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.uk1 Introdu
tionA parallel time-domain algorithm is des
ribed of the time-dependent nonlinearBla
k-S
holes equation, whi
h may be used to build �nan
ial analysis toolsto help traders making rapid and systemati
 evaluation of buy/sell 
ontra
ts.The algorithm is parti
ularly suitable for problems that do not require �nedetails at ea
h intermediate time step, and hen
e the method applies well forthe present problem.The method relies on a Lapla
e transform te
hnique applied to the Bla
k-S
holes equation and generates subproblems that 
an be exe
uted in a par-allel/distributed 
omputing environment. These subproblems are thus solvedindependently without subproblem 
ommuni
ation. Early studies of the s
al-ability of the algorithm for linear Bla
k-S
holes equation may be found in[Cra96℄ and [CDL98℄. This paper extends the previous work to nonlinearBla
k-S
holes equation. Two linearization methods, one based on the updat-ing of nonlinear 
oeÆ
ients within an iterative loop and the other based ona Newton's method. A numeri
al inverse [Ste70, Wid46℄ of the approximatesolution is used to retrieve the �nal solution of the nonlinear Bla
k-S
holesequation. Numeri
al tests are performed to demonstrate the viability of thealgorithm. EÆ
ien
y of the algorithm is also studied.This paper 
on
ludes with a dis
ussion on an extension of the presentLapla
e transform te
hnique to a parallel time-domain algorithm in order toobtain detials of physi
al quantities at intermediate �ner time steps.2 A Nonlinear Bla
k-S
holes ModelLet v(S; t) denote the value of an option, where S is the 
urrent value ofthe underlying asset and t is the time. The value of the option relates to the
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urrent value of the underlying asset via the Bla
k-S
holes equation:�v�t + 12�2S2 �2v�S2 + rS � rv = 0 2 
+ � [T; 0) (1)where 
+ = fS : S � 0g. The sto
hasti
 ba
kground of the equation is notdis
ussed in this paper, and readers who are interested should 
onsult [Wil93℄.Only European options are 
onsidered in this paper. This means that theholder of the option may exe
ute at expiry a pres
ribed asset, known as theunderlying asset, for a pres
ribed amount, known as the strike pri
e. Thereare two di�erent types of option, namely the 
all option and the put option.At expiry, the holder of the 
all option has the right to buy the underlyingasset and the holder of the put option has the right to sell the underlyingasset. For a European put option with strike pri
e k and expiry date T , it issensible to impose the boundary 
ondition v(0; t) = ke�r(T�t); v(L; t) = 0,where L is usually a large value. At expiry, if S < k then one should exer
isethe 
all option, i.e. handing over an amount k to obtain an asset with S.However, if S > k at expiry, then one should not exer
ise the option be
auseof the loss k�S. Therefore the �nal 
ondition v(S; T ) = maxfk�S; 0g needsto be imposed. The solution v for t < T is required.Sin
e (1) is a ba
kward equation, it needs to be transformed to a forwardequation by using � = T � t, whi
h leads to,�V�� = 12�2S2 �2V�S2 + rS � rV 2 
+ � (0; T ℄ (2)subje
t to initial 
ondition V (S; 0) = maxfk�S; 0g and boundary 
onditionsV (0; �) = ke�r� ; V (L; �) = 0. A �eld method, su
h as the �nite volumemethod, is of more interest for two reasons. First, there are many examples inmulti-fa
tor model su
h that a redu
tion of the time dependent or nonlinear
oeÆ
