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Motivation

Numerical solution of non-linear systems of Partial Differential Equations (PDEs)

• Finite Difference Method (FDM)

• Finite Element Method (FEM)

• Finite Volume Method (FVM)

Finite Difference Element Method (FDEM)

Combination of advantages of FDM and FEM:

FDM on unstructured FEM grid
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Objectives

• Elliptic and parabolic non-linear systems of PDEs

• 2-D and 3-D with arbitrary geometry

• Arbitrary non-linear boundary conditions (BCs)

• Subdomains with different PDEs

• Robustness

• Black-box (PDEs/BCs and domain)

• Error estimate

• Order control/Mesh refinement

• Efficient parallelization
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Difference formulas of order q on unstructured grid

Polynomial approach of order q (m coefficients)

2-D: m = (q+1)·(q+2)/2

3-D: m = (q+1)·(q+2)·(q+3)/6
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q=2

q=4
q=6

Influence polynomial Pq,i =

⎧⎪⎨
⎪⎩

1, node i

0, other nodes
→ ud, ux,d, uy,d, uxx,d, uyy,d, uxy,d

Search for nodes in rings (up to order q+∆q) → m+r nodes

Selection of m appropriate nodes by special algorithm
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Discretization error estimate

e.g. for ux: ux = ux,d,q + d̄x,q = ux,d,q+2 + d̄x,q+2

→ dx,q = ux,d,q+2 − ux,d,q

{
+ d̄x,q+2

}

Error equation

Pu ≡ P (t, x, y, u, ut, ux, uy, uxx, uyy, uxy)

Linearization by Newton-Raphson

Discretization with error estimates dt, dx, . . . and linearization in dt, dx, . . .

→ ∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDxy = (level of solution)

= Q−1
d · [(Pu)d + Dt + {Dx + Dy + Dxy}] (level of equation)

Only apply Newton correction ∆uPu:

→ Qd · ∆uPu = (Pu)d
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Problem: Black-box for PDEs and domain

User input: any system of PDEs Local mesh refinement
any unstructured FEM grid
2-D and 3-D
(Sliding) dividing lines

P (1)

P (2)

P (3)Subdomains with
different PDEs

dividing line

Solution: 1-D DD with overlap
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Re-sorting of the nodes

Domain Node numbering Objective

(from mesh generator) (by re-sorting for x-coordinate)
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Difference star: 29 1 5 28 48 49 10 1 2 9 11 19

→ all 4 processors involved → only 2 (neighboured)
Proc. 1 2 3 4 processors involved
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Algorithm for global sorting of the nodes I

• Needs 2·(np-1) steps on np processors

• Step i ∈ { 1, . . ., np-1}:
Sorting until first sorted nodes are received by proc. np

• Step i ∈ { np, . . ., 2·(np-1)}:
Sorting, proc. np sends sorted nodes to processors 1 to np-1

• Always send to the right neighbour processor (except for processor np)

• Always receive from the left neighbour processor

• Up to np/2 processors active in parallel

• Communication via MPI

• Start with local sorting of the nodes (heapsort)

• Step after receiving nodes: merging (= local sorting)
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Algorithm for global sorting of the nodes II

• Formal description of step i (illustration on next slide)

i odd merge ip ≥ i+3
2 ∧ ip ≤ min(i,np)

send ip ≥ i+1
2 ∧ ip ≤ min(i,np)

receive ip ≥ i+3
2 ∧ ip ≤ min(i,np)

additionally: i ∈ { 1, . . ., np-1}: ip = i+1

i ∈ { np, . . ., 2·(np-1)}: ip = i-np+1

i even merge ip ≥ i
2 + 1 ∧ ip ≤ min(i,np)

send ip ≥ i
2 + 1 ∧ ip ≤ min(i,np)

receive ip ≥ i
2 + 2 ∧ ip ≤ min(i,np)

additionally: i ∈ { 1, . . ., np-1}: ip = i+1

i ∈ { np, . . ., 2·(np-1)}: ip = i-np+1
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Illustration of the global re-sorting algorithm

Step
Proc. 1 2 3 4 5 6 7

1 S M Merge
2 R M S S S Send
3 R M S R M S S R Receive
4 R M S R M S R M S S
5 R M S R M S R M S R
6 R M S R M S R
7 R M S R

np=8 R

Step
Proc. 8 9 10 11 12 13 14

1 R
2 R
3 R
4 R
5 M S S R
6 M S R M S R M S S R
7 M S R M S R M S R M S R M S S R

np=8 M S R M S R M S R M S R M S R M S R M S
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Distribution of the elements

mesh generator

mesh file

proc. ip1 ip2 · · · ipnp-1 ipnp

new
data

old
data

(static)

shifted in ring to the right

. . .

Processor that owns leftmost node of an element becomes element owner

→ Execution of 2 ring shifts

1st: Determination of owner of leftmost node

2nd: Storing of element numbers on owning processors
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Distribution of the boundary/DL/SDL nodes

DL: dividing line
SDL: sliding dividing line

mesh generator

mesh file

proc. ip1 ip2 · · · ipnp-1 ipnp

new
data

old
data

(static)

shifted in ring to the right

. . .

Compare received node numbers of boundary/DL/SDL nodes to node numbers of own nodes

→ Store matching node numbers in arrays for boundary/DL/SDL nodes

Send non-matching node numbers to right neighbour processor
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Illustration of 1-D DD (np=4)

Proc. 1 2 3 4

1
2

3
4

1 2 3 4 1 2 3 4
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Overlap

Computation of the right hand side
and of the matrix Qd

⎫⎬
⎭ local (without communication)

→ Store necessary nodes and elements of neighbour processors on proc. ip

Proc. ip-1 ip ip+1

overlap overlapown

necessary nodes on proc. ip

ip-1, ip+1: overlap processors of proc. ip

Width of overlap:

Compute mean edge length hmean

Choose safety factor aoverlap

Compute xoverlap,1, xoverlap,2

1. criterion (enough nodes): xoverlap,1 = 0.5·aoverlap·hmean·(
√

m(q+∆q)-1 )

2. criterion (enough rings): xoverlap,2 = aoverlap·hmean·(q+∆q)

Compute xoverlap = max(xoverlap,1, xoverlap,2)
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Illustration of overlap

xleft = xmin − xoverlap

xright = xmax + xoverlap

ip2 ip3 ip4 ip5 ip6 ip7

xleft,4 xright,4xmin,4 xmax,4

xoverlap xoverlap
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Bandwidth optimization

Before re-sorting After re-sorting

Bandwidth: Full 2253
Before re-sorting 2154
After re-sorting 185
With SSP BO 112 SSP: own improved Cuthill-McKee
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Summary

• Black-box PDE solver FDEM
(URL: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur)

• User input: any PDE system, any domain, 2-D and 3-D

• Global re-sorting algorithm for nodes

• Send elements in ring-shift to owning processors

→ 1-D DD with overlap

• Computation of linear system of equations purely local

• Efficient parallelization with MPI

• Built-in bandwidth optimizer

This 1-D DD is simple, robust and efficient!


