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Summary. In this paper we consider an iterative substructuring method for solv-
ing system of equations arising from mortar Morley finite element discretization of a
model fourth order elliptic problem in 2D. The parallel preconditioner for the inter-
face problem is introduced using Additive Schwarz Method framework. The method
is quasi-optimal i.e. the number of CG iterations for the preconditioned problem
grows polylogarithmically as the sizes of the meshes decrease and it is independent
of the jumps of the coefficients.

1 Introduction

The discretization methods for partial differential equations are usually built
on a mesh in a uniform way, however sometimes it is necessary to develop
discretization methods which allow us to apply different type of discretization
techniques in subdomains. The mortar method introduced in [BMP94] is a do-
main decomposition method which enable us to introduce independent meshes
or discretization methods in non-overlapping subdomains. A general presen-
tation of mortar method in the two and three dimensions for elliptic boundary
value problems of second order can be found e.g. in [BMP94, BBM97, Woh01],
see also references therein. Mortar approach for discretizations of fourth order
elliptic problems was studied in [Bel97] where locally spectral discretizations
were utilized, in [Lac98] for DKT local discretizations, and in [Mar02] for HCT
and Morley finite element discretizations. Many parallel algorithms for solv-
ing a discrete problem were also developed, see e.g. [AMW99, Mar99, Woh01]
and the references therein.

In this paper we consider a mortar nonconforming Morley discretization
of the fourth order elliptic problems. This discretization method first was
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proposed in [Mar02], there are also error bounds there. A multigrid algorithm
for mortar Morley discretization of plate bending problem was discussed in
[XLC02] (in a bit different mortar settings).

To our knowledge no domain decomposition methods for solving the dis-
crete problems obtained by this type of discretization was discussed in litera-
ture.

Our method is a substructuring one i.e. we first eliminate the unknowns re-
lated to degrees of freedom interior to subdomains (interior in a special sense)
and then propose a parallel preconditioner based on Additive Schwarz ab-
stract scheme (ASM) for the derived system of equations, cf. e.g. [TW05]. We
introduce local subspaces which form a decomposition of the discrete space.
Then the ASM abstract theory allows us to construct a parallel preconditioner
and prove the condition number estimates of the preconditioned problem.

In our case we introduce a subdomain based coarse space and edge base
spaces. The condition number of the arising preconditioner is proportional to
(1 + log(H/h)) where h is the minimum of the local mesh sizes and H is the
maximum of the diameters of the subdomain and is independent of the jumps
of the coefficients.

2 Discrete space

We first assume that we have a polygonal domain Ω on the plane which is
divided into non-overlapping subdomains Ωk that form a coarse decomposition
i.e. Ω =

⋃N
k=1 Ωk and Ωl ∩Ωk is an empty set, a common edge or vertex. We

assume a shape regularity of that decomposition in the sens of Section 4 in
[BS99] and let H = maxk Hk for Hk = diam Ωk.

Fig. 1. Morley element.

The model differential problem is to find u∗ ∈ H2
0 (Ω) such that

a(u∗, v) = f(v) ∀v ∈ H2
0 (Ω), (1)

where a(u, v) =
∑N

k=1 ak(u, v) for ak(u, v) = ρk

∫

Ωk

∑

|α|=2 ∂αu ∂αv dx.

Here ρk > 0 is a constant, α = (α1, α2), (αk ≥ 0) is a multi-index and
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|α| = α1 + α2 is the length of this multi-index. Of course we have that
ak(u, u) is equivalent to |u|2

H2(Ωk). In a subdomain Ωk we introduce an in-

dependent quasiuniform triangulation Th(Ωk) made of triangles with a pa-
rameter hk = maxτ∈Th(Ωk) diam(τ). Note that each interface (a common edge

of two substructures) Γ ij = ∂Ωi∩∂Ωj inherits 1D triangulations T i
hi

(Γij) and

T j
hj

(Γij) from the respective triangulations of Ωi and Ωj , cf. Figure 2.
In each Ωk we introduce a nonconforming local Morley finite element space

Xh(Ωk) formed by piecewise quadratic functions which are continuous at all
vertices of all triangles from Th(Ωk), have continuous normal derivatives at
the midpoints of all edges of elements from Th(Ωk), and have all respective de-
grees of freedom related to vertices and midpoints on ∂Ωk ∩∂Ω equal to zero,
cf. Figure 1. We introduce a global space Xh(Ω) =

∏N
k=1 Xh(Ωk). We now

Fig. 2. Master and slave sides of of an interface Γij .

