Homogenization in Electrostatic and Piezoelectric Transducers

DFG Junior Research Group

Inverse Problems in Piezoelectricity

Tom Lahmer *

Joachim Schöberl **

*) Department of Sensor Technology, University of Erlangen
 **) CCES, RWTH Aachen

DD 17, 2006, Page 1/24

Overview

- Motivation
- Electrostatic Interdigital Sensors and
- Piezoelectric Stack Actuators Forward Problem (FEM)
- Homogenization 2 Scale Approach
 - Micro Model Unit Cell Problem
 - Macro Model Homogenized Structure
- Numerical results
- Summary and Outlook

Find efficient solution method for electro and piezoelectric transducers with periodic structures

epartment of Sensor Technology

Erlangen-Nuremberg

Friedrich-Alexander-University,

DD 17, 2006, Page 3/24

Homogenization in Composites / Piezoelectricity

Calculation of effective piezoelectric material
 parameters: (Berger, Gabbert, Köppe, Rodriguez - Ramos, Bravo Castillero, Guinovart-Diaz, Otero, Maugin, ...)

Classical homogenization: (double scale asymptotic expansion) (Sanchez – Palencia, Levy, ...)

Bloch approximation:

Elliptic operators: (*Conca, Natesan, Vanninathan, …*) PDEs with periodic coefficients: (*Bensoussan, Lions, Papanicoloaou*) Piezoelectricity: (*Turbé, Maugin*) SAW – Filters: (*Zaglmayr, Schöberl, Langer*)

Generalized FEM for homogenization problems:

(A. M. Matache, C. Schwab, ...)

First Application: Electrostatic Sensor

Sensor reacts with a change in capacitance while the electric field is changed by some outer impact

Application areas:

Force and acceleration sensors Airbag deployment Rotary capacitor

Source: http://www.semiconductors.bosch.de/

DD 17, 2006, Page 5/24

Two Scale Homogenization (Electrostatics)

Department of Sensor Technology

The Quasi Periodic Electrostatic **Eigenvalue Problem** +

 $h \ll H$, h-mesh size micro cell, H-mesh size macro cell

Department of Sensor Technology

DD 17, 2006, Page 7/24

Numerical Results Electrostatics (quadratic elements)

Department of Sensor Technology

Erlangen-Nuremberg

Friedrich-Alexander-University,

DD 17, 2006, Page 8/24

Second application: Piezoelectric Stack -Actuator

Actuator reacts with a deformation in longitudinal direction by application of an electric field

Application areas:

Injection valves (common – rail) Optics, Laser Tuning <u>General:</u>

> High mechanical precision steering High frequency driving

Erlangen-Nuremberg Sensor Technolog) ⁻riedrich-Alexander-University, epartment of

DD 17, 2006, Page 9/24

Piezoelectric Effect

$$\vec{\sigma} = \mathbf{c}^E \vec{S} - \mathbf{e}^T \vec{E}$$

 $\vec{D} = \mathbf{e}\vec{S} + \varepsilon^S \vec{E}$

- $\vec{\sigma}$... mechanical stress $\vec{S} = \mathcal{B}\vec{u}$... mechanical strain $\vec{E} = -\nabla\phi$... electric field
 - \vec{D} ... dielectric displacement
 - \vec{u} ... mechanical displacement
 - ϕ ... electric potential

 $\mathbf{c}^{E}, \mathbf{e}, \varepsilon^{S}$... material tensors

Newton's law: $\mathcal{B}^T \vec{\sigma} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$ Gauss' law: div $\vec{D} = 0$

DD 17, 2006, Page 10/24

Piezoelectric PDEs (Fourier Transformed)

$$\begin{aligned} -\rho\omega^{2}\hat{\hat{u}} - \mathcal{B}^{T}\left(\mathbf{c}^{E}\mathcal{B}\hat{\hat{u}} + \mathbf{e}^{T}\nabla\hat{\phi}\right) &= \mathbf{0} \in \Omega \\ -\operatorname{div}\left(\mathbf{e}\mathcal{B}\hat{\hat{u}} - \varepsilon^{S}\nabla\hat{\phi}\right) &= \mathbf{0} \in \Omega \end{aligned}$$

$$\Omega := \bigcup_{m=0}^{M} \Omega_m^{\epsilon}, \ \Omega_m^{\epsilon} := \Omega_-^{\epsilon} \bigcup \Omega_+^{\epsilon}$$

$${f e}$$
 := $-{f e}$ in Ω_- (polarization)

Boundary conditions:

$N^T \sigma$	=	0	on $\partial \Omega$
$\widehat{\phi}$	—	0	on Γ_g
$\widehat{\phi}$	—	$\widehat{\phi}^e$	on Γ_e
$ec{D}\cdotec{N}$	=	0	on $\partial \Omega$

Department of Sensor Technology Friedrich-Alexander-University, Erlangen-Nuremberg

Heterogeneous (scale resolving) 3D Model (<u>computing times</u>)

- Stack 200 Layers one frequency step ~ <u>5 min</u>
- Calculation of impedance curve 100 frequency steps ~ <u>7.13 hrs</u>

