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Summary. The paper deals with solving of contact problems with Coulomb friction
for a system of 3D elastic bodies. The iterative method of successive approximations
is used in order to find a fixed point of certain mapping that defines the solution.
In each iterative step, an auxiliary problem with given friction is solved that is
discretized by the FETI method. Then the duality theory of convex optimization
is used in order to obtain the constrained quadratic programming problem that, in
contrast to 2D case, is subject to quadratic inequality constraints. The solution is
computed (among others) by a novelly developed algorithm of constrained quadratic
programming. Numerical experiments demonstrate the performance of the whole
computational process.

1 Introduction

The FETI method was proposed by [FR92] for parallel solution of problems
described by elliptic partial differential equations. The key idea is elimination
of the primal variables so that the original problem is reduced to a small,
relatively well conditioned quadratic programming problem (QPP) in terms
of the Lagrange multipliers. Then the iterative solver is used to compute the
solution.

In context of 2D contact problems with friction, the FETI procedure
leads to the sequence of QPPs constrained by simple inequality bounds (see
[DHK02] or [HDK02]) so that the fast algorithm with proportioning and gra-
dient projection (see [DS05]) can be used. The situation is not so easy in
3D since the QPPs are subject to two types of constraints. The first one,
representing nonnegativity of the normal contact stress, are again simple in-
equality bounds while the second one, representing an effect of isotropic fric-
tion, are quadratic inequalities. In our recent papers [HKD04], [KHD05], we
have used a linear approximation of quadratic inequalities transforming them
to simple inequality bounds so that the fast algorithm mentioned above can
� Supported by grant GAČR 101/02/0072 and 101/04/1145.
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be used again. Unfortunately, this procedure increases considerably the size
of the QPPs if we require a sufficiently accurate approximation of quadratic
inequalities. In order to overcome this drawback, we have developed a new
algorithm of quadratic programming that treates directly the quadratic in-
equalities [K05]. In this contribution, we shall show the performance of the
whole computational process on model problems.

2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference config-
uration bounded domains Ωp ⊂ IR3, p = 1, 2, . . . , s, with sufficiently smooth
boundaries Γ p that are split into three disjoint parts Γ p

u , Γ p
t and Γ p

c so that
Γ p = Γ p

u ∪Γ p
t ∪Γ p

c . Let us suppose that the zero displacements are prescribed
on Γ p

u and that the surface tractions of density tp ∈ (L2(Γ p
t ))3 act on Γ p

t .
Along Γ p

c the body Ωp may get into unilateral contact with some other of
the bodies. Finally we suppose that the bodies Ωp are subject to the volume
forces of density fp ∈ (L2(Ωp))3.

To describe non-penetration of the bodies, we shall use linearized non-
penetration condition that is defined by a mapping χ : Γc −→ Γc, Γc =⋃s

p=1 Γ p
c , which assigns to each x ∈ Γ p

c some nearby point χ(x) ∈ Γ q
c , p �= q.

Let vp(x),vq(χ(x)) denote the displacement vectors at x, χ(x), respectively.
Assuming the small displacements, the non-penetration condition reads

vp
n(x) ≡ (vp(x) − vq(χ(x))) · np(x) ≤ δp(x),

where δp(x) = (χ(x) − x) · np(x) is the initial gap and np(x) is the critical
direction defined by np(x) = (χ(x) − x)/‖χ(x) − x‖ or, if χ(x) = x, by the
outer unit normal vector to Γ p

c .
We start with an auxiliary contact problem with given friction. To this

end we introduce the space of virtual displacements V and its closed convex
subset of kinematically admissible displacements K by

V = {v = (v1, . . . ,vs) ∈
s∏

p=1

(H1(Ωp))3 : vp = 0 on Γ p
u},

K = {v ∈ V : vp
n(x) ≤ δp(x) for x ∈ Γ p

c }.

