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Summary. We review our recent results concerning optimal algorithms for numeri-
cal solution of both coercive and semi-coercive variational inequalities by combining
dual-primal FETI algorithms with recent results for bound and equality constrained
quadratic programming problems. The convergence bounds that guarantee the scal-
ability of the algorithms are presented. These results are confirmed by numerical
experiments.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) method was orig-
inally proposed by Farhat and Roux [14] as a parallel solver for problems
described by elliptic partial differential equations. After introducing a so–
called “natural coarse grid”, Farhat, Mandel and Roux [13] modified the basic
FETI method to obtain a numerically scalable algorithm. A similar result was
achieved by the Dual-Primal FETI method (FETI–DP) introduced by Farhat
et al. [12]; see also [15]. In this paper, we use the FETI–DP method to develop
scalable algorithms for the numerical solution of elliptic variational inequal-
ities. The FETI–DP methodology is first applied to the variational inequal-
ity to obtain either a strictly convex quadratic programming problem with
non-negativity constraints, or a convex quadratic programming problem with
bound and equality constraints. This problems are then solved efficiently by
recently proposed improvements [4, 11] of the active set based proportioning
algorithm [3], possibly combined with a semimonotonic augmented Lagrangian
algorithm [5, 6]. The rate of convergence of these algorithms can be bounded
in terms of the spectral condition number of the quadratic problem, and there-
fore the scalability of the resulting algorithm can be established provided that
suitable bounds on the condition number of the Hessian of the quadratic cost
function exist. We present such estimates in terms of the decomposition pa-
rameter H and the discretization parameter h. These bounds are independent
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of both the decomposition of the computational domain and the discretiza-
tion, provided that we keep the ratio H/h fixed. We report numerical results
that are in agreement with the theory and confirm the numerical scalability
of our algorithm. Let us recall that an algorithm based on FETI–DP and on
active set strategies with additional planning steps, FETI–C, was introduced
by Farhat et al. [1]. The scalability of FETI–C was established experimentally.

2 Model problem

To simplify our exposition, we restrict our attention to a simple model prob-
lem. The computational domain is Ω = Ω1 ∪ Ω2, where Ω1 = (0, 1) × (0, 1)
and Ω2 = (1, 2)× (0, 1), with boundaries Γ 1 and Γ 2, respectively. We denote
by Γ i

u, Γ i
f , and Γ i

c the fixed, free, and potential contact parts of Γ i, i = 1, 2.

We assume that Γ 1

u has non-zero measure, i.e., Γ 1

u 6= ∅. For a coercive model
problem, Γ 2

u 6= ∅, while for a semicoercive model problem, Γ 2

u = ∅; see Figure
1a. Let Γc = Γ 1

c ∪ Γ 2

c . The Sobolev space of the first order on Ωi is denoted
by H1(Ωi) and the space of Lebesgue square integrable functions is denoted
by L2(Ωi). Let V = V 1 × V 2, with

V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γ i

u

}
, i = 1, 2.

Let K ⊂ V be a closed convex subset of H = H1(Ω1) × H1(Ω2) defined by

K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}
.

We define the symmetric bilinear form a(·, ·) : H×H → R by

a(u, v) =
2∑

i=1

∫

Ωi

(
∂ui

∂x1

∂vi

∂x1

+
∂ui

∂x2

∂vi

∂x2

)
dx.

Let f ∈ L2(Ω) be a given function and f i ∈ L2(Ωi), i = 1, 2, be the restric-
tions of f to Ωi, i = 1, 2. We define the linear form l(·) : H → R by

`(v) =

2∑

i=1

∫

Ωi

f ividx

and consider the following problem:

Find min
1

2
a(u, u) − `(u) subject to u ∈ K. (1)

The solution of the model problem may be interpreted as the displacement
of two membranes under the traction f . The left membrane Ω1 is fixed on the
left edge as in Figure 1a and the left edge of Ω2 is not allowed to penetrate
below the right edge of Ω1. For the model problem to be well defined, we
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Fig. 1a: Semi–coercive model problem Fig. 1b: Decomposition: H = .5, H/h = 3

either require that the right edge of the right membrane Ω2 is fixed, for the
coercive problem, or, for the semicoercive problem, that the traction function
f satisfies ∫

Ω2

f dx < 0.