Simulation based parameter identification for composite $F(p) = y^{meas}$, F-solution operator of piezo PDEs p-piezoelectric parameters, y^{meas} -electrical measurements

(evaluation at 15 frequencies x 10 parameters x 10 Newton steps) $\sim 1 \text{ week}$

DD 17, 2006, Page 12/24

Two Scale Homogenization

2 scale series expansion:

$$\vec{\hat{u}} = \sum_{i=0}^{N} \vec{\hat{u}}_{i} \psi_{i}^{mech} \quad \text{with } \psi_{0}^{mech} \equiv 1 \quad \text{in } \Omega$$
$$\hat{\phi} = \sum_{i=0}^{N} \hat{\phi}_{i} \psi_{i}^{elec} \quad \text{with } \psi_{0}^{elec} \equiv 1 \quad \text{in } \Omega$$

 $(\psi_i^{mech}, \psi_i^{elec})$ -eigensolutions of unit cell - micro scale orthonormal basis in $[L^2(\Omega_m^{\epsilon})]^3$

$$(\hat{\hat{u}}_i, \hat{\phi}_i) \in [H_0^1(\Omega)]^2 \times H_0^1(\Omega), \ \Omega := \bigcup_{m=0}^M \Omega_m^\epsilon$$

DD 17, 2006, Page 13/24

Piezoelectric Eigenvalue Problem

Find $(\vec{u}, \phi, \lambda) \in [H^1_{per,0}(\Omega)]^2 \times [H^1_{per,0}(\Omega)] \times \mathbb{R}$ such that

$$\int_{\Omega} (\mathcal{B}\vec{v})^{T} \mathbf{c}^{E} \mathcal{B}\vec{u} \, d\Omega + \int_{\Omega} (\mathcal{B}\vec{v})^{T} e^{T} \nabla\phi \, d\Omega = -\lambda\rho \int_{\Omega} \vec{v}\vec{u} \, d\Omega$$
$$\int_{\Omega} (\nabla w)^{T} e \mathcal{B}\vec{u} \, d\Omega - \int_{\Omega} (\nabla w)^{T} \varepsilon^{S} \nabla\phi \, d\Omega = 0$$

for all
$$\vec{v} \in [H_0^1(\Omega)]^2$$
 and $w \in H_0^1(\Omega)$
 $H_{per,0}^1(\Omega) := \{\phi \mid ||\phi||_{L_2} + ||\nabla\phi||_{L_2} < \infty, \phi_{|\Gamma_0} = 0, \phi_{|\Gamma_e} = c_1, \phi_{|\Gamma_{free}} = c_2\}$
 $[H_{per,0}^1(\Omega)]^2 := \{u \mid ||u||_{L_2} + ||\mathcal{B}u||_{L_2} < \infty\}$
 Γ_{free}

Department of Sensor Technology Friedrich-Alexander-University, Erlangen-Nuremberg

DD 17, 2006, Page 14/24

Piezoelectric Eigenvalue Problem (discretized)

$$\begin{pmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\phi} \\ \mathbf{K}_{\phi u} & -\mathbf{K}_{\phi\phi} \end{pmatrix} \begin{pmatrix} u^h \\ \phi^h \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{M}_{uu} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} u^h \\ \phi^h \end{pmatrix}$$

 $(m_{uu})_{ij} = \int_{\Omega} \rho \underline{N}_{i}^{uT} \underline{N}_{j}^{u} d\Omega \quad (\text{mass matrix})$ $(k_{uu})_{ij} = \int_{\Omega} (\mathcal{B} \underline{N}_{i}^{u})^{T} \mathbf{c}^{E} (\mathcal{B} \underline{N}_{j}^{u}) d\Omega \quad (\text{stiffness matrix})$ $(k_{u\phi})_{ij} = \int_{\Omega} (\mathcal{B} \underline{N}_{i}^{u})^{T} \mathbf{e} (\nabla N_{j}^{\phi}) d\Omega \quad (\text{piezo. coupling matrix})$ $(k_{\phi\phi})_{ij} = \int_{\Omega} (\nabla N_{i}^{\phi})^{T} \varepsilon^{S} (\nabla N_{j}^{\phi}) d\Omega \quad (\text{permittivity matrix})$ $N_{i}^{u}, N_{i}^{\phi} \text{ - nodal shape functions}$

DD 17, 2006, Page 15/24

Piezoelectric Eigenvalue Problem

Solution of the eigenvalue problem by ARPACK using the implicitly restarted Arnoldi iteration

With $\mu := \frac{1}{\lambda - \lambda_s}$ (shift of spectrum)

 $K_{uu}u^{h} - \lambda_{s}M_{uu}u^{h} + K_{u\phi}\phi^{h} = \frac{1}{\mu}M_{uu}u^{h}$ $K_{\phi u}u^{h} + K_{\phi\phi}\phi^{h} = 0$

