the previous section with 32 sub-domains and varying
number of processors. The MNK-Schur shows near linear scale-up at a 55%
to 65% efficiency as shown in figure 3. Note that the ability of our paral-
lel implementation to accommodate multiple sub-domains per processor is

2 PETSc has several built-in preconditioners that can be chosen at run time in
place of the Jacobi method.
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demonstrated in these examples as the number of sub-domains is fixed while
the number of processors is varied. Figure (4) shows the terminal quadratic
convergence of the MNK-Schur scheme for several nonlinear problems.

4.3 Comparison of the two algorithms
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Fig. 5. MLN-Schur vs. MNK-
Schur

To compare our MNK-Schur and MLN-
Schur algorithms we analyze the 32 sub-
domain case of the previous example
problem. In figure 5 we plot the wall-
clock time of the MLN-Schur and MNK-
Schwarz schemes for varying number of
processors. We see that the MLN-Schur
scheme is less efficient than the MNK-
Schur scheme irrespective of the num-
ber of processors employed. This differ-
ence is attributed to the full resolution of
the sub-domain residual equations in the
MLN-Schur scheme. Hence, the MLN-
Schur requires more computations per
interface Newton iteration.

However, for problems with unbalanced nonlinearities, fewer interface
Newton iterations may be required when using the MLN-Schur method.

5 Conclusion

We have introduced two non-overlapping DD schemes based on a two-level
Newton approach. The MNK-Schur scheme combines the advantages of the
MLN-Schur and NK-Schur schemes to provide a general approach that effi-
ciently solves problems with balanced and unbalanced nonlinearities. The DD
implementation shows good scalability. By assigning multiple sub-domains
to each processor we obtain a scheme that is efficient on a single processor
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and one that is amenable to load balancing in parallel implementations. The
implementations have been designed to accommodate unstructured meshes,
nonsymmetric matrices and a variety of iterative solvers and preconditioners.
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M. Bächtold, J. Korvink, J. Funk, and H. Baltes. New convergence scheme
for self-consistent electromech. analysis of iMEMS. In IEEE Inter. Electron
Devices Meeting, 1995.

S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc, v. 2.1.3 code and
documentation. URL http://www-unix.mcs.anl.gov/petsc/.
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Domain Decomposition for Discontinuous
Galerkin Method with Application to Stokes

Flow

Piotr Krzyżanowski

Warsaw University, Faculty of Mathematics, Informatics and Mechanics
(http://www.mimuw.edu.pl/piotr.krzyzanowski)

Summary. We report on recent results related to domain decomposition methods
based on the Discontinuous Galerkin discretizations of Stokes equations. We ana-
lyze the efficiency of a block nonoverlapping Schwarz preconditioner based on the
approach by Feng and Karakashian [2001]. We also prove the inf-sup stability of a
substructuring method.

1 Introduction

Discontinuous Galerkin (DG) methods have attained a lot of interest in the
past years. These nonconforming finite element methods have several advan-
tages over the classical, conforming elements. For example, the finite elements
are very easy to construct and allow the use of nonuniform meshes. Moreover,
they still guarantee optimal error estimates, requiring only local regularity of
the solution. On the other hand, as compared to the conforming methods, the
DG methods introduce more degrees of freedom per grid point.

Recently Filippini and Toselli [2002] proved an inf-sup stability result for a
Discontinuous Galerkin approximation of Stokes equations on non-matching
grids, while at the same time a series of papers by Toselli [2002], Cockburn
et al. [2002], Schötzau et al. [2002] developed the stability and approximation
theory of DG methods for the Stokes system.

In this paper, we use a DG discretization of the velocity–pressure for-
mulation of the Stokes equations (1), using macroelements as in Filippini and
Toselli [2002]. The variational form of the Stokes equations gives rise to a sym-
metric operator, and our discretization not necessarily retains this property,
depending on the choice of the method.

We consider here two domain decomposition methods for the resulting,
possibly nonsymmetric, discrete saddle point problem. First we use the ap-
proach of block preconditioning, see Krzyżanowski [2001], Klawonn [1998b],
Klawonn [1998a]. Using available results related to nonoverlapping Additive
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Schwarz preconditioning DG discretizations of the second order equations, we
prove the convergence rate bounds for the corresponding block preconditioner
for the DG Stokes discretization. To the author’s knowledge, this is the first
such result for domain decomposition preconditioners for DG discretizations
of Stokes equations.

Next, we define a substructuring method for the discretization under con-
sideration. We show that the resulting problem has also a saddle point struc-
ture. For this problem, we show that the inf-sup constant is independent both
of the fine mesh size and of the number of the subdomains. This result is a
basis for the analysis of parallel substructuring preconditioners, such as the
Neumann–Neumann; this topic, however, is not covered in the present paper.

In the paper, for nonnegative scalars x, y, we shall write x . y if there
exits a positive constant C, independent of x, y and the mesh parameters
h,H , such that x ≤ Cy.

2 DG discretization of the Stokes equation

Let Ω be a bounded open polygon in Rd, d = 2, 3. The Stokes equations in Ω
read

−∆u+∇p = f,

∇ · u = 0,
(1)

where u = (u1, . . . , ud) denotes fluid velocity and p is the pressure. For sim-
plicity, we assume homogeneous Dirichlet boundary condition on u. The given
function f : Ω → Rd is the external force.

In what follows, for a domain D, (·, ·)D denotes the usual inner product in
L2(D) (or, depending on the context, [L2(D)]d), while 〈·, ·〉D denotes the inner
product in L2(∂D) ([L2(∂D)]d). We shall omit the subscript, if the integrals
are taken over Ω.

2.1 Finite element spaces

Let TH be a subdivision of Ω into N disjoint triangles Ωi, i = 1, . . . , N ,
such that Ω̄ =

⋃
i=1,...,N Ω̄i and TH forms an affine, regular triangulation of

Ω, with mesh parameter H . Further, let Th denote an affine, shape regular
triangulation ofΩ, Ω̄ =

⋃
κ∈Th

κ̄, which is derived from TH by some refinement
procedure. The diameter of a triangle κ ∈ Th will be denoted by hκ and the
mesh parameter is h = maxκ∈Th

hκ. By Eh we denote the set of all edges of
elements in Th, while E0

h we use to denote the internal edges, that is those not
included in ∂Ω; for e ∈ Eh, we also set he = diam(e)). The set of all edges of
elements from TH will be denoted by Γ .

In order to formulate our domain decomposition method, we shall use
the coarse triangulation TH of Ω. We shall assume that restricted to each
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subdomain our finite element spaces consist of continuous functions, and that
those functions satisfy the inf-sup condition.

Let us begin with the definition of the local finite element spaces,

V ri

h (Ωi) = {vi ∈ [C(Ωi)]
d : v|κ ∈ [Pri(κ)]

d, ∀κ ∈ Th, κ ⊂ Ωi},

and
W qi

h (Ωi) = {wi ∈ C(Ωi) : w|κ ∈ Pqi(κ), ∀κ ∈ Th, κ ⊂ Ωi}.
Then, we set global spaces, in which we shall pose our discrete problem,

V Hh = {v ∈ [L2(Ω)]d : v|Ωi
∈ V ri

h (Ωi), ∀Ωi ∈ TH}, (2)

and analogously,

WH
h = {w ∈ L2

0(Ω) : w|Ωi
∈W qi

h (Ωi), ∀Ωi ∈ TH}. (3)

For short, we shall denote by vi the restriction of v ∈ V Hh to Ωi. We shall
make one more assumption, which relates V ri

h (Ωi) to W qi

h (Ωi):
For i = 1, . . . , N , there exist constants λi independent of h such that

sup
v∈V ri

h (Ωi),v 6=0

(w,∇ · v)Ωi

|v|1,Ωi

& λi|w|0,Ωi , ∀w ∈ W qi

h (Ωi),

∫

Ωi

w = 0. (4)

Since the traces of the functions from V Hh and WH
h (and more generally,

from H1(TH)) are double-valued on the interelement interface Γ 0
H = ΓH \∂Ω,

where ΓH = ∪Ωi∈TH∂Ωi, we shall define, following Arnold et al. [2001/02],
their average {·} and jump [·] on an edge e shared by two elements κ1, κ2 ∈ Th,
see [Arnold et al., 2001/02, Section 3.1]. The spaces V Hh and WH

h are equipped
with the following norms. For u ∈ V Hh we set [Arnold, 1982, Lemmas 2.2 and
2.1]

|||u|||2 =
∑

κ∈Th

|u|21,κ +
∑

e∈Eh

1

he
|[u]|20,e.

(The corresponding inner product in V Hh will be denoted by ((·, ·)).) For p ∈
WH
h we define its norm as the usual L2 norm: |p|2 =

∑
κ∈Th

|p|20,κ.

2.2 Discretization

We use the following discontinuous Galerkin finite element approximation to
(1):

Problem 1. Find (uh, ph) ∈ V Hh ×WH
h , such that

Ah(uh, v) +Bh(v, ph) = (f, v) ,

Bh(uh, w) = 0,
(5)

for all (v, w) ∈ V Hh ×WH
h .
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Here, we have some freedom in how to choose the form Ah(·, ·) which ap-
proximates the Laplacian, see Schötzau et al. [2002] for a discussion. We allow
here for two quite popular choices: the symmetric Interior Penalty method as
in Douglas and Dupont [1976] (see also Arnold [1982], Arnold et al. [2001/02])
or the nonsymmetric form, which differs from the previous one by a change in
the sign of one boundary term, considered, e.g. in Filippini and Toselli [2002]:

Ah(u, v) =
∑

κ∈Th

(∇u,∇v)κ∓
∑

e∈Eh

〈[u], {∇v}〉e−
∑

e∈Eh

〈{∇u} , [v]〉e+
∑

e∈Eh

〈µe[u], [v]〉e,

(6)
The penalty scaling µe is a properly chosen function, usually of the form

µe = δe

he
, e ∈ Eh, with constant δe large enough to preserve the ellipticity of

the original problem. The choice of the sign in the definition above results in
different DG methods, as described above, and obviously affects the symmetry
of this bilinear form.

The approximate divergence form is defined, see e.g. Toselli [2002],

Bh(u, p) = −
∑

κ∈Th

(p,∇ · u)κ +
∑

e∈E0h

〈{p} , [u]〉e. (7)

Let us introduce a stability result for the discrete problem (5):

Lemma 1. The pair V Hh ×WH
h is inf-sup stable, and the inf-sup constant is

independent of both h and H.

Proof. A similar theorem has been proved for the rectangular elements, in
[Filippini and Toselli, 2002, Theorem 4.1] and this lemma validates it for the
case of triangular elements. Under assumptions made throughout the paper,
there is a quite straightforward way to prove the above Lemma. The proof of
course follows the idea of Boland and Nicolaides [1983]. In view of the local
inf-sup assumption, the key point of the proof is to specify a globally stable
subspace of (V Hh ,WH

h ). We may use for it e.g. the space (V 1
H ,W

0
H), consisting

of piecewise linear and piecewise constant functions on TH , respectively, which
inf-sup stability can be directly proved (see also Schötzau et al. [2002]). We
omit the details due to the lack of space.

3 Nonoverlapping domain decomposition block
preconditioner

We follow the general idea of Krzyżanowski [2001] (see also Klawonn [1998b]
for the symmetric case analysis). Using the natural formulation of the varia-
tional discrete problem (5) in the operator form,

M
(
u
p

)
=

(
A B∗

B 0

)(
u
p

)
=

(
F
G

)
,
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we define a block diagonal preconditioner forM

MD =

(
A0 0
0 J0

)
,

and transform the original system into

Problem 2. Find (u, p) ∈ V Hh ×WH
h such that

M−1
D M∗M−1

D M
(
u
p

)
=M−1

D M∗M−1
D

(
F
G

)
. (8)

The operator P = M−1
D M∗M−1

D M is positive definite and self-adjoint
with respect to the inner product (MD ·, ·) induced by MD, regardless the
potential lack of symmetry properties ofM, and an iterative method such as
the conjugate gradient method can be used to solve this problem efficiently1.

The building blocks of the preconditioner MD will be based on a sym-
metric nonoverlapping domain decomposition preconditioner for the symmet-
ric DG stiffness matrix. In this way, we will obtain a highly parallelizable,
nonoverlapping preconditioner for the whole system. The lack of the overlap
is an important feature from the point of view of parallel computer implemen-
tation, since this lowers the interprocessor communication cost. Moreover, the
symmetry of the preconditioned system will give us a possibility to use cheaper
symmetric iterative solvers (on the global level) or direct sparse solvers (on
the subdomain level).

For A−1
0 we choose the nonoverlapping Additive Schwarz preconditioner

for a symmetric DG method developed by Feng and Karakashian [2001]. Ac-
cording to [Feng and Karakashian, 2001, Theorem 4.5], we have

|||u|||2 . ((A0u, u)) .
H

h
|||u|||2, (9)

We also set, for simplicity, J−1
0 = M−1, where M is the pressure mass

matrix operator. SinceM is block diagonal, with each block corresponding to a
mass matrix assembled on a given substructure, J−1

0 is perfectly parallelizable
across the subdomains and can also be relatively cheaply applied using local
sparse solvers. Note also that J−1

0 could even be further simplified, at the
price of reducing its efficiency, e.g. by the mass lumping procedure.

The following theorem estimates the condition number of the precondi-
tioned operator:

Theorem 1. Under the above assumptions,

1 Another approach, if M∗ = M, could be to solve M−1
D M with the conjugate

residual method, see Klawonn [1998b]. While the two approaches are compara-
ble in the symmetric case, the symmetrized method can also be applied to DG
discretizations which lead to nonsymmetric saddle point problems.
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cond(P) .

(
H

h

)2

,

regardless of the choice of the sign in Ah(·, ·) in Section 2.2.

Proof. We use the technique of Krzyżanowski [2001]. Due to stability results
for Ah(·, ·), it is sufficient to check only the influence of the quality of the
velocity preconditioner. Let us assume that the preconditioner A−1

0 satisfies

a0|||u|||2 ≤ ((A0u, u)) ≤ a1|||u|||2,

and a0 < 1 < a1. Observe that

(10)(
MD P

(
u
p

)
,

(
u
p

))

VH
h
×WH

h

= ((A−1
0 (Au+B∗p), Au +B∗p)) + (J−1

0 (Bu − Cp), Bu− Cp)

≥ 1

a1
|||Au+B∗p|||2 + |Bu− Cp|2.

By the stability, we obtain

(
MD P

(
u
p

)
,

(
u
p

))

VH
h ×WH

h

&
1

a1

(
|||u|||2 + |p|2

)
&
a0

a1

(
MD

(
u
p

)
,

(
u
p

))

V H
h ×WH

h

.

Similarly, see Krzyżanowski [2001], we prove the upper bound,

(
MD P

(
u
p

)
,

(
u
p

))

V H
h ×WH

h

.
a1

a0

(
MD

(
u
p

)
,

(
u
p

))

VH
h ×WH

h

.

Now the conclusion follows from (9).

4 Stability of the substructuring method

In the conforming case, it is known that substructuring preconditioners, such
as the FETI or the balancing Neumann–Neumann methods, give rise to only
polylogarithmic condition number bound. Thus, in the view of the polynomial
in H

h condition bound for the nonoverlapping Additive Schwarz proved in
Theorem 1, one can hope for a better behavior of the substructuring methods.

In what follows, we shall give a result, see Pavarino and Widlund [2002],
which is a basis for further investigation of the substructuring preconditioners
for DG discretizations of Stokes equations: we recognize the substructuring as
a specific saddle point problem on the interface and prove its inf-sup stability.

Let us first define the substructuring method, restricting ourselves to the
symmetric interior penalty DG discretization. Define V (Γ ) as the space of
restrictions of functions from V Hh to the interface ΓH . We define the local
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(discrete) DG Stokes extension operator S : V (Γ ) → V Hh ×WH
h as SuΓ =

(u, p), satisfying u = uΓ on the interface Γ and on each subdomain Ωi,

(∇ui,∇vi)Ωi − (div vi, pi)Ωi = 〈[uΓ ], {∇vi}〉∂Ωi ,

(div ui, qi)Ωi = 〈[uΓ ], {qi}〉∂Ωi .

