Non Uniform Discrete Fourier Transform for adaptive acceleration of the Aitken-Schwarz DDM

A.Frullone, D.Tromeur-Dervout

CDCSP/ICJ UMR 5208 U.LYON 1-CNRS

July, 5 2006

17th International Conference on Domain Decomposition Methods
St.Wolfgang/Strobl - Austria
Aitken-Schwarz DDM for uniform grids

- 3D Poisson Pb 762Mdof/60s 5Mbit/s
 1256 proc 3 cray T3E
- FFT of Schwarz DDM artificial interfaces ⇒ needs regular discretization of the interfaces
- Aitken acceleration of Fourier modes
- Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and Distributed Computing, special issue on Grid computing, 63(5) :564-577, 2003

Aim : extension of this method to non uniform meshes
Aitken-Schwarz DDM for uniform grids

- 3D Poisson Pb 762Mdof/60s 5Mbit/s
- 1256 proc 3 cray T3E
- FFT of Schwarz DDM artificial interfaces ⇒ needs regular discretization of the interfaces
- Aitken acceleration of Fourier modes

Aim: extension of this method to non uniform meshes
1. Aitken-Schwarz recall
2. New NUDFT formulation
3. NUDFT for Aitken-Schwarz method
4. Numerical results
5. Summary and Future Work
Outline

1. Aitken-Schwarz recall
2. New NUDFT formulation
3. NUDFT for Aitken-Schwarz method
4. Numerical results
5. Summary and Future Work
Acceleration of Schwarz Method for Elliptic Problems

- 1D additive Schwarz algorithm for linear differential operators:
 - \(L[u_{1}^{n+1}] = f \) in \(\Omega_1 \), \(u_{1}^{n+1}|_{\Gamma_1} = u_{2}^{n}|_{\Gamma_1} \),
 - \(L[u_{2}^{n+1}] = f \) in \(\Omega_2 \), \(u_{2}^{n+1}|_{\Gamma_2} = u_{1}^{n}|_{\Gamma_2} \).

- The interface error operator \(T \) is **linear**, i.e.
 - \(u_{1}^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1 (u_{2}^{n}|_{\Gamma_1} - U|_{\Gamma_1}) \),
 - \(u_{2}^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2 (u_{1}^{n}|_{\Gamma_2} - U|_{\Gamma_2}) \).

- Consequently
 - \(u_{1}^{2}|_{\Gamma_2} - u_{1}^{1}|_{\Gamma_2} = \delta_1 (u_{2}^{1}|_{\Gamma_1} - u_{2}^{0}|_{\Gamma_1}) \),
 - \(u_{2}^{2}|_{\Gamma_1} - u_{2}^{1}|_{\Gamma_1} = \delta_2 (u_{1}^{1}|_{\Gamma_2} - u_{1}^{0}|_{\Gamma_2}) \).

- Computation of \(\delta_{1/2} \):
 - \(L[v_{1/2}] = 0 \) in \(\Omega_{1/2} \), \(v_{1/2}|_{\Gamma_{1/2}} = 1 \), thus \(\delta_{1/2} = v_{\Gamma_{2/1}} \).

- Iff \(\delta_1 \delta_2 \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- **1D additive Schwarz** algorithm for linear differential operators:
 \[L[u_1^{n+1}] = f \text{ in } \Omega_1, \quad u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1}, \]
 \[L[u_2^{n+1}] = f \text{ in } \Omega_2, \quad u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2}. \]

- The interface error operator \(T \) is linear, i.e.
 \[u_1^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}), \]
 \[u_2^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}). \]

- Consequently
 \[u_1^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u_2^0|_{\Gamma_1}), \]
 \[u_2^2|_{\Gamma_1} - u_2^1|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u_1^0|_{\Gamma_2}). \]

- Computation of \(\delta_{1/2} \):
 \[L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{1/2}|_{\Gamma_1/2} = 1, \] thus \(\delta_{1/2} = v_{\Gamma_2/1} \).

