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1 Introduction

A parallel time-domain algorithm is described of the time-dependent nonlinear
Black-Scholes equation, which may be used to build financial analysis tools
to help traders making rapid and systematic evaluation of buy/sell contracts.
The algorithm is particularly suitable for problems that do not require fine
details at each intermediate time step, and hence the method applies well for
the present problem.

The method relies on a Laplace transform technique applied to the Black-
Scholes equation and generates subproblems that can be executed in a par-
allel/distributed computing environment. These subproblems are thus solved
independently without subproblem communication. Early studies of the scal-
ability of the algorithm for linear Black-Scholes equation may be found in
[Cra96] and [CDL98]. This paper extends the previous work to nonlinear
Black-Scholes equation. Two linearization methods, one based on the updat-
ing of nonlinear coefficients within an iterative loop and the other based on
a Newton’s method. A numerical inverse [Ste70, Wid46] of the approximate
solution is used to retrieve the final solution of the nonlinear Black-Scholes
equation. Numerical tests are performed to demonstrate the viability of the
algorithm. Efficiency of the algorithm is also studied.

This paper concludes with a discussion on an extension of the present
Laplace transform technique to a parallel time-domain algorithm in order to
obtain detials of physical quantities at intermediate finer time steps.

2 A Nonlinear Black-Scholes Model

Let v(S,t) denote the value of an option, where S is the current value of
the underlying asset and ¢ is the time. The value of the option relates to the
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current, value of the underlying asset via the Black-Scholes equation:
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where 27 = {S : S > 0}. The stochastic background of the equation is not
discussed in this paper, and readers who are interested should consult [Wil93].
Only European options are considered in this paper. This means that the
holder of the option may execute at expiry a prescribed asset, known as the
underlying asset, for a prescribed amount, known as the strike price. There
are two different types of option, namely the call option and the put option.
At expiry, the holder of the call option has the right to buy the underlying
asset and the holder of the put option has the right to sell the underlying
asset. For a European put option with strike price k£ and expiry date T, it is
sensible to impose the boundary condition v(0,t) = ke "(T= v(L,t) = 0,
where L is usually a large value. At expiry, if S < k then one should exercise
the call option, i.e. handing over an amount k to obtain an asset with S.
However, if S > k at expiry, then one should not exercise the option because
of the loss k — S. Therefore the final condition v(S,T) = max{k — S, 0} needs
to be imposed. The solution v for ¢ < T is required.
Since (1) is a backward equation, it needs to be transformed to a forward
equation by using 7 = T — ¢, which leads to,
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subject to initial condition V' (S,0) = max{k — S, 0} and boundary conditions
V(0,7) = ke™"", V(L,7) = 0. A field method, such as the finite volume
method, is of more interest for two reasons. First, there are many examples in
multi-factor model such that a reduction of the time dependent or nonlinear
coefficient to a constant coefficient heat is impossible. Hence analytic form of
solutions cannot be found. Second, financial modelling typically requires large
number of simulations and solutions at intermediate time steps are usually
not of interest. Efficiency of the numerical algorithm is very important in
order to make evaluation and decision before the agreement of a contract is
reached. Ideally one would like to use an algorithm which can be completely
distributed onto a number of processors with only minimal communications
between processors.

Very often, over a short period of time the interest rate, r, is fixed while
the volatility, o, is varying. The volatility may be a function of the transaction
costs [BarSon98], the second derivative of the option value [ParAve94], or, in
some cases, the solution of a nonlinear initial value problem [BarSon98]. In or-
der to develop the nonlinear solver in this section, the volatility o = ggv/1 + a
proposed in [BoyVor73] is used, where a is the proportional transaction cost
scaled by o¢ and the transaction time. Very often the transaction cost is
related to the option value and follows a Gaussian distribution. In order to
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demonstrate the time-domain parallel algorithm for nonlinear problems, a sine
function is used in the subsequent tests to produce the effect of a pulse-like
distribution instead of a Gaussian distribution, i.e. a = qln(Vk’T) where k is

the strike price.

