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Motivation

Flow in heterogeneous media has many applications, for example

oil recovery,

earthquake prediction,

underground disposal of nuclear waste.

PSfrag replacements

ν1

ν2

ν3

ν4

⇒ This suggests a natural nonoverlapping domain decomposition.
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The model problem

We consider a simple diffusion problem with a discontinuous coefficient

{

−∇ · (ν(x)∇u) = f on R
2,

u is bounded at infinity.
(P)

PSfrag replacements Ω1 Ω2

x = 0

ν(x) = ν1 ν(x) = ν2
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A general Schwarz iteration

The solution to problem (P ) satisfies the matching conditions

u(0−, y) = u(0+, y), ν1

∂u

∂n
(0−, y) = ν2

∂u

∂n
(0+, y).

Consider a general Schwarz iteration of the form

{

−∇ · (ν1∇un+1
1 ) = f on Ω1 = (−∞, 0) × R,

(

ν1
∂
∂x + S1

)

un+1
1 =

(

ν2
∂
∂x + S1

)

un
2 at x = 0,

{

−∇ · (ν2∇un+1
2 ) = f on Ω2 = (0,∞) × R,

(

−ν2
∂
∂x + S2

)

un+1

2 =
(

−ν1
∂
∂x + S2

)

un
1 at x = 0.

un
i = approximate solution in subdomain Ωi, at iteration n.

Si are linear boundary operators acting in y only
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Fourier analysis

Fourier transform in y:

Fy[u(x, y)] = û(x, k) :=
1√
2π

∫ ∞

−∞

u(x, y)e−iykdy

Fourier symbols for the transmission operators Si:

Fy[Siu(x, y)] = σi(k)û(x, k), for i = 1, 2.

Convergence factor of the Schwarz iteration in Fourier space:

ρ(k, σ1, σ2) :=

∣

∣

∣

∣

ûn+1

i (0, k)

ûn−1

i (0, k)

∣

∣

∣

∣

=

∣

∣

∣

∣

(σ1 − ν2|k|)(σ2 − ν1|k|)
(σ1 + ν1|k|)(σ2 + ν2|k|)

∣

∣

∣

∣

.

Optimal choice of operators:

σopt
1 (k) = ν2|k|, σopt

2 (k) = ν1|k|.
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Optimized Schwarz methods

Find the “best” transmission conditions from a class of local operators C,

min
σ1,σ2∈C

(

max
k1≤k≤k2

ρ(k, σ1, σ2)

)

.

Equioscillation principle: often, the solution of this min-max problem is
characterized by equioscillation of the convergence factor ρ at the local
maxima, e.g.
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Optimized Robin conditions (v. 1)

σ1(k) = σ2(k) = p ∈ R

Convergence factor:

ρ(k, p) =

∣

∣

∣

∣

(p − ν1|k|)(p − ν2|k|)
(p + ν1|k|)(p + ν2|k|)

∣

∣

∣

∣

.

Uniform minimization of the convergence factor:

min
p∈R

(

max
k1≤k≤k2

ρ(k, p)

)

. (M1)

We will state our result in terms of

µ :=
max(ν1, ν2)

min(ν1, ν2)
, kr =

k2

k1

.
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Optimized Robin conditions (v. 1)

Theorem 1. Solution of the min-max problem (M1). Let

f(µ) :=
(µ + 1)2 + (µ − 1)

√

µ2 + 6µ + 1

4µ
.

If kr ≥ f(µ), then one minimizer of (M1) is p∗ =
√

ν1ν2k1k2. This minimizer p∗

is unique when

ρ(k1, p∗) ≥ ρ

(

p∗√
ν1ν2

, p∗
)

.

Otherwise, the minimum is also attained for any p chosen in some closed interval
containing p∗.

If kr < f(µ), then there are two minimizers given by the two positive roots of

p4 +
[

ν1ν2(k
2
1 + k2

2) − k1k2(ν1 + ν2)
2
]

p2 + (ν1ν2k1k2)
2.

