
Automatic Domain Decomposition

for a Black-Box PDE Solver

Torsten Adolph and Willi Schönauer

Forschungszentrum Karlsruhe

Institute for Scientific Computing

Karlsruhe, Germany

torsten.adolph@iwr.fzk.de

willi.schoenauer@iwr.fzk.de

http://www.fzk.de/iwr

http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur



Torsten Adolph 2 DD17, July 3-7, 2006

Motivation

Numerical solution of non-linear systems of Partial Differential Equations (PDEs)

• Finite Difference Method (FDM)

• Finite Element Method (FEM)

• Finite Volume Method (FVM)

Finite Difference Element Method (FDEM)

Combination of advantages of FDM and FEM:

FDM on unstructured FEM grid



Torsten Adolph 3 DD17, July 3-7, 2006

Objectives

• Elliptic and parabolic non-linear systems of PDEs

• 2-D and 3-D with arbitrary geometry

• Arbitrary non-linear boundary conditions (BCs)

• Subdomains with different PDEs

• Robustness

• Black-box (PDEs/BCs and domain)

• Error estimate

• Order control/Mesh refinement

• Efficient parallelization



Torsten Adolph 4 DD17, July 3-7, 2006

Difference formulas of order q on unstructured grid

Polynomial approach of order q (m coefficients)

2-D: m = (q+1)·(q+2)/2

3-D: m = (q+1)·(q+2)·(q+3)/6

� 1

� 2

� 3� 4

�
5=m-1

��0

order q=2

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

q=2

q=4
q=6

Influence polynomial Pq,i =

⎧⎪⎨
⎪⎩

1, node i

0, other nodes
→ ud, ux,d, uy,d, uxx,d, uyy,d, uxy,d

Search for nodes in rings (up to order q+∆q) → m+r nodes

Selection of m appropriate nodes by special algorithm



Torsten Adolph 5 DD17, July 3-7, 2006

Discretization error estimate

e.g. for ux: ux = ux,d,q + d̄x,q = ux,d,q+2 + d̄x,q+2

→ dx,q = ux,d,q+2 − ux,d,q

{
+ d̄x,q+2

}

Error equation

Pu ≡ P (t, x, y, u, ut, ux, uy, uxx, uyy, uxy)

Linearization by Newton-Raphson

Discretization with error estimates dt, dx, . . . and linearization in dt, dx, . . .

→ ∆ud = ∆uPu + ∆uDt + ∆uDx + ∆uDy + ∆uDxy = (level of solution)

= Q−1
d · [(Pu)d + Dt + {Dx + Dy + Dxy}] (level of equation)

Only apply Newton correction ∆uPu:

→ Qd · ∆uPu = (Pu)d



Torsten Adolph 6 DD17, July 3-7, 2006

Problem: Black-box for PDEs and domain

User input: any system of PDEs Local mesh refinement
any unstructured FEM grid
2-D and 3-D
(Sliding) dividing lines

P (1)

P (2)

P (3)Subdomains with
different PDEs

dividing line

Solution: 1-D DD with overlap



Torsten Adolph 7 DD17, July 3-7, 2006

Re-sorting of the nodes

Domain Node numbering Objective

(from mesh generator) (by re-sorting for x-coordinate)

1 2

34

5 6 7 8 9 10

11

12

13

14

15

16

171819202122

23

24

25

26

27

28 29 30 31 32 33 34

35

36

37

38

394041424344

45

46

47

48 49 50 51 52

53

54

55565758

59

60 61 62

6364

� �

� �

� �

�

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

� �

� �

� �

�

Difference star: 29 1 5 28 48 49 10 1 2 9 11 19

→ all 4 processors involved → only 2 (neighboured)
Proc. 1 2 3 4 processors involved



Torsten Adolph 8 DD17, July 3-7, 2006

Algorithm for global sorting of the nodes I

• Needs 2·(np-1) steps on np processors

• Step i ∈ { 1, . . ., np-1}:
Sorting until first sorted nodes are received by proc. np

• Step i ∈ { np, . . ., 2·(np-1)}:
Sorting, proc. np sends sorted nodes to processors 1 to np-1

• Always send to the right neighbour processor (except for processor np)

• Always receive from the left neighbour processor

• Up to np/2 processors active in parallel

• Communication via MPI

• Start with local sorting of the nodes (heapsort)

• Step after receiving nodes: merging (= local sorting)



