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tionLet 
 = R�Q, where Q is a bounded domain of R2, and 
onsider the ellipti
PDE of adve
tion-di�usion-rea
tion type given by�div (
ru) + div (bu) + �u = f in 
Bu = g on R� �Q; (1.1)with the additional requirement on the solutions to be bounded at in�nity.After a �nite element, �nite di�eren
es or �nite volume dis
retization, weobtain a large sparse system of linear equations, given byAw = f : (1.2)Under 
lassi
al assumtpions on the 
oeÆ
ients of the problem (e.g. � �12divb > 0 a.e. in 
) the matrix A in (1.2) is de�nite positive.We solve problem (1.2) by means of an Optimized S
hwarz Method: su
hmethods have been introdu
ed at the 
ontinuous level in [4℄, and at the dis-
rete level in [5℄. We design optimized interfa
e 
onditions dire
tly at the al-gebrai
 level, in order to guarantee robustness with respe
t to heterogeneitiesin the 
oeÆ
ients.1.2 LDU fa
torization and absorbing boundary
onditionsIn this se
tion we enlighten the link between an LDU fa
torization of a matrixand the 
onstru
tion of absorbing 
onditions on the boundary of a domain
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 Nataf(see [1℄). As it is well known in domain de
omposition literature, su
h 
ondi-tions provide exa
t interfa
e transmission operators. Let then e
 2 R3 be abounded polyedral domain. We assume that the underlying grid is obtainedas a deformation of a Cartesian grid on the unit 
ube, so that for suitableintegers Nx, Ny, and Nz, w 2 RNx�Ny�Nz . If the unknowns are numberedlexi
ographi
ally, the ve
tor w is a 
olle
tion of Nx sub-ve
tors wi 2 RNy�Nz ,i.e. w = (wT1 ; : : : ; wTNx)T : (1.3)From (1.3), the dis
rete problem in e
 readsBw = g; (1.4)where g = (g1; ::; gNx)T , ea
h gi being a Ny�Nz ve
tor, and where the matrixB of the dis
rete problem has a blo
k tri-diagonal stru
tureB = 0BBBB�D1 U1L1 D2 . . .. . . . . . UNx�1LNx�1 DNx 1CCCCA ; (1.5)where ea
h blo
k is a matrix of order Ny �Nz.An exa
t blo
k fa
torization of the matrix B de�ned in (1.5) is given byB = (L+T)T�1(U +T); (1.6)where L = 0BBBB� 0L1 . . .. . . . . .LNx�1 01CCCCA U = 0BBBB�0 U1. . . . . .. . . UNx�10 1CCCCA ;while T is a blo
k-diagonal matrix whose nonzero entries are the blo
ks Tide�ned re
ursively asTi = 8<:D1 for i = 1Di � Li�1T�1i�1Ui�1 for 1 < i � Nx:So far, we 
an give here the algebrai
 
ounterpart of absorbing boundary
onditions. Assume g = (0; ::; 0; gp+1; ::; gNx), and let Np = Nx � p + 1. Toredu
e the size of the problem, we look for a blo
k matrix K 2 (RNy�Nz)Np ,ea
h entry of whi
h is a Ny �Nz matrix, su
h that the solution of Kv = ~g =(0; gp+1; ::; gNx)T satis�es vk = wk+p�1 for k = 1; ::Np. The rows 2 throughNpin the matrixK 
oin
ide with the last Np�1 rows of the original matrix B. Toidentify the �rst row, whi
h 
orresponds to the absorbing boundary 
ondition,
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 problems 3take as a right hand side in (1.4) the ve
tor g = (0; ::; 0; gp+1; ::; gNx), and,owing to (1.6), 
onsider the �rst p rows of the fa
torized problem0BBB� T1L1 T2. . . . . .Lp�1 Tp1CCCA0BBB�T�11 T�12 . . . T�1p 1CCCA0BBB�T1 U1T2 U2. . . . . .Tp Up1CCCA0BBB� w1...wpwp+11CCCA = 0B�0...01CA :The �rst two are p� p square invertible matri