Let us assume that the normal contact stress Tn ∈ L∞(Γc), Tn ≥ 0, is known
apriori so that one can evaluate the slip bound g on Γc by g = FTn, where
F = F p > 0 is a coefficient of friction on Γ p

c . Denote gp = g|Γ p
c
.

The variational formulation of the contact problem with given friction
reads as follows:

minJ (v) subject to v ∈ K, (1)

where
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J (v) = 1
2a(v,v) − b(v) + j(v)

is the total potential energy functional with the bilinear form a representing
the inner energy of the bodies and with the linear form b representing the
work of the applied forces tp and fp, respectively. The sublinear functional j
represents the work of friction forces

j(v) =
s∑

p=1

∫
Γ p

c

gp‖vp
t ‖ dΓ, (2)

where vp
t is the projection of the displacement vp on the plane tangential to

the critical direction np. Let us introduce unit tangential vectors tp
1, t

p
2 such

that the triplet B = {np, tp
1, t

p
2} is an orthonormal basis in IR3 for almost all

x ∈ Γ p
c and denote vp

t1 = vp · tp
1, vp

t2 = vp · tp
2. Then vp

t = (0, vp
t1 , v

p
t2) with

respect to the basis B so that the norm appearing in j reduces to the Euclidean
norm in IR2. More details about the formulation of contact problems can be
found in [HHNL88].

Let us point out that the solution u ≡ u(g) of (1) depends on a particular
choice of g ∈ L∞(Γc), g ≥ 0. We can define a mapping Φ which associates
with every g the product FTn(u(g)), where Tn(u(g)) ≥ 0 is the normal contact
stress related to u(g). The classical Coulomb’s law of friction corresponds to
the fixed point of Φ which is defined by g = FTn(u(g)). To find it, we can use
the method of successive approximations which starts from a given g(0) and
generates the iterations g(l) by

(MSA)
g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed
for sufficiently small F (see [H83]).

3 Domain decomposition and discretization

We divide the bodies Ωp into tetrahedron finite elements T with the maximum
diameter h and assume that the partitions are regular and consistent with the
decompositions of ∂Ωp into Γ p

u , Γ p
t and Γ p

c . Moreover, we restrict ourselves
to the geometrical conforming situation where the intersection between the
boundaries of any two different bodies ∂Ωp ∩ ∂Ωq, p �= q, is either empty, a
vertex, an entire edge, or an entire face.

Let the domains Ωp be decomposed into nonoverlaping subdomains Ωp,i,
i = 1, . . . , np, each of which is the union of finite elements of T . On Ωp,i, we
introduce the finite element space V p,i

h by

V p,i
h = {vp,i ∈ (C(Ωp,i))3 : vp,i|T ∈ (P1(T ))3 for all T ⊂ Ωp,i,

vp,i|∂Ωp,i∩Γ p
u

= 0},
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where Pm(T ) denotes the set of all polynomials on T of degree ≤ m. Finally,
let us introduce the product space Vh =

∏s
p=1

∏np

i=1 V p,i
h .

Replacing V by Vh and using the gluing condition vp,i(x) = vp,j(x) for
any x in the interface ∂Ωp,i∩∂Ωp,j , we can rewrite the approximative contact
problem with given friction (1) into the algebraic form

min
1
2
u�Ku− u�f +

m∑
k=1

gk‖((T1u)k, (T2u)k)‖

s.t. Nu ≤ d, BEu = 0.

(3)

Here, K denotes the positive semidefinite block diagonal stiffness matrix, f
is the vector of nodal forces, N,d describe the discretized non-penetration
condition and BE describes the gluing condition. The summation term in the
minimized functional arises using numerical quadrature in (2), where T1, T2

describe projections of displacements at the nodes lying on Γc to the tangential
planes and gk are values of slip bound.

