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1.1 Introduction

Let £2 = R x @, where () is a bounded domain of R2, and consider the elliptic
PDE of advection-diffusion-reaction type given by

—div (¢Vu) +div(bu) + nqu=f in 2

Bu=gon R x 9Q, (L.1)

with the additional requirement on the solutions to be bounded at infinity.
After a finite element, finite differences or finite volume discretization, we
obtain a large sparse system of linear equations, given by

Aw="1. (1.2)

Under classical assumtpions on the coefficients of the problem (e.g. n —
2divb > 0 a.e. in £2) the matrix A in (1.2) is definite positive.

We solve problem (1.2) by means of an Optimized Schwarz Method: such
methods have been introduced at the continuous level in [4], and at the dis-
crete level in [5]. We design optimized interface conditions directly at the al-
gebraic level, in order to guarantee robustness with respect to heterogeneities
in the coefficients.

1.2 LDU factorization and absorbing boundary
conditions

In this section we enlighten the link between an LDU factorization of a matrix
and the construction of absorbing conditions on the boundary of a domain
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(see [1]). As it is well known in domain decomposition literature, such condi-
tions provide exact interface transmission operators. Let then 2 € R?be a
bounded polyedral domain. We assume that the underlying grid is obtained
as a deformation of a Cartesian grid on the unit cube, so that for suitable
integers N, N,, and N,, w € RN=*Nv*N- If the unknowns are numbered
lexicographically, the vector w is a collection of N, sub-vectors w; € RNv*N=
i.e.

w=(w],...,wi )" (1.3)
From (1.3), the discrete problem in {2 reads
Bw=g, (1.4)

where g = (g1, .., gn. )7, each g; being a N, x N, vector, and where the matrix
B of the discrete problem has a block tri-diagonal structure

D, U,

B= | [P (1.5)
Un,-1

Ly, 1 Dn,

where each block is a matrix of order N, x N..
An exact block factorization of the matrix B defined in (1.5) is given by

B=(L+T)T Y(U+T), (1.6)

where

0 0U;

S . Un,—1
Ly, 10 0

while T is a block-diagonal matrix whose nonzero entries are the blocks T;

defined recursively as

D, fori=1
T, =
D; — Li T, U4 for 1 <i < N,.

So far, we can give here the algebraic counterpart of absorbing boundary
conditions. Assume g = (0,..,0,9p+1,..,9n,), and let N, = N, —p+ 1. To
reduce the size of the problem, we look for a block matrix K € (RNv*N=)Np,
each entry of which is a Ny x IV, matrix, such that the solution of Kv = g =
(0,9p41, -, gn, )" satisfies vy = wy4,_1 for k = 1,..N,. The rows 2 through N,
in the matrix K coincide with the last N, —1 rows of the original matrix B. To
identify the first row, which corresponds to the absorbing boundary condition,
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take as a right hand side in (1.4) the vector g = (0,..,0, gp+1, .., gn, ), and,
owing to (1.6), consider the first p rows of the factorized problem

T] Tf] T] U] w1
Ly Ty T, Ty Us

. . . .. Wy
Lp,] Tp TI;] Tp Up Wp+1
The first two are p X p square invertible matrices, so we need to consider only
the third one, a rectangular p x (p + 1) matrix: from the last row we get

Tywy + Upwpiq =0, (1.7)

which, identifying v1 = w, and vy = wp41, provides the first row in matrix
K.
Assume then g = (g1, .., 94-1,0, ..,0)T. A similar procedure can be developed
to reduce the size of the problem, by starting the recurrence in the factoriza-
tion (1.6) from Dy, , as

N D; — UT L for 1 <i < N,

T, =

Dy, for i = N,

and we can easily obtain the equation for the last row in the reduced equation
as B
Loywg_1 +Tywy = 0. (1.8)

1.3 Optimal interface conditions for an infinite layered
domain

In this section we go back to problem (1.1), where the domain (2 is infinite
in the z direction, we consider a two domain decomposition 2 = (2 U (25,
21 N 2y =0, where

91:R7XQ7 92:R+XQ7

and we denote with I = 921 N 825 the common interface of the two subdo-
mains. We assume that the viscosity coefficients are layered (i.e. they do not
depend on the z variable), and consider a discretization on a uniform grid via
a finite volume scheme with an upwind treatment of the advective flux.