Note that, in contrast to the conforming FE discretizations, our Stokes ex-
tensions are not homogeneous right hand side problems. Defining VΓ = {v ∈
V Hh : v = SuΓ , for some uΓ ∈ V (Γ )}, and W0 = {q ∈ WH

h : qΩi = const ∀i}
we arrive, following the lines of Pavarino and Widlund [2002], at the following
form of the Schur complement of the DG Stokes discretization:

Problem 3. Find (uΓ , p0) ∈ VΓ ×W0 such that

Ah(uΓ , vΓ ) +Bh(vΓ , p0) = (F̃ , vΓ ), ∀vΓ ∈ VΓ ,
Bh(uΓ , q0) = 0, ∀q0 ∈W0.

This problem looks similar to the one considered in Pavarino and Widlund
[2002] and, despite its different origin, has similar stability property, partly
because of good stability properties of the DG discretizations.

Theorem 2. There exists a constant βΓ , independent of H and h, such that

sup
vΓ∈VΓ

Bh(vΓ , q0)

|||vΓ |||
≥ βΓ |q0|, ∀q0 ∈W0. (11)

Proof. Since, see the proof of Lemma 1, the pair V 1
H ×W 0

H is inf-sup stable,
there exists û in V 1(Th) such that Bh(û, q0) = Bh(u, q0) and |||û||| . |||u|||.
Taking uΓ = S(û|Γ ) and using the stability of the Stokes extension we see
that vΓ = uΓ satisfies the desired inequality. We skip the details.

5 Concluding remarks

Block preconditioners with high level of parallelism and relatively low in-
tersubdomain communication requirements are relatively easy to derive for
DG discretizations of the Stokes equations, and their properties directly re-
flect those of the building blocks for second order elliptic equations. However,
existing DD preconditioners for DG Laplacian discretizations feature only
H
h condition bound, which makes substructuring preconditioners potentially
more attractive. (Another potentially nice feature of using, e.g. the Neumann–
Neumann alike preconditioners would be, in the case of DG discretizations,
that the problem of floating subdomains can be totally avoided.) While the
question of their performance remains open, we proved that at least the very
Schur complement problem is stable independently of the number of subdo-
mains.

Acknowledgement. This work has partially been supported by the KBN research
grant 2 P03A 005 24.
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Convection-Dominated Problems
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Summary. Hierarchical matrices provide a technique to efficiently compute and
store explicit approximations to the inverses of stiffness matrices computed in the
discretization of partial differential equations. In a previous paper, Le Borne [2003],
it was shown how standard H-matrices must be modified in order to obtain good
approximations in the case of a convection dominant equation with a constant con-
vection direction. This paper deals with a generalization to arbitrary (non-constant)
convection directions. We will show how these H-matrix approximations to the in-
verse can be used as preconditioners in iterative methods.

1 Introduction

Considerable advancements have been achieved in algebraic and geometric
multigrid solvers, state-of-the art domain decomposition methods such as
FETI (Farhat et al. [2001]), direct and approximate (inverse) factorization
solvers (Grote and Huckle [1997], Chow and Saad [1998]) as well as custom
strategies for coarsening, partitioning, ordering, pivoting, etc., which improve
the effectiveness and robustness of these methods. However, many important
challenges remain which in particular include the construction of a robust
solver for convection-dominant systems of PDEs.

A completely new and powerful approach for the construction of efficient
preconditioners and smoothing iterations has recently been introduced that
involve so-called hierarchical matrices, or H-matrices (see, e.g., Hackbusch
[1999], Grasedyck and Hackbusch [2002], Le Borne [2003]). The H-matrix
technique is a generalization of the panel clustering method and permits the
treatment of fully populated matrices while restricting the requirements for
storage and arithmetics (approximate matrix-vector multiplication, matrix-
matrix multiplication and matrix inversion) to nearly optimal complexity
O(n logα2 n) for some (small) constant α. Related methods are the multipole
method and the mosaic skeleton method (Tyrtyshnikov [2000]). In this pa-
per we use an H-matrix as a preconditioner in an iterative method to solve
a convection-dominant problem. The characteristic feature that distinguishes
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H-matrices from other sparse approximate inverse techniques (SPAI) (see,
e.g., Grote and Huckle [1997], Chow and Saad [1998], Benzi and Tuma [1998])
is the particular storage format of an H-matrix that will be further explained
below. Whereas these sparse (SPAI) methods typically work well if the ap-
proximated matrix contains many very small entries, the H-matrix techniques
provides convergent approximations if (large) subblocks of the approximated
matrix are smooth (but not necessarily have small entries).

The remainder of this paper is organized as follows: After the introduction
of the model problem in Section 2.1 we review the construction of an H-
matrix in Section 2.2. In Sections 2.3 and 2.4, modifications to the standardH-
matrix are developed for the convection-dominant case with constant and non-
constant convection directions, resp. In Section 3, we will provide the results
of numerical tests where H-matrices have been used in iterative methods.

2 Preliminaries

2.1 The model problem

In this paper we consider the two-dimensional convection-diffusion equation
with Dirichlet boundary conditions

−ǫ∆u+ b · ∇u = f in Ω = (0, 1)2, (1)

u = g on ∂Ω (2)

for 0 < ǫ ≪ 1 and an arbitrary convection b : R2 → R2. An (upwind)
finite element discretization leads to a linear system of equations Ahxh = fh
where the parameter h characterizes the grid width of the underlying mesh.
The H-matrix technique is applicable to matrices obtained by a wide range
of discretizations since its theory is based upon the approximability of the
underlying Green’s function by a separable function (and not on a particular
discretization technique). Even though the construction of an H-matrix is
based on some knowledge on the underlying Green’s function, the Green’s
function need not be known explicitly.

In Le Borne [2003], the case of a constant convection b was analysed. The
numerical results showed better results in the case where the convection b
aligned with the grid compared to a general, non-aligning convection direction.
This can be explained by the numerical diffusion produced by the discretiza-
tion scheme in the case of a non-aligning convection direction. Therefore, the
construction of the H-matrix should not only depend on the continuous prob-
lem but also on the amount of numerical diffusion, especially since in the case
of an arbitrary, non-constant convection we typically cannot expect the grid
to align with the convection.

2.2 H-matrices

We will briefly review the the definition and standard construction of an
H-matrix in order to later derive modifications for the convection-dominant
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case. More details on H-matrix approximations can be found in, e.g. Hack-
busch [1999], Hackbusch and Khoromskij [2000b,a], Hackbusch et al. [2003],
Grasedyck and Hackbusch [2002], and the references therein. An H-matrix
approximation to a given (fully populated) matrix A ∈ RI×I for a finite index
set I is obtained by first constructing a certain block partitioning of the ma-
trix index set I×I, and then replacing each subblock b = b1×b2 ⊂ I×I of this
partitioning that is larger than a certain threshold by a matrix of low rank
k(b). If this rank k(b) is small compared to the number of indices contained in
b1 and b2, then such a low rank matrix has much lower storage requirements
than the approximated full matrix.

Definition 1 (R(k)-matrix representation). Let k, n,m ∈ N0, and let
M ∈ Rn×m be a matrix of at most rank k. A representation of M in fac-
torised form M = ABT , A ∈ Rn×k, B ∈ Rm×k, with A and B stored as full
matrices, is called an R(k)-matrix representation of M , or, in short, we call
M an R(k)-matrix.

Remark 1. The storage requirementNR,St(n,m, k) and the costsNR·v(n,m, k)
for the matrix-vector product with a matrix M ∈ Rn×m in R(k)-matrix repre-
sentation are NR,St(n,m, k) = k(n+m) andNR·v(n,m, k) = 2k(n+m)−n−k.

Compared to the respective complexities for full matrices, O(nm), we have
significant savings for the R(k)-matrix if the rank k is small compared to the
size of the matrix.

Definition 2 (H-matrix). Let nmin ∈ N0. Let P be a partition of the block
index set I × I. Let k : P → N0 be a mapping that assigns a rank k(b) to each
block b = s × t ∈ P. The set of H-matrices induced by the partition P and
with minimum block size nmin is defined by

H(P , k) := {M ∈ RI×I |∀s× t ∈ P : rank(M |s×t) ≤ k(s× t) or

min{#s,#t} ≤ nmin}.

A matrix M ∈ H(P , k) is said to be given in H-matrix representation if the
blocks M |s×t with rank(M |s×t) ≤ k(s× t) are stored in R(k)-matrix represen-
tation and the remaining blocks with min{#s,#t} ≤ nmin as full matrices.

The accuracy of an H-matrix approximation depends on how well the
individual blocks in the partition can be approximated by low rank matri-
ces, which in turn depends on the approximability of the underlying Green’s
function by separable functions as well as the ordering of the unknowns. To
obtain a suitable block partition, we construct a hierarchy of partitionings
from which we choose the “coarsest” one that satisfies a certain admissibility
condition which shall ensure the approximability by a low rank matrix. The
construction of a hierarchy of partitionings of an index set is shown in Figure
1. The hierarchical index set partition of Figure 1 does not state how to divide
an index set into two subsets. Typically, the indices are ordered in a certain
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Let I = I0,0 be a finite index set. If the jth subset on level ℓ, Iℓ,j ⊂ I ,
contains more than one index, we subdivide it into two disjoint succes-
sor index sets Iℓ+1,jℓ−1 and Iℓ+1,jℓ of approximately the same size on
the next level ℓ+ 1 that satisfy Iℓ,j = Iℓ+1,jℓ−1 ∪ Iℓ+1,jℓ.

Fig. 1. Hierarchical index set partitioning

way based upon the geometric information associated with the indices, and
then this ordered list of indices is bisected into two sets of approximately the
same size. In the case of uniformly elliptic differential operators, it has been
shown in Bebendorf and Hackbusch [2003] that a partitioning into subsets
with small diameters (with respect to the Euclidean norm) will lead to a con-
vergent H-matrix approximation. Such a partition is obtained if the indices
within each index set Iℓ,j are ordered as follows:

if max
v,w∈Iℓ,j

|xv − xw| > max
v,w∈Iℓ,j

|yv − yw| then

n(v) < n(w) if xv < xw or (xv = xw and yv < yw)

else n(v) < n(w) if yv < yw or (yv = yw and xv < xw).

Here, (xv, yv) describes the geometric location associated with an index v, and
n(v) ∈ {1, · · · ,#Iℓ,j} assigns the index number. We will refer to this type of
bisection as the standard partition or geometric bisection.

In order to define an admissibility condition, let Bℓ,j := BIℓ,j
be an axially

parallel bounding box that contains the union of the supports of the basis
functions corresponding to the indices in Iℓ,j . Then, the standard admissibility
condition is given by: Iℓ,j × Iℓ,k is admissible if

min{diam(Bℓ,j), diam(Bℓ,k)} ≤ η dist(Bℓ,j , Bℓ,k) (3)

for some parameter η > 0.
Given a hierarchical index set partitioning, a hierarchy of partitionings of

the block index set I × I is obtained in a canonical way as shown in Figure 2.

Let a hierarchical index set partitioning be given. We define a hierarchy
of block partitionings by defining I × I = I0,0 × I0,0, and a block b :=
Iℓ,j1 × Iℓ,j2 satisfies exactly one of the following three conditions:

(i) b satisfies an admissibility condition (3),
(ii) min{#Iℓ,j1 ,#Iℓ,j2} ≤ nmin,
(iii) b has (four) successors Iℓ+1,k1 × Iℓ+1,k2 where Iℓ+1,k1 and Iℓ+1,k2 are
successors of Iℓ,j1 and Iℓ,j2 , resp..

Fig. 2. Hierarchical block index set partitioning
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In terms of the respective matrix blocks, the three cases (i) - (iii) cor-
respond to (i) the approximation of a block that satisfies the admissibility
condition (3) by an R(k)-matrix, (ii) the representation of small blocks as
full matrices, and, (iii) the subdivision of blocks that have successors in the
hierarchical block index set partition.

2.3 Modifications for constant convection directions

In Le Borne [2003], modifications to the standard H-matrix have been devel-
oped at first for the pure convection case ǫ = 0 and then been generalized
for arbitrary ǫ > 0 to an ǫ- and b-dependent partitioning and admissibility
condition which produce a gradual transition from the standard partitioning
and admissibility condition to their modified counterparts as ǫ→ 0. In order
to generate such a gradual transition for a constant convection direction b,
the (Euclidean) norm that was used for the calculation of the diameter and
distance of clusters in the admissibility (3) has been replaced by the norm

‖x‖α,b :=
√
α(b · x)2 + (b⊥ · x)2 for x = (x1, x2)

T ∈ R2

where b is the convection vector in the convection-diffusion equation, b⊥ is
its orthogonal complement, and α ∈ R+ is a parameter that depends on
the convection dominance given by ǫ, the mesh width h, and the numerical
viscosity induced by the discretization.

In the index partitioning algorithm we will now use bounding boxes that
are parallel to the convection b and its orthogonal complement b⊥, and the
objective is no longer to produce subsets with small diameters but rather to
produce subsets stretched in convection direction. The modified partition is
obtained as follows:

if ( max
v,w∈Bℓ,j

{α|b · (v − w)|} > max
v,w∈Bℓ,j

|b⊥ · (v − w)|) then

partition cluster Iℓ,j along b⊥ (orthogonal complement of b)

else partition cluster Iℓ,j along b (convection vector);

If we set α = 1 and b = (1, 0)T we obtain the standard partition. Given
such a hierarchical index partitioning, we will then construct the hierarchy of
block partitioning in the canonical way described in Figure 2.

2.4 Modifications for non-constant convection directions

In the case of a non-constant convection b, we begin our consideration with
an example where the convection aligns perfectly with the underlying grid as
shown in Figure 3. We will later generalize our strategy to the more realistic
case of a convection b that does not necessarily align with the grid. In the
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initial triangulation

(0,−1)T if x<y

else(1,0) T

non−constant convection b(x,y) that aligns with the grid

b(x,y)=

vertex numbering

2
11 m +1

m
m1

2

n

Fig. 3. Non-constant convection that aligns with the grid

given example, we will order the n unknowns with respect to the convection
as indicated in Figure 3.

We now construct an H-matrix structure using the index and block index
partitioning as described in Figures 1 and 2. Using the weak admissibility
condition: s× t is admissible if s 6= t (i.e., all off-diagonal blocks are admissi-
ble), we can represent the exact inverse in the case of ǫ = 0 (pure convection
problem) as an H-matrix with local ranks k(b) = 1. The storage costs for this
H-matrix structure amount to O(n log2 n) as proven in [Hackbusch, 1999,
Lemma 3.1]. The fact that we indeed represent the exact inverse results from
the particular ordering which guarantees that off-diagonal blocks have at most
rank 1.

In the case of a non-zero parameter ǫ or a non-aligning convection direc-
tion, the discrete system will contain some artificial diffusion. In the case of
a constant convection b, we introduced a parameter α to let the amount of
diffusion control the partition and admissibility. In the case of non-constant
convection, the general idea to proceed is as follows: For the first p refinement
steps, we use a precomputed downwind ordering of the unknowns (along the
non-constant convection direction) to partition the index set. Suitable down-
wind ordering strategies can be found in, e.g, Le Borne [2000]. For any further
refinement steps, we use the standard partitioning (trying to obtain subsets
with small diameters).

3 H-matrices in iterative methods and numerical results

The H-matrix technique allows to compute a data-sparse approximation A−H

to a (typically fully populated) matrix A−1 in nearly optimal complexity. Such
an approximation can be used

• in a linear iteration xi+1 = xi −A−H(Axi − b),
• as a preconditioner in a Krylov subspace method (e.g., BiCG-stab, GM-

RES, etc.), or
• as a smoother in a multigrid iteration,
• for the computation of Schur complements and their inverses, etc.