δ m,j γm,i

Γi,j

Ωj Ωi

have to choose one side of Γij as a master (mortar) one denoted by γm,i asso-
ciated with Ωi and the other one as a slave one (nonmortar) denoted by δm,j

(associated with Ωj) according to the rule ρi ≥ ρj , cf. Figure 2. An important

role will play an interface Γ =
⋃N

k=1 ∂Ωk \ ∂Ω. We also have to add a techni-
cal assumption that hi ≤ hj due to the proof technique. This assumption is
necessary for the proofs of some technical results and is due to the fact that
any local Morley finite element function is not sufficiently regular. The other
side of Γij ⊂ ∂Ωj is called slave (nonmortar) and is denoted by δm,j . Because
we assume that hi ≤ hj and both triangulations are quasiuniform, we can also

assume that the two side elements of the slave triangulation T j
hj

(δm,j) , i.e.
the ones that touch the ends of δm,j , are longer than the respective elements
of the master (mortar) triangulation T i

hi
(γm,i). Let γm,i,h (or δm,j,h) denotes

the set of all midpoints and vertices of T i
hi

(γm,i) (or T j
hj

(δm,j), respectively).
For the simplicity of presentation we also assume that the both 1D trian-

gulations of the interface Γkl: T k
hk

(γm,k) and T l
hl

(δm,l), have even numbers of
the elements.

Let consider δm,l, then we introduce a coarser 2hl triangulation by subse-
quently joining together two neighboring elements and get T l

2hl
(δm,l) - 2hl 1D
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Fig. 3. Tangential test space and 2hl interpolant on T
l
hl

(δm,l). Broken line - v ∈

M
2hl
t (δm,l), solid line - I2hl,2u, | - the endpoints of elements in T

l
hl

(δm,l), X - the

endpoints of elements in T
l
2hl

(δm,l).

2h

lelement of T  (     )δm,l

triangulation of δm,l formed by elements which are the union of two neighbor-
ing elements of T l

hl
(δm,l), cf. Fig. 3. Note that the midpoints of elements of

T l
2hl

(δm,l) are also the vertices of Th(Ωl). Then let I2hl,2 : C(Γkl) → C(Γkl)

be a continuous piecewise quadratic interpolant defined on T l
2hl

(δm,l) and

let M2hl

t (δm,l) be the space of continuous piecewise quadratic function on
T l

2hl
(δm,l) which are linear on two end elements of T l

2hl
(δm,l).

We also need another test space related to the trace of normal derivative
of finite element functions: Mhl

n (δm,l) formed by functions piecewise constant
on T l

hl
(δm,l).

The 2hk triangulation of the master γm,k: T k
2hk

(γm,k), and an operator

I2hl,2 - piecewise quadratic interpolant on T k
2hk

(γm,k) are defined analogously

on the base of elements of T k
hk

(γm,k).
Then for each interface Γkl = γm,k = δm,l ⊂ Γ we say that uk ∈ Xh(Ωk)

and ul ∈ Xh(Ωl) satisfy the mortar conditions if

∫

δm
(I2hk ,2uk − I2hl,2ul)φ ds = 0 ∀φ ∈ M2hl

t (δm,l)
∫

δm
(∂nuk − ∂nul)φ ds = 0 ∀φ ∈ Mhl

n (δm,l).
(2)

Here ∂n is an outer unit normal derivative to Γmk.
We now introduce a discrete space V h as the space formed by all functions

from Xh(Ω) which are continuous at the crosspoints (vertices of the subdo-
mains) and satisfy the mortar conditions (2). Our discrete problem is to find
u∗

h ∈ V h such that

aH(u∗
h, v) =

N
∑

k=1

ah,k(u, v) = f(v) ∀v ∈ V h, (3)

where ah,k(u, v) = ρk

∑

τ∈Tk(Ωk)

∫

τ

∑

|α|=2 ∂αu ∂αv dx. The problem has a

unique solution, cf. [Mar02].
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3 ASM method