The resulting linear system is given by

A Air O Wi fi
Ari Arr Ar wr | = | fr (1.9)
0 Asr Ay W2 £
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where w; is the vector of the internal unknowns in domain 2; (i = 1,2), and
wr is the vector of interface unknowns. In order to guarantee the conserva-
tivity of the finite volume scheme, the vector of interface unknown consists of
two sets of variables, wr = (wr,wy)T, the first one to express the continuity
of the diffusive flux, the second to express the continuity of the advective one.
If the unknowns are numbered lexicographically, the matrix A is given by

LiD, U | 0 0
Ly Dip|Uqp
A= | 0 Lis Drr| Usr 0 : (1.10)
Lgr‘ DZI" U2
0 0 Ly Dy U,

where the block Dpp is square, whereas the blocks L;p, and U;p (i = 1,2)
are rectangular.

By duplicating the interface variables w into wr; and W, we can define
a Schwarz algorithm directly at the algebraic level, as

A Air Vf“ _ f
Ar'] T] V’Ic—‘ﬁ] - fr‘ + (T] - D]"r‘) Vfﬂ’Q - A]"2V12C

Aoy Ayr V§+1 _ fs
A.[‘2 T2 V?{El f]“+(T2 *DFF)V];%’] 7Ap1Vf ’

As it is well known in literature, if we take

(1.11)

T, =Arr — AraAy Aor Ty =Arr — AriA'Air,

the algorithm (1.11) converges in two iterations. We are in the position to
give the following result, the proof of which will be given in [3].

Lemma 1. Let A be the matriz defined in (1.9), and let T\ o and Toe be
such that Ty o = Dy — LTy LUy and Ty oo = Dy — UsTy o Ly. We have

B - -1
ApiAL'Ayp =Ly (Dip — L Ty L, Ur)  Upp

B _ -1
Ar2A221A2r =Usr (D2F - Us T2,;o LQ) Lor.

Noticing that Apr = Dpp, the optimal interface operators are given by

_ —1
T =Drr — Lir [Dir — Li Ty L U] Usr

L oo VL) (1.12)
T$ = Dpp — Usp [Dop — Us Ty Ly]  Lor.
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1.4 Optimized algebraic interface conditions for a
non-overlapping Schwarz method

The lack of sparsity of the matrices T$* and T§* in (1.12), make them not
suitable to be used in practice. Thus we choose for Ty and T2 in (1.11) two
suitable approximations of T{* and T$*, respectively.

At the cost of enlarging the size of the interface problem, we choose T3"? and
T5°P defined as follows:

T =Drpr — Lip [Dip — Ly (T752) Ul]q Uir (1.13)
a a - -1 ’
T35 = Drr — Uar [Dor — Ua (T550) ' La]  Lor,

where TyP? and T5%0 are suitable sparse approximations of Ty o, and T o,
respectively. The most natural choice would be to take their diagonals, but,
in order to have a usable condition, we avoid the computation of both T}
and T3 o, which is too costly. Notice that if D;, L;, and U; (j = 1,2) were
all diagonal matrices the same would hold also for T} ... Moreover, if all the

matrices involved commute, or if L; = UiT, we would have

D1 \/(_L])l/QD](_U])1/2(_L])1/2D](_U])1/2
Tl,oo =—+

— LUy
5 1 1Ua

and a similar formula holds for T5 o, with the roles of Ly and U, exchanged.
These considerations have led us to consider the following approximations of
T],Oo and T27oo-

Let d;, l;, and u; be the diagonals of D;, L; and Uj;, respectively.

Robin: We choose in (1.13)

D
TR =5 +oi" Dy,

/12—
where D; = diag (%) , and where the optimized parameter is given
by

(@%Ph)? = max{\/r]2 + 17, \/T‘]R] — I]Q} , (1.14)

where we have set r;1 := minRe )\, R; := maxRel, and I := maxIm },
A€o (Pm”znl(7U1>*1/24<—m*1/2nl(7U1>”2 ,L1U1) diag <7V df;””“)

whereas a similar formula holds for T57P.

Order 2: This condition is obtained by blending together two first order
approximations, and we have

~ -1 , ~
Tlazg = L1 ([Dl,ﬁl] + (Oq + OKQ)L:l) (D]Q + (Oq + O(Q)Dl + oqozgld - Ell/[l)
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where [.,.] is the Lie bracket, where D, = DIQDI L L= DflLl, U = DflUl,
and where
(Oé]CMQ)2 =7 R] (Oé] +042)2 = \/2 (T’] +R])\/T] R]7 (115)

r; and R; being defined as before.

The tuning of the optimized parameters for both conditions can be found
in [2], and a more exhaustive presentation of the construction of interface
conditions and of the numerical tests will be given in a forthcoming paper [3].
The proposed interface conditions are built directly at the algebraic level, and
are easy to implement. However, thery rely heavily on the approximation of
the Schur complement and, if on one hand the extension to a decomposition
in strips appears quite straightforward, on the other hand further work needs
to be done in order to analyse their scalability to an arbitrary decomposition
of the computational domain.