es, so we need to 
onsider onlythe third one, a re
tangular p� (p+ 1) matrix: from the last row we getTpwp + Upwp+1 = 0; (1.7)whi
h, identifying v1 = wp and v2 = wp+1, provides the �rst row in matrixK.Assume then g = (g1; ::; gq�1; 0; ::; 0)T . A similar pro
edure 
an be developedto redu
e the size of the problem, by starting the re
urren
e in the fa
toriza-tion (1.6) from DNx , aseTi = 8<:Di � UiT�1i+1Li for 1 � i < NxDNx for i = Nx;and we 
an easily obtain the equation for the last row in the redu
ed equationas Lqwq�1 + eTqwq = 0: (1.8)1.3 Optimal interfa
e 
onditions for an in�nite layereddomainIn this se
tion we go ba
k to problem (1.1), where the domain 
 is in�nitein the x dire
tion, we 
onsider a two domain de
omposition �
 = �
1 [ �
2,
1 \
2 = ;, where 
1 = R� �Q; 
2 = R+ �Q;and we denote with � = �
1 \ �
2 the 
ommon interfa
e of the two subdo-mains. We assume that the vis
osity 
oeÆ
ients are layered (i.e. they do notdepend on the x variable), and 
onsider a dis
retization on a uniform grid viaa �nite volume s
heme with an upwind treatment of the adve
tive 
ux.The resulting linear system is given by0�A11 A1� 0A�1 A�� A�20 A2� A22 1A 0�w1w�w2 1A = 0� f1f�f2 1A (1.9)
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 Natafwhere wi is the ve
tor of the internal unknowns in domain 
i (i = 1; 2), andw� is the ve
tor of interfa
e unknowns. In order to guarantee the 
onserva-tivity of the �nite volume s
heme, the ve
tor of interfa
e unknown 
onsists oftwo sets of variables, w� = (w� ; w�)T , the �rst one to express the 
ontinuityof the di�usive 
ux, the se
ond to express the 
ontinuity of the adve
tive one.If the unknowns are numbered lexi
ographi
ally, the matrix A is given by
A = 0BBBBBBBBBB�

. . . . . . . . .L1 D1 U1L1 D1� ...0U1� 0� � � � � � 0 L1� D�� U2� 0 � � � � � �0 L2�0... D2� U2L2 D2 U2. . . . . . . . .
1CCCCCCCCCCA ; (1.10)

where the blo
k D�� is square, whereas the blo
ks Li� , and Ui� (i = 1; 2)are re
tangular.By dupli
ating the interfa
e variables w� into w�;1 and w�;2, we 
an de�nea S
hwarz algorithm dire
tly at the algebrai
 level, as�A11 A1�A�1 T1 ��vk+11vk+1�;1 � = � f 1f� + (T1 �D�� )vk�;2 �A�2vk2 ��A22 A2�A�2 T2 ��vk+12vk+1�;2 � = � f 2f� + (T2 �D�� )vk�;1 �A�1vk1 � : (1.11)As it is well known in literature, if we takeT1 = A�� �A�2A�122 A2� T2 = A�� �A�1A�111 A1� ;the algorithm (1.11) 
onverges in two iterations. We are in the position togive the following result, the proof of whi
h will be given in [3℄.Lemma 1. Let A be the matrix de�ned in (1.9), and let T1;1 and T21 besu
h that T1;1 = D1 � L1T�11;1U1 and T2;1 = D2 � U2T�12;1L2. We haveA�1A�111 A1� = L1� �D1� � L1 T�11;1 U1��1U1�A�2A�122 A2� = U2� �D2� � U2 T�12;1 L2��1 L2� :Noti
ing that A�� = D�� , the optimal interfa
e operators are given byTex1 = D�� � L1� �D1� � L1 T�11;1 U1��1U1�Tex2 = D�� �U2� �D2� � U2 T�12;1L2��1 L2� : (1.12)
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 interfa
e 
onditions for anon-overlapping S
hwarz methodThe la
k of sparsity of the matri
es Tex1 and Tex2 in (1.12), make them notsuitable to be used in pra
ti
e. Thus we 
hoose for T1 and T2 in (1.11) twosuitable approximations of Tex1 and Tex2 , respe