ient to a 
onstant 
oeÆ
ient heat is impossible. Hen
e analyti
 form ofsolutions 
annot be found. Se
ond, �nan
ial modelling typi
ally requires largenumber of simulations and solutions at intermediate time steps are usuallynot of interest. EÆ
ien
y of the numeri
al algorithm is very important inorder to make evaluation and de
ision before the agreement of a 
ontra
t isrea
hed. Ideally one would like to use an algorithm whi
h 
an be 
ompletelydistributed onto a number of pro
essors with only minimal 
ommuni
ationsbetween pro
essors.Very often, over a short period of time the interest rate, r, is �xed whilethe volatility, �, is varying. The volatility may be a fun
tion of the transa
tion
osts [BarSon98℄, the se
ond derivative of the option value [ParAve94℄, or, insome 
ases, the solution of a nonlinear initial value problem [BarSon98℄. In or-der to develop the nonlinear solver in this se
tion, the volatility � = �0p1 + aproposed in [BoyVor73℄ is used, where a is the proportional transa
tion 
osts
aled by �0 and the transa
tion time. Very often the transa
tion 
ost isrelated to the option value and follows a Gaussian distribution. In order to



Parallel Time-Domain Method 3demonstrate the time-domain parallel algorithm for nonlinear problems, a sinefun
tion is used in the subsequent tests to produ
e the e�e
t of a pulse-likedistribution instead of a Gaussian distribution, i.e. a = sin(V �k ) where k isthe strike pri
e.3 Referen
e Solutions Using a Temporal IntegrationThe forward Bla
k-S
holes equation given by (2) is written as�V�� = A(V )�2V�S2 + rS � rV = 0 2 
+ � (0; T ℄ (3)where A(V ) = 12�(V )2S2. In order to obtain a referen
e solution for (3) alinearisation method 
ombined with a temporal integration may be applied.The 
oeÆ
ient A is 
omputed by using an approximation �V , whi
h is updatedin every step of a nonlinear iterative update pro
ess. Ea
h step of the nonlineariterative update pro
ess involves a numeri
al solution to the equation�V�� = A( �V )�2V�S2 + rS � rV = 0 2 
+ � (ti; ti+1℄ (4)de�ned in the time interval � 2 (ti; ti+1℄. Let V (n)(S; ti+1) and V (n)(S; ti) bethe numeri
al solutions of (3) at � = ti+1 and � = ti respe
tively. The non-linear iterative update pro
ess to obtain the numeri
al solution V (n)(S; ti+1),using V (n)(S; ti) as the initial approximation to �V , is des
ribed in the algo-rithm below.Algorithm R: Obtain a referen
e solution for (3).do i = 0,1,2,...ti = iÆ� ;Initial approximation:- V (0)(S; ti+1) := V (n)(S; ti); k := 0;Iteratek := k + 1;�V := V (k�1)(S; ti+1);Compute A( �V );V (k)(S; ti+1) := Apply Euler's method to (4);Until kV (k)(S; ti+1)� V (k�1)(S; ti+1)k < �n := k;end-do4 The Parallel Time-Domain MethodLet



4 Lai, Crane, Daviesl(V ) = Z 10 e���V (S; �)d� = U(�;S)be the Lapla
e transform of the fun
tion V (S:�). Appli
ation of the Lapla
etransform [Wid46℄ to (4), now being de�ned in 
+ � (Ti; Ti+1℄, leads toA( �V )d2UdS2 + rsdUdS � (r + �)U = �V (S; Ti) 2 
+ (5)where U = U(�;S) de�ned in the Lapla
e spa
e. Here � 2 f�jg is a �nite setof transformation parameter de�ned by�j = j ln 2Ti+1 � Ti : j = 1; 2; :::;m (6)where m is required to be 
hosen as an even number [Ste70℄. Therefore theproblem de�ned in (4) is 
onverted to m independent parametri
 boundaryvalue problems as des
ribed by (5), and these problems may be distributedand solved independently in a distributed environment.In order to retrieve V (S; Ti+1), the approximate inverse Lapla