3 Reference Solutions Using a Temporal Integration

The forward Black-Scholes equation given by (2) is written as

ov o0*V
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where A(V) = 10(V)2S2. In order to obtain a reference solution for (3) a

linearisation method combined with a temporal integration may be applied.
The coefficient A is computed by using an approximation V, which is updated
in every step of a nonlinear iterative update process. Each step of the nonlinear
iterative update process involves a numerical solution to the equation

2y
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defined in the time interval 7 € (¢;,t;41]. Let V™) (S,t;,.1) and V(") (S, t;) b
the numerical solutions of (3) at 7 = ¢;41 and 7 = ¢; respectlvely The non-
linear 1terat1ve update process to obtain the numerical solution V(") (S, t;11),
using V(7 (S t;) as the initial approximation to V, is described in the algo-
rithm below.

Algorithm R: Obtain a reference solution for (3).

doi=0,1.2,..
t; = idT;
Initial approximation:- V(9 (S, t;,1) := V(") (S,t;); k := 0;
Iterate

k:=k+1;

V=Vk- 1 (S, tip1);

Compute A(V);

k)(S,tix1) := Apply Euler’s method to (4);

Until ||V(’“)(S, t,;+1) — V(kil)(s, t,;+1)|| <€
n:=k;
end-do

4 The Parallel Time-Domain Method

Let
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(V) = /Ooo e MV(S,T)dr = U(X; S)

be the Laplace transform of the function V(S.7). Application of the Laplace
transform [Wid46] to (4), now being defined in 2% X (T}, T;11], leads to

_ d*U au +
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where U = U(); S) defined in the Laplace space. Here A € {);} is a finite set
of transformation parameter defined by
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where m is required to be chosen as an even number [Ste70]. Therefore the
problem defined in (4) is converted to m independent parametric boundary
value problems as described by (5), and these problems may be distributed
and solved independently in a distributed environment.

In order to retrieve V (S, T;41), the approximate inverse Laplace transform
due to Stehfest [Ste70] given by

In 2 i
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is known as the weighting factor, is used. The authors select Stehfest method
because of previous experience with the method used for linear problems
[Cra96, CDLI8] and wish to investigate the application of the inverse method
to nonlinear problems.

A nonlinear iterative upda‘re process is required to update V and to obtain
the numerical solution V(") (S, T;,,), using V") (S, T;) as the initial approxi-
mation to V, and is described in the algorithm below.

Algorithm P1: Parallel algorithm 1 for (3).
do i=0,1,2,...
= iArT;

Inl‘rlal approximation:- V(0)(S, T; 1) := V") (S, T}); k := 0;
Iterate

Ei=k+1;V:=V#1(S Ti1); Compute A(V);

Parallel for j := 1 to m(i)

Solve (5) for U(A;; S);
End parallel for
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Compu‘re V) (S, T, 1) using inverse Laplace transform (7);
Until [|[VE)(S, Tyyq) — VED(S Ty < €
n:=k;
end-do

Here m(7) is the number of transformation parameters and T; = Ar. In order
to solve (5) for U()\;; S), one can employ the finite volume technique as the
one used in Section 3. In essence the actual implementation does not require
different values of m(7) for many problems, and the results shown in this paper
use the same number of transformation parameters, denoted as m, for different
values of ¢ during the outer iteration loop. Note that in this case A7 can be
chosen to be much greater than é7 because the fine details of V' (S, 1) at each
time step of a temporal integration is not required in the present example.

5 Newton’s Linearisation

Alternatively, a small perturbation may be applied to (2), defined in the time
interval 7 € (T}, T;+1], which leads to

0 o*V 0? 0
{87 (A(V )852 +A(V)@+TS%*T)}5V
oV o*V ov

where 6V is a small incremental change of V. Application of the Laplace
transform to (8), defined in the interval 7 € (T}, T;41], results to

16V — 8V(S,T;) — (AmgSZ + AV )% + TS% — ) H(6V)
= (V)= V(S.T}) — (A(V)% + rsg—g —rV)} 9)

The method requires the numerical solution 1(§V ") (S, T;, 1)) using V(") (S, T)
as the initial approximation to V(°)(S, T;,1) and is described in the algorithm
below.