Let us point out that the problem (3) is non-differentiable due to IR2-
norms appearing in the summation term. Therefore we shall introduce two
kinds of Lagrange multipliers λt = (λ�

t1 , λ
�
t2)

� and λc = (λ�
I , λ�

E)�. While
the first one removes the non-differentiability, the second one accounts for the
constraints in (3). Denote

Bt =
[
T1

T2

]
, Bc =

[
N
BE

]
, c =

[
d
o

]

and introduce the Lagrange multiplier sets

Λt(g) = {λt : ‖((λt1)k, (λt2)k)‖ ≤ gk} and Λc = {λc : (λI)k ≥ 0}.

It is well-known that (3) is equivalent to the saddle-point problem

Find (u, λt, λc) s.t. L(u, λt, λc) = sup
µt ∈ Λt(g)

µc ∈ Λc

inf
v

L(v, µt, µc), (4)

where L is the Lagrangian to (3) defined by

L(u, λt, λc) =
1
2
u�Ku − u�f + λ�

t Btu + λ�
c (Bcu − c).

After eliminating the primal variables u from (4), we obtain the minimization
problem

min
1
2
λ�Fλ − λ�h

s.t. λ =
[

λt

λc

]
, λt ∈ Λt(g), λc ∈ Λc, Gλ = e

(5)

with
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F =
[
Ftt Ftc

F�
tc Fcc

]
, h =

[
ht

hc

]
, G = [Gt,Gc] ,

and Fii = BiK†B�
i , Gi = R�B�

i , i = t, c, Ftc = BtK†B�
c , ht = BtK†f ,

hc = BcK†f − c, e = R�f , where K† denotes a generalized inverse to K and
R is the full rank matrix whose columns span the kernel of K.

The problem (5) can be adapted by using the orthogonal projectors as
proposed in [FMR94]. To simplify our presentation, we omit description of
this modification here.

4 Algorithms

The problem (5) can be solved by using the algorithm based on the augmented
Lagrangian

L(λ, µ, ρ) =
1
2
λ�Fλ − λ�h + µ�(Gλ − e) +

ρ

2
(Gλ − e)�(Gλ − e).

Algorithm 1. Set µ(0), l := 0.
repeat

λ(l+1) .= argmin L(λ, µ(l), ρ), s.t. λ ∈ Λt(g) × Λc

µ(l+1) = µ(l) + ρ(Gλ(l+1) − e)

Update ρ and increse l by one.

until stopping criterion

Algorithms of this type have been intensively studied recently [DFS03],
[D05] with the inner minimization represented by the QPP with simple in-
equality bounds of Λc. Here, the quadratic inequality constraints of Λt(g) are
imposed furthermore. In order to separate two types of constraints, we can
split the inner minimization by the constrained block Gauss-Seidel method.
Then the efficient algorithm using projections and adaptive precision control
may be used for the first QPP with simple inequality bounds [DS05] while the
second QPP constrained by quadratic inequalities can be solved by the algo-
rithm proposed in [K05]. Let us point out that augmented Lagrangian based
algorithms accept an inexact solution of the inner minimizations without loss
of the accuracy. Therefore it is natural to reduce the number of Gauss-Seidel
iterations even onto one.

The method of successive approximations (MSA) for solving the contact
problem with Coulomb friction can be implemented so that the Algorithm 1
is used in each iterative step to evaluate the mapping Φ. We shall present a
more efficient version of this method, in which the iterative steps of (MSA)
and the loop of the Algorithm 1 are connected in one loop. The resulting
algorithm can be viewed as the method of successive approximations with an
inexact solving of the auxiliary problems with given friction.
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Algorithm 2. Set µ(0), λ
(0)
t , l := 0.

repeat

λ
(l+1)
c

.= argmin { 1
2λ�

c (Fcc + ρG�
c Gc)λc − λ�

c (hc + G�
c (ρe + µ(l)) −

(F�
tc + ρG�

c Gt)λ
(l)
t )}, s.t. λc ∈ Λc

λ
(l+1)
t

.= argmin { 1
2λ�

t (Ftt + ρG�
t Gt)λt − λ�

t (ht + G�
t (ρe + µ(l)) −

(Ftc + ρG�
t Gc)λ

(l+1)
c )}, s.t. λt ∈ Λt(Fλ

(l+1)
I )

µ(l+1) = µ(l) + ρ(Gλ(l+1) − e)

Update ρ and increse l by one.

until stopping criterion

We have used the fact that the Lagrange multiplier λI represents the
normal contact stress so that g = Fλ

(l+1)
I approximates the slip bound.