e transformdue to Stehfest [Ste70℄ given byV (S; Ti+1) � ln 2Ti+1 � Ti mXj=1wjU(�j ;S) (7)where wj = (�1)m=2+j min(j;m=2)Xk=(1+j)=2 km=2(2k)!(m=2� k)!k!(k � 1)!(j � k)!(2k � j)!is known as the weighting fa
tor, is used. The authors sele
t Stehfest methodbe
ause of previous experien
e with the method used for linear problems[Cra96, CDL98℄ and wish to investigate the appli
ation of the inverse methodto nonlinear problems.A nonlinear iterative update pro
ess is required to update �V and to obtainthe numeri
al solution V (n)(S; Ti+1), using V (n)(S; Ti) as the initial approxi-mation to �V , and is des
ribed in the algorithm below.Algorithm P1: Parallel algorithm 1 for (3).do i = 0,1,2,...Ti = i�� ;Initial approximation:- V (0)(S; Ti+1) := V (n)(S; Ti); k := 0;Iteratek := k + 1; �V := V (k�1)(S; Ti+1); Compute A( �V );Parallel for j := 1 to m(i)Solve (5) for U(�j ;S);End parallel for



Parallel Time-Domain Method 5Compute V (k)(S; Ti+1) using inverse Lapla
e transform (7);Until kV (k)(S; Ti+1)� V (k�1)(S; Ti+1)k < �n := k;end-doHere m(i) is the number of transformation parameters and Ti = �� . In orderto solve (5) for U(�j ;S), one 
an employ the �nite volume te
hnique as theone used in Se
tion 3. In essen
e the a
tual implementation does not requiredi�erent values ofm(i) for many problems, and the results shown in this paperuse the same number of transformation parameters, denoted as �m, for di�erentvalues of i during the outer iteration loop. Note that in this 
ase �� 
an be
hosen to be mu
h greater than Æ� be
ause the �ne details of V (S; �) at ea
htime step of a temporal integration is not required in the present example.5 Newton's LinearisationAlternatively, a small perturbation may be applied to (2), de�ned in the timeinterval � 2 (Ti; Ti+1℄, whi
h leads tof ��� � (A0(V )�2V�S2 +A(V ) �2�S2 + rS ��S � r)gÆV= �f�V�� � (A(V )�2V�S2 + rS �V�S � rV )g (8)where ÆV is a small in
remental 
hange of V . Appli
ation of the Lapla
etransform to (8), de�ned in the interval � 2 (Ti; Ti+1℄, results tol(ÆV )� ÆV (S; Ti)� (A0(V )�2V�S2 +A(V ) �2�S2 + rS ��S � r)gl(ÆV )= �l(V )� V (S; Ti)� (A(V )�2V�S2 + rS �V�S � rV )g (9)The method requires the numeri
al solution l(ÆV (n)(S; Ti+1)) using V (n)(S; Ti)as the initial approximation to V (0)(S; Ti+1) and is des
ribed in the algorithmbelow.Algorithm P2: Parallel algorithm 2 for (3).do i = 0,1,2,...Ti = i�� ;Initial approximation:- V (0)(S; Ti+1) := V (n)(S; ti); k := 0;Iteratek := k + 1; �V := V (k�1)(S; Ti+1);Compute A( �V ); Compute A0( �V ); Compute A0( �V )�2 �V�S2 ;Compute �l( �V )� V (S; Ti)� (A( �V )�2 �V�S2 + rS � �V�S � r �V )g;



6 Lai, Crane, DaviesParallel for j := 1 to m(i)Solve (9) for l(ÆV (k)(S; Ti+1));End parallel forCompute ÆV (k)(S; Ti+1) using inverse Lapla
e transform (7);V (k)(S; Ti+1 := �V + ÆV (k)(S; Ti+1);Until kÆV (k)(S; Ti+1)k < �n := k;end-do6 Numeri
al ExamplesThe problem of European put option is solved upto the expiry date T = 0:25at the strike pri
e k = 100. The volatility � is 
hosen as the fun
tion des
ribedand the parameters �0 and r are 
hosen to be 0.4 and 0.5 respe
tively. A se
ondorder �nite volume method is applied to ea
h parametri
 equation as givenby (5) or (9). The mesh size is 
hosen to be h = 320=29.A sequential 
omputational environment is used in the tests. The approx-imations to V (S; T ) obtained by means of algorithms P1 and P2 are denotedas VP1 and VP2 respe
tively. Using �� = T10 , T20 , T30 , T40 , the number of outeriterations or time steps required for algorithms P1 and P2 are 10, 20, 40, and80 respe