We first eliminate some unknowns in the interiors of subdomains. Because
the Morley element is nonconforming thus there are some functions which has
all degrees freedom corresponding to respective vertices or midpoints on ∂Ωk

equal to zero and still the traces onto a master γm,k may be nonzero. Thus we
introduce the set ∆k which consists of all vertices and midpoints that either
are on ∂Ωk or are interior to Ωk and are on boundary of any element such
that at least one of its edges is not an end element of any T k

h (γm,k) for any
master γm,k ⊂ ∂Ωk, i.e. it is a set of nodal points either on ∂Ωk or interior to
Ωk and such that a nodal basis function corresponding to a degree of freedom
of this nodal point may have nonzero traces onto any master γm,k ⊂ ∂Ωk.
Then let Xh,0(Ωk) = {v ∈ Xh(Ωk) : v(p) = ∂nv(m) = 0 for all vertices p
and midpoints m in ∆k}. We excluded the end elements of T k

h (Γm,k) in the
definition of ∆k because of our condition on the length of the end elements
on the interface, see above. The situation is analogous to the case of mortar
Crouzeix-Raviart element, cf. [Mar99] where the similar set was introduced.

Each u ∈ Xh(Ωk) is split into two ah,k orthogonal parts: Pku and discrete
biharmonic part of u: Hku = u − Pku defined by







ah,k(Hku, v) = 0 for all v ∈ Xh,0(Ωk)
Hku(x) = u(x) for all vertices x ∈ ∆k

(∂nHku)(m) = ∂nu(m) for all midpoints m ∈ ∆k.
(4)

Then we define Pu = (P1u, . . . , PNu) and Hu = u − Pu discrete biharmonic
in all subdomains part of u. We also set

Ṽh = HVh = {u ∈ Vh : u is discrete biharmonic in all Ωk} (5)

Note that each function in Ṽh is uniquely defined by the values of all degree
of freedoms associated with nodal points of

⋃N
k=1 ∆k \ (

⋃

δm,j⊂Γ δm,j,h) as the

values of degrees of freedom corresponding to nodes on nonmortar (slave) are
set by the mortar conditions (2) and the values of degrees of freedom of nodes
interior to subdomains (i.e. not in ∆k) are set by (4).

Note that all Pku∗
h can be precomputed in parallel and it remains to cal-

culate ũ∗
h = Hu∗

h ∈ Ṽh such that

aH(ũ∗
h, v) = f(v) ∀v ∈ Ṽh. (6)

4 ASM method

Here we describe our Additive Schwarz method for solving (6). We use an ab-
stract scheme of ASM method, cf. [TW05], i.e. in terms of the decomposition
of Ṽh into subspaces, we also need bilinear forms defined on these subspaces.
We first introduce ∆γm,k

⊂ ∆k, cf.[Mar99]: the set of these vertices and mid-
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Fig. 4. The set ∆γm,k
. The midpoints are denoted by circles and the vertices by

squares.

γm,k

Ωk

points that are either in γm,k,h or are interior to Ωk and are on the boundary
of elements e ∈ Th(Ωk) such that at least one edge of this triangle e is con-
tained in γm,k ⊂ ∂Ωk and this edge is neither of the two end elements of

T k
h (γkl), cf. Figure 4.

Then we introduce Vγm,k
as the subspace of Ṽh formed by functions such

that the respective degrees of freedom related to all vertices and midpoints in
⋃N

l=1 ∆l \ ∆γm,k
are equal to zero. In nodal points on slaves and interior to

subdomains (not in ∆k) the values of the respective degrees of freedom are
determined by (2) and (4), respectively.

Now we define a coarse space V0. It is sufficient to define the values of
normal derivatives of u ∈ V0 at midpoints and values of u at vertices in
⋃

l ∆l =
⋃

γm,k⊂∂Ωk
∆γm,k

. Note that ∆γm,k
∩∆γs,k

= ∅, m 6= s. Let V0 ⊂ Ṽh be

formed by all functions u ∈ Ṽh such that for any master (mortar) γs,k ⊂ ∂Ωk

there exists linear polynomial ps for which it holds that

u(x) = ps(x) for a vertex x ∈ ∆γm,k

(∂nu)(m) = ∂nps(m) for a midpoint m ∈ ∆γm,k
.