Torsten Adolph 9 DD17, July 3-7, 2006

Algorithm for global sorting of the nodes II

• Formal description of step i (illustration on next slide)

i odd merge ip ≥ i+3
2 ∧ ip ≤ min(i,np)

send ip ≥ i+1
2 ∧ ip ≤ min(i,np)

receive ip ≥ i+3
2 ∧ ip ≤ min(i,np)

additionally: i ∈ { 1, . . ., np-1}: ip = i+1

i ∈ { np, . . ., 2·(np-1)}: ip = i-np+1

i even merge ip ≥ i
2 + 1 ∧ ip ≤ min(i,np)

send ip ≥ i
2 + 1 ∧ ip ≤ min(i,np)

receive ip ≥ i
2 + 2 ∧ ip ≤ min(i,np)

additionally: i ∈ { 1, . . ., np-1}: ip = i+1

i ∈ { np, . . ., 2·(np-1)}: ip = i-np+1



Torsten Adolph 10 DD17, July 3-7, 2006

Illustration of the global re-sorting algorithm

Step
Proc. 1 2 3 4 5 6 7

1 S M Merge
2 R M S S S Send
3 R M S R M S S R Receive
4 R M S R M S R M S S
5 R M S R M S R M S R
6 R M S R M S R
7 R M S R

np=8 R

Step
Proc. 8 9 10 11 12 13 14

1 R
2 R
3 R
4 R
5 M S S R
6 M S R M S R M S S R
7 M S R M S R M S R M S R M S S R

np=8 M S R M S R M S R M S R M S R M S R M S



Torsten Adolph 11 DD17, July 3-7, 2006

Distribution of the elements

mesh generator

mesh file

proc. ip1 ip2 · · · ipnp-1 ipnp

new
data

old
data

(static)

shifted in ring to the right

. . .

Processor that owns leftmost node of an element becomes element owner

→ Execution of 2 ring shifts

1st: Determination of owner of leftmost node

2nd: Storing of element numbers on owning processors



Torsten Adolph 12 DD17, July 3-7, 2006

Distribution of the boundary/DL/SDL nodes

DL: dividing line
SDL: sliding dividing line

mesh generator

mesh file

proc. ip1 ip2 · · · ipnp-1 ipnp

new
data

old
data

(static)

shifted in ring to the right

. . .

Compare received node numbers of boundary/DL/SDL nodes to node numbers of own nodes

→ Store matching node numbers in arrays for boundary/DL/SDL nodes

Send non-matching node numbers to right neighbour processor



Torsten Adolph 13 DD17, July 3-7, 2006

Illustration of 1-D DD (np=4)

Proc. 1 2 3 4

1
2

3
4

1 2 3 4 1 2 3 4



Torsten Adolph 14 DD17, July 3-7, 2006

Overlap

Computation of the right hand side
and of the matrix Qd

⎫⎬
⎭ local (without communication)

→ Store necessary nodes and elements of neighbour processors on proc. ip

Proc. ip-1 ip ip+1

overlap overlapown

necessary nodes on proc. ip

ip-1, ip+1: overlap processors of proc. ip

Width of overlap:

Compute mean edge length hmean

Choose safety factor aoverlap

Compute xoverlap,1, xoverlap,2

1. criterion (enough nodes): xoverlap,1 = 0.5·aoverlap·hmean·(
√

m(q+∆q)-1 )

2. criterion (enough rings): xoverlap,2 = aoverlap·hmean·(q+∆q)

Compute xoverlap = max(xoverlap,1, xoverlap,2)



Torsten Adolph 15 DD17, July 3-7, 2006

Illustration of overlap

xleft = xmin − xoverlap

xright = xmax + xoverlap

ip2 ip3 ip4 ip5 ip6 ip7

xleft,4 xright,4xmin,4 xmax,4

xoverlap xoverlap



Torsten Adolph 16 DD17, July 3-7, 2006

Bandwidth optimization

Before re-sorting After re-sorting

Bandwidth: Full 2253
Before re-sorting 2154
After re-sorting 185
With SSP BO 112 SSP: own improved Cuthill-McKee



Torsten Adolph 17 DD17, July 3-7, 2006

Summary

• Black-box PDE solver FDEM
(URL: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur)

• User input: any PDE system, any domain, 2-D and 3-D

• Global re-sorting algorithm for nodes

• Send elements in ring-shift to owning processors

→ 1-D DD with overlap

• Computation of linear system of equations purely local

• Efficient parallelization with MPI

• Built-in bandwidth optimizer

This 1-D DD is simple, robust and efficient!