tively.At the 
ost of enlarging the size of the interfa
e problem, we 
hoose Tapp1 andTapp2 de�ned as follows:Tapp1 = D�� � L1� �D1� � L1 (T app1;1)�1 U1��1U1�Tapp2 = D�� �U2� �D2� � U2 (T app2;1)�1 L2��1 L2� ; (1.13)where T app1;1 and T app2;1 are suitable sparse approximations of T1;1 and T2;1,respe
tively. The most natural 
hoi
e would be to take their diagonals, but,in order to have a usable 
ondition, we avoid the 
omputation of both T1;1and T2;1, whi
h is too 
ostly. Noti
e that if Dj , Lj , and Uj (j = 1; 2) wereall diagonal matri
es the same would hold also for Tj;1. Moreover, if all thematri
es involved 
ommute, or if Lj = UTj , we would haveT1;1 = D12 +r (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1:and a similar formula holds for T2;1, with the roles of L2 and U2 ex
hanged.These 
onsiderations have led us to 
onsider the following approximations ofT1;1 and T2;1.Let dj , lj , and uj be the diagonals of Dj , Lj and Uj , respe
tively.Robin: We 
hoose in (1.13)T app1;1 = D12 + �opt1 D1;where D1 = diag�pd21�4l1u12 � ; and where the optimized parameter is givenby (�opt1 )2 = max�qr21 + I21 ; qr1R1 � I21� ; (1.14)where we have set r1 := minRe�, R1 := maxRe�, and I1 := max Im�;� 2 � � (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1� diag�pd21�4l1u12 ��2,whereas a similar formula holds for T app2;1.Order 2: This 
ondition is obtained by blending together two �rst orderapproximations, and we haveT app1;1 = L1 �[ eD1;L1℄ + (�1 + �2)L1��1 � eD21 + (�1 + �2) eD1 + �1�2Id�L1U1�
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 Natafwhere [:; :℄ is the Lie bra
ket, where eD1 = D�11 D12 , L1 = D�11 L1, U1 = D�11 U1,and where(�1�2)2 = r1 R1 (�1 + �2)2 =q2 (r1 +R1)pr1 R1; (1.15)r1 and R1 being de�ned as before.The tuning of the optimized parameters for both 
onditions 
an be foundin [2℄, and a more exhaustive presentation of the 
onstru
tion of interfa
e
onditions and of the numeri
al tests will be given in a forth
oming paper [3℄.The proposed interfa
e 
onditions are built dire
tly at the algebrai
 level, andare easy to implement. However, thery rely heavily on the approximation ofthe S
hur 
omplement and, if on one hand the extension to a de
ompositionin strips appears quite straightforward, on the other hand further work needsto be done in order to analyse their s
alability to an arbitrary de
ompositionof the 
omputational domain.Finally, it is easy to prove the following result (see [3℄).Lemma 2. The S
hwarz algorithm�A11 A1�A�1 Tapp2 ��vk+11vk+1�;1 � = � f1f� + (Tapp2 �D�� )vk�;2 �A�2vk2 ��A22 A2�A�2 Tapp1 ��vk+12vk+1�;2 � = � f2f� + (Tapp1 �D�� )vk�;1 �A�1vk1 � :
onverges to the solution to problem (1.9).1.4.1 Substru
turingThe iterative method 
an be substru
tured in order to use a Krylov typemethod and speed up the 
onvergen
e. We introdu
e the auxiliary variablesh1 = (Tapp2 �D�� ) v�;2�A�2 v2; h2 = �A�1 v1+(Tapp1 �D�� ) v�;1;and we de�ne the interfa
e operator ThTh : 0�h1h2f 1A 7�! 0��A�1v1 + (Tapp1 �D�� )v�;1(Tapp2 �D�� )v�;2 �A�2v2 1Awhere f = (f1; f� ; f2)T , whereas (v1;v�;1) and (v2;v�;2) are the solutions of�A11 A1�A�1 Tapp2 �� v1v�;1� = � f1f� + h1�and