5 Numerical experiments and conclusions

Let us consider the model brick Ω = 〈0, 3〉 × 〈0, 1〉 × 〈0, 1〉 made of an elastic
isotropic, homogeneous material characterized by Young modulus E = 21.2×
1010 and Poisson’s ratio σ = 0.277 (steel). The brick is unilaterally supported
by the rigid foundation, where the non-penetration condition and the effect
of Coulomb friction is considered. The applied surface tractions and the parts
of the boundary Γu and Γc are seen in Figure 1. The volume forces vanish.
The brick Ω is artificially decomposed onto three parts as seen in Figure 2 so
that the resulting problem has 12 rigid modes.

Ω

Γ
c

Γ
u

0 3 

Fig. 1. The cross-section of the brick Ω.

The tables below summarize results of numerical experiments, where F is
the coefficient of friction; n denotes the number of primal unknowns (dispal-
cements); m denotes the number of dual unknowns (stresses); Time is CPU
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time in seconds (in Matlab 7, Pentium(R)4, 3GHz, 512MB); Iter is the num-
ber of outer iterations; nQPP

A , nQPQ
A is the total number of multiplications by

the Hessian in the QPP, QPQ solver, respectively, and nA = nQPP
A + nQPQ

A .

Fig. 2. Discretization and decomposition of the brick Ω.

Table 1. F = 0.1

n m Time Iter nA

900 180 1 5 102(=63+39)
2646 378 11 5 180(=98+82)
5832 648 34 5 156(=94+62)
10890 990 67 5 112(=50+62)
18252 1404 221 5 155(=73+82)

Table 2. F = 0.3

n m Time Iter nA

900 180 2 7 140(=46+32)
2646 378 12 7 186(=54+69)
5832 648 38 7 169(=72+50)
10890 990 94 7 153(=35+49)
18252 1404 254 7 176(=78+54)

Table 1 and Table 2 demonstrate the numerical scalability of the algorithm
for various coefficients of friction. Table 3 shows the substantial progress with
respect to approximative method used in [HKD04] represented here by Time2
and Time4.
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Table 3. F = 0.3

n m Time Time2 Time4

900 180 2 15 61
2646 378 12 101 548
5832 648 38 486 2114
10890 990 94 1542 7724
18252 1404 254 5004 20534

References

[D05] Dostál, Z.: Inexact semi-monotonic augmented Lagrangians with op-
timal feasibility convergence for quadratic programming with simple
bounds and equality constraints. SIAM J. Num. Anal., in print (2003)

[DFS03] Dostál, Z., Friedlander, A., Santos, S.A.: Augmented Lagrangians with
adaptive precision control for quadratic programming with simple
bounds and equality constraints. SIAM J. Opt., 13, 1120–1140 (2003)

[DHK02] Dostál, Z., Haslinger, J., Kučera, R.: Implementation of fixed point
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[DS05] Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non-
negative cone with the rate of convergence and finite termination. Com-
putat. Optimiz. Appl., in print (2005)

[FR92] Farhat, C., Roux, F., X.: An unconventional domain decomposition
method for an efficient parallel solution of large-scale finite element sys-
tems. SIAM J. Sc. Stat. Comput., 13, 379–396 (1992)

[FMR94] Farhat, C., Mandel, J., Roux, F., X.: Optimal convergence properties
of the FETI domain decomposition method. Comput. Methods Appl.
Mech. Engrg., 115, 367–388 (1994)

[H83] Haslinger, J.: Approximation of the Signorini problem with friction,
obeying Coulomb law. Math. Methods Appl. Sci, 5, 422–437 (1983)
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