 $\mu \left(\begin{array}{c} u^{h} \\ \phi^{h} \end{array} \right) = \left(\begin{array}{cc} K_{uu} - \lambda_{s} M_{uu} & K_{u\phi} \\ K_{\phi u} & -K_{\phi\phi} \end{array} \right)^{-1} \left(\begin{array}{c} M_{uu} & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} u^{h} \\ \phi^{h} \end{array} \right)$

we have a form amenable to the Lanczos algorithm

(eigenvectors are invariant under spectral transformation, eigenvalues might be recovered as $\lambda = \frac{1}{\mu} + \lambda_s$)

Department of Sensor Technology Friedrich-Alexander-University, Erlangen-Nuremberg

Weak form homogenized Piezo PDE

Find $(\vec{u}_i, \phi_i) \in [H_0^1(\Omega)]^2 \times [H_0^1(\Omega)]$ such that

$$\begin{split} &\int_{\Omega} (\mathcal{B} \sum_{i=0}^{N} \vec{v}_{i} \psi_{i}^{mech})^{T} \mathbf{c}^{E} \mathcal{B} \sum_{i=0}^{N} \vec{u}_{i} \psi_{i}^{mech} d\Omega \\ &+ \int_{\Omega} (\mathcal{B} \sum_{i=0}^{N} \vec{v}_{i} \psi_{i}^{mech})^{T} e^{T} \nabla \sum_{i=0}^{N} \phi_{i} \psi_{i}^{elec} d\Omega \\ &- \rho \omega^{2} \int_{\Omega} \sum_{i=0}^{N} \vec{v}_{i} \psi_{i}^{mech} \sum_{i=0}^{N} \vec{u}_{i} \psi_{i}^{mech} d\Omega = 0 \\ &- \int_{\Omega} (\nabla \sum_{i=0}^{N} w_{i} \psi_{i}^{elec})^{T} e^{\mathcal{B}} \sum_{i=0}^{N} \vec{u}_{i} \psi_{i}^{mech} d\Omega \\ &- \int_{\Omega} (\nabla \sum_{i=0}^{N} w_{i} \psi_{i}^{elec})^{T} \varepsilon^{S} \nabla \sum_{i=0}^{N} \phi_{i} \psi_{i}^{elec} d\Omega = 0 \end{split}$$

Friedrich-Alexander-University, Erlangen-Nuremberg **Department of Sensor Technology**

DD 17, 2006, Page 18/24

Treatment of boundary

Scale resolution close to boundary

+ appropriate essential boundary conditions at Γ_b

Erlangen-Nuremberg **Department of Sensor Technology** Friedrich-Alexander-University,

DD 17, 2006, Page 19/24

Visualization of Homogenized Solution of Piezoelectric Stack Actuator

Mechanical Displacement (m):

Electric Potential (V):

(thickness of each cell 0.2 mm)

DD 17, 2006, Page 20/24

Mechanical Displacement (50 cells)

Erlangen-Nuremberg

Friedrich-Alexander-University,

Department of Sensor Technology

CPU Times (50 cells, calculation of one frequency step)

Model	Number of Nodes	Number of Equations	CPU Times
Heterogeneous	50030	144840	58.4
Unit Cell (EV Pb.) (calculation of 12 EVs)	7701	22621	20.23
Homogeneous	408	1818 (N=2)	2.85
	408	3636 (N=4)	4.64
	408	5454 (N=6)	9.65
	408	7272 (N=8)	17.7
	408	7272 (N=8)	17.7

Summary and Outlook

- Implemented a scheme which effectively resolves oscillatory behavior of a periodic structure
- Analyzed corresponding eigenvalue problems
- Homogenization scheme works with electrostatics and piezoelectricity
- Improve convergence with hp-FEM
- Extend model to 3D case
- Consider boundary conditions, e.g. pre-stressed stack
- Embed homogenized calculation in parameter identification method

Selected References:

B. Kaltenbacher, T. Lahmer, M. Mohr, M. Kaltenbacher, *PDE based determination of piezoelectric material tensors*, 2005. **R. Lerch**,

Simulation of Piezoelectric devices by two and three dimensional finite elements, 1990

S. Zaglmayr, J. Schöberl, U. Langer, *Eigenvalue Problems in Surface Acoustic Wave Filter Simulations*, RICAM

N. Turbé, G.A. Maugin *On the Linear Piezoelectricity of Composite Materials*, 1991

A. M. Matache, C. Schwab *Generalized FEM for Homogenization Problems*, 2001

C. Conca, S. Natesan M. Vanninathan, *Numerical experiments with the Bloch - Floquet approach in homogenization*, 2005

H. Berger, U. Gabbert, et al *Finite element and asymptotic homogenization methods applied to smart composite materials*, 2003

Erlangen-Nuremberg

Friedrich-Alexander-University,

epartment of

Sensor Technology

Have we seen a movie yet?

У

step 100000 Contour Fill of mechDisplacement-amp, |mechDisplacement-amp|. Deformation (×58757.5): mechDisplacement-amp of harmonic, step 100000.

DD 17, 2006, Page 25/24

Imech Displacement-air 1.7104e-08 1.4446e-08 1.1789e-08 9.1314e-09 6.4739e-09 3.8164e-09 1.1588e-09 -1.4987e-09 -4.1562e-09

-6.8137e-09