Both of these two values yield equioscillation, i.e. ρ(k1, p
∗) = ρ(k2, p

∗).
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Optimized Robin conditions (v. 1)
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Optimized Robin conditions (v. 2)

Recall the optimal symbols are

σopt
1 (k) = ν2|k|, σopt

2 (k) = ν1|k|.

This suggests a different scaling in the Robin conditions,

σ1(k) = ν2p, σ2(k) = ν1p, for p ∈ R.

Convergence factor:

ρ(k, p) =
(p − k)2

(p + µk)(p + k/µ)
.

Uniform minimization of the convergence factor:

min
p∈R

(

max
k1≤k≤k2

ρ(k, p)

)

. (M2)
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Optimized Robin conditions (v. 2)

Theorem 2. Solution of the min-max problem (M2).

The optimization problem (M2) has a unique minimizer, given by

p∗ =
√

k1k2.

This value always gives the equioscillation ρ(k1, p
∗) = ρ(k2, p

∗).
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Optimized Robin conditions

Comparison of optimized convergence factors for version 1 and 2:

µ = 10 µ = 100
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Asymptotic performance

Theorem 3. When k2 = π
h , and as h → 0 (keeping ν1 and ν2 constant), we find the

asymptotic expansions:

Optimized Robin conditions, v. 1

max
k1≤k≤π/h

|ρ(k, p∗)| = 1 − 2

(√
µ +

1√
µ

)(

k1h

π

)
1

2

+ O(h)

Optimized Robin conditions, v. 2

max
k1≤k≤π/h

|ρ(k, p∗)| = 1 − (µ + 1)2

µ

(

k1h

π

)
1

2

+ O(h)
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Optimized two-sided Robin conditions

We now consider two-sided Robin conditions, with two free parameters

σ1(k) = ν2p, σ2(k) = ν1q, for p, q ∈ R.

Convergence factor:

ρ(k, p, q) =

∣

∣

∣

∣

∣

(p − k)(q − k)

(p + ν1

ν2

k)(q + ν2

ν1

k)

∣

∣

∣

∣

∣

.

Uniform minimization of the convergence factor:

min
p,q∈R

(

max
k1≤k≤k2

ρ(k, p, q)

)

. (M3)
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Optimized two-sided Robin conditions

Let λ :=
ν1

ν2

.

Theorem 4. Solution of the min-max problem (M3).

When λ ≥ 1, the unique minimizing pair (p∗, q∗) of problem (M3) is the unique
solution to the system of equations

p∗q∗ = k1k2, (E1)

|ρ(k1, p
∗, q∗)| = |ρ(

√
p∗q∗, p∗, q∗)|, (E2)

satisfying k1 < p∗ < q∗.

When λ ≤ 1, the unique minimizing pair (p∗, q∗) of (M3) is the solution of the
above equations (E1)-(E2) satisfying k1 < q∗ < p∗ instead.

The optimized convergence factor always has the equioscillation property at the
frequencies k1, k2 and kc =

√
pq.
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Optimized two-sided Robin conditions

Computing p∗ reduces to finding the unique real root of the quartic

(p + λk1)(p + λk2)(
√

k1k2 − p)2 − (p − k1)(k2 − p)(p + λ
√

k1k2)
2

in the interval (k1,
√

k1k2) if λ ≥ 1, or in the interval (
√

k1, k2, k2) if λ ≤ 1.

Theorem 6. When k2 = π
h , and as h approaches 0, the asymptotic performance of the

optimized two-sided Robin conditions is

max
k1≤k≤π/h

ρ(k, p∗, q∗) =
1

µ
− 4(µ + 1)

µ(µ − 1)

√

k1

π
h

1

2 + O(h).
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Optimized 2nd order conditions

We can also consider transmission conditions that are second order in the
tangential direction

[

ν1

∂

∂x
+ ν2

(

p − q
∂2

∂y2

)]

un+1

1 =

[

ν2

∂

∂x
+ ν2

(

p − q
∂2

∂y2

)]

un
2 ,

[

−ν2

∂

∂x
+ ν1

(

p − q
∂2

∂y2

)]

un+1

2 =

[

−ν1

∂

∂x
+ ν1

(

p − q
∂2

∂y2

)]

un
1 .