- Iff \(\delta_1 \delta_2 \neq 1 \) **Aitken-Schwarz** gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- 1D additive Schwarz algorithm for linear differential operators:
 \[L[u_{1,2}^{n+1}] = f \text{ in } \Omega_{1,2}, \quad u_{1,2}^{n+1}|_{\Gamma_{1,2}} = u_{2,1}^{n}|_{\Gamma_{1,2}}. \]

- the interface error operator \(T \) is linear, i.e.
 \[u_{1,2}^{n+1}|_{\Gamma_{1,2}} - U_{|\Gamma_{1,2}} = \delta_1 (u_{2,1}^{n}|_{\Gamma_{1}} - U_{|\Gamma_{1}}), \]
 \[u_{2,1}^{n+1}|_{\Gamma_{1}} - U_{|\Gamma_{1}} = \delta_2 (u_{1,2}^{n}|_{\Gamma_{2}} - U_{|\Gamma_{2}}). \]

- Consequently
 \[u_{1,2}^{2}|_{\Gamma_{2}} - u_{1,2}^{1}|_{\Gamma_{2}} = \delta_1 (u_{2,1}^{1}|_{\Gamma_{1}} - u_{2,1}^{0}|_{\Gamma_{1}}), \]
 \[u_{2,1}^{2}|_{\Gamma_{1}} - u_{2,1}^{1}|_{\Gamma_{1}} = \delta_2 (u_{1,2}^{1}|_{\Gamma_{2}} - u_{1,2}^{0}|_{\Gamma_{2}}), \]

- Computation of \(\delta_{1/2} \):
 \[L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{\Gamma_{1/2}} = 1, \text{ thus } \delta_{1/2} = v_{r_{2/1}}. \]

- Iff \(\delta_1 \delta_2 \neq 1 \) Aitken-Schwarz gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
Acceleration of Schwarz Method for Elliptic Problems

- **1D additive Schwarz** algorithm for linear differential operators:

 - \(L[u_1^{n+1}] = f \text{ in } \Omega_1, \quad u_1^{n+1}|_{\Gamma_1} = u_2^n|_{\Gamma_1} \),

 - \(L[u_2^{n+1}] = f \text{ in } \Omega_2, \quad u_2^{n+1}|_{\Gamma_2} = u_1^n|_{\Gamma_2} \).

 - The interface error operator \(T \) is linear, i.e

 - \(u_1^{n+1}|_{\Gamma_2} - U|_{\Gamma_2} = \delta_1(u_2^n|_{\Gamma_1} - U|_{\Gamma_1}) \),

 - \(u_2^{n+1}|_{\Gamma_1} - U|_{\Gamma_1} = \delta_2(u_1^n|_{\Gamma_2} - U|_{\Gamma_2}) \).

- Consequently

 - \(u_2^2|_{\Gamma_2} - u_1^1|_{\Gamma_2} = \delta_1(u_2^1|_{\Gamma_1} - u_2^0|_{\Gamma_1}) \),

 - \(u_2^2|_{\Gamma_1} - u_1^2|_{\Gamma_1} = \delta_2(u_1^1|_{\Gamma_2} - u_1^0|_{\Gamma_2}) \).

- Computation of \(\delta_{1/2} \):

 - \(L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{1/2}|_{\Gamma_{1/2}} = 1 \). Thus \(\delta_{1/2} = v_{1/2} \).

- Iff \(\delta_1 \delta_2 \neq 1 \) *Aitken-Schwarz* gives the solution with exactly 3 iterations and possibly 2 in the analytical case.
1D additive Schwarz algorithm for linear differential operators:

\[L[u_{11}^{n+1}] = f \text{ in } \Omega_1, \quad u_{11}^{n+1}\mid_{\Gamma_1} = u_{21}^n, \]
\[L[u_{21}^{n+1}] = f \text{ in } \Omega_2, \quad u_{21}^{n+1}\mid_{\Gamma_2} = u_{12}^n. \]

the interface error operator \(T \) is \textit{linear}, i.e.

\[u_{11}^{n+1}\mid_{\Gamma_2} - U_{\mid_{\Gamma_2}} = \delta_1(u_{21}^n\mid_{\Gamma_1} - U_{\mid_{\Gamma_1}}), \]
\[u_{21}^{n+1}\mid_{\Gamma_1} - U_{\mid_{\Gamma_1}} = \delta_2(u_{12}^n\mid_{\Gamma_2} - U_{\mid_{\Gamma_2}}). \]