Here we provide numerical results for the first two applications. The
convection-diffusion equation (1) serves as a test problem for various values of ǫ
and convection directions b = (1, 0)T (Table 1) and b(x, y) = (0.5−y, x−0.5)T
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(Table 2). In Tables 1 and 2 we provide the number of iteration steps that are
necessary to reduce the Euclidean norm of the residual ‖b−Axi‖2 to an accu-
racy of 10−8 for n = 16129 unknowns (with a maximum number of iterations
of 100 and initial iterate x0 = 100(1, · · · , 1)T ). The time per iteration step
is recorded in the second column of Table 1 (computed on a DELL Precision
Workstation, 2.4GHz, compare with 0.012s for a classical Gauß-Seidel step).

Table 1. Iteration steps for b = (0, 1)T , modified H-matrix

time per basic iteration bicg-stab
k(b)/ǫ step (s) 1 1e-2 1e-4 1e-6 1 1e-2 1e-4 1e-6

1 0.117 100 19 4 2 100 9 2 1
2 0.128 61 7 3 2 11 4 2 1
3 0.143 8 5 3 2 4 3 2 1
4 0.155 6 4 3 2 3 2 2 1
5 0.165 4 3 2 2 2 2 1 1
6 0.183 3 3 2 2 2 2 1 1

As expected, the number of necessary steps decreases considerably as we
increase the local rank of the H-matrix. For the numerical tests reported
in Table 2 we used the standard H-matrix. For the convection-dominant case
ǫ = 10−6, we also provide in parentheses the results for the modified partition.
Here, in the first two index partitions the indices have been ordered with
respect to their distance to the circle origin (0.5, 0.5). All further partitions
were performed in the standard way. We observe slight improvements.

Table 2. Iteration steps for b =circle, standard H-matrix

basic iteration bicg-stab
k(b)/ǫ 1 1e-2 1e-4 1e-6 1 1e-2 1e-4 1e-6

1 100 100 100 100 (100) 100 100 63 69 (90)
2 57 26 100 100 (100) 11 9 26 40 (29)
3 8 6 39 55 (72) 4 3 11 13 (11)
4 6 4 20 34 (23) 3 2 7 9 (6)
5 4 3 9 14 (10) 2 2 4 5 (4)
6 3 3 8 11 (8) 2 2 4 4 (3)

The H-matrix approximations A−H have been computed using a block
Gauß elimination process and are therefore not necessarily the best possible
approximations. When evaluating a preconditioner, the costs for the construc-
tion of the preconditioner have to be taken into account. In this case, the con-
struction of the H-matrix A−H is of nearly optimal complexity O(n log2

2 n),
however, with a relatively high constant, see Grasedyck and Hackbusch [2002]
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(taking 73s (k = 1) up to 166s (k = 6) for ǫ = 1.0 and 40s (k = 1) up to 76s
(k = 6) for ǫ = 1e− 6). A−H can, however, be computed more efficiently via
a (parallelizable) domain decomposition algorithm, see Hackbusch [2002].

These positive results encourage the further study of H-matrix precondi-
tioners in harder problems involving non-constant, cyclic convection directions
in systems of PDEs in three spatial dimensions where there is still a need for
efficient iteration methods.
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W. Hackbusch, L. Grasedyck, and S. Börm. Introduction to hierarchical ma-
trices with applications. Engineering Analysis with Boundary Elements, 27:
405–422, 2003.

W. Hackbusch and B. Khoromskij. A sparse H-matrix arithmetic: General
complexity estimates. J. Comp. Appl. Math., 125:479–501, 2000a.

W. Hackbusch and B. Khoromskij. A sparse H-matrix arithmetic. Part II:
Application to multi-dimensional problems. Computing, 64:21–47, 2000b.

S. Le Borne. Ordering techniques for two- and three-dimensional convection-
dominated elliptic boundary value problems. Computing, 64:123–155, 2000.

S. Le Borne. H-matrices for convection-diffusion problems with constant con-
vection. Computing, 70:261–274, 2003.

E. E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton
method. Computing, 64:367–380, 2000.



Parallel Performance of Some Two-Level
ASPIN Algorithms

Leszek Marcinkowski1⋆ and Xiao-Chuan Cai2⋆⋆

1 Department of Mathematics, Informatics and Mechanics, Warsaw University,
Banacha 2, 02-096 Warszawa, Poland
(lmarcin@mimuw.edu.pl,http://www.mimuw.edu.pl/~lmarcin/)

2 Department of Computer Science, University of Colorado at Boulder, Boulder,
CO 80309-0430, USA
(cai@cs.colorado.edu,http://www.cs.colorado.edu/~cai/)

Summary. In this paper we study the parallel performance of some nonlinear addi-
tive Schwarz preconditioned inexact Newton methods for solving large sparse system
of nonlinear equations arising from the discretization of partial differential equations.
The main idea of nonlinear preconditioning is to replace an ill-conditioned nonlinear
system by an equivalent nonlinear system that has more balanced nonlinearities.
In addition to balance the nonlinearities through nonlinear preconditioning, we also
need to make sure that the multilayered iterative solver is scalable with respect to
the number of processors. We focus on some two-level nonlinear additive Schwarz
preconditioners, and show numerically that these two-level methods can reduce the
nonlinearities and at the same time maintain the parallel scalability. Parallel numer-
ical results for some high Reynolds number incompressible Navier-Stokes equations
will be presented.

1 Introduction

We study Newton type algorithms for solving a nonlinear system of equations

F (u∗) = 0, (1)

starting from an initial guess u(0) ∈ ℜn. Here F = (F1, . . . , Fn)
T , Fi =

Fi(u1, . . . , un) are given functions which are often the result of the discretiza-
tion of some nonlinear partial differential equations, such as the incompressible
Navier-Stokes equations for fluid flows, using finite element or finite differ-
ence methods. For such nonlinear systems, some parallel nonlinear additive

⋆ This work was partially supported by Polish Scientific Grant 2/P03A/005/24.
⋆⋆ The work was partially supported by the Department of Energy, FC02-01ER-

25479, and by the National Science Foundation, CCR-0219190, ACI-0072089 and
ACI-0305666.
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Schwarz preconditioned inexact Newton methods (ASPIN) were recently pro-
posed in Cai and Keyes [2002], and Cai et al. [2002]. ASPIN has been applied
successfully to some rather difficult problems such as the transonic full poten-
tial flows (Cai et al. [2000]), and the high Reynolds number incompressible
Navier-Stokes flows (Hwang and Cai [2003b]) and (Hwang and Cai [2003a]).
In this paper we compare the parallel performance of a one-level method (Cai
and Keyes [2002]), a two-level method (Cai et al. [2002]), and a slightly modi-
fied two-level method to be presented in this paper. In the modified two-level
method, the initial guess u(0) is replaced by a fine grid interpolation of the
coarse grid solution. It turns out in some situations that the small modifi-
cation has some major impact on the overall performance of the algorithm.
The focus of this paper is on the linear and nonlinear scalability issues of
the methods, and our discussions will be based on the numerical results for
solving some high Reynolds number incompressible Navier-Stokes equations
on distributed memory parallel computers with modest number of processors.

2 Algorithm description

In the rest of the paper we shall refer to the nonlinear algebraic system (1)
as the fine grid system, or simply the fine system, which has n unknowns and
n equations. In order to introduce the two-level algorithm, we assume that
there is a “coarse” version of (1) in the following form

F c(uc∗) = 0, (2)

which is a nonlinear algebraic system with nc unknowns and nc equations.
Usually nc << n. Such a coarse system can be obtained by the discretization of
the same differential equations on a coarser grid. The coarse and fine functions
F (u) and F c(uc) approximate each other in certain sense.

Inexact Newton algorithms (IN) (Eisenstat and Walker [1994]) are com-
monly used for solving such systems. In this paper, we work in the framework
of nonlinearly preconditioned inexact Newton algorithms (PIN) recently in-
troduced in (Cai and Keyes [2002]). In other words, we try to find the solution
u∗ of equation (1) by solving an equivalent system of nonlinear equations

F(u∗) = 0. (3)

(1) and (3) are equivalent in the sense that they have the same solution.
Other than having the same solution, the nonlinear functions F ( ) and F( )
may have completely different forms. We will define the function F using
the restriction of F on subspaces, and the coarse function F c in the case of
multilevel methods.

2.1 A one-level method

We first introduce the subspaces by an overlapping partition of S = (1, . . . , n),
which is an index set for the system (1); i.e. one integer for each unknown
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ui and Fi. We assume that S1, . . . , SN is a partition of S in the sense that⋃N
i=1 Si = S, and Si ⊂ S. Here we allow the subsets to have overlap. Let ni be

the dimension of Si; then, in general,
∑N

i=1 ni ≥ n. Using the partition of S,
we introduce subspaces of ℜn and the corresponding restriction and extension
matrices. For each Si we define Vi ⊂ ℜn as

Vi = {v|v = (v1, . . . , vn)
T ∈ ℜn, vk = 0, if k 6∈ Si}

and a n×n restriction (also extension) matrix ISi whose kth column is either
the kth column of the n× n identity matrix In×n if k ∈ Si or zero if k 6∈ Si.
Using the restriction operator, we define the subdomain nonlinear function as
FSi = ISiF. We next define the major component of the algorithm, namely the
nonlinearly preconditioned function. For any given v ∈ ℜn, define Ti(v) ∈ Vi
as the solution of the following subspace nonlinear system

FSi(v − Ti(v)) = 0,

for i = 1, . . . , N . Taking the sum of the all Tis, we have a new function

F (1)(u) =

N∑

i=1

Ti(u), (4)

The operators Ti and F (1) were introduced by Dryja and Hackbusch [1997]
in which a version of a nonlinear Richardson method was applied to solve the
nonlinear system corresponding to (4).

Algorithm 1 (ASPIN(1)) Obtain an approximate solution of u∗ by solving

F (1)(u∗) = 0

using the inexact Newton method with u(0) as the initial guess (Cai and Keyes
[2002]).

It is worth to note that under some assumptions it was proven by Dryja
and Hackbusch [1997] and Cai and Keyes [2002] that the local problems have
unique solutions, thus Ti are well defined. It is also shown there that the
Jacobian of the preconditioned system is well defined.

To apply an inexact Newton method to (4) we have to know how to com-
pute the Jacobian of F (1). It is shown in (Cai and Keyes [2002]) that one can
obtain the Jacobian of F (1), denoted by J (1), by the following formula:

J (1)(u) =

N∑

i=1

J−1
Si

(u− Ti(u)) · J(u),

where J(u) = DF (u) is the Jacobian of the original function F and JSi(u) =
ISiJ(u)ISi . In practice since Ti(u) converges to zero, we can assume that a

good approximation of the Jacobian is given by J (1)(u) ≈∑N
i=1 J

−1
Si

(u)J(u),
which is, as a matter of fact, the original Jacobian matrix preconditioned by a
one-level additive Schwarz method, thus it should be well-conditioned as long
as the number of subdomains is not very large.
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2.2 Two two-level methods

Similarly, let Sc = (1, . . . , nc) be an index set for the coarse system, and we
assume that {Sc1, . . . , ScN } is a partition. For simplicity, we partition the fine
and the coarse systems into the same number of subsets. Also for simplicity,
in our parallel implementation, we allocate the subsystems corresponding to
the index sets Si and Sci to the same processor. We introduce the subdomain
fine to coarse restriction operator Ri : Si −→ Sci , in the sense that for each
vector vi ∈ Vi, there is a unique vector vci ∈ V ci , such that

vci = Rivi.

Assuming the Ris are consistent in the overlapping part of the subdomains,
we can define a global fine to coarse restriction operator Rc : ℜn −→ ℜnc

as
follows: For any v ∈ ℜn, the k component of Rcv is defined as

(Rcv)k = (Riv)k, if k ∈ Sci .

A global coarse to fine extension operator Ec can be defined as the transpose
of Rc. To define the coarse function T0 : ℜn −→ ℜn, we first introduce a
projection T c : ℜn −→ ℜnc

as follows: For any given v ∈ ℜn, T cv satisfies the
coarse nonlinear system

F c(T c(v)) = RcF (v). (5)

We assume that (5) has a unique solution. Then we define an operator T0 :
ℜn −→ ℜn by

T0(v) = EcT c(v). (6)

Suppose that T0 is given as in (6); it is easy to see that T0(u∗) can be com-
puted without knowing the exact solution u∗ itself. In fact, from (5), we have
T0(u∗) = Ecuc∗. Throughout this paper, we assume that the coarse solution uc∗
is given, through a pre-processing step. We can now introduce a new nonlinear
function ℜn −→ ℜn by

F (2)(u) = T0(u)− T0(u∗) +

N∑

i=1

Ti(u). (7)

Algorithm 2 (ASPIN(2)) Obtain an approximate solution of u∗ by solving

F (2)(u∗) = 0

using the inexact Newton method with u(0) as the initial guess (Cai et al.
[2002]).

In this paper, we propose a slight modification of the above algorithm in
the selection of the initial guess. The algorithm takes the following form.
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Algorithm 3 (ASPIN(2’)) Obtain an approximate solution of u∗ by solv-
ing

F (2)(u∗) = 0

using the inexact Newton method with T0(u∗) as the initial guess.

No additional cost is needed to switch from the original initial guess u(0)

to T0(u∗) since the vector T0(u∗) is needed anyway in the nonlinear function
evaluation.

3 Numerical studies

We next present some numerical results on a two-dimensional lid driven cavity
flow problem (Hirsch [1990]). Consider the velocity-vorticity formulation of the
incompressible Navier-Stokes equations on the unit square Ω = (0, 1)× (0, 1):





−∆u− ∂ω

∂y
= 0

−∆v +
∂ω

∂x
= 0

− 1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
= 0,

(8)

where Re is the Reynolds number, (u, v) is the velocity and ω is the vortic-
ity. The boundary conditions are: u = v = 0 for bottom, left and right, and
u = 1, v = 0 for top. The boundary condition on ω is given by its definition:
ω(x, y) = −∂u∂y + ∂v

∂x . The usual uniform mesh 5-point finite difference approx-
imation is used to discretize the boundary value problem. Upwinding is used
for the first derivative terms and central differencing for the second deriva-
tive terms. To obtain a nonlinear algebraic system of equations F , we use
natural ordering inside each subdomain, and at each mesh point we arrange
the unknowns in the order of u, v, and ω. The partitioning of F is through
the partitioning of the mesh points in a checkerboard fashion for both the
fine and the coarse grids. The coarse to fine interpolation is defined using the
coarse grid bilinear finite element basis functions. The implementation is done
using PETSc (Balay et al. [2002]), and the results are obtained on an IBM SP
supercomputer. Double precision is used throughout the computations. The
initial guess u(0) is zero for u, v and ω in ASPIN(1) and ASPIN(2). We stop
the global PIN iterations if ‖F(u(k))‖ ≤ 10−10‖F(u(0))‖. The same stopping
condition is used for the coarse grid nonlinear systems, which are solved by
a Newton-Krylov-Schwarz method based on the same mesh partition. The
global Jacobian systems are solved with GMRES restarting at 30. The global
linear iteration for solving the global Jacobian system is stopped if the relative
tolerance ‖F(u(k)) − F ′

(u(k))p(k)‖ ≤ 10−3‖F(u(k))‖ is satisfied. At the kth
global nonlinear iteration, nonlinear subsystems
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Table 1. Varying Reynolds numbers. Fine mesh size 128 × 128, coarse mesh size
32 × 32, number of processors 16.

Reynolds global global average linear
number nonlinear linear iteration per

iterations iterations nonlinear step

101 3 112 37
ASPIN(1) 102 4 162 40

103 7 216 30
104 6 156 26

101 4 38 9
ASPIN(2) 102 6 89 14

103 7 99 14
104 22 9517 432

101 3 28 9
ASPIN(2’) 102 4 51 12

103 4 48 12
104 3 40 13

FSi

(
u(k) − g(k)

i

)
= 0,

have to be solved. We use the standard IN with a cubic line search for such
systems with initial guess g

(k)
i,0 = 0. The local nonlinear iteration in sub-

domain Si is stopped if the following condition is satisfied: ‖FSi(g
(k)
i,l )‖ ≤

10−3‖FSi(g
(k)
i,0 )‖.