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 problems 7�A22 A2�A�2 Tapp1 �� v2v�;2� = � f2f� + h2� :So far, the substru
turing operator is obtained simply by mat
hing the 
on-ditions on the interfa
e, and in matrix form reads�Id��Th� (h1;h2)T = F; (1.16)where � is the swap operator on the interfa
e, where F = �Th(0; 0; f), andwhere the matrix Th is given in the following lemma (for proof see [3℄).Lemma 3. The matrix Th in (1.16) is given by0� (Tapp1 �Tex1 ) (Tex1 +Tapp2 �D�� )�1 00 (Tapp2 �Tex2 ) (Tex2 +Tapp1 �D�� )�11A :1.5 Numeri
al ResultsWe 
onsider problem (1.1) in 
 = R � (0; 1), with Diri
hlet boundary 
on-ditions at the bottom and a Neumann boundary 
ondition on the top. Weuse a �nite volume dis
retization with an upwind s
heme for the adve
tiveterm. We build the matri
es of the substru
tured problem for various inter-fa
e 
onditions and we study their spe
tra. We give in the tables the iteration
ounts 
orresponding to the solution of the substru
tured problem by a GM-RES algorithm with a random right hand side G, and the ratio of the largestmodulus of the eigenvalues over the smallest real part. The stopping 
riterionfor the GMRES algorithm is a redu
tion of the residual by a fa
tor 10�10.We 
onsider both adve
tion dominated and di�usion dominated 
ows, anddi�erent kind of heterogeneities. We report here the results for three di�erenttest 
ases.Test 1: the 
ow is adve
tion dominated, the vis
osity 
oeÆ
ients are layered,and the subdomains are symmetri
 with respe
t to the interfa
e.Test 2: the 
ow is di�usion dominated, the vis
osity 
oeÆ
ients are layered,but are not symmetri
 with respe
t to the interfa
e.Test 3: the 
ow is di�usion dominated, the vis
osity 
oeÆ
ients are layered,non symmetri
 w.r.t. the interfa
e, and anisotropi
, with an anisotropy ratioup to order 104.The velo
ity �eld is diagonal with respe
t to the interfa
e and 
onstant. Thenumeri
al tests are performed with MATLAB r
 6.1. A more detailed des
rip-tion of of the test 
ases as well as futher numeri
al results 
an be found in aforth
oming paper [3℄.Both 
onditions perform fairly well, in both terms of iteration 
ounts and
onditioning of the substru
tured problem, espe
ially for the se
ond order
onditions, that show a good s
alability with respe
t to the mesh size.
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 Natafp = q = 10 ny 10 20 40 80 160 320Test 1 iter Robin 4 6 8 11 16 23Order 2 4 5 6 8 9 10
ond Robin 1.05 1.25 1.68 3.27 6.57 13.51Order 2 1.01 1.02 1.14 1.34 1.61 1.92Test 2 iter Robin 7 10 13 16 19 21Order 2 6 6 8 11 15 19
ond Robin 1.61 1.83 2.59 3.52 3.94 4.12Order 2 1.21 1.26 1.30 1.83 2.76 3.68Test 3 iter Robin 9 17 27 35 42 47Order 2 7 10 14 16 19 21
ond Robin 5.42 18.27 24.75 31.04 38.32 47.29Order 2 1.54 2.75 4.48 5.92 6.32 6.86Table 1.1. Iteration 
ounts and 
ondition number for the substru
tured problemin Tests 1-31.6 Con
lusionsWe proposed two kind of algebrai
 interfa
e 
onditions for unsymmetri
 ellip-ti
 problem, whi
h appear to be very eÆ
ient and robust in term of iteration
ounts and 
onditioning of the problem with respe
t to the mesh size and theheterogeneities in the vis
osity 
oeÆ
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