Consequently

\[u_{21}^2\mid_{\Gamma_2} - u_{11}^1\mid_{\Gamma_2} = \delta_1(u_{21}^1\mid_{\Gamma_1} - u_{21}^0\mid_{\Gamma_1}), \]
\[u_{21}^2\mid_{\Gamma_1} - u_{12}^1\mid_{\Gamma_1} = \delta_2(u_{12}^1\mid_{\Gamma_2} - u_{12}^0\mid_{\Gamma_2}). \]

Computation of \(\delta_{1/2} \):

\[L[v_{1/2}] = 0 \text{ in } \Omega_{1/2}, \quad v_{\mid_{\Gamma_{1/2}}} = 1. \text{ thus } \delta_{1/2} = v_{\mid_{\Gamma_{2/1}}}. \]

iff \(\delta_1 \delta_2 \neq 1 \) Aitken-Schwarz gives the solution with \textit{exactly 3 iterations} and possibly 2 in the analytical case.
The algorithm in 2D or 3D writes:

- **step 1**: reconstruct P from data given by two Schwarz iterates.

- **step 2**: apply one additive Schwarz iterate to the Poisson problem with block solver of choice i.e. multigrids, FFT etc...

- **step 3**:
 - compute the Fourier expansion $\hat{u}^n_{\mid \Gamma_i}$, $n = 0, 1$ of the traces on the artificial interface Γ_i, $i = 1..nd$ for the initial boundary condition $u^0_{\mid \Gamma_i}$ and the Schwarz iterate solution $u^1_{\mid \Gamma_i}$.
 - apply generalized Aitken acceleration based on

 $$\hat{u}^\infty = (Id - P)^{-1} (\hat{u}^1 - P\hat{u}^0)$$

 in order to get $\hat{u}^\infty_{\mid \Gamma_i}$.
 - recompose the trace $u^\infty_{\mid \Gamma_i}$ in physical space.

- **step 4**: compute in parallel the solution in each subdomains Ω_j, with new inner BCs and blocksolver of choice.
The algorithm in 2D or 3D writes:

- **step1**: reconstruct P from datas given by two Schwarz iterates
- **step2**: apply one additive Schwarz iterate to the Poisson problem with block solver of choice i.e multigrids, FFT etc...
- **step3**: compute the Fourier expansion $\hat{u}_n^{\Gamma_i}, n = 0, 1$ of the traces on the artificial interface $\Gamma_i, i = 1..nd$ for the initial boundary condition $u^{0}_{|\Gamma_i}$ and the Schwarz iterate solution $u^{1}_{|\Gamma_i}$.
- apply generalized Aitken acceleration based on

\[
\hat{u}^\infty = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)
\]

in order to get $\hat{u}^\infty_{|\Gamma_i}$.
- recompose the trace $u^\infty_{|\Gamma_i}$ in physical space.
- **step4**: compute in parallel the solution in each subdomains Ω_j, with new inner BCs and block solver of choice.
The algorithm in 2D or 3D writes:

- **step1**: reconstruct P from datas given by two Schwarz iterates.

- **step2**: apply one additive Schwarz iterate to the Poisson problem with block solver of choice i.e multigrids, FFT etc...

- **step3**:
 - Compute the Fourier expansion $\hat{u}^n_{j|\Gamma_i}$, $n = 0, 1$ of the traces on the artificial interface Γ_i, $i = 1..nd$ for the initial boundary condition $u^0_{|\Gamma_i}$ and the Schwarz iterate solution $u^1_{|\Gamma_i}$.
 - Apply generalized Aitken acceleration based on
 $$\hat{u}^\infty = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)$$
 in order to get $\hat{u}^\infty_{|\Gamma_i}$.
 - Recompose the trace $u^\infty_{|\Gamma_i}$ in physical space.

- **step4**: compute in parallel the solution in each subdomains Ω_j, with new inner BCs and block solver of choice.
The algorithm in 2D or 3D writes:

- **step1**: reconstruct P from datas given by two Schwarz iterates.
- **step2**: apply one additive Schwarz iterate to the Poisson problem with block solver of choice i.e multigrids, FFT etc...
- **step3**: compute the Fourier expansion $\hat{u}_{j|\Gamma_i}^n$, $n = 0, 1$ of the traces on the artificial interface Γ_i, $i = 1..nd$ for the initial boundary condition $u_0^{\Gamma_i}$ and the Schwarz iterate solution $u_1^{\Gamma_i}$.
 - apply generalized Aitken acceleration based on

 $$\hat{u}^\infty = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)$$

 in order to get $\hat{u}^\infty_{\Gamma_i}$.
 - recompose the trace $u_{\infty}^{\Gamma_i}$ in physical space.
- **step4**: compute in parallel the solution in each subdomains Ω_j, with new inner BCs and block solver of choice.
The algorithm in 2D or 3D writes:

- **step1**: reconstruct P from data given by two Schwarz iterates.
- **step2**: apply one additive Schwarz iterate to the Poisson problem with block solver of choice i.e multigrids, FFT etc...
- **step3**: compute the Fourier expansion $\hat{u}^n_{j|\Gamma_i}$, $n = 0, 1$ of the traces on the artificial interface Γ_i, $i = 1 \ldots nd$ for the initial boundary condition $u^0_{|\Gamma_i}$ and the Schwarz iterate solution $u^1_{|\Gamma_i}$.
 - apply generalized Aitken acceleration based on

 $$\hat{u}^\infty = (Id - P)^{-1}(\hat{u}^1 - P\hat{u}^0)$$

 in order to get $\hat{u}^\infty_{|\Gamma_i}$.
 - recompose the trace $u^\infty_{|\Gamma_i}$ in physical space.
- **step4**: compute in parallel the solution in each subdomains Ω_j, with new inner BCs and block solver of choice.
Methods for non-uniform interface meshes (up to now):

- **Projection technique**: spectral interpolation of the interface traces on a third regular grid + classical FFT

- **Analysis of the error operator**, solving for eigenvalues and eigenvectors, chosen as generalized Fourier basis

 Baranger, Garbey and Oudin-Dardun *Generalized Aitken-like acceleration of the Schwarz method*, Lecture Notes in Computational Science and Engineering, pages 505-512, 2004. Based on an a priori approximation of the error operator P. No available tool to know how the eigenvalues of the approximate P are close to the eigenvalues of true P.
1. Aitken-Schwarz recall

2. New NUDFT formulation

3. NUDFT for Aitken-Schwarz method

4. Numerical results

5. Summary and Future Work
Define a set of basis functions $\Phi = (\phi_l(x_j))_{0 \leq j \leq N}$ strictly related to the nonuniform mesh and orthogonal with respect to a sesquilinear form $[[.,.]]$, i.e $[[\phi_l, \phi_k]] = 0$, if $l \neq k$.

Compute the associated interface operator $P_{[[.,.]]}$.

Approximate $P_{[[.,.]]}$ with $P^*_{[[.,.]]}$ through a posteriori estimates of Fourier coefficients behavior.

Instead of:

Approximate in the physical space P with P^*.

Compute eigenvalues and eigenvectors of matrix P^*.

Take eigenvectors as basis functions for generalized Fourier decomposition.
NonUniform Fourier Transform formulation

Definition

Let \((x_i)_{0 \leq i \leq N}\) and \(z_i = \frac{2\pi i}{N}\) such that \(x_i = z_i + \epsilon_i\), and

\[
\phi_l(x) = \begin{cases}
\psi_l(x) = \exp(ilx), & 0 \leq l \leq N/2 \\
D^{-N} \exp(i(N - l)x), & N/2 + 1 \leq l \leq N,
\end{cases}
\]

\(D = \text{diag}(\epsilon_i)_{0 \leq i \leq N}\)

\[\Rightarrow \phi_{N-l}(x) = \overline{\phi_l(x)}.\]

Definition

Define sesquilinear form on \(S_N = \text{span}\{\phi_l(x), 0 \leq l \leq N\}\), using Hermite integration formula:

\[
[[f, g]] = \sum_{l=0}^{N} \gamma_l f(x_l) \overline{g(x_l)} + \sum_{l=0}^{N} \beta_l (f'(x_l) \overline{g(x_l)} + f(x_l) \overline{g'(x_l)})
\]

\(\{\gamma_l\}\) and \(\{\beta_l\}: [[\phi_l, \phi_k]] = \delta_{lk} \Rightarrow \text{solve one L.S. (size 2N)}.\)
NonUniform Fourier Transform formulation

\[H = \left(\left[\phi_l, \phi_k \right] \right)_{l,k=0,...,N} = Id \Rightarrow [\ : , :] \text{ hermitian} \]