Table 2. Varying the overlapping size. Reynolds number = 103. Fine mesh size
128 × 128, coarse mesh size 32 × 32, number of processors 16.

global global average linear
overlap nonlinear linear iteration per

iterations iterations nonlinear step

1 7 216 30
ASPIN(1) 2 6 141 23

4 6 112 18

1 8 167 20
ASPIN(2) 2 8 122 15

4 7 100 14

1 5 62 12
ASPIN(2’) 2 4 46 11

4 4 45 11

We first compare the three ASPIN algorithms for different Reynolds num-
bers. In Tables 1, we report the total number of global nonlinear iterations,
the total number of linear iterations, and the average number of linear itera-
tions per nonlinear iteration. For this particular test problem, the nonlinearity
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is determined mostly by the Reynolds number. As Re increases the nonlin-
ear system becomes more difficult to solve with the regular inexact Newton
method (Cai and Keyes [2002]). However, as shown in Table 1, the numbers
of linear and nonlinear iterations of ASPIN(2’) are not very sensitive to the
increase of Re.

In Table 2, we test the algorithms with different level of overlaps in the
Schwarz preconditioner. It is quite interesting to see that ASPIN(2’) is not
sensitive to this parameter, which is a bit surprising.

To use the two-level algorithms on large number of processors and for large
fine meshes, the coarse grid size has to be sufficiently fine. This leads to some
difficult coarse grid nonlinear systems to solve. Although the coarse problems
are, in general, easier to solve than the fine grid problem but sometimes NKS
may not be good enough to converge the coarse nonlinear iterations. In the
next set of experiments we use an ASPIN(1) coarse solver. That is instead of
solving problem (2) by NKS we solve it using ASPIN(1). The stopping criteria
for the coarse solver and the fine solver are the same.

In Table 3 we present some experiments for ASPIN(2’) on an 1024× 1024
mesh, Reynolds number 104, and the coarse mesh is 64× 64.

Table 3. ASPIN(2’). Varying the number of processors. Fine mesh size 1024×1024,
coarse mesh size 64 × 64, Reynolds number = 104.

processors nonlinear average linear iter. total CPU
# iterations per nonlin. step time (sec)

32 7 34 1377
64 8 32 653
128 8 39 418
256 10 44 374

The results show that both the number of linear and nonlinear iterations are
nearly independent of the number of processors, which is the same as the
number of subdomains. In terms of the CPU time, the algorithm scales well
for up to 128 processors. The CPU time for 256 processors is only slightly
smaller than for 128 processors. We suspect that for large number of proces-

Table 4. Performance of the ASPIN(1) based coarse solver. Fine grid 1024 × 1024,
Reynolds number = 104.

processors coarse total CPU coarse CPU percentage
# grid time (sec) time (sec)

32 64 × 64 1377 20 1.4 %
64 64 × 64 653 19 2.9%
128 64 × 64 418 16 3.8%
256 64 × 64 374 35 9.3%
256 128 × 128 361 155 42.9%
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sors the ASPIN(1) coarse solver becomes less effective. Thus we measure the
computational time the coarse solver takes, and the results are summarized
in Table 4 in which we also report the percentage of time spent on the coarse
solver. It seems that the ASPIN(1) based coarse solver takes much more com-
puting time for large number of processors. Our current approach works fine
for modest number of processors, but for larger number of processors a more
efficient parallel coarse solver is definitely needed.

References

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.

X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algo-
rithms. SIAM J. Sci. Comput., 24(1):183–200, 2002.

X.-C. Cai, D. E. Keyes, and L. Marcinkowski. Non-linear additive Schwarz
preconditioners and application in computational fluid dynamics. Internat.
J. Numer. Methods Fluids, 40(12):1463–1470, 2002.

X.-C. Cai, D. E. Keyes, and D. P. Young. A nonlinear additive Schwarz
preconditioned inexact Newton method for shocked duct flow. In N. Debit,
M. Garbey, R. Hoppe, J. Periaux, D. Keyes, and Y. Kuznetsov, editors,
13th Int. Conference on Domain Decomposition Methods, (Lyon, France,
October 9-12 2000), pages 343–350. DDM.org, Augsburg, 2000.

M. Dryja and W. Hackbusch. On the nonlinear domain decomposition
method. BIT, 37(2):296–311, 1997.

S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton meth-
ods. SIAM J. Optim., 4(2):393–422, 1994.

C. Hirsch. Numerical computation of internal and external Flows: computa-
tional methods for inviscid and viscous flows. John Wiley & Sons, New
York, 1990.

F.-N. Hwang and X.-C. Cai. Improving robustness and parallel scalability of
Newton’s method through nonlinear preconditioning. These proceedings,
2003a.

F.-N. Hwang and X.-C. Cai. A parallel nonlinear additive Schwarz precon-
ditioned inexact Newton algorithm for incompressible Navier-Stokes equa-
tions. Preprint, Department of Computer Science, University of Colorado
at Boulder, 2003b.



Algebraic Analysis of Schwarz Methods for
Singular Systems

Ivo Marek and Daniel B. Szyld

Czech Institute of Technology, School of Civil Engineering

Temple University, Department of Mathematics
(http://www.math.temple.edu/~szyld/)

Summary. During the last few years, an algebraic formulation of Schwarz methods
was developed. In this paper this algebraic formulation is used to prove new conver-
gence results for multiplicative Schwarz methods when applied to consistent singular
systems of linear equations. Coarse grid corrections are also studied. In particular,
these results are applied to the numerical solutions of Markov chains.

1 Introduction

We consider the solution of consistent large sparse linear singular systems of
the form

Ax = b. (1)

We study its solution by means of Schwarz methods. Specifically, we analyze
the case where the coefficient matrix A = I − B, where I is the identity
matrix and B is a nonnegative (column) stochastic matrix, i.e., BT e = e,
where e = (1, 1, . . . , 1)T ∈ IRn. Thus A is a singular M -matrix; see section 2
for definitions. In particular we consider the case of b = 0, and thus we look
for the nonnegative vector v, normalized so that vT e = 1, satisfying Av = 0,
i.e., such that Bv = v. This is the stationary probability distribution of the
Markov chain represented by B.

In our analysis we use the algebraic formulation of Schwarz methods de-
veloped in Benzi et al. [2001], Frommer and Szyld [1999], and applied, e.g., in
Frommer and Szyld [2001], Nabben [2003], Nabben and Szyld [2003].

There is no separate treatment in the literature of Schwarz methods for
singular systems in the p.d.e. context. Nevertheless the implementations de-
rived mostly for the non-singular case can be shown to work in the singular
case as well, especially when the null space is known. This is the case, for
example, when Neumann boundary conditions are present. The convergence
theory developed, e.g., in Dryja et al. [1994], Dryja and Widlund [1994], can
be applied to these cases with little or no changes.
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We believe that this is the first time that singular systems are analyzed
using an algebraic approach to Schwarz methods (with overlap), and that
Markov chains problems are studied in this context. One of our goals is to
present Schwarz iterations as one more possible tool for the numerical solu-
tions of Markov chains. In fact, multiplicative Schwarz iterations reduce to the
block Gauss-Seidel method when the overlap is removed. Having the overlap
has proved crucial for the fast convergence of these methods in the nonsin-
gular case; see, e.g., Smith et al. [1996], Dryja and Widlund [1994]. In the
singular context, having larger overlap may decrease the convergence rate of
the iteration. Comparison theorems may be used to prove such decrease in
convergence rate; see Marek and Szyld [2000], Marek and Szyld [2002].

We discuss here one approach, namely that multiplicative Schwarz itera-
tions applied directly to the n×n system (1) converge. Other approaches are
discussed in Marek and Szyld [2004], where “coarse-grid” corrections are also
considered.

2 Definitions and auxiliary results

In this section we present some notation, definitions, and preliminaries. Con-
cepts on nonnegative matrices not explicitly defined here can be found in the
book by Berman and Plemmons [1979].

An n × n matrix C = (cjk) with cjk ∈ IR, is called nonnegative if cjk ≥
0, j, k = 1, . . . , n; this is denoted C ≥ O. When cjk > 0, j, k = 1, . . . , n, we
say that the matrix is positive and denote it by C > O. The same notation is
used for nonnegative and positive vectors. By σ(C) we denote the spectrum
of C and by ρ(C) its spectral radius. By R(C) and N (C) we denote the range
and null space of C, respectively.

Let λ ∈ σ(C) be a pole of the resolvent operator R(µ,C) = (µI − C)−1.
The multiplicity of λ as a pole of R(µ,C) is called the index of C with respect
to λ and denoted indλC. Equivalently, k = indλC if it is the smallest inte-
ger for which R((λI − C)k+1) = R((λI − C)k). This happens if and only if
R((λI − C)k)⊕N ((λI − C)k) = IRn.

Let A be an n×n matrix. A is an M -matrix if A = βI−B, B nonnegative
and ρ(B) ≤ β. A pair of matrices (M,N) is called a splitting ofA if A = M−N
and M−1 exists. A splitting of a matrix A is called of nonnegative type if the
matrix T = M−1N is nonnegative (Marek [1970]). If the matrices M−1 and
N are nonnegative, the splitting is called regular (Varga [1962]).

Let T be a square matrix. T is called convergent if lim
k→∞

T k exists, and

zero-convergent if lim
k→∞

T k = O. Standard stationary iterations of the form

xk+1 = Txk + c, k = 0, 1, . . . , (2)

converge if and only if either lim
k→∞

T k = O. or, if ρ(T ) = 1, T is convergent. A

square matrix T with unit spectral radius is convergent if the following two
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conditions hold:
(i) if λ ∈ σ(T ) and λ 6= 1, then |λ| < 1.
(ii) ind1T = 1.
When T ≥ O, (i) can be replaced with T having positive diagonal entries (Ale-
feld and Schneider [1982]); see Szyld [1994] for equivalent conditions for (ii).

We state a very useful Lemma; see e.g., Bohl and Marek [1995] for a proof.
We note that when ρ(T ) = 1, this lemma can be used to show condition (ii)
above. To prove convergence one needs to show in addition that condition (i)
also holds, or equivalently, that the diagonal entries are all positive.

Lemma 1. Let T be a nonnegative square matrix such that Tv ≤ αv with
v > 0. Then ρ(T ) ≤ α. If furthermore ρ(T ) = α, then indαT = 1.

A square nonnegative matrix B is irreducible if for every pair of indices
i, j there is a power k = k(i, j) such that the ij entry of Bk is nonzero.

3 Algebraic formulation of Schwarz methods

Given an initial approximation x0 to the solution of (1), the (one-level) mul-
tiplicative Schwarz method can be written as the stationary iteration (2),
where

T = (I − Pp)(I − Pp−1) · · · (I − P1) =

1∏

i=p

(I − Pi) (3)

and c is a certain vector. Here

Pi = RTi A
−1
i RiA, (4)

where Ai = RiAR
T
i , Ri is a matrix of dimension ni × n with full row rank,

1 ≤ i ≤ p; see, e.g., Smith et al. [1996]. In the case of overlap we have
p∑

i=1

ni > n. Note that each Pi, and hence each I−Pi, is a projection operator;

i.e., (I − Pi)2 = I − Pi. Each I − Pi is singular and ρ(I − Pi) = 1.
We refer the reader to the papers Benzi et al. [2001], Frommer and Szyld

[1999] for details of the algebraic formulation of Schwarz methods. What we
will say here is that nonsingular matrices Mi, i = 1, . . . , p, are defined so
that A = Mi −Ni are regular splittings (and thus of nonnegative type), and
furthermore the following equality holds:

EiM
−1
i = RTi A

−1
i Ri, i = 1, . . . , p, (5)

where Ei = RTi Ri. These diagonal matrices Ei have ones on the diagonal in
every row where RTi has nonzeros. We can thus rewrite (3) as

T = (I − EpM−1
p A)(I − Ep−1M

−1
p−1A) · · · (I − E1M

−1
1 A). (6)
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In the context of discretizations of p.d.e.s, the use of Schwarz methods
greatly benefit from the use of coarse grid corrections, and they are needed
to guarantee a convergence rate independent of the mesh size; see, e.g., Dryja
et al. [1994], Dryja and Widlund [1994], Quarteroni and Valli [1999], Smith
et al. [1996]. Coarse grid corrections can be additive or multiplicative. Here we
restrict our comments to the multiplicative corrections. To that end consider
a new projection P0 of the form (4) onto the “coarse space”, i.e., onto a
particular subset of states, usually taken in the overlap between the other set
of states. Corresponding to these “coarse” states, there correspond a natural
matrix R0 and A0 = R0AR

T
0 , so that E0 = RT0 R0 and M0 is similarly defined;

see Benzi et al. [2001]. The multiplicative corrected multiplicative Schwarz
iteration operator is then

Tµc = (I − P0)Tµ = (I − E0M
−1
0 A)T. (7)

In Benzi et al. [2001] it was shown that when A is nonsingular, ρ(T ) < 1,
and thus, the method (2) is convergent. The same results hold for Tµc, i.e.,
with a “coarse grid” correction. In this paper we explore the convergence
of (2), using the iterations defined by (6) and (7), when A is singular. Other
Schwarz methods for the singular case are studied in Marek and Szyld [2004].

4 Convergence of multiplicative Schwarz

We prove here our main result, namely that when A is irreducible, the mul-
tiplicative Schwarz iterations are convergent. As is well known, when B ≥ O
is irreducible, its Perron eigenvector is strictly positive v > 0. If in addition
we require that the diagonals of the iteration matrices are positive, we show
in the next theorem that the matrix (6) is convergent.

Theorem 1. Let A = I − B, where B is an n × n column stochastic matrix
such that Bv = v with v > 0. Let p ≥ 1 be a positive integer and A = Mi−Ni
be splittings of nonnegative type such that the diagonals of Ti = M−1

i Ni,
i = 1, . . . , p, are positive. Then (6) is a convergent matrix.

Proof. Let v > 0 be such that Bv = v, i.e., Av = 0. For each splitting
A = Mi −Ni, we then have th at Miv = Niv. This implies that Tv = v, and
by Lemma 1 we have that ρ(T ) = 1 and that the index is 1. To show that T
is convergent, we show that its diagonal is positive. Each factor in (6) is then

I − Ei + Ei(I −M−1
i A) = I − Ei + EiM

−1
i Ni,

and since O ≤ Ei ≤ I and M−1
i Ni ≥ O, each factor is nonnegative. For

a row in which Ei is zero, the diagonal entry in this factor has value one.
For a row in which Ei has value one, the diagonal entry in this factor is the
positive diagonal entry of M−1

i Ni. Thus, we have a product of nonnegative
matrices, each having positive diagonals, implying that the product T has
positive diagonal entries, and therefore it is convergent. ⊓⊔
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Corollary 1. Theorem 1 applies verbatim to the case of “coarse grid” correc-
tion, by considering the additional splitting A = M0 −N0, with T0 = M−1

0 N0

having positive diagonals, so that Tµc of (7) is convergent.

Let γ = max{|λ|, λ ∈ σ(T ), λ 6= 1}. The fact that T is convergent implies
that γ < 1; see, e.g., Berman and Plemmons [1979]. Therefore Theorem 1 and
Corollary 1 indicate that for multiplicative Schwarz, σ(M−1A) = σ(I − T )
has zero as an isolated eigenvalue with index 1, and the rest of the spectrum
is contained in a ball with center 1 and radius γ. Furthermore, the smaller γ
is, the smaller this ball around 1 is. This configuration of the spectrum often
gives good convergence properties to Krylov subspace methods preconditioned
with multiplicative Schwarz.

5 The reducible case

We consider here the general case, where B might not be irreducible. There is
a permutation matrix H such that the symmetric permutation of B is lower
block-triangular [Gantmacher, 1959, p.341], and in fact it has the form

HBHT =




G0 O · · · O
G1 C1 · · · O
...

...
. . .

...
Gp O · · · Cp


 , (8)

where lim
k→∞

Gk0 = O and Ci is an irreducible and stochastic matrix, i =

1, . . . , p. There are efficient algorithms to compute the permutation matrix
H , and thus, the form (8). For example, Tarjan’s algorithm has almost linear
complexity and good software is available for it; see Duff and Reid [1978].