The corresponding symbols in Fourier space are

σ1(k) = ν2(p + qk2), σ2(k) = ν1(p + qk2).

This leads to the min-max problem

min
p,q∈R

(

max
k1≤k≤k2

∣

∣

∣

∣

(p + qk2 − k)2

(p + qk2 + µk)(p + qk2 + k/µ)

∣

∣

∣

∣

)

. (M4)
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∣
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∣

∣

∣

∣
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Optimized 2nd order conditions

Conjecture 1. Solution of the min-max problem (M4).
The min-max problem (M4) has a unique solution, given by the equioscillation of the

convergence factor at the frequencies k1, k2 and kc =
√

p
q . This gives the formulas

p∗ =
(k1k2)

3

4

√

2(k1 + k2)
, q∗ =

1
√

2(k1 + k2)(k1k2)
1

4

.

When k2 = π
h and h tends to 0, we find the asymptotic performance

max
k1≤k≤π/h

ρ(k, p∗, q∗) = 1 −
√

2

(

2 + µ +
1

µ

)(

k1

π

)
1

4

h
1

4 + O(h
1

2 ).
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Comparison of convergence factors
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Asymptotics for strong heterogeneity

Let us now consider the case when h is small but held fixed, and µ is large

µ =
max(ν1, ν2)

min(ν1, ν2)
>> 1.

The asymptotics become

Optimized Robin conditions, v. 1

max
k1≤k≤π/h

|ρ(k, p∗)| = 1 − 2

√

k1h

π
+ . . . − O

(

h− 1

2

µ

)

.

Optimized Robin conditions, v. 2

max
k1≤k≤π/h

|ρ(k, p∗)| =

√

π

k1h

(

1

µ

)

− O

(

1

µ

)

.

Optimized Schwarz Methods for Problems with Discontinuous Coefficients – p.22/28



Asymptotics for strong heterogeneity

Optimized two-sided Robin conditions

max
k1≤k≤π/h

|ρ(k, p∗, q∗)| =
1

µ
− O

(

h
1

2

µ

)

.

Optimized second order conditions

max
k1≤k≤π/h

|ρ(k, p∗, q∗)| =

(

π

4k1h

)
1

4

(

1

µ

)

− O

(

1

µ

)

.
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Numerical experiments

{

−∇ · (ν(x)∇u(x)) = 1 on Ω = (0, π)2,

u = 0 on ∂Ω.

The domain is divided into two symmetric subdomains and a finite volume
discretization is used. For h = π

300
:
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Numerical experiments

Here, we take µ = 10 and vary the grid size h. The table shows the
number of iterations to reach a tolerance of 10−6.

h Opt. Robin v.1 Opt. Robin v.2 Opt. 2-sided Robin
π
50

24 24 12
π

100
30 26 12

π
200

54 42 14
π

300
62 48 14
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Numerical experiments

Now, let us fix h = π
300

and vary the heterogeneity ratio µ.

µ Opt. Robin v.1 Opt. Robin v.2 Opt. 2-sided Robin
101 62 48 14

102 72 16 10

103 180 10 8

104 204 8 6

105 202 6 6

Optimized Schwarz Methods for Problems with Discontinuous Coefficients – p.26/28



Conclusions

We completely solved the min-max problem for
optimized one-sided Robin conditions (2 versions),
optimized two-sided Robin conditions.

For one-sided Robin conditions, we showed that the second version
leads to much better performance, particularly when the jump in the
diffusion coefficient is large.

For two-sided Robin conditions, we obtain an optimal asymptotic
performance of ρ = O(1/µ), independent of h.

For almost all optimized transmission conditions we considered, the
convergence is improved as we increase the jump in the diffusion
coefficient.
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Work in progress

Design of an efficient coarse space correction when using many
subdomains.

Optimized conditions for the advection-diffusion equation in 2D,

−∇ · (ν(x)∇u(x)) + a(x) · ∇u(x) + c(x)u(x) = f(x),

with discontinuous coefficients.
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