Definition

The discrete Fourier coefficients of \(f \) are given by:

\[\tilde{f}_k = \left[f, \Phi_k \right], \quad k = -N/2, ..., N/2 \]

\[\tilde{f} = M_1 f + M_2 f', \quad M_1, M_2 \in \mathcal{M}_{N+1}(\mathbb{C}) \]

\[M_1(k, l) = \gamma_l \phi_k(x_l) + \beta_l \phi'_k(x_l), \quad M_2(k, l) = \beta_l \phi_k(x_l) \]

Proposition

\[\Pi_N^F(f(x)) = \sum_{l=0}^{N} \tilde{f}_k \phi_k(x), \quad \text{is exact } \forall f \in \mathbb{T}^{N/2}([0, 2\pi[) \]
Problem: in the applications one is given the vector f which represents the values of a function $f(x)$ on the points $(x_i)_{0 \leq i \leq N}$. No information is given on the vector f' which is needed in definition 3.

Solution: we determine the vector f' implicitly by imposing

$$\frac{d}{dx}(\prod_{i=0}^{N-1}(f(x)))|_{x=x_i} = f'(x_i), \quad l = 0, \ldots, N - 1$$
Problem: in the applications one is given the vector f which represents the values of a function $f(x)$ on the points $(x_i)_{0 \leq i \leq N}$. No information is given on the vector f' which is needed in definition 3.

Solution: we determine the vector f' implicitly by imposing

$$
\frac{d}{dx}(\prod_N^F(f(x)))|_{x=x_l} = f'(x_l), \quad l = 0, ..., N - 1
$$
In an algebraic form, if we note M_ϕ the matrix whose elements are :

$$M_\phi(l, k) = \phi'_k(x_l)$$

then the vector f' is obtained by solving the algebraic system :

$$(id_{N+1} - M_\phi M_2)f' = M_\phi M_1 f$$

where id_N is the identity matrix in $\mathcal{M}_{N+1}(\mathbb{C})$.
Given a nonuniform mesh \((x_i)_{0 \leq i \leq N}\), define the basis functions and solve one L.S. (size 2N) to determine the two sets \(\{\gamma_l\}\) and \(\{\beta_l\}\).

Solve the algebraic system (size N):

\[
(id_{N+1} - M_\phi M_2)f' = M_\phi M_1 f
\]

to determine \(f'\) implicitly.

Compute Fourier coefficients through matrix-vector products:

\[
\tilde{f} = M_1 f + M_2 f'
\]
Given a nonuniform mesh \((x_i)_{0 \leq i \leq N}\), define the basis functions and solve one L.S. (size 2N) to determine the two sets \(\{\gamma_i\}\) and \(\{\beta_i\}\).

Solve the algebraic system (size N):

\[
(id_{N+1} - M_\phi M_2)f' = M_\phi M_1 f
\]

to determine \(f'\) implicitly.

Compute Fourier coefficients through matrix-vector products:

\[
\tilde{f} = M_1 f + M_2 f'
\]
Given a nonuniform mesh \((x_i)_{0 \leq i \leq N}\), define the basis functions and solve one L.S. (size 2N) to determine the two sets \(\{\gamma_l\}\) and \(\{\beta_l\}\).

Solve the algebraic system (size N):

\[
(id_{N+1} - M_\phi M_2)f' = M_\phi M_1 f
\]

to determine \(f'\) implicitly.

Compute Fourier coefficients through matrix-vector products:

\[
\tilde{f} = M_1 f + M_2 f'
\]
<table>
<thead>
<tr>
<th>N</th>
<th>$\varepsilon = h_u/8$</th>
<th>$\varepsilon = h_u/4$</th>
<th>$\varepsilon = h_u/2$</th>
<th>$\varepsilon = h_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.13E-14</td>
<td>0.39E-15</td>
<td>0.56E-13</td>
<td>0.62E-7</td>
</tr>
<tr>
<td></td>
<td>6.17E+3</td>
<td>1.21E+4</td>
<td>1.26E+5</td>
<td>4.24E+10</td>
</tr>
<tr>
<td>100</td>
<td>0.77E-14</td>
<td>0.17E-14</td>
<td>0.69E-12</td>
<td>0.83E-7</td>
</tr>
<tr>
<td></td>
<td>8.40E+4</td>
<td>1.82E+5</td>
<td>1.25E+6</td>
<td>2.07E+10</td>
</tr>
<tr>
<td>200</td>
<td>0.13E-13</td>
<td>0.16E-13</td>
<td>0.27E-12</td>
<td>0.5E-6</td>
</tr>
<tr>
<td></td>
<td>6.02E+5</td>
<td>1.27E+6</td>
<td>5.75E+6</td>
<td>9.35E+11</td>
</tr>
<tr>
<td>400</td>
<td>0.26E-13</td>
<td>0.29E-13</td>
<td>0.11E-10</td>
<td>0.53E-8</td>
</tr>
<tr>
<td></td>
<td>5.18E+6</td>
<td>1.24E+7</td>
<td>2.96E+8</td>
<td>7.30E+10</td>
</tr>
</tbody>
</table>