tively.The above two parallel time-domain algorithms are 
ompared with thereferen
e solution obtained by means of algorithm R with Æ� = 1=365, i.e. 1day, in 
onjun
tion with the se
ond order �nite volume s
heme applied alongthe spatial axis S. The dis
retisation leads to a number of tri-diagonal systemsof equations due to the linearisation step at every time step, whi
h may besolved by a dire
t method. The numeri
al solution V (S; T ) obtained by thistemporal integration is denoted as VR. The stopping 
riterion used in thelinearization step is 
hosen as � = 10�5.In order to examine the eÆ
ien
y of the parallel time-domain algorithms,the 
omputational work required for solving a tri-diagonal system of equationsresults from a 
hosen mesh size is 
ounted as one work unit. The total sequen-tial work unit is obtained by multiplying the total number of work unit to �m,and the total parallel work unit is simply the total work unit plus overheadsdue to the 
al
ulation of inverse Lapla
e transform and 
ommuni
ation.Dis
repan
ies in solutions, i.e. kVR � VP1k and kVR � VP2k using various�� , are presented in Fig. 1 and 2. In general the dis
repan
y levels o� whenm � 8 , whi
h suggests that the use of more terms in the inverse Lapla
etransform at a �xed value of �� has no e�e
t on the a

ura
y. On the otherhand smaller �� produ
es smaller dis
repan
y at the expense of requiringmore work unit as re
orded in Table 1. Furthermore the work unit requiredby using algorithm P2 is less than that of algorithm P1, and there is no suddenin
rease of work when �m = 12.
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Fig. 1. Dis
repan
ies of solutions: kVR � VP1k.
Fig. 2. Dis
repan
ies of solutions: kVR � VP2k.Table 1. Work units 
omparison (VR requires 246 work units).�m 4 6 8 10 12�� Algorithm P19.125Æ� 58 58 58 58 1804.5626Æ� 103 103 103 103 1232.28125Æ� 177 177 177 177 1861.140625Æ� 326 326 326 326 327Algorithm P29.125Æ� 43 43 43 43 434.5626Æ� 83 70 71 71 712.28125Æ� 134 126 126 126 1261.140625Æ� 249 245 220 214 213
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lusionsTwo linearisation methods were used in 
onjun
tion with the Lapla
e trans-form method for non-linear Bla
k-S
holes models. Work unit 
ounts of thenumeri
al experiments suggest that the present te
hnique has advantages insolving nonlinear option pri
ing problems using parallel or distributed 
om-puting environment. One su
h advantage is the use of a larger time step,i.e. �� , when the �ne details at intermediate time steps of the time interval(Ti; Ti+1) are not required. Parallelisation is introdu
ed by solving in paral-lel a number of parametri
 problems, ea
h of whi
h de�nes in the interval(Ti; Ti+1), i=1,2,..., T=Æ� , in the Lapla
e spa
e. Note that as �� approa
hesÆ� the tranform into Lapla
e spa
e does not show advantages as 
an be seenfrom the results in Table 1. Therefore �ne details on a �ne time step shouldnot be 
omputed by means of Lapla
e transform method. Instead �ne detailswithin the time interval (Ti; Ti+1), for all values of i, may be obtained in par-allel using a temporal integration method. E�e
tively the present algorithmprovides initial 
onditions for every interval (Ti; Ti+1), i=1,2,..., T=Æ� . As aresult �ne details of the time interval (Ti; Ti+1) are de
oupled from other timeintervals and may be obtained independently with a smaller time-step, sayÆ� .Referen
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