Finally, it is easy to prove the following result (see [3]).

Lemma 2. The Schwarz algorithm

A Air vitt _ f,
A T;ipp V];%ﬁl C\fr+ (T;ipp — D]"r‘) VIIcﬂ72 — lAr'QV-,Zc

Ay Asr vt . fo
Arg T?pp Vllcﬂgl B fp + (T?pp — Dpp) VI;%J — Aplvlf ’
converges to the solution to problem (1.9). |

1.4.1 Substructuring

The iterative method can be substructured in order to use a Krylov type
method and speed up the convergence. We introduce the auxiliary variables

h; = (T5"" —Drr) vro— Aravo, hy = —Apr vy +(T{" —Drr) vra,

and we define the interface operator T},

h, —Apvi + (TP = Dprp)ve,
Th h2 —
f (T5"® = Drr)vrs — Apavs

where f = (f;,fr, )7, whereas (v1,vr1) and (v, vr2) are the solutions of

A Air Vi _ £y
A, TSP vri fr +h

and
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Ay Asrp Vo _ fy
Ay TP vra ) \fr+hy )’

So far, the substructuring operator is obtained simply by matching the con-
ditions on the interface, and in matrix form reads

(Id - HTh) (hi,hy)" = F, (1.16)

where IT is the swap operator on the interface, where F = IIT}(0,0,f), and
where the matrix T}, is given in the following lemma (for proof see [3]).

Lemma 3. The matriz Ty, in (1.16) is given by
(TP 1) (T 4 T3~ D) 0

0 (TSP — T§*) (TS + T —Dpp) !

1.5 Numerical Results

We consider problem (1.1) in 2 = R x (0, 1), with Dirichlet boundary con-
ditions at the bottom and a Neumann boundary condition on the top. We
use a finite volume discretization with an upwind scheme for the advective
term. We build the matrices of the substructured problem for various inter-
face conditions and we study their spectra. We give in the tables the iteration
counts corresponding to the solution of the substructured problem by a GM-
RES algorithm with a random right hand side G, and the ratio of the largest
modulus of the eigenvalues over the smallest real part. The stopping criterion
for the GMRES algorithm is a reduction of the residual by a factor 10710,
We consider both advection dominated and diffusion dominated flows, and
different kind of heterogeneities. We report here the results for three different
test cases.

Test 1: the flow is advection dominated, the viscosity coefficients are layered,
and the subdomains are symmetric with respect to the interface.

Test 2: the flow is diffusion dominated, the viscosity coefficients are layered,
but are not symmetric with respect to the interface.

Test 3: the flow is diffusion dominated, the viscosity coefficients are layered,
non symmetric w.r.t. the interface, and anisotropic, with an anisotropy ratio
up to order 10*.

The velocity field is diagonal with respect to the interface and constant. The
numerical tests are performed with MATLAB® 6.1. A more detailed descrip-
tion of of the test cases as well as futher numerical results can be found in a
forthcoming paper [3].

Both conditions perform fairly well, in both terms of iteration counts and
conditioning of the substructured problem, especially for the second order
conditions, that show a good scalability with respect to the mesh size.
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lp=q=10] ny [10 ] 20 | 40 [ 80 [ 160 ] 320 |
Test 1 |iter | Robin || 4 | 6 8 [ 11 | 16 | 23
Order 2| 4 | 5 6 8 9 | 10
cond| Robin |[1.05] 1.25 | 1.68]3.27 [ 6.57 |13.51
Order 2|[1.01]1.02|1.14[1.34|1.61 [ 1.92

Test 2 iter | Robin 7 10 13 16 19 21
Order 2| 6 6 8 11 15 19
cond| Robin ||1.61| 1.83 {2.59|3.52|3.94|4.12
Order 2|/1.21|1.26 {1.30|1.83|2.76 | 3.68

Test 3 |iter | Robin || 9 | 17 | 27 | 35 | 42 | 47
Order 2(| 7 | 10 14 | 16 | 19 | 21
cond| Robin (|5.42|18.27|24.75|31.04|38.32(47.29
Order 2({1.54| 2.75 | 4.48 | 5.92 | 6.32 | 6.86

Table 1.1. Iteration counts and condition number for the substructured problem
in Tests 1-3

1.6 Conclusions

We proposed two kind of algebraic interface conditions for unsymmetric ellip-
tic problem, which appear to be very efficient and robust in term of iteration
counts and conditioning of the problem with respect to the mesh size and the
heterogeneities in the viscosity coefficients.
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