Tab.: $\|f - \Pi_N^F(f)\|_{\infty}$ and $\text{cond}_2([., .])$ for $f(x) = \exp(-40(x - (2\pi/3))^2)$, with $h_u = 2\pi/N$.

Given a nonuniform cartesian 2D mesh $\mathbf{x} \times \mathbf{y} := \{(x_i, y_j)_{0 \leq i, j \leq N} \subset \mathbb{R}^2$ define the basis functions, the sesquilinear form:

$$[[f, g]] = \sum_{j=0}^{N} \gamma_j \left(\sum_{l=0}^{N} \alpha_l(fg)(x_j, y_l) + \sum_{l=0}^{N} \eta_l \partial_y(fg)(x_j, y_l) \right) +$$

$$\sum_{j=0}^{N} \beta_j \left(\sum_{l=0}^{N} \alpha_l \partial_x(fg)(x_j, y_l) + \sum_{l=0}^{N} \eta_l \partial_{xy}(fg)(x_j, y_l) \right)$$

Fourier coefficients computed algebraically by previously solving implicitly for $\partial_x f$, $\partial_y f$ and $\partial_{xy} f$.

NUDFT algorithm 2D
Given a nonuniform cartesian 2D mesh \(\mathbf{x} \times \mathbf{y} := \{(x_i, y_j)_{0 \leq i,j \leq N} \} \subset \mathbb{R}^2 \) define the basis functions, the sesquilinear form:

\[
[[f, g]] = \sum_{j=0}^{N} \gamma_j \left(\sum_{l=0}^{N} \alpha_l \overline{g}(x_j, y_l) + \sum_{l=0}^{N} \eta_l \partial_y(f \overline{g})(x_j, y_l) \right) + \sum_{j=0}^{N} \beta_j \left(\sum_{l=0}^{N} \alpha_l \partial_x(f \overline{g})(x_j, y_l) + \sum_{l=0}^{N} \eta_l \partial_{xy}(f \overline{g})(x_j, y_l) \right)
\]

Fourier coefficients computed algebraically by previously solving implicitly for \(\partial_x f, \partial_y f \) and \(\partial_{xy} f \).
Numerical results 2D

<table>
<thead>
<tr>
<th>N</th>
<th>$\epsilon = h_u/2$</th>
<th>$\epsilon = h_u$</th>
<th>$\epsilon = 2h_u$</th>
<th>$\epsilon = 4h_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^7</td>
<td>1.1E-13</td>
<td>3.7E-13</td>
<td>9.5E-7</td>
<td>2.09E+3</td>
</tr>
<tr>
<td></td>
<td>1.5E+3</td>
<td>8E+3</td>
<td>2.5E+6</td>
<td>2.2E+12</td>
</tr>
<tr>
<td>2^8</td>
<td>2.62E-13</td>
<td>1.48E-10</td>
<td>8E-4</td>
<td>3E+6</td>
</tr>
<tr>
<td></td>
<td>6E+3</td>
<td>5E+5</td>
<td>1.7E+10</td>
<td>1E+14</td>
</tr>
</tbody>
</table>

Table: $\|f - \Pi^F_N(f)\|_\infty$ and $\text{cond}_2([. , .])$ for $f(x, y) = \cos^2(x) \cos(y)$, with $h_u = 2\pi/N$.
Advantages of NUDFT

- **Advantages:**
 - Better performance than FFT on nonuniform meshes when applied to Aitken-Schwarz DDM
 - $O(N