3 FETI–DP discretization of the problem

The first step in our domain decomposition method is to partition each domain
Ωi, i = 1, 2, on a rectangular grid into subdomains of diameter of order H .
Let W be the finite element space whose restrictions to Ω1 and Ω2 are Q1

finite element spaces of comparable mesh sizes of order h, corresponding to
the subdomain grids in Ω1 and Ω2. We call a crosspoint either a corner that
belongs to four subdomains, or a corner that belongs to two subdomains and is
located on ∂Ω1\Γ 1

u or on ∂Ω2\Γ 2

u . The nodes corresponding to the end points
of Γc are not crosspoints; see Figure 1b. An important feature for developing
FETI–DP type algorithms is that a single degree of freedom is considered
at each crosspoint, while two degrees of freedom are introduced at all the
other matching nodes across subdomain edges. Let v ∈ W . The continuity of
v in Ω1 and Ω2 is enforced at every interface node that is not a crosspoint.
For simplicity, we also denote by v the nodal values vector of v ∈ W . The
discretized version of problem (1) with the auxiliary domain decomposition
has the form

min
1

2
vT Kv − vT f subject to BIv ≤ 0 and BEv = 0, (2)

where the full rank matrices BI and BE describe the non-penetration (in-
equality) conditions and the gluing (equality) conditions, respectively, and f
represents the discrete analog of the linear form `(·). In (2), K = diag(K1, K2)
is the block diagonal stiffness matrix corresponding to the model problem (1).
The block K1 corresponding to Ω1 is nonsingular, due to the Dirichlet bound-
ary conditions on Γ 1

u . The block K2 corresponding to Ω2 is nonsingular for a
coercive problem, and is singular, with the kernel made of a vector e with all
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entries equal to 1, for a semicoercive problem. The kernel of K is spanned by
the matrix R defined by

R =

[
0
e

]
.

Even though R is a column vector for our model problem, we will regard R as
a matrix whose columns span the kernel of K. We partition the nodal values
of v ∈ W into crosspoint nodal values, denoted by vc, and remainder nodal
values, denoted by vr. The continuity of v at crosspoints is enforced by using
a global vector of degrees of freedom vg

c and a global-to-local map Lc with
one nonzero entry equal to 1 in each row, i.e., we require that vc = Lcv

g
c .

Therefore,

v =

[
vr

vc

]
=

[
vr

Lcv
g
c

]
.

Let fc and fr be the parts of the right hand side f corresponding to the corner
and remainder nodes, respectively. Let BI,r and BI,c be the matrices made of
the columns of BI corresponding to vr and vc, respectively; define BE,r and
BE,c similarly. Let

Br =

[
BI,r

BE,r

]
, Bc =

[
BI,c

BE,c

]
, B = [Br Bc].

Let Krr, Krc, and Kcc denote the blocks of K corresponding to the decom-
position of v into vr and vc. Consider the shortened vectors

v =

[
vr

vg
c

]
∈ W.

Let λI and λE be Lagrange multipliers enforcing the inequality and redun-
dancy conditions. The Lagrangian L(v, λ) = 1/2 vT Kv − vT f + vT BT λ asso-
ciated with problem (2) can be expressed as follows:

L(v, λ) =
1

2
vT Kv − vT f + vT B

T
λ, (3)

where

λ =

[
λI

λE

]
, K =

[
Krr KrcLc

LT
c KT

rc LT
c KccLc

]
, B = [Br BcLc] , f =

[
fr

LT
c fc

]
.

Using duality theory [2], we can eliminate the primal variables v from the
mixed formulation of (2). For a coercive problem, K is nonsingular and we
obtain the problem of finding

min Θ(λ) = min
1

2
λT Fλ − λT d̃ s.t. λI ≥ 0, (4)

with F = B K
−1

B
T

and d̃ = B K
−1

f . For an efficient implementation of F
it is important to exploit the structure of K; see [8, 10] for more details.



An Overview of Scalable FETI–DP Algorithms for Variational Inequalities 5

For a semicoercive problem, we obtain the problem of finding

min Θ(λ) = min
1

2
λT Fλ − λT d̃ s.t. λI ≥ 0 and G̃λ = ẽ, (5)

where F = B K
†
B

T
, d̃ = B K

†
f , G̃ = RT B

T
, ẽ = RT f . Here, K

†
denotes a

suitable generalized inverse that satisfies K K
†

K = K. Even though prob-
lem (5) is much more suitable for computations than (1) and was used for
solving discretized variational inequalities efficiently [7], further improvement

may be achieved as follows. Let T̃ denote a nonsingular matrix that defines
the orthonormalization of the rows of G̃ such that the matrix G = T̃ G̃ has
orthonormal rows. Let e = T̃ ẽ. Then, problem (5) reads

min
1

2
λT Fλ − λT d̃ s.t λI ≥ 0 and Gλ = e. (6)

Next, we transform the problem of minimization on the subset of the affine
space to a minimization problem on the subset of a vector space. Let λ̃ be an
arbitrary feasible vector such that Gλ̃ = e. We look for the solution λ of (5)

in the form λ = µ + λ̃. After returning to the old notation by replacing µ by
λ, it is easy to see that (6) is equivalent to

min
1

2
λT Fλ − dT λ s.t Gλ = 0 and λI ≥ −λ̃I , (7)

with d = d̃−F λ̃. Our final step is based on the observation that the augmented
Lagrangian for problem (7) may be decomposed by the orthogonal projectors