Solving linear systems with the matrix B reduces then to solving systems
with each of the diagonal blocks of (8). This can be accomplished using mul-
tiplicative Schwarz iterations, which were shown to converge for irreducible
stochastic matrices in section 4.
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Summary. We are interested in solving time dependent problems using domain
decomposition method. In the classical methods, one discretizes first the time di-
mension and then one solves a sequence of steady problems by a domain decom-
position method. In this paper, we study a Schwarz Waveform Relaxation method
which treats directly the time dependent problem. We propose algorithms for the
viscous Shallow Water equations.

1 Introduction

The principle of domain decomposition methods is to partition the initial do-
main into several subdomains and then to use a processor per subdomain to
solve the equation. The global solution is obtained if the processors exchange
informations in an iterative way at the common interfaces. This method is use-
ful to solve problems with a great number of unknowns. And it is more and
more used to simulate complex phenomena with different spatial discretiza-
tions in each subdomain.
Solving time dependent problems, classical methods discretize the time dimen-
sion first and then use domain decomposition methods on the steady problems
at each time step. Different strategies rely on the choice of transmission con-
ditions (see Schwarz [1870], Lions [1990], Quarteroni and Valli [1999], Japhet
et al. [2001]). In particular, in Japhet et al. [2001] transmission conditions
are designed which minimize the convergence rate. This strategy proved to
be very useful for many steady problems, for instance convection diffusion,
Euler or Helmholtz equations. However the classical strategy to treat evolu-
tion equations does not allow to manage different time discretizations for each
subdomain.
In some recent works a domain decomposition method for evolution prob-
lems quite different from the classical one has been proposed: they apply
the iterative algorithm directly to the time dependent problem. This Schwarz
Waveform Relaxation (SWR) method, permits to work with different time dis-
cretizations in each subdomain and therefore it provides an accurate method
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to simulate complex phenomena. This method is a derivation of the Waveform
Relaxation method: inspired by the Picard iteration, it has been studied in
Lelarasmee et al. [1982] for integrated circuit simulation and its convergence
can be accelerated by a multigrid method (see Vandewalle [1993]).
The first SWR algorithm used Dirichlet conditions on the interfaces (see Gan-
der and Zhao [1997], Gander and Stuart [1998]) and more recently more ap-
propriate interface conditions have been written in Gander et al. [1999]. In
this paper we apply Schwarz Waveform Relaxation methods to the Shallow
Water equations.

The Shallow Water equations are obtained by average of the Navier-Stokes
equations when the depth of the water is much smaller than the other dimen-
sions of the basin. If linearized around the velocity field U = 0 this model
becomes (see for example Pedlosky [1987])

{
∂tU− ν△U +DU + c2∇h = τs/ρ0,
∂th+ divU = 0.

(1)

where U = (u, v) is the velocity field, h the depth of the water,D =

(
0 −f
f 0

)
,

c2 is the speed of internal gravity waves, ν the viscosity of the fluid, τs is
the wind stress and f the Coriolis force supposed to be constant for the
theory. We introduce the Shallow Water operator LSW where W = (U, h)
and we are interested in solving LSWW = FW in Ω × (0, T ) with T < +∞,
W(·, ·, 0) = W0 in Ω and with boundary conditions.

In this paper we study Schwarz Waveform Relaxation algorithms to solve
the Shallow Water equations. We work on the space R2 which is split into two
half spaces Ω− = (−∞, L)× R and Ω+ = (0,+∞)× R, L ≥ 0 is the overlap
and let Γ0 = {y ∈ R, x = 0} and ΓL = {y ∈ R, x = L} denote the interfaces.

In Section 2 we propose an algorithm with Dirichlet interface conditions
(which needs an overlap), then we propose in Section 3 an optimized algorithm
which can be implemented without overlap. Finally we show numerical results
which underline the efficiency of the optimized method (Sec. 4). More details
about theorems will be found in Martin [2003].

2 Classical Schwarz Waveform Relaxation Method

Following ideas introduced in Gander and Zhao [1997] for the heat equation,
we propose the following algorithm for L > 0




LSW Wk+1
− = FW in Ω− × (0, T ),

Wk+1
− (·, ·, 0) = W0 in Ω−,

Uk+1
− = Uk

+ on ΓL × (0, T ),





LSW Wk+1
+ = FW in Ω+ × (0, T ),

Wk+1
+ (·, ·, 0) = W0 in Ω+,

Uk+1
+ = Uk

− on Γ0 × (0, T ),

(2)

where FW = (F1, F2, 0) = (F, 0), W0 = (U0, h0) and k ≥ 0. This algorithm
is initialized by U0

± in H2,1(Ω± × (0, T )) such that U0
±(·, ·, 0) = U0 in Ω±.
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We recall that we can find in Lions and Magenes [1972] the definition of
anisotropic Sobolev spaces and a theorem of extension. If we use moreover a
Fourier transform in y, a Laplace transform in t and a priori estimates, then
we can prove that algorithm (2) is well posed.

Theorem 1. Let F be in L2(0, T ;L2(Ω)), W0 = (U0, h0) in H1(Ω)×H1(Ω).
The algorithm (2) defines two unique sequences Wk

± = (Uk
±, h

k
±) in H2,1(Ω±×

(0, T ))×H1,1(Ω± × (0, T )) with ∇h± in H1(0, T ;L2(Ω±)).

We can prove that algorithm (2) converges by computing its convergence rate
written in Fourier-Laplace variables.

Theorem 2. Let F be in L2(0, T ;L2(Ω)), W0 = (U0, h0) in H1(Ω)×H1(Ω).
The algorithm (2) converges in L2(0, T ;H1(Ω±))× L2(0, T ;L2(Ω±)).

It is well-known that this algorithm is not efficient: the overlap between the
two subdomains is necessary and the convergence is slow. In Gander et al.
[1999] interface conditions have been introduced which are more appropriate.
In the next section we apply this new strategy to the Shallow Water equations.

3 Optimized Schwarz Waveform Relaxation Method

In this section we consider the case without overlap of the subdomains (L = 0)
and we denote by Γ the common interface. Since physical transmission con-
ditions, (i.e. quantities that must be continuous through the interface) are U
and −ν∂xU + c2(h, 0)t we propose the algorithm

8

<

:

LSW Wk+1
− = FW in Ω− × (0, T )

Wk+1
− (·, ·, 0) = W0 in Ω−

−ν∂xU
k+1
− + c2(hk+1

− , 0)t − Λ+Uk+1
− = −ν∂xU

k
+ + c2(hk

+, 0)
t − Λ+Uk

+ on Γ × (0, T )

8

<

:

LSW Wk+1
+ = FW in Ω+ × (0, T )

Wk+1
+ (·, ·, 0) = W0 in Ω+

ν∂xU
k+1
+ − c2(hk+1

+ , 0)t − Λ−Uk+1
+ = ν∂xU

k
− − c2(hk

−, 0)
t − Λ−Uk

− on Γ × (0, T )

(3)
with Λ+ and Λ− to be defined. The next theorem shows that we can choose
the operators Λ± in an optimal way.

Theorem 3. The operators Λ± can be chosen such that algorithm (3) con-
verges in two iterations. These operators are denoted Λ±exac.

These transmission conditions coincide with absorbing boundary conditions
(see for example Gander et al. [1999] for time dependent scalar equations). As
for many problems the operators Λ±exac are not differential and difficult to use,
therefore we have to approximate them (see for example Nataf and Rogier
[1995]). For low spatial frequencies, small Coriolis force and small viscosity
Λ±exac are approximated by:
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Λ±app =

(
c+ ν

2c∂t 0
0 p

)
,

with p a constant to be chosen. The following theorem gives a result of well-
posedness for the corresponding algorithm. It can be proved by a Fourier-
Laplace analysis and by an extension theorem.

Theorem 4. Let F be in H2,1(Ω×(0, T )), W0 = (U0, h0) in H3(Ω)×H3(Ω)
and p be a strictly positive constant. If algorithm (3) is initialized by U0

±
in H4,2(Ω± × (0, T )) and h0

± in H1(0, T ;H3(Ω±)) with some compatibil-
ity relations satisfied at t = 0, then algorithm (3) defines two unique se-
quences (Uk

±, h
k
±) in H4,2(Ω± × (0, T )) × H3,2(Ω± × (0, T )) with hk± in

H1(0, T ;H3(Ω±)).

By a priori estimates we can prove that algorithm (3) converges.

Theorem 5. Let F be in H2,1(Ω×(0, T )), W0 = (U0, h0) in H3(Ω)×H3(Ω)
and p be a strictly positive constant. If algorithm (3) is initialized by U0

±
in H4,2(Ω± × (0, T )) and h0

± in H1(0, T ;H3(Ω±)) with some compatibility

relations satisfied at t = 0, then the sequences (Uk+1
± , hk+1

± ) defined by (3)
converge in L2(0, T ;H1(Ω±))× L2(0, T ;L2(Ω±)).

4 Numerical Results

4.1 Description of the experience

We work on a rectangular basin with closed boundaries, which extends from
0 to 15000 km in the x (east-west) direction and from -1500 km to 1500 km
in the y (north-south) direction. The wind stress τ s = (τx, τy) is purely zonal
(τy = 0) and we have τx = 0.5τ0(1 + tanh((x − x0)/L)), with τ0 = 5 · 10−2

N/m2 and x0 = 3000 km. The value of the physical parameters are c = 3
m/s and ν = 500 m2/s. For further details about the experience the reader
is referred to Jensen and Kopriva [1990].

The Figure 1 shows the evolution in time of the depth of water. At t = 0 the
ocean is at rest when the wind stress begins to be applied. Towards the equator
the upper layer thickness increases. This anomaly travels eastward with a
speed c = 3m/s (the speed of Kelvin waves present in the model without
viscosity or external stress). After 60 days the wave reaches the eastern wall
and the incoming wave is divided into four waves: two coastal Kelvin waves
and two Rossby waves (see for example Pedlosky [1987] for more details about
these waves).

4.2 Solving by domain decomposition method

We solve now this problem by domain decomposition method with the inter-
face at x = 7500 km. The value of the space and time steps is ∆x = 25 km
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Fig. 1. Width of water at day 10, 30, 60, 100, 130, 150, 170 and 200
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Fig. 2. Evolution of the logarithm of the error L2(Ω) at the end of the time windows
11 and 20 versus the iterations

and ∆t = 30 min. The experience lasts 200 days, therefore 200×24×2 = 9600
time steps are needed. Schwarz Waveform Relaxation methods work on the
whole time interval, but if this one is too large, solving the equation in (0, T )
can be too expensive. So, we will split the time interval into several smaller



658 Véronique Martin

0 5000 10000 15000

−1000

0

1000

Day 10

−4

−
4

−4

−3
−3

−3

−2

−2

−2

−2

−1

−1

−1

0

0

0

2

2

22

3

3

3
3

4

4

4

4

5 5

5

6

6

6

7

7

8

8

9
910

11

0 5000 10000 15000

−1000

0

1000

Day 30

−4

−4

−4

−4

−4

−3

−3

−3

−3

−2
−

2

−1

−1

0

0

2

2

2

2

2

3

3
3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

10

10

10

11

11

12

12

13

13

14

14

15

15
15

16

16

0

0

2

2

22

0 5000 10000 15000

−1000

0

1000

Day 60

−4

−4

−4

−4

−4

−3

−
3

−3

−2

−
2

−2

−1

−1
−1

0

0

0

2
2

2

2

2

3
3

3

3

3

33

4
4 4

4

4

444

4

4

5 5

5

5

5

555

5

5

5

5

6 6

6 6

6

6

66

6

6

6

6

7 7

7 7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

8

9

9

99

9

9

10

10

0
0

2

2

2

2

3

3

4

4

0 5000 10000 15000

−1000

0

1000

Jour 100

−4

−
4

−3

−3

−2

−2

−1

−1

0

0

2
2

2

2

2

2

2

2

2

3

3

3

3

3

3

3
3

33

3

3

3

4 4

4

44

4

4

4

5

5

5

5

5

5

5

5

6

6 6

6

6 6

6

6

6

7

7

7

7

7

7

8

8

8
8

0

0

0

0

0

0

2

2 2

2

0 5000 10000 15000

−1000

0

1000

Day 130

−4

−4

−4

−3

−3

−3

−2

−
2

−2

−1

−1

0
0

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4
4

4

4

4
4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

0

0

2

2

3

3

0 5000 10000 15000

−1000

0

1000

Day 150

−
4

−4

−3

−
3

−2

−2
−1

−1

0

0

2

2

2

2

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6
6 6

7

7

7

7
7

8

−1 0

0

0

0

0
0

0

2

2

2
2

0 5000 10000 15000

−1000

0

1000

Day 170

−4
−4

−3
−3

−2

−2

−1

−1

0

0

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

6 6

6 6

6

6

6
6

6

6

6

6

6

7

7

7

7

7

7

−2

−1

0

0

0

0

0

0

0 5000 10000 15000

−1000

0

1000

Day 200

−4
−

4

−3

−3

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1

−1

−1

0

0

0 0

0

0 0

0

2

2

2

2

2

22

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

44

4

4

5
5

5

5

5

5

5

5

5

6

6

6

6
6

7

7 −
4

−3

−3

−2

−
2−2

−1
−1

−1

−1

−
1

−1

−1

−1 −
1−1

−
1

−1

0

0

00

0

0

0
0

0

0

0
0

2
2

3
3

4
4

Fig. 3. Solution after two Schwarz iterations and with Dirichlet conditions at day
10, 30, 60, 100, 130, 150, 170 and 200

time intervals. We write (0, T ) = ∪i=0,N−1(Ti, Ti+1) with T0 = 0 and TN = T ,
then we apply our domain decomposition algorithm on each time window; we
first solve LSW W0 = F in Ω× (0, T1) with W0(·, ·, 0) = W0 in Ω then for all
i ≥ 1: {

LSWWi = F in Ω × (Ti, Ti+1),
Wi(·, ·, Ti) = Wi−1(·, ·, Ti) in Ω,

(4)

Here Ti+1 − Ti = 10 days, i.e. we are going to work with 20 windows of 10
days.

When the overlap is L = ∆x, we use the Dirichlet conditions introduced in
Section 2 and the optimized conditions of Section 3. When there is no overlap
we can only use optimized conditions. The parameter p of algorithm (3) with
Λ± = Λ±app optimizes the convergence rate of the algorithm (see for example
Japhet [1998]). The Figure 2 shows the evolution of the logarithm of the error
L2(Ω) at the end of the time windows 11 and 20 versus the iterations for
each method. We can see how fast is the optimized method compared to the
classical Schwarz method. Obviously with an overlap the optimized method
is better than without one.
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Fig. 4. Solution after two Schwarz iterations and with optimized conditions at day
10, 30, 60, 100, 130, 150, 170 and 200

For more realistic simulations where such interface conditions appear, we
can not wait for the convergence of the Schwarz algorithm because of the cost
of each model, and only a few iterations can be implemented. The Figures 3
and 4 show the solution obtained after two Schwarz iterations in each time
window with Dirichlet conditions or optimized one. We can see that Dirichlet
conditions act like a wall and waves reflect in it, whereas with optimized
conditions the solution is admittedly discontinuous at the interface but it is
closed to the monodomain solution.

5 Conclusion and perspectives

We have applied a Schwarz Waveform Relaxation method to the viscous Shal-
low Water equations; we have studied the classical SWR algorithm and a an
optimized algorithm. Numerical results have shown that the optimized method
is a good one. Perspectives of that work is to improve the interface conditions
of the optimized algorithm and apply this method to the Shallow Water equa-
tions linearized around any velocity field U0 6= 0.
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Summary. The alternate strip-based iterative substructuring algorithms are pre-
conditioning techniques for the discrete systems which arise from the finite element
approximation of symmetric elliptic boundary value problems. The algorithms pre-
sented in this paper may be viewed as simple, direct extensions of the two disjoint
subdomains case to the multiple domains decomposition with interior cross-points.
The separate treatment of vertex points is avoided by dividing the original non-
overlapping subdomains into strip-subregions. Both scalability and efficiency are
enhanced by alternating the direction of the strips.

1 Introduction

In domain decomposition (DD) work is concentrating both on the improve-
ment of existing algorithms as well as on the development of new ones and it is
mainly the treatment of the interface relations between subdomains that dis-
tinguishes one method from another (Chan and Mathew [1994], Smith et al.
[1996], Xu and Zou [1998], Quarteroni and Valli [1999]). The goal of our
work is to construct simple, efficient preconditioners with good parallelism
and optimal convergence properties, which draw upon the strengths of both
overlapping and non-overlapping DD methodologies. After the model prob-
lem is introduced, the rest of this paper is organised as follows: Section 2 is
devoted to the description and analysis of the one level strip-based substruc-
turing (SBS2) algorithm. Each strip is a union of non-overlapping subdo-
mains and the global interface between subdomains is partitioned as a union
of edges between strips and edges between subdomains which belong to the
same strip. In Section 3 we derive and investigate the two-grid alternate strip-
based substructuring (ASBS2g) algorithms. The key ingredients are alternate
strip-based solvers which generate algorithms in two stages and allow the use
of efficient subdomain preconditioners such as a two-grid V or W cycle. We
emphasise that a novel feature of our approach is that at each stage the direc-
tion of the strips changes and with it, the coupling between vertex points and
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edges. In Section 4 we illustrate the performance of the new two-grid strategy
by some numerical estimates. The techniques introduced here (see also Mihai
and Craig [2003]) extend in a straightforward manner to three-dimensional
problems (Mihai and Craig [2004]). Once it is understood how and why it
works, the alternate strip-based substructuring (ASBS) strategy can be re-
garded more as a principle in DD and extended to more general problems
defined on more complex geometries. For an extended discussion on this new
strategy, in two and three dimensions, we also refer to Mihai [2004].

The Problem. We consider a second order, symmetric, coercive equation, with
homogeneous Dirichlet boundary conditions, defined on a polygonal domain
Ω ⊂ IR2. With the given domain we associate a uniform square grid Σh of
mesh-size h. The Galerkin finite element approximation generates the equiv-
alent algebraic problem in the form of the linear system:

Au = f, (1)

where the matrix A is symmetric and positive definite and f is the load vector.
We are interested in the case when A is ill-conditioned and a preconditioned
conjugate gradient (PCG) method is employed for solving the original partial
differential equation.

The DD Approach. Without loss of generality, we assume Ω to be of unit
diameter. A DD without overlapping, of the domain Ω, consists of a number
of mutually disjoint open subdomains Ωi, such that: Ω̄ =

⋃N
i=1 Ω̄i. Let all

subdomains Ωi be of size H (h < H < 1) in the sense that there exists
constants c and C independent of H and h such that Ωi contains a ball
of diameter cH and it is contained in a ball of diameter CH . Let also the
coefficients of the original equation be either constants or piecewise constants.
In the latter case the partition into disjoint subdomains is chosen in such a
way that the jumps in the coefficients align with subdomain boundaries. We
also assume that the triangulation Σh is consistent with the original DD in
the sense that each ∂Ωi can be written as a union of boundaries of elements in
Σh. Let Γ denote the global interface between all subdomains {Ωi}Ni=1. Then
the linear system (1) can be written equivalently as:

[
AII AIE
ATIE AEE

] [
uI

uE

]
=

[
f I

fE

]
,

where the indices I and E are associated with the nodes in Ω \ Γ and the
nodes in Γ respectively. By eliminating uI , we obtain:

SuE = fS , (2)

where S = AEE − ATIEA−1
II AIE is the Schur complement (SC) matrix and

fS = fE − AIEA−1
II f

I . The condition number κ(S), although smaller than
κ(A), deteriorates with respect to the subdomain size H , the finite element
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mesh-size h, and the coefficients of the model problem (Le Tallec [1994]). Our
work aims to solve the SC system (2) by constructing a parallel preconditioner
M , via a new DD strategy augmented with two-grid iteration. The equation
(1) gets solved by the following procedure:

(I) (Preprocessing) solve the equation with homogeneous Dirichlet boundary
conditions on every subdomain Ωi ⊂ Ω.

(II) (PCG) solve the equation on the interface-boundary between all subdo-
mains in Ω.

(III) (Postprocessing) update the solution on every subdomain Ωi, using the
boundary conditions given by (II).

Note that the preconditioned matrix B−1A has the same eigenvalues as the
matrix M−1S, plus the eigenvalue 1.

2 One-Level Strip-Based Substructuring

We begin by associating the non-overlapping subdomains in the initial parti-
tion of Ω, into strip-subregions Ωs, whose vertices are on the boundary ∂Ω
and whose edges align with the edges of the original subdomains. Each strip
is a union of non-overlapping subdomains and the global interface between
subdomains is partitioned as a union of edges between strips (which include
also all the cross points in the initial partition) and edges between subdo-
mains which belong to the same strip (inside strips, the interface edges do not
contain their end points), see Fig.1 left.

The One-Level Strip-Based Substructuring (SBS2) Algorithm. If uk is a given
iteration, we define:

uk+1 ← SBS2(u
k, S, fS)

to be the new approximation for the solution to the SC problem when the
following process is applied:

uk+1 ← uk +M−1(fS − Suk),

whereM is a preconditioner, such that the preconditioned system is symmetric
and positive definite, hence it can also be used with CG acceleration. The new
procedure for solving (2) can be described as follows:

(II1) solve the one-dimensional equation with homogeneous Dirichlet bound-
ary conditions on every edge between subdomains inside strips, with a
preconditioner.

(II2) solve the one-dimensional equation on every edge between strips, with
a preconditioner.

(II3) update the solution on every edge between subdomains inside strips,
with Dirichlet boundary conditions from (II2).
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For a survey of edge preconditioners, see e.g. Keyes and Gropp [1987]. We
consider the elements (strip-edges, edges inside strips) of the boundary of a
subdomain to be direct projections of the corresponding elements in Γ . Let:

Γ =
⋃

k

Γk ∪
⋃

j

Γ j ,

where Γk denotes a generic edge (an edge does not include its end points)
inside strips, that is the interface between two adjacent subdomains inside
a strip-subregion and Γ j denotes a generic strip-edge, that is the interface
between two adjacent strip-subregions. We denote by S0

h(Γk) and S0
h(Γ

j) the
subspace of the relevant boundary space consisting of functions whose support
is contained in the corresponding edge. Let the following inner product:

s(uE ,vE) = (uE)TSvE

define the bilinear form associated with the Schur complement matrix under
the standard nodal basis functions in Sh(Γ ). We decompose functions in S0

h(Γ )
into uE = ue + us, where

ue ∈ V e =
⊕

k

S0
h(Γk)

and it is the solution of the following problem:

s(ue,v) = (fS ,v), ∀v ∈ V e.

We solve for uek ∈ S0
h(Γk), on every edge Γk, the following local homogeneous

Dirichlet problem:

s(uek,v) = (fS ,v), ∀v ∈ S0
h(Γk).

We denote by us = uE − ue the part of the solution uE which lies in the
orthogonal complement of V e in S0

h(Γ ):

V s = {u ∈ S0
h(Γ ) : s(u,v) = 0, ∀v ∈ V e}.

Therefore us satisfies:

s(us,v) = (fS ,v)− s(ue,v), ∀v ∈ S0
h(Γ ),

or equivalently, by the definition of V e,

s(us,vs) = (fS ,v)− s(ue,v), ∀v ∈ S0
h(Γ ).

Note that:
s(u,v) = s(ue,ve) + s(us,vs)

(here ve and vs are defined similarly as ue and us respectively).
In the following lemma, every inequality can be proved by direct integra-

tion and with the help of the Cauchy inequality.
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Lemma 1. Let Ω ⊂ R2 be the unit square and let Ωs = (0, 1) × (0, H) be a
strip-subregion of Ω. For u ∈ H1(Ωs), the following inequalities hold:

(i) if u is equal to zero along one short side of Ωs, then:

‖u‖2L2(Ωs) ≤ C|u|2H1(Ωs).

(ii) if u is equal to zero along one long side of Ωs, then:

‖u‖2L2(Ωs) ≤ CH2|u|2H1(Ωs).

(iii) if Γ j is a long side of Ωs, then:

‖u‖2L2(Γ j) ≤ C
(

1

H
‖u‖2L2(Ωs) +H |u|2H1(Ωs)

)
.

(iv) if u ∈ H1(Ω) then:

‖u‖2L2(Ωs) ≤ CH2

(
1

H
‖u‖2L2(Ω) + |u|2H1(Ω)

)
.

Similar inequalities hold if we replace Ωs by a square of side H, Ωsi =
(iH, (i+ 1)H)× (0, H), and Ω by Ωs. C denotes positive constants which are
independent of the parameters H and h. The actual value of these constants
will not necessarily be the same in any two instances.

Theorem 1. For the SBS2 algorithm with exact solvers on the subdomains,
the condition number of the preconditioned system grows linearly as 1/H. For
the case of discontinuous coefficients, the bounds are independent of the jumps
in the coefficients as long as the jumps align with strip boundaries.

Corollary 1. For the case of homogeneous Dirichlet boundary conditions on
∂Ω, if the domain Ω is reduced to at most two strip-subregions of width H,
such that each strip is the reunion of 1/H non-overlapping subdomains, then,
for the SBS2 algorithm with exact solvers on the subdomains, the condition
number of the preconditioned system is bounded independently of the parti-
tioning parameters H and h.

3 Two-Grid Alternate Strip-Based Substructuring

In this section we extend the SBS2 algorithm, introduced in the previously,
to a two-stage algorithm. In order to remove the factor 1/H from the order of
convergence, at each stage the direction of the strips changes and with it, the
coupling between vertex points and edges (e.g. horizontal strips at the first
stage, vertical strips at the second stage). Moreover, at the second stage, the
calculations are carried out on a coarser grid. This can reduce considerably
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the amount of computational work needed to solve the problem to a particular
accuracy. Let Σ2ph ⊂ · · · ⊂ Σ2h ⊂ Σh be a set of nested uniform square grids
associated with the original domain Ω, such that 1 ≤ p ∈ IN and 2ph ≤ H .
To describe the two-grid algorithms, we introduce the following operators:
the projection P is an interpolation from grid Σ2ph to grid Σh; the restriction
from grid Σh to grid Σ2ph is defined as R = P ∗. Finally, we shall also be using

the notation: S(1) and S(2), for the coefficient matrix and f
(1)
S and f

(2)
S , for

the load vector of the linear system to be solved at the first and second stage
respectively. Figure 1 shows the partition of the unit square Ω = (0, 1)× (0, 1)
into 1/H disjoint, uniform strips Ωs, at two different stages.

Fig. 1. The horizontal (left) and vertical (right) partition into strips of the domain
Ω, with two levels of mesh-refinement.

The Two-Grid Alternate Strip-Based Substructuring (ASBS2g) Algorithm.
Let uk be a given iteration, then uk+1 is the result of the following V-cycle:

• uk+
1
2 ← SBS2(u

k, S(1), f
(1)
S )

• If R(2) ← f
(2)
S − S(2)uk, R

(2)
c ← RR(2), its restriction to the coarse grid,

then w
(2)
c ← SBS2(0, S

(2)
c , R

(2)
c ), and its prolongation to the fine grid is

w(2) ← Pw
(2)
c . We set

uk+1 ← uk+
1
2 + w(2).

This procedure can be regarded as an additive Schwarz process between stages
and expressed equivalently as:

uk+
1
2 ← uk +M−1

1 (f
(1)
S − S(1)uk)

w(2) ←M−1
2 (f

(2)
S − S(2)uk)

uk+1 ← uk+
1
2 + w(2),

where M1 and M2 are preconditioners. The preconditioned system, which is
symmetric and can be used with CG acceleration, can be written as:
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M−1
2g S = M−1

1 S +M−1
2 S.

Note that at the coarse-grid level, if the mesh-size is equal to H , then only
equations corresponding to the interface between strip-subregions need to be
solved. Therefore, instead of defining the coarse-grid solver on the whole global
interface Γ between subdomains, we can consider only one-dimensional coarse-
solvers defined on the edges between strip-subregions, then alternate the strips
at the fine stage. We note that for problems in three dimensions, the possibility
of reducing the size of the coarse solver from three to only two dimensions
seems to offer an advantage (in forthcoming Mihai and Craig [2004]).

The performance of the ASBS2g method is illustrated by the following
result. Its proof is based on the observation that the preconditioner can be
interpreted as a two-level overlapping Schwarz method, where every overlap-
ping subdomain is the union of two adjacent subdomains that share the same
edge.

Theorem 2. For the ASBS2g method, if exact solvers are used for the sub-
problems, the condition number of the preconditioned system is bounded inde-
pendently of the partitioning parameters H and h.

4 Numerical Estimates

Example 1. Consider the model problem

−∇ · α(x)∇u(x) = f(x), in Ω = (0, 1)× (0, 1)

u(x) = 0, on ∂Ω,

discretized by piecewise linear finite elements. In the computations, at each
stage the unit square Ω is partitioned into N = 1/H2 equal squares; α(·) is 1
(for the Poisson equation) or random constants inside each subdomain. For the
interface edges, the coefficients are the average values of all the subdomains
adjacent to that interface. The mesh-parameter is h for the fine grid and H
for the coarse-grid. The iteration counts are calculated for 10−4 reduction in
error. All computations were carried out in Matlab.

Discussion. In Table 1, for the SBS2 algorithm, the condition number of the
preconditioned SC system grows like 1/H and remains bounded independently
of the mesh-size h. In Table 2, for ASBS2g, the condition number of the
preconditioned SC system is less than 2. The bounds are also independent
of the jumps in the coefficients as long as the jumps align with subdomain
boundaries.
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Table 1. Condition number and iteration counts for the SBS2 algorithm.

N 1/h=32 64 128 256

4 1.3403 4 1.3408 4 1.3387 4 1.3376 4

16 1.8739 6 1.8717 6 1.8755 6 1.8755 6

64 3.2879 8 3.2801 8 3.2826 8 3.2916 8

256 6.3364 12 6.3376 12 6.3276 12 6.3208 12

Table 2. Condition number and iteration counts for the additiveASBS2g algorithm.

N 1/h=32 64 128 256

4 1.2565 4 1.2582 4 1.2574 4 1.2573 4

16 1.3467 4 1.3362 4 1.3284 4 1.3265 4

64 1.4875 5 1.4715 5 1.4160 5 1.4111 5

256 1.8746 6 1.5948 5 1.5198 5 1.5032 5
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Summary. We present and study a parallel iterative solver for reaction-diffusion
systems in three dimensions arising in computational electrocardiology, such as the
Bidomain and Monodomain models. The models include intramural fiber rotation
and anisotropic conductivity coefficients that can be fully orthotropic or axially
symmetric around the fiber direction. These cardiac models are coupled with a
membrane model for the ionic currents, consisting of a system of ordinary differ-
ential equations. The solver employs structured isoparametric Q1 finite elements in
space and a semi-implicit adaptive method in time. Parallelization and portability
are based on the PETSc parallel library and large-scale computations with up to
O(107) unknowns have been run on parallel computers. These simulation of the full
Bidomain model (without operator or variable splitting) for a full cardiac cycle are,
to our knowledge, among the most complete in the available literature.

1 The cardiac Bidomain and Monodomain models

Cardiac tissue is traditionally modeled as an arrangement of cardiac fibers
that rotate counterclockwise from the epicardium to the endocardium, (see
Streeter [1979]). Moreover, from LeGrice and et al. [1995], the cardiac tis-
sue has a laminar organization that can be modeled as a set of muscle sheets
running radially from epi to endocardium. Therefore, at any point x, it is pos-
sible to identify a triplet of orthonormal principal axes al(x), at(x), an(x),
with al(x) parallel to the local fiber direction, at(x) and an(x) tangent and
orthogonal to the radial laminae respectively and both being transversal to
the fiber axis. The macroscopic Bidomain model represents the cardiac tissue
as the superposition of two anisotropic continuous media, the intra (i) and
extra (e) cellular media, coexisting at every point of the tissue and connected
by a distributed continuous cellular membrane; see Keener and Sneyd [1998].
The anisotropic conductivity properties of the tissue are described by the
conductivity coefficients in the intra and extracellular media σi,el , σi,et , σi,en ,
measured along the corresponding directions al,at,an, and by the conductiv-
ity tensors Di(x) and De(x)
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Di,e = σi,el ala
T
l + σi,et ata

T
t + σi,en ana

T
n .

When the media are axially isotropic, i.e. when σi,en = σi,et , we have Di,e =
σt
i,eI+(σl

i,e−σti,e)alaTl . The intra and extracellular electric potentials ui, ue
in an insulated cardiac domain H are described in the Bidomain model by a
reaction-diffusion system coupled with a system of ODEs for the ionic gating
variables w. Given the applied currents per unit volume Ii,eapp, satisfying the

compatibility condition
∫
H I

i
app dx =

∫
H I

e
appdx, the initial conditions v0, w0,

then ui, ue, w satisfy the system:




cm
∂v

∂t
− div(Di∇ui) + Iion(v, w) = Iiapp

−cm
∂v

∂t
− div(De∇ue)− Iion(v, w) = −Ieapp

∂w

∂t
−R(v, w) = 0, v(t) = ui(t)− ue(t)

nTDi∇ui = 0, nTDe∇ue = 0,
v(x, 0) = v0(x), w(x, 0) = w0(x),

(1)

where cm = χ∗Cm, Iion = χ∗ iion, with χ the ratio of membrane surface area
per tissue volume, Cm the membrane capacitance and iion the ionic current of
the membrane per unit area. Existence and regularity results for this degen-
erate system can be found in Colli Franzone and Savaré [2002]. The system
uniquely determines v, while the potentials ui and ue are defined only up
to a same additive time-dependent constant related to the reference poten-
tial, chosen to be the average extracellular potential in the cardiac volume by
imposing

∫
H
ue dx = 0.

If the two media have equal anisotropy ratio, i.e. Di = λDe with λ con-
stant, then the Bidomain system reduces to the Monodomain model consisting
in a parabolic reaction-diffusion equation for the transmembrane potential v
coupled with a system of ODEs for the gating variables:





cm
∂v

∂t
− div(Dm(x)∇v) + Iion(v, w) = Imapp,

∂w

∂t
−R(v, w) = 0, w(x, 0) = w0(x),

nTDm∇v = 0, v(x, 0) = v0(x),

(2)

where Dm = σl ala
T
l + σt ata

T
t + σn ana

T
n , with σl,t,n = λσil,t,n /(1 + λ)

and Imapp = (λIiapp + Ieapp)/(1 + λ).
The dynamics of S gating variables are described by a so-called membrane

model, consisting of ordinary differential equations of the form

∂wj
∂t

= Rj(v, wj) = (wj∞(v)− wj)/τj(v), j = 1, .., S. (3)

In this paper, we consider one of the most used detailed membrane models
in the literature, the Luo-Rudy phase I (LR1) model (see Luo and Rudy
[1991]), based on six gating variables and one variable for the calcium ionic
concentration.
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2 Discretization of the models

The Monodomain (2) and Bidomain models (1) are discretized by meshing
the cardiac tissue volume H with a structured grid of hexahedral isopara-
metric Q1 elements and by introducing the associated finite element space
Vh. A semidiscrete problem is obtained by applying a standard Galerkin
procedure and choosing a finite element basis {φi} for Vh. We denote by
M = {mrs =

∫
H ϕr ϕsdx} the symmetric mass matrix, by Am,i,e = {am,i,ers =∫

H
(∇ϕr)TDm,i,e∇ϕsdx} the symmetric stiffness matrices and by Ihion, I

(m,i,e),h
app

the finite element interpolants of Iion and Im,i,eapp , respectively. Integrals are
computed with a 3D trapezoidal quadrature rule, so the mass matrix M is
lumped to diagonal form; see Quarteroni and Valli [1994] for an introduction
to finite element methods. In our implementation, we have actually reordered
the unknowns writing for every node the ui and ue components consecutively,
so as to minimize bandwidth of the stiffness matrix.

The time discretization is performed by a semi-implicit method using for
the diffusion term the implicit Euler method, while the nonlinear reaction term
Iion is treated explicitly. The use of an implicit treatment of the diffusion terms
appearing in the Mono or Bidomain models is essential to allow an adaptive
change of the time step according to the stiffness of the various phases of the
heartbeat. The ODE system for the gating variables is discretized by the semi-
implicit Euler method; in this way we decouple the gating variables by solving
the gating system first (given the potential vn at the previous time-step)

(wn+1 −wn)/∆t = R(vn,wn+1)

and then solving for un+1
i ,un+1

e in the Bidomain case

(
cm
∆t

[
M −M
−M M

]
+

[
Ai 0
0 Ae

])(
un+1
i

un+1
e

)
=

cm
∆t

(
M( uni − une )
M[−uni + une ]

)
+

(
M[−Ihion(v

n,wn+1) + Ii,happ]
M[ Ihion(v

n,wn+1)− Ie,happ]

)
, (4)

where vn = uni −une . As in the continuous model, vn is uniquely determined,
while uni and une are determined only up to the same additive time-dependent
constant chosen by imposing the condition 1TMune = 0.

In the Monodomain case, we have to solve for vn+1

(cm
∆t

M + Am

)
vn+1 =

cm
∆t

Mvn −M Ihion(vn,wn+1) + MIm,happ . (5)

We employed an adaptive time-stepping strategy based on controlling the
transmembrane potential variation ∆v = max(vn+1 − vn) at each time-
step, see Luo and Rudy [1991]. If ∆v < ∆vmin = 0.05 then we select
∆t = (∆vmax/∆v)∆t (if smaller than ∆tmax = 6 msec), if ∆v > ∆vmax = 0.5
then we select dt = (∆vmin/∆v)dt (if greater than ∆tmin = 0.005 msec). In
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order to guarantee a control on the variation of the gating variables of the LR1
membrane model as well, each gating equation of the system (3) is integrated
exactly (see Victorri and et al. [1985]), while the calcium ionic concentration
is updated using the explicit Euler method.

The linear system at each time step in the discrete problems is solved it-
eratively by the preconditioned conjugate gradient (PCG) method, using as
initial guess the solution at the previous time step. Parallelization and porta-
bility are realized using the PETSc parallel library (Balay et al. [2001]) and a
preconditioned conjugate gradient solver at each time step, with block Jacobi
preconditioner and ILU(0) on each block, the default one-level preconditioner
in the PETSc library. The numerical experiments reported in the next section
show that it performs well in the Monodomain case, but not in the Bidomain
case. Therefore, more research is needed in order to build better precondition-
ers, particularly with two or more levels; see Smith et al. [1996].

3 Numerical results

We have conducted several numerical experiments in three dimensions on dis-
tributed memory parallel architectures, with both the Monodomain and the
Bidomain model coupled with the LR1 membrane model. The parallel ma-
chines employed are an IBM SP RS/6000 with 512 processors Power 4 of
the Cineca Consortium (www.cineca.it), and an HP SuperDome 64000 with
64 processors PA8700 of the Cilea Consortium (www.cilea.it). We refer to
Colli Franzone and Pavarino [2003] for more detailed numerical results. Multi-
grid preconditioners for the Bidomain system have been studied by Weber dos
Santos et al. [2004], while mortar finite element discretizations by Pennacchio
[2004]. We studied first the spectrum of the iteration matrices (5) and (4) on
a small 15×15×8 mesh in the Monodomain case and 15×15×4 in the Bido-
main case (these meshes are chosen in order to have matrices of the same
size). The eigenvalues of the stiffness matrices are reported in the left panel
of Figure 1, while the eigenvalues of the iteration matrices are reported in the
right panel. It is clear that the addition to the stiffness matrix of a term with
the mass matrix greatly improves the spectrum of the Monodomain iteration

Table 1. Parameters calibration for numerical tests

ellipsoidal a1 = b1 = 1.5 cm, a2 = b2 = 2.7 cm, c1 = 4.4, c2 = 5 cm
geometry φmin = 0, φmax = 2π, θmin = −3π/8, θmax = π/8

χ = 103 cm−1, Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1, σt = 2.5562 · 10−4 Ω−1cm−1

parameters G = 1.5 Ω−1cm−2, vth = 13 mV, vp = 100 mV
η1 = 4.4 Ω−1cm−2, η2 = 0.012, η3 = 1

σe
l = 2 · 10−3 Ω−1cm−1, σi

l = 3 · 10−3 Ω−1cm−1

Bidomain σe
t = 1.3514 · 10−3 Ω−1cm−1, σi

t = 3.1525 · 10−4 Ω−1cm−1

parameters σe
n = σe

t /µ1, σi
n = σi

t/µ2

µ1 = µ2 = 1 axial isotropic case, µ1 = 2, µ2 = 10 orthotropic case
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Fig. 1. Nonzero eigenvalue distribution of the stiffness matrices related to elliptic
operators with Neumann boundary conditions (left) and of the iteration matrices in
(5) and (4) (right) for a small mesh. Monodomain eigenvalues are denoted by dots
(·), Bidomain eigenvalues by circles (o)

matrix (5), but not of the Bidomain iteration matrix (4). In fact, the iterative
solution of the linear system at each time step turns out to be much harder
for the Bidomain model than for the Monodomain model.

3.1 Scaled speedup for Monodomain-LR1 and Bidomain-LR1
solvers

We consider first the Monodomain equation with LR1 ionic model, simulating
on the IBM SP4 machine the initial depolarization of some ellipsoidal blocks
after one stimulus of 250 mA/cm3 has been applied for 1 msec on a small
area (5 mesh points in each direction) of the epicardium. The blocks are cho-
sen in increasing sizes so as to keep constant the number of mesh points per
subdomain (processor). As shown in Figure 2, the domain varies from the
smaller block with 8 subdomains to half ventricle with 128 subdomains. We
fixed the local mesh in each subdomain to be of 75×75×50 nodes (281.750
unknowns), hence varying the global number of unknowns of the linear sys-
tem from 2.25·106 in the smaller case with 8 subdomains on a global mesh
of 150×150×100 nodes to 3.6·107 in the larger case with 128 subdomains on
a global mesh of 600×600×100 nodes. The model is run for 30 time steps of
0.05 msec each. At each time step, we compute the potential v, the gating
and concentration variables w1, · · · , w7 and the depolarization time. The re-
sults are reported in the upper part of Table 2. The assembling time, average
number of PCG iterations per time step and the average time per time step
(last three columns) are reasonably small. Up to 64 processors, the algorithm
seems practically scalable, and even for 128 processors, the number of PCG
iterations grows to just 8.

We then consider the Bidomain system with LR1 ionic model, in the same
setting (initial stimulus and domain decomposition) of the previous case. At
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Fig. 2. Scaled speedup test: ellipsoidal domains of increasing sizes decomposed into
8, 16, 32, 64 and 128 subdomains of fixed size

Table 2. Scaled speedup tests for Monodomain - LR1 and Bidomain - LR1 models.
Initial depolarization of an ellipsoidal block: 1 stimulus on epicardial surface, 30
time steps of 0.05 msec each, computation of v, w1, · · · , w7 and isochrones. tA =
assembly timing, it = average number of PCG iterations at each time step, time =
average CPU timing of each time step

Monodomain - LR1

# proc. mesh unknowns tA it. time
(nodes)

8 = 2·2·2 150×150×100 2.250.000 7.7 s 4 2.7 s
16 = 4·2·2 300×150×100 4.500.000 8.5 s 4 3 s
32 = 4·4·2 300×300×100 9.000.000 9.1 s 5 3.6 s
64 = 8·4·2 600×300×100 18.000.000 9.2 s 5 3.6 s

128 = 8·8·2 600×600×100 36.000.000 10.6 s 8 5.1 s

Bidomain - LR1

# proc. mesh unknowns tA it. time
(2× nodes)

8 = 2·2·2 100×100×70 1.400.000 12.9 s 98 40.2 s
16 = 4·2·2 200×100×70 2.800.000 13.3 s 127 55.5 s
32 = 4·4·2 200×200×70 5.600.600 15.7 s 148 72 s
64 = 8·4·2 400×200×70 11.200.000 16.2 s 176 91.9 s

128 = 8·8·2 400×400×70 22.400.000 18.4 s 244 129.7 s
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each time step, we now compute the potentials ui, ue, the gating and con-
centration variables and the depolarization time. Due to the larger memory
requirements of the Bidomain model, we used a smaller mesh of 50×50×35
nodes in each subdomain (processor), hence varying the global number of
unknowns of the linear system from 1.4·106 in the smaller case with 8 sub-
domains on a global mesh of 100×100×70 to 2.24·107 unknowns in the larger
case with 128 subdomains on a global mesh of 400×400×70 nodes. The re-
sults are reported in the lower part of Table 2. While the assembling time
remains reasonable (under 20 sec.), the average number of PCG iterations
per time step and the average time per time step are now much larger, clearly
showing the limits of the one-level preconditioner and the effects of the severe
ill-conditioning of the Bidomain iteration matrix.

3.2 Simulation of a full cardiac cycle

We also simulated a complete cardiac cycle (excitation-recovery) in a slab of
cardiac tissue of size 2×2×0.5 cm3, discretized with a fine mesh 200×200×50.
We used 25 processors of the HP SuperDome machine with 64 processors.
The fibers rotate intramurally linearly with depth for a total amount of 90o.
A stimulus is applied at an epicardial vertex and the excitation of the en-
tire slab requires about 80 msec, while the time interval for simulating the
cardiac cycle is on the order of 360 msec. The adaptive time-stepping al-
gorithm automatically adapts, in an efficient way, the time step size in the
three main different phases of the heart beat, see Figure 3 (left). While the
Monodomain solver is quite efficient, the Bidomain solver is not, since the
number of PCG iterations at each time step increases considerably, reaching
a maximum of about 250 iterations in the depolarization phase, see Figure 3
(right). The simulation took about 6.4 days for the the Bidomain model and
about 5 hours for the Monodomain model. We compared the two computer
platforms mentioned above by simulating the Monodomain model on a slab
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Fig. 3. Full cardiac cycle with Bidomain model and LR1 gating. Time-step size in
msec. on a semilogarithmic scale (left), PCG iterations at each time step (right)
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with dimensions 4×4×0.5 cm3 and mesh 400×400×50: the HP SuperDome
machine with 32 processors took about 20 hours and the IBM SP4 machine
with 64 processors took about 2.5 hours. Therefore, a considerable CPU time
reduction in the Bidomain case is to be expected by using the SP4 machine.
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Summary. In this paper we present new numerical approach to solve the contin-
uous casting problem. The main tool is to use IPEC method and DDM similar
to Lapin and Pieska [2002] with multilevel domain decomposition. On the subdo-
mains we use multidecomposition of the subdomains. The IPEC is used both in the
whole calculation domain and inside the subdomains. The calculation algorithm is
presented and numerically tested. Several conclusions are made and discussed.

1 Introduction

Theory of the so-called regional-additive schemes (splitting schemes with do-
main decomposition) for linear diffusion and convection-diffusion have been
studied in Samarskii and Vabischevich [1996] and Vabischevich [1994]. The
stability have been proved and error estimates have been deduced. For non-
linear problems like our their technique is not available.

Several new finite-difference schemes for a nonlinear convection-diffusion
problem are constructed and numerically studied in Lapin and Pieska [2002].
These schemes are constructed on the basis of non-overlapping domain de-
composition and predictor-corrector approach.

The paper of Lapin and Pieska [2002] was motivated by Dawson et al.
[1991], Rivera et al. [2003], Rivera et al. [2001], where TL3, EP4 and EPIC5

methods have been studied and tested. The EPIC method was proved to be
stable and scalable when solving on big number of processors. In the paper
of Lapin and Pieska [2002] the scheme from Rivera et al. [2003], Rivera et al.
[2001] was modified in such a way, that its implementation leads to IPEC6

method.

3 time lagging
4 explicit predictor
5 explicit predictor-implicit corrector
6 implicit predictor-explicit corrector
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The main idea of these kind of algorithms is first to solve the problem
in artificial boundaries (predictor step). After the solution at the boundaries
is known then it can be used as Dirichlet type boundary condition and the
noncoupled subdomain problems can be solved parallel. The last step of these
methods is to correct the solution at the artificial boundaries (corrector step).

