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• Goal: Simplicity

Additive Schwarz

global “coarse”
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local 
problems



• Existing Coarse Spaces
– overlapping methods
– iterative substructuring

• “New” Coarse Spaces
– generalization of DSW (1994)
– comparisons with BDD & BDDC

• Application to Overlapping Schwarz Preconditioners
– some theory
– numerical examples

• Summary & Conclusions

Outline



Coarse Spaces (Overlapping Methods)
• Geometric:

– conceptually simple
– applicable to 2nd and 4th order PDEs
– requires coarse mesh

• Smoothed Aggregation:
– applicable to 2nd and 4th order PDEs
– generous overlap: Brezina & Vanek (1999)
– small overlap: Jenkins, et al. (2001)

• Partition of Unity:
– 2nd order PDEs: Sarkis, et al. (2002-2003)
– harmonic overlap variants: coefficient jumps
– 4th order PDEs: works well, not pretty, no theory D (2003)

theory for “nice”
coefficients



Coarse Spaces (Iterative Substructuring)

• FETI/BDD:
– uses rigid body modes of subdomains
– works well for 2nd order PDEs
– “conforming” coarse basis functions

• FETI-DP/BDDC:
– flexibility in choosing coarse dofs (corner, edge, face) 
– works well for 2nd and 4th order PDEs
– “nonconforming” coarse basis functions

• “Face-Based” Approach (Section 5.4.3 of T&W):
– introduced by Dryja, Smith, Widlund (1994)
– one coarse dof for each vertex, edge, and face
– “conforming” coarse basis functions



“New” Coarse Spaces
interface Γ shown in red
partition nodes of Γ into 
corners, edges, faces
Input: Coarse matrix NΓ



“New” Coarse Spaces
interface Γ shown in red
partition nodes of Γ into 
corners, edges, faces
Input: Coarse matrix NΓ

NΓ = e ⇒ identical to DSW (1994)



Comparisons with BDD and BDDC

36N9N6N3D elasticity coarse dimension
yesyesyesnear incompressible elasticity

yesyesyestheory for coefficient jumps
yesyesno“easy” multilevel extensions
yesnoyesnull space information required
noyesyessubdomain matrices required
yesyesno“nice” coarse problem sparsity
yesnoyesconforming coarse space
yesyesno4th order problems
yesyesyes2nd order problems

GDSW  BDDCBDD



Some Theory (Overlapping Schwarz)
• Poisson Equation & Compressible Elasticity:

– Coarse matrix NΓ spans rigid body modes

– NΓ enriched w/ linear functions, no property jumps

• Nearly Incompressible Elasticity (discontinuous pressure):
– Coarse matrix NΓ spans rigid body modes. Preliminary theory 

(2D) suggests

– result not too surprising considering coarse space is richer 
than stable elements like Q2–P0



Numerical Examples (AOS)

• Poisson Equation & Compressible Elasticity:
– no surprises, consistent with theory

• Nearly Incompressible Elasticity (2D plane strain): 
Q2-P-1 elements, H/h = 8, δ = H/4, rtol = 10-8

10.1379.9328.12664
10.1369.8317.62536
9.2349.1296.82416
7.1256.8235.4194

conditerconditerconditer
ν = 0.4999999ν = 0.4999ν = 0.3N



Numerical Examples (AOS)

• 2D plane strain (continued): 
Q2-P-1 elements, N = 16, δ = H/4, rtol = 10-8

10.63410.4307.02320
10.33410.1307.02416
9.8349.6306.92312
9.2349.1296.8248
8.5338.1296.5234

conditerconditerconditer
ν = 0.4999999ν = 0.4999ν = 0.3H/h



Unstructured Meshes

N = 14N = 13

N = 15 N = 16



Numerical Examples (AOS)

• 2D plane strain for unstructured meshes: 
Q2-P-1 elements, H/h ≈ 8, δ ≈ H/4, rtol = 10-8

11.43811.0336.72516
12.33811.8347.22715
13.83813.3337.02614
11.93611.5327.22613
conditerconditerconditer

ν = 0.4999999ν = 0.4999ν = 0.3N



Numerical Examples (AOS)

• 2D plate bending (4th order problem): 

DKT elements, H/h = 8, δ = H/4, rtol = 10-8

21.152256
19.84864
17.74116
10.2294
conditerN



Numerical Examples (AOS)

• 2D plate bending (4th order problem): 

DKT elements, δ = H/4, rtol = 10-8

29.45140
need more
patience

28.05032
31.56126.24724
27.65723.44616
19.84817.7418
conditerconditer

N = 64N = 16H/h



Numerical Examples (AOS)

• Problems in H(curl;Ω):

Examples: ai = α  and  bi = β for  i = 1,…,N



Numerical Examples (AOS)

• 2D problems in H(curl;Ω):

edge elements, H/h = 8, δ = H/8, β = 1, rtol = 10-8

32 (7.6)30 (7.6)27 (7.6)24 (7.0)6 (3.0)144

32 (7.6)30 (7.6)27 (7.6)24 (6.8)6 (3.0)100

31 (7.6)29 (7.6)26 (7.5)23 (6.4)6 (3.0)64

31 (7.5)28 (7.5)26 (7.5)22 (6.0)6 (3.0)36

30 (7.5)28 (7.5)25 (7.4)20 (5.3)6 (3.0)16

25 (7.2)23 (7.2)22 (7.0)16 (4.4)5 (3.0)4

α = 104α = 102α = 1α = 10-2α = 0N

NΓ has one column



Numerical Examples (AOS)

• 2D problems in H(curl;Ω):

edge elements, N = 16, δ = H/8, β = 1, rtol = 10-8

23 (5.4)23 (5.4)21 (5.3)20 (4.8)3 (3.0)48

25 (5.4)23 (5.4)21 (5.3)20 (4.8)3 (3.0)40

24 (5.5)23 (5.5)22 (5.4)20 (4.8)3 (3.0)32

24 (5.6)23 (5.6)22 (5.6)20 (4.9)3 (3.0)24

25 (5.9)23 (5.9)22 (5.8)20 (5.0)4 (3.0)16

30 (7.5)28 (7.5)25 (7.4)20 (5.3)6 (3.0)8

α = 104α = 102α = 1α = 10-2α = 0H/h

where are you logs?



Summary/Conclusions
• “New” coarse spaces give bounds independent of 

material property jumps for classic overlapping 
Schwarz preconditioners

• Coarse spaces can be constructed from 
assembled problem matrix

• Dimensions of coarse spaces generally larger 
than those for BDD or BDDC

• Accommodating nearly incompressible materials 
very straightforward

• Theory and specification of coarse matrix NΓ
remain open for some problem types



Humor if needed

Why do people in ship mutinies always ask for 
“better treatment?” I’d ask for a pinball machine, 
because with all that rocking back and forth you’d 
probably be able to get a lot of free games. ---
Jack Handy