Q = GT G and P = I − Q

on the image space of GT and on the kernel of G, respectively. Since Pλ = λ
for any feasible λ, problem (7) is equivalent to

min
1

2
λT PFPλ − λT Pd s.t Gλ = 0 and λI ≥ −λ̃I . (8)

4 Optimality

To solve the discretized variational inequality, we use our recently proposed
algorithms [8, 10]. To solve the bound constrained quadratic programming
problem (4), we use active set based algorithms with proportioning and gra-
dient projections [4, 11]. The rate of convergence of the resulting algorithm
can be estimated in terms of bounds on the spectrum of the Hessian of Θ.
To solve the bound and equality constrained quadratic programming prob-
lem (8), we use semimonotonic augmented Lagrangian algorithms [5, 6]. The
equality constraints are enforced by Lagrange multipliers generated in the
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outer loop, while the bound constrained problems are solved in the inner loop
by the above mentioned algorithms. The rate of convergence of this algorithm
may be again described in terms of bounds on the spectrum of the Hessian
of Θ. Summing up, the optimality of our algorithms is guaranteed, provided
that we establish optimal bounds on the spectrum of the Hessian of Θ. Such
bounds on the spectrum of the operator F , possibly restricted to ImP , are
given in the following theorem:

Theorem 1. If F denotes the Hessian matrix of Θ in (4), the following spec-
tral bounds hold:

λmax(F ) = ||F || ≤ C

(
H

h

)2

; λmin(F ) ≥ C.

If F denotes the Hessian matrix of Θ in (5), the following spectral bounds
hold:

λmax(F |ImP ) ≤ ||F || ≤ C

(
H

h

)2

; λmin(F |ImP ) ≥ C.

Proof: See [8, 10].

5 Numerical experiments

We report some results for the numerical solutions of a coercive contact prob-
lem and of a semicoercive contact problem, in order to illustrate the perfor-
mance and numerical scalability of our FETI–DP algorithms. In our experi-
ments, we used a function f vanishing on (0, 1) × [0, 0.75) ∪ (1, 2) × [0.25, 1).
For the coercive problem, f was equal to −1 on (0, 1) × [0.75, 1) and to −3
on (1, 2)× [0, 0.25), while for the semicoercive problem, f was equal to −5 on
(0, 1) × [0.75, 1) and to −1 on (1, 2) × [0, 0.25). Each domain Ωi was parti-
tioned into identical squares with side H = 1/2, 1/4, 1/8. These squares were
then discretized by a regular grid with the stepsize h. For each partition, the
number of nodes on each edge, H/h, was taken to be 4, 8, and 16. The meshes
matched across the interface for every neighboring subdomains. All experi-
ments were performed in MATLAB. The solution of both the coercive and
semicoercive model problems for H = 1/4 and h = 1/4 are presented in Fig-
ure 2. Selected results of the computations for varying values of H and H/h
are given in Table 1, for the coercive problem, and in Table 2 for the semi-
coercive problem. The primal dimension/dual dimension/number of corners
are recorded in the upper row in each field of the table, while the number of
the conjugate gradient iterations required for the convergence of the solution
to the given precision is recorded in the lower row. The key point is that the
number of the conjugate gradient iterations for a fixed ratio H/h varies very
moderately with the increasing number of subdomains.
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Table 1. Convergence results for the FETI–DP algorithm - coercive problem

H 1/2 1/4 1/8

H/h = 16 2312/153/10 9248/785/42 36992/3489/154
33 39 43

H/h = 8 648/73/10 2592/369/42 10365/1633/154
20 32 34

H/h = 4 200/33/10 800/161/42 3200/705/154
19 24 27

Table 2. Convergence results for the FETI–DP algorithm - semicoercive problem

H 1/2 1/4 1/8

H/h = 16 2312/153/10 9248/785/42 36992/3489/154
61 51 53

H/h = 8 648/73/10 2592/369/42 10365/1633/154
38 36 46

H/h = 4 200/33/10 800/161/42 3200/705/154
29 28 35
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Fig. 2a: Solution of coercive problem Fig. 2b: Solution of semi-coercive problem

6 Comments and conclusions

We applied the FETI–DP methodology to the numerical solution of a varia-
tional inequality. Theoretical arguments and results of numerical experiments
show that the scalability of the FETI–DP method which was established ear-
lier for linear problems may be preserved even in the presence of nonlinear
conditions on the contact boundary. The results are supported by numeri-
cal experiments. Similar results were obtained also for non-matching contact
interfaces discretized by mortars [9].
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