Algorithm P2: Parallel algorithm 2 for (3).
do i=0,1,2,..
= iArT;

Inl‘rlal approximation:- V(0 (S, T; 1) := V™) (S,t;); k := 0;
Iterate

ki=k+1;V:=VkE1D (STM),

Compute A(V); Compute A'(V); Compu‘re A’( ) oy,

Compute (V) — V(S,T;) — (A(V) 53
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Parallel for j := 1 to m(i)
Solve (9) for 1(6V ) (S, Ti11));
End parallel for
Compute 6V %) (S, T;,,) using inverse Laplace transform (7);
V(k) (S Ti+1 = V + 6V(k) (57 Ti+1);
Until |6V (S, Tiy)|| < €
n:=k;

end-do

6 Numerical Examples

The problem of European put option is solved upto the expiry date T' = 0.25
at the strike price £ = 100. The volatility o is chosen as the function described
and the parameters og and r are chosen to be 0.4 and 0.5 respectively. A second
order finite volume method is applied to each parametric equation as given
by (5) or (9). The mesh size is chosen to be h = 320/2°.

A sequential computational environment is used in the tests. The approx-
imations to V' (S, T) obtained by means of algorithms P1 and P2 are denoted
as Vpy and Vps respectively. Using Ar = %, %, %7 %7 the number of outer
iterations or time steps required for algorithms P1 and P2 are 10, 20, 40, and
80 respectively.

The above two parallel time-domain algorithms are compared with the
reference solution obtained by means of algorithm R with dr = 1/365, i.e. 1
day, in conjunction with the second order finite volume scheme applied along
the spatial axis S. The discretisation leads to a number of tri-diagonal systems
of equations due to the linearisation step at every time step, which may be
solved by a direct method. The numerical solution V(S,T) obtained by this
temporal integration is denoted as Vg. The stopping criterion used in the
linearization step is chosen as € = 107°.

In order to examine the efficiency of the parallel time-domain algorithms,
the computational work required for solving a tri-diagonal system of equations
results from a chosen mesh size is counted as one work unit. The total sequen-
tial work unit is obtained by multiplying the total number of work unit to m,
and the total parallel work unit is simply the total work unit plus overheads
due to the calculation of inverse Laplace transform and communication.

Discrepancies in solutions, i.e. ||Vg — Vp1|| and ||Vg — Vpa|| using various
AT, are presented in Fig. 1 and 2. In general the discrepancy levels off when
m > 8 , which suggests that the use of more terms in the inverse Laplace
transform at a fixed value of A7 has no effect on the accuracy. On the other
hand smaller A7 produces smaller discrepancy at the expense of requiring
more work unit as recorded in Table 1. Furthermore the work unit required
by using algorithm P2 is less than that of algorithm P1, and there is no sudden
increase of work when m = 12.
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Fig. 1. Discrepancies of solutions: ||[Vz — Vp1]|.
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Fig. 2. Discrepancies of solutions: [|[Vg — Vps|.

Table 1. Work units comparison (Vg requires 246 work units).

m 4 6 8 10 12
AT
Algorithm P1
9.12567 58 58 58 58 180
4.56260T 103 103 103 103 123
2.2812567 177 177 177 177 186
1.14062567 326 326 326 326 327
Algorithm P2
9.12567 43 43 43 43 43
4.56260T 83 70 71 71 11
2.28125461 134 126 126 126 126

1.14062561

249 245 220 214 213

7



8 Lai, Crane, Davies

7 Conclusions

Two linearisation methods were used in conjunction with the Laplace trans-
form method for non-linear Black-Scholes models. Work unit counts of the
numerical experiments suggest that the present technique has advantages in
solving nonlinear option pricing problems using parallel or distributed com-
puting environment. One such advantage is the use of a larger time step,
i.e. A7, when the fine details at intermediate time steps of the time interval
(T;,T;+1) are not required. Parallelisation is introduced by solving in paral-
lel a number of parametric problems, each of which defines in the interval
(T;, Tig1), i=1,2,..., T /o7, in the Laplace space. Note that as A7 approaches
47 the tranform into Laplace space does not show advantages as can be seen
from the results in Table 1. Therefore fine details on a fine time step should
not be computed by means of Laplace transform method. Instead fine details
within the time interval (T;, T;41), for all values of i, may be obtained in par-
allel using a temporal integration method. Effectively the present algorithm
provides initial conditions for every interval (T}, Ti+1), i=1,2,..., T/dT. As a
result fine details of the time interval (T}, T;+1) are decoupled from other time

intervals and may be obtained independently with a smaller time-step, say
oT.
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