(7)

Because u ∈ V0 is continuous at the crosspoints thus it is easy to see that the
dimension of V0 is equal to the number of crosspoints (vertices of subdomain
not on ∂Ω) and the number of masters γm ⊂ Γ .

Again for the simplicity of presentation we assume that the bilinear forms
for all subspaces equal to aH(u, u).

Then we can define orthogonal projections: P0 : V0 → Ṽh and Pm : Vγm
→

Ṽh as

aH(P0u, v) = aH(u, v) ∀v ∈ V0,

aH(Pmu, v) = aH(u, v) ∀v ∈ Vγm
.

Let P = P0 +
∑N

k=1 Pm. Next we replace problem (6) by
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P ũ∗
h = g, (8)

where g = g0 +
∑

γm⊂Γ gm for g0 = P0ũ
∗
h and gm = Pmũ∗

h.
We should point out that g0, gm can be computed without knowing ũ∗

h.
Then we have the following result:

Theorem 1. For any u ∈ Ṽh it holds that

c(1 + log(H/h))−2aH(u, u) ≤ aH(Pu, u) ≤ CaH (Pu, u),

where C, c are positive constant independent of H and any hk and H =
maxk Hk and h = mink hk.

Sketch of the proof.

The proof of this theorem is based on the abstract ASM scheme, cf. e.g.
[TW05]. We will give only a brief sketch of the proof here. It is enough to check
three key assumptions, cf. Th. 2.7, p. 43 in [TW05]. In our case the assumption
II (Strengthened Cauchy-Schwarz Inequalities), cf. Ass. 2.3, p.40 in [TW05],
is satisfied with the constant independent of the number of subdomains by the
coloring argument and the constant ω in the assumption III (Local Stability),
cf. Ass. 2.4, p.40 in [TW05], is equal to one as P0 and Pm are orthogonal
projections. It remains to prove assumption I (Stable Decomposition), cf. Ass.
2.2, p.40 in [TW05], i.e. we have to prove that there exists a positive constant
such that for any u ∈ Ṽh there are u0 ∈ V0 and um ∈ Vm for γm ⊂ Γ such
that u = u0 +

∑

γm⊂Γ um and

aH(u0, u0) +
∑

γm⊂Γ

aH(um, um) ≤ C(1 + log(H/h))2aH(u, u). (9)

We first define this decomposition. Let u ∈ Ṽh and let define u0 ∈ V0. It is
sufficient to define the values of respective degrees of freedom at each ∆γs,k

associated with each mortar γs,k ⊂ Γ . Let a, b be the ends of γs,k ⊂ ∂Ωk and
uγs,k

= 1
Nk

∑

m∈γs,k,h
∂nu(m), where the sum is taken over all midpoints on

γs,k and Nk is the number of those midpoints on γs,k. Then for any mortar
γs,k ⊂ ∂Ωk we introduce linear polynomial ps such that

ps(a) = u(a) ps(b) = u(b) ∂nps = uγs,k
.

Note that the linear polynomial ps is properly defined by these three condi-
tions. Then we define u0 ∈ V0 by setting the values of respective degrees of
freedom associated with the vertices and midpoints in ∆s,k as

u0(x) = ps(x) for x a vertex in ∆γs,k

∂nu0(m) = ∂nps(m) for m a midpoint in ∆γs,k

Thus u0 is properly defined. Next we define us ∈ Vγs,k
. Again it is sufficient

to determine the values of respective degrees of freedom at nodal points in
∆γs,k

for all masters γs,k ⊂ Γ . Let w = u − u0 and let:
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us(x) = w(x) for x a vertex in ∆γs,k

∂nus(m) = ∂nw(m) for m a midpoint in ∆γs,k

and us(x) = ∂nus(m) = 0 for all vertices x and midpoints m in
⋃N

k=1 ∆n \
∆γs,k

. It is obvious that we have u = u0 +
∑

γm,k
um = u0 + w = u.

Then, using a local equivalence operator introduced in [BS99], some tech-
nical tools (modified) from [Mar99] and following the lines of proofs of [Mar05]
we can prove (9).
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