Partition of Unity Method for the Stokes Equations

Constantin Bacuta
bacuta@math.udel.edu

Department of Mathematical Sciences
University of Delaware

joint work with Jinru Chen, Yunqing Huang
Jinchao Xu and Ludmil Zikatanov
Outline

- Partition of Unity (PU) Related Works
- PU Method: The Huang - Xu Approach
- Discretization of Stokes Problem via PU
 - Overlapping grids
 - Non-overlapping non-matching grids
- Remarks and Future Plans
Related Works

\[|\nabla \phi_i|_\infty \simeq (\text{diam}(\Omega_i))^{-1} \]

\(\phi_i \)-the (PU)-function corresponding to the subdomains \(\Omega_i \).

Huang-Xu (2002) designed a conforming fem for overlapping and nonmatching grids for elliptic BVP using a (PU)-method.

\[|\nabla \phi_i|_\infty \simeq (\text{minimal overlapping size of } (\Omega_i))^{-1} \]
The Huang-Xu Approach

\(\Omega \) is an open set in \(\mathbb{R}^d \).
Consider an overlapping domain decomposition of \(\Omega \).

\[\Omega = \bigcup_{i=1}^{p} \Omega_i. \]

Each \(\Omega_i \) is partitioned by a quasi-uniform triangulation \(\mathcal{T}^{h_i} \) of maximal mesh size \(h_i \).
With each triangulation \mathcal{T}^{h_i}, associate a finite element subspace $S^{h_i}(\Omega_i) \subset H^r(\Omega_i)$.

Let $u \in H^r(\Omega)$, and let $m_i \geq 1$ denote additional degree of smoothness of u on Ω_i.

Assume optimal approximation properties on subdomains: For any $u \in H^{m_i+r}(\Omega_i)$, there exists $v_h \in S^{h_i}(\Omega_i)$ such that

$$
\sum_{k=0}^{r} h_i^k |u - v_h|_{k, \Omega_i} \lesssim h_i^{m_i+r} \|u\|_{m_i+r, \Omega_i}.
$$
Partition of Unity Functions

The main ingredient is a partition of unity \(\{ \phi_i \} \) associated with the overlapping subdomains \(\{ \Omega_i \} \).

\[
\begin{align*}
0 & \leq \phi_i \leq 1, \\
\sum_i \phi_i & \equiv 1, \\
\text{supp}(\phi_i) & \subset \bar{\Omega}_i, \phi_i \in W^{r,\infty}(\Omega), \\
|\nabla^k \phi_i| & \lesssim d_i^{-k} \quad 1 \leq k \leq r,
\end{align*}
\]

where \(d_i \) is the minimal overlapping size of \(\Omega_i \) with its neighboring subdomains.
Use PU to Create Global Spaces

Use the partition of unity to glue together the subspaces $S^{h_i}(\Omega_i)$.

$V^h(\Omega) = \sum_{i=1}^{p} \phi_i S^{h_i}(\Omega_i) = \left\{ v = \sum_{i=1}^{p} \phi_i v_i \mid v_i \in S^{h_i}(\Omega_i) \right\}$.

Theorem (Huang - Xu): If the overlapping size $d_i \geq c h_i$, then for $0 \leq k \leq r$,

$$\inf_{v_h \in V^h(\Omega)} \| u - v_h \|_{k,\Omega} \lesssim \sum_{i=1}^{p} h_i^{m_i+r-k} \| u \|_{m_i+r-k,\Omega_i},$$

for any $u \in H^r(\Omega) \bigcap_{i=1}^{p} H^{m_i+r}(\Omega_i)$.