The advantages of predictor-corrector methods (IPEC or EPIC) is that we
reduce the amount of information send between processors. We need to send
only once the subsolutions from slave processors to master processor. When we
use Schwarz alternating methods with overlapping subdomains, the number
of sending and receiving is much more bigger. The numerical experiences in
Lapin and Pieska [2002] show that the speedup of IPEC method is linear.
However, the stability and the rate of convergence for IPEC method is not
known but asymptotically the rate of approximation is of the order O(τ+h2).

The idea of multidecomposition method MDD is to use DDM with IPEC
inside the subdomains. The subdomain is divided to smaller subdomains and
then IPEC method is used to solve these smaller subproblems sequently. The
main reason and motivation for this kind of method is to economise the num-
ber of processors. Nowadays the PC computers have multiprocessor cards but
the number of processors in it are very small and limited. Our proposed algo-
rithm gives a good and effective way to decrease calculation times in the case
of only few processors.

2 Problem statement

The continuous casting problem can be mathematically formulated as follows.
Let the rectangular domain Ω ⊂ R2, Ω = (0, l1) × (0, l2) be occupied by a
thermodynamically homogeneous and isotropic steel. We denote by H̄(x, t)
the enthalpy and by T (x, t) the temperature for (x, t) ∈ Ω̄ × [0, tf ]. We have

constitutive law H̄ = H̄(T ) = ρ
∫ T
0 c(Θ)dΘ + ρL(1 − fs(T )), where ρ is the

density, c(T ) is the specific heat, L is the latent heat and fs(T ) is the solid
fraction at temperature T . The graph H̄(T ) is an increasing function R→ R,
involving near vertical segment, which corresponds to a phase transition state,
namely, for T ∈ [TS, TL]. In our numerical example in section 6 we choose for
the enthalpy function phase change interval TL − TS = 0.02. This does not
effect cruisial for convergence properties of our method. Further by k(T ) we
denote the thermal conductivity coefficient.

Using Kirchoff’s transformation u = K(T ) =
∫ T
0
k(ξ)dξ a continuous cast-

ing process can be described by a boundary-value problem, formally written
in the following pointwise form: find u(x, t) and H(x, t) such that

(P)





∂H(u)
∂t + v ∂H(u)

∂x2
−∆u = 0, for x ∈ Ω, t > 0,

u = z(x, t) for x ∈ ΓD, t > 0,
∂u
∂n = g, for x ∈ ΓN , t > 0, H = H0(x) for x ∈ Ω̄, t = 0,
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where v = const > 0 is a casting speed in x2-direction, ΓD ∪ ΓN = ∂Ω is
the boundary of the domain, below ΓD = {x ∈ ∂Ω : x2 = 0 ∨ x2 = l2}. The
existence and uniqueness of a weak solution for problem (P) are proved in
Rodrigues and Yi [1990].

3 Mesh approximation of continuous casting problem

We approximate problem (P) by an implicit finite difference scheme in time
and finite element method in space. Let Th be a partitioning of Ω in the rect-
angular elements δ of dimensions h1×h2 and Vh = {uh(x) ∈ H1(Ω) : uh(x) ∈
Q1 for all δ ∈ Th}, where Q1 is the space of bilinear functions. By Πhv(x)
we denote the Vh-interpolant of a continuous function v(x), i.e. Πhv(x) ∈ Vh

and coincides with v(x) in the mesh nodes (vertices of all δ ∈ Th). We also
use an interpolation operator Ph, which is defined as follows: for any contin-
uous function v(x) the function Phv(x) is piecewise linear in x1, piecewise
constant in x2 and on δ = [x1, x1 + h1] × [x2, x2 + h2] it coincides with v(x)
at (x1, x2 + h2) and (x1 + h1, x2 + h2).

Let further V 0
h = {uh(x) ∈ Vh : uh(x) = 0 for all x ∈ ΓD}, V z

h =
{uh(x) ∈ Vh : uh(x) = zh for all x ∈ ΓD}. Here zh is the bilinear interpolation
of z on the boundary ΓD. For any continuous function v(x) we define the
quadrature formulas: Sδ(v) =

∫
δ
Πhvdx, S∂δ(v) =

∫
∂δ
Πhvdx, Eδ(v) =∫

δ
Phvdx, SΩ(v) =

∑
δ∈Th

Sδv, SΓN (v) =
∑

∂δ∈Th∩Γ̄N
S∂δ(v), EΩ(v) =∑

δ∈Th
Eδ(v). Let also ωτ = {tk = kτ, 0 ≤ k ≤ M,Mτ = tf} be an uniform

mesh in time on the segment [0, tf ] and ∂t̄H = 1
τ (H(x, t) − H(x, t − τ)).

When constructing the characteristic mesh scheme we approximate the term
( ∂∂t + v ∂

∂x2
)H by using the characteristics of the first order differential op-

erator Chen [1991]. Namely, if (x1, x2, t) is the mesh point on the time

level t we choose x̃2 = x2 −
∫ t
t−τ v(ξ)dξ and approximate: ( ∂∂t + v ∂

∂x2
)H ≈

1
τ (H(x1, x2, t)− H̃(x, t− τ)), where we denote H̃(x, t− τ) = H(x1, x̃2, t− τ).
Near the boundary it can happen that x̃2 < 0. In that case we put H̃(x, t−τ) =
H(x1, 0, t−τ). In what follows we use the notation dt̃H = 1

τ (H(x, t)−H̃(x, t−
τ)) for the difference quotient in each mesh point on time level t.

Now, the characteristic finite difference scheme for problem (P) is: for all
t ∈ ωτ , t > 0, find uh ∈ V z

h and Hh ∈ Vh such that

SΩ(dt̃Hhηh) + SΩ(∇uh∇ηh) = SΓN (gηh) for all ηh ∈ V 0
h (1)

Let N0 = card V 0
h and u ∈ RN0 be the vector of nodal values for uh ∈ V 0

h .
We use the writing uh ⇔ u for this bijection. We define N0 ×N0 matrices by
the following relations: for all u, η ∈ RN0 , u ⇔ uh ∈ V 0

h and η ⇔ ηh ∈ V 0
h ,

(Ãu, η) = SΩ(∇uh∇ηh), (Mu, η) = SΩ(uhηh), A0 = M−1Ã. Let now
z̃h(x) ∈ Vh be the function, which is equal to zh on Γ̄D and 0 for all
nodes in Ω ∪ ΓN . Then a right hand side vector f is defined by the equal-
ity (f, η) = SΓN (gηh) − SΩ(∇z̃h,∇ηh) ∀η ∈ RN0 , η ⇔ ηh ∈ V 0

h , and we
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set F = M−1f. In these notations the algebraic form for characteristic mesh
scheme (1) becomes

dt̃H +A0u = F, (2)

It is easy to see, that A0 is the standard five-point finite difference approx-
imation of Laplace operator, A0u = −ux1x̄1 − ux2x̄2 for the internal mesh
points with the notations ux1 = h−1(u(x1 + h1, x2) − u(x1, x2)), ux̄1 =
h−1(u(x1, x2)−u(x1−h1, x2)), and similarly for ux2 and ux̄2 . Furthermore, let
ω̄ be the set of all grid points, γD = Γ̄D ∩ ω̄, γN = ΓN ∩ ω̄, ω = Ω ∩ ω̄, γ−N =
{x ∈ γN : x1 = 0}, γ+

N = {x ∈ γN : x1 = l1}.

4 Domain decomposition by straight lines

In this section we present the IPEC algorithm of Lapin and Pieska [2002]. We
restrict our discussion to the case of decomposition by unidirect straight lines.
More variations and possibilities of decomposition is discussed and tested in
Lapin and Pieska [2002].

Let the domain Ω be decomposed into two subdomains Ω1 and Ω2 by a
straight line Sy in x2-direction, which is also a grid line. We denote by δSy

the characteristic function of this line, i.e., the mesh function δSy(x) = 1 for
x ∈ Sy ∩ ω̄, while δSy(x) = 0 for other mesh points. Also, let ω̄k, k = 1, 2
be the corresponding to the subdomains Ω̄k sets of grid points, Sy being the
common part of their boundaries.

Let A2u = −δSyux1x̄1 and A1 = A0 −A2,

A1u =





−(1− δSy)ux1x̄1 − ux2x̄2 for x ∈ ω,
−2h−1

1 ux1 − ux2x̄2 for x ∈ γ−N ,
2h−1

1 ux̄1 − ux2x̄2 for x ∈ γ+
N .

Now, instead of characteristic scheme (2) we consider the following scheme on
the time level tn+1 = (n+ 1)τ :

1

τ
(Hn+ 1

2 − H̃n) +A1u
n+ 1

2 +A2u
n = F, (3)

δSy

τ
(Hn+1 − H̃n) +

1− δSy

τ
(Hn+1 −Hn+ 1

2 ) + δSyA1u
n+ 1

2 +A2u
n+1 = δSyF,

(4)
Let us discuss the implementation of scheme (3),(4). In the points of Sy equa-
tion (3) has the form:

Hn+ 1
2 − H̃n

τ
− un+ 1

2
x2x̄2
− unx1x̄1

= F, (5)

i.e. in the points of Sy we have one-dimensional problem (5), that we solve
first. After that the equation (3) is splitted in two non-coupled characteristic
schemes in the subdomains:
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Hn+ 1
2 − H̃n

τ
− un+ 1

2
x1x̄1
− un+ 1

2
x2x̄2

= F, for x ∈ ω1 ∪ ω2,

Hn+ 1
2 − H̃n

τ
− 2

h1
u
n+ 1

2
x1 − un+ 1

2
x2x̄2

= F, for x ∈ γ−N ,
Hn+ 1

2 − H̃n

τ
+

2

h1
u
n+ 1

2
x̄1
− un+ 1

2
x2x̄2

= F, for x ∈ γ+
N ,

(6)

and these equations are accomplished by Dirichlet boundary conditions, given
on γD and calculated from (5) on Sy. Finally we solve the system of the

equations, corresponding to x ∈ Sy:
Hn+1−H̃n

τ − u
n+ 1

2
x2x̄2

− un+1
x1x̄1

= F. As

un+1(x) = un+ 1
2 (x) for x /∈ Sy, this system becomes





Hn+1 − H̃n

τ
+ 2

un+1(x1, x2)

h2
1

− un+ 1
2

x2x̄2

−u
n+ 1

2 (x1 − h1, x2) + un+ 1
2 (x1 + h1, x2)

h2
1

= F, x ∈ Sy.
(7)

Thus, the algorithm for the implementation of (3),(4) consists of 3 steps:

1) Predictor step: solving one-dimensional problem (5);
2) Main step: concurrent solving subproblems (6);
3) Corrector step: solving the system of scalar equations (7).

5 Multidecomposition method

The general idea of the multidecomposition is to divide the subdomain to
smaller subdomains i.e. use two-level decomposition of the calculation do-
main. The division of the subdomains is presented in the figure 1. We use the
notation Ωi = ∪pi

ji=1Ωi,ji . The use of high number of subdomains inside the
subdomain may increase the error dramatically. To overcome this feature we
introduce so called smoothing steps to our method. The calculation algorithm
for characteristic mesh scheme (5)-(7) is presented below.
Algorithm 1.
1. Time step n perform on the main processor the predictor step (5) on Sy.

2. Send the values of un+ 1
2 and Hn+ 1

2 on Sy to the slave processors.
3. Concurrently on the slave processors perform the predictor step (5) on the
artificial boundaries of the subdomains Ωi,ji , i = 1, 2, j1 = 1, ..., p1, j2 =
1, ..., p2.
4. Concurrently on the slave processors perform sequentially the main step
(6) on the subdomains Ωi,ji .
5. Concurrently on the slave processors perform the corrector step (7) on the
artificial boundaries of the subdomains Ωi,ji , i = 1, 2, j1 = 1, ..., p1, j2 =
1, ..., p2.
6. On the slave processors perform the smoothing step i.e. few iterations of
the MSOR-method over the whole subdomain Ωi.
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Fig. 1. Used nonoverlapping domain decomposition and multidecomposition of the
subdomains.

7. Send the subsolutions un+1 and Hn+1 to the main processor.
8. On the main processor perform the corrector step (7) on Sy.
9. On the main processor perform few iterations of the MSOR-method in the
neighborhood of Sy.
10. Put n = n+ 1, if the final time tf is reached STOP, else GOTO 1.

Remark 1. On the step 3. we do not do the predictor step (5) on Sy.

Remark 2. On the steps 3.-6. we do the calculations concurrently. Each pro-
cessor perform the steps asynchronously.

6 Numerical verification

Let Ω =]0, 1[×]0, 1[ with the boundary Γ divided in two parts ΓD = {x ∈
∂Ω : x2 = 0 ∨ x2 = 1} and ΓN = Γ \ ΓD. Moreover, let tf = 1 and uSL = 1.
The phase change interval is [uSL − ε, uSL + ε], ε = 0.01, and the velocity is
v(t) = 1

5 . Our numerical example is

∂H

∂t
−∆K + v(t)

∂H

∂x2
= f(x; t) on Ω,

u(x1, x2; t) = (x1 − 1
2 )2 − 1

2e
−4t + 5

4 on ΓD,
∂u

∂n
= 1 on ΓN ,

u(x1, x2; 0) = (x1 − 1
2 )2 + (x2 − 1

2 )2 + 1
2 on Ω,

where Kirchoff’s temperature K(u) and enthalpy H(u) are according to their
definition
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K(u) =




u if u < uSL − ε,
3
2u− 1−ε

2 if u ∈ [uSL − ε, uSL + ε],
2u− 1 if u > uSL + ε,

and

H(u) =





2u if u < uSL − ε,(
1+8ε
2ε

)
(u − 1) + 5+4ε

2 if u ∈ [uSL − ε, uSL + ε],
6u− 3 if u > uSL + ε.

The known right hand side f(x; t) is chosen such that our problem have the
exact solution u(x1, x2; t) = (x1 − 1

2 )2 + (x2 − 1
2 )2 − 1

2e
−4t + 1.

The stopping criterion of the calculations was the L2-norm of residual
‖r‖L2(Ω) < 10−4. We solve our problem by using different methods, Additive
Schwarz alternating method (ASAM), Implicit Predictor-Explicit Corrector
method (IPEC), Multidomain decomposition method (MDD) and sequential
modified SOR method (SEQ). The results are presented in the table 1.

Table 1. Calculation times for ASAM, IPEC, MDD and sequential MSOR methods
when the number of processors and calculation grid is changed. Number of inside
subdomains, 4 × 4.

SEQ ASAM ASAM ASAM IPEC IPEC IPEC MDD MDD
Grid 1 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc.

65 × 65 × 128 8.67 7.01 4.76 3.91 3.76 s 2.33 s 1.64 s 5.4 s 4.4
129 × 129 × 256 112.9 77.6 59.3 33.9 47.3 s 25.1 s 14.1 s 25.9 s 14.6
257 × 257 × 512 1425 889 494 281 600 s 285 s 164 s 342 s 179

Table 2. Efficiencies for ASAM, IPEC, MDD and methods when the number of
processors and calculation grid is changed. Number of inside subdomains, 4 × 4.

ASAM ASAM ASAM IPEC IPEC IPEC MDD MDD
Grid 2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc.

65 × 65 × 128 0.62 0.46 0.28 1.15 0.93 0.66 0.8 0.49
129 × 129 × 256 0.73 0.48 0.42 1.19 1.12 1 2.18 1.93
257 × 257 × 512 0.8 0.72 0.63 1.19 1.25 1.09 2.08 1.99

7 Conclusions

The numerical examples show that the multidecomposition method (MDD)
is very effective numerical method when solving continuous casting problem.
The idea to divide the subdomains to smaller subdomains seems to be very
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good and profitable. The algebraic dimension of the subproblems inside the
subdomains are very small and thus they are very quick to solve.

The introduced smoothing step allows us to use quite big number of sub-
domains. The accuracy of the different methods, MDD, ASAM and IPEC are
the same. However, the smoothing step is economical to perform and calcu-
lation times for MDD are roughly half of the calculation times of the IPEC
method.

The tables 1 and 2 show very clearly the advantages of the multidecompo-
sition method over other methods. It is extremely quick and accuracy is the
same than other methods. Implementation of MDD is straightforward and it
do not need huge amount of processors to solve big and complicated problems.
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