University of Delaware
The Steady-State Stokes Problem

\begin{align*}
-\Delta u - \nabla p &= F \quad \text{in } \Omega, \\
\nabla \cdot u &= 0 \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega, \\
\int_{\Omega} p &= 0.
\end{align*}

The variational formulation: Find \(u \in V \) and \(p \in P \) s.t.

\begin{align*}
\begin{cases}
a(u, v) + b(v, p) &= (F, v) \quad \text{for all } v \in V, \\
b(u, q) &= 0 \quad \text{for all } q \in P.
\end{cases}
\end{align*}

\((\cdot, \cdot)\)- the \(L^2 \)-inner product, \(V := (H^1_0(\Omega))^2 \), \(P := L^2_0(\Omega) \),

\[a(u, v) = \sum_{i=1}^{2} \int_{\Omega} \nabla u_i \cdot \nabla v_i \, dx, \quad \text{and} \quad b(v, q) = (q, \nabla \cdot v). \]
(LBB) Condition - Stability

The inf-sup condition

\[c_0 \|p\| \leq \sup_{v \in V} \frac{(p, \nabla \cdot v)}{\|v\|_{1,\Omega}}, \quad \text{for all } p \in P, \]

holds for a positive constant \(c_0 \). We are interested in building stable pairs \((V_h, P_h)\), \(V_h \subset V \) and \(P_h \subset P \), i.e., pairs \((V_h, P_h)\) which satisfy the discrete inf-sup condition

\[c_0 \|p\| \leq \sup_{v \in V_h} \frac{(p, \nabla \cdot v)}{\|v\|_{1,\Omega}}, \quad \text{for all } p \in P_h. \]

\[
\begin{cases}
 a(u_h, v) + b(v, p_h) = (F, v) & \text{for all } v \in V_h, \\
 b(u_h, q) = 0 & \text{for all } q \in P_h,
\end{cases}
\]
\(\Omega_1, \Omega_2 \) -overlapping subdomains of \(\Omega = \Omega_1 \cup \Omega_2 \).

Assume that \(\Omega_1 \) and \(\Omega_2 \) are partitioned by quasi-uniform finite element triangulations \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) of maximal mesh sizes \(h_1 \) and \(h_2 \) (which might not match on \(\Omega_0 = \Omega_1 \cap \Omega_2 \)).

Assume that \(\Omega_0 \) is a strip-type domain of width \(d = O(h_1) \).
Let \(\{\phi_1, \phi_2\} \) be a partition of unity subordinate to the covering partition \(\{\Omega_1, \Omega_2\} \) of \(\Omega \), i.e.

\[
\phi_1 + \phi_2 = 1, \quad 0 \leq \phi_i \leq 1, \quad \| \nabla \phi_i \|_{\infty, \Omega} \lesssim 1/d,
\]
and \(\phi_1 \equiv 1 \) on \(\Omega_1 \setminus \Omega_0 \), and \(\phi_1 \equiv 0 \) on \(\Omega_2 \setminus \Omega_0 \).

The local discrete spaces for velocity and pressure:

\[
V_{h_i}(\Omega_i) := \{ \mathbf{v} \in (H^1_0(\Omega_i; \partial \Omega \cap \partial \Omega_i))^2 \mid \mathbf{v}|_K \in P_1 \},
\]

\[
P_{h_i}(\Omega_i) := \{ p \in C^0(\Omega_i) \mid p|_K \in P_1 \},
\]

\[
\hat{P}_{h_i}(\Omega_i) := \{ p \in P_{h_i}(\Omega_i) \mid p = 0 \text{ on } \partial \Omega_i \setminus \partial \Omega \}.
\]
First Example of Mini-Element Pair

Let \(B \) be the space of bubble functions associated with the "union" partition \(\mathcal{T} := \mathcal{T}_1 \cup \mathcal{T}_2 \) as follows. For a triangle \(T \), we define the bubble function \(B_T \) supported on \(T \) as the product of the nodal functions associated with the vertices of \(T \).

If \(K = T_1 \cap T_2 \in \mathcal{T}_1 \cup \mathcal{T}_2 \) we define

\[
B_K := B_{T_1} \cdot B_{T_2}.
\]

If \(K = T_i \) for some \(T_i \in \mathcal{T}_i, (i = 1, 2) \), then we just take \(B_K := B_{T_i} \).

Take \(B := \text{Span}\{B_K | K \in \mathcal{T}\} \).
A composite conforming finite element space for velocity can be defined by

\[\mathbf{V}_h \equiv \mathbf{V}_h(\Omega) := \phi_1 \mathbf{V}_h^1 + \phi_2 \mathbf{V}_h^2 + B^2. \]

The discrete pressure space associated with \(\mathbf{V}_h \) is

\[P_h := (\hat{P}_h^1(\Omega_1) + \hat{P}_h^2(\Omega_2)) \cap P. \]
Main Result

Assumptions:

(A0) \(h := h_1 \geq h_2 = rh_1 \), for some positive constant \(r \).

(A1) There exists a positive constant \(c \) such that \(|K| \approx ch^2 \) for any \(K \in \mathcal{T} \), where \(|K| \) denotes the Lebesgue measure of \(K \in \mathcal{T} \).

Theorem 1 : The pair \((V_h, P_h)\) defined above is a stable pair.
Proof Outline

Construct $\Pi_1 : \mathbf{V} \rightarrow \mathbf{V}_h$, $\Pi_2 : \mathbf{V} \rightarrow \mathbf{V}_h$ s.t.

\[|v - \Pi_1 v|_{1,\Omega} \lesssim |v|_{1,\Omega}, \quad \text{for all } v \in \mathbf{V}, \quad (1) \]

\[|\Pi_2 (I - \Pi_1) v|_{1,\Omega} \lesssim |v|_{1,\Omega}, \quad \text{for all } v \in \mathbf{V}, \quad (2) \]

\[b(v - \Pi_2 v, q) = 0, \quad \text{for all } q \in P_h, v \in \mathbf{V}. \quad (3) \]

Take $\Pi_h = \Pi_1 + \Pi_2 (I - \Pi_1)$.

For $i = 1, 2$ let $\mathbf{V}_i := (H^1_0(\Omega_i; \partial \Omega_i \cap \partial \Omega))^2$, and let $\Pi^i_1 : \mathbf{V}_i \rightarrow \mathbf{V}_{h_i}$ be Clement operators.

Define Π_1 by

\[\Pi_1 v := \phi_1 \Pi^1_1(v_{|\Omega_1}) + \phi_2 \Pi^2_1(v_{|\Omega_2}). \]
The definition of Π_2

For $v \in V$, $K \in T$, we define

$$\Pi_2 v|_K := \alpha B_K,$$

where $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ is chosen such that

$$\int_K (v - \Pi_2 v) \, dx = 0,$$

i.e.,

$$\alpha = \frac{\int_K v \, dx}{\int_K B_K \, dx}.$$

For $v \in V$ and $q \in P_h$, we have

$$b(v - \Pi_2 v, q) = -(\Pi_2 v - v, \nabla q) = -\sum_{K \in T} \nabla q \int_K (\Pi_2 v - v) = 0.$$
Special Case

When any $K \in T$ is a triangle in either T_1 or T_2, the condition (A1) is satisfied. For example, any $T_1 \in T_1$, $T_1 \subset \Omega_0$ is a union of triangles of T_2.

(A1) $|K| = |T_i| \approx h_i^2$ for any $K \in T$.

Following the proof of Theorem 1, we deduce that the constants involved are also independent of the ratio $r = h_2/h_1$.

Corollary: The discrete inf-sup condition holds with a constant c_0 independent of h_2, h_1 and $r = h_2/h_1$.
The space V_h has good approximation properties,

$$\inf_{v_h \in V_h} \| v - v_h \|_{1,\Omega} \lesssim h_1 \| v \|_{1,\Omega_1} + h_2 \| v \|_{1,\Omega_2}, \quad \text{for all } v \in V.$$

If $P_h = \hat{P}_{h_1}(\Omega_1) + \hat{P}_{h_2}(\Omega_2)$ is a linear space containing the locally constant functions, then P_h has the following approximation property:

$$\inf_{p_h \in P_h} \| P - P_h \|_{0,\Omega} \lesssim h \| P \|_{1,\Omega}, \quad \text{for all } p_h \in P_h.$$

Conclusion: The pair (V_h, P_h) has good approximation properties and is a stable pair.
Consider P_h defined using the PU as

$$P_h := (\phi_1 P_{h_1}(\Omega_1) + \phi_2 P_{h_2}(\Omega_2)) \cap P.$$

P_h has better approximation properties. The pressure space is enriched on the overlapping region. To prove stability we enrich the bubble space B.

For each $K \in T, K \subset \Omega_0$, we consider B_1^1, B_2^2 two bubble functions supported on K.

$$B := Span\{B_1^1, B_2^2 | K \in T\} \quad \text{and} \quad V_h := \phi_1 V_{h_1} + \phi_2 V_{h_2} + B^2.$$

Theorem 2: The new pair (V_h, P_h) is a stable pair.
Non-overlapping non-matching grids

Extend the mesh of one subdomain inside the neighboring subdomain.
Non-overlapping non-matching grids

Extend the mesh of one subdomain inside the neighboring subdomain.
Remarks and future plans

The method can be extended, with no difficulties, to the more subdomains case or the multidimensional case.
Remarks and future plans

The method can be extended, with no difficulties, to the more subdomains case or the multidimensional case.

If spaces of continuous piecewise linear functions are considered, then the partition of unity functions can be chosen to be piecewise linear functions also.
Remarks and future plans

- The method can be extended, with no difficulties, to the more subdomains case or the multidimensional case.
- If spaces of continuous piecewise linear functions are considered, then the partition of unity functions can be chosen to be piecewise linear functions also.
- The condition (A1) is too restrictive. In practice, we can slightly change the mesh by moving points of the mesh towards other very close points or edges.
Remarks and future plans

- The method can be extended, with no difficulties, to the more subdomains case or the multidimensional case.

- If spaces of continuous piecewise linear functions are considered, then the partition of unity functions can be chosen to be piecewise linear functions also.

- The condition \((A1)\) is too restrictive. In practice, we can slightly change the mesh by moving points of the mesh towards other very close points or edges.

- We conjecture that other classical stable pairs (for example, \((\mathbb{P}_2, \mathbb{P}_1)\)) could be glued by a \(\text{PU}\) in order to construct stable pairs with good approximation properties.
If an adaptive algorithm (e.g. PPUM of Bank and Holst) is considered, then the refinement strategy can be done locally. The pollution, which is usually associated with a refining strategy, can be isolated within the boundaries of one subdomain.
If an adaptive algorithm (e.g. PPUM of Bank and Holst) is considered, then the refinement strategy can be done locally. The pollution, which is usually associated with a refining strategy, can be isolated within the boundaries of one subdomain.

The degrees of freedom for the discrete problem are affected by the specific partition of unity that we choose.
If an adaptive algorithm (e.g. PPUM of Bank and Holst) is considered, then the refinement strategy can be done locally. The pollution, which is usually associated with a refining strategy, can be isolated within the boundaries of one subdomain.

The degrees of freedom for the discrete problem are affected by the specific partition of unity that we choose.

This approach involves conforming spaces only. No extra constrains or mortar spaces are needed.
If an adaptive algorithm (e.g. PPUM of Bank and Holst) is considered, then the refinement strategy can be done locally. The pollution, which is usually associated with a refining strategy, can be isolated within the boundaries of one subdomain.

The degrees of freedom for the discrete problem are affected by the specific partition of unity that we choose.

This approach involves conforming spaces only. No extra constrains or mortar spaces are needed.

We will further investigate the PU method for mixed finite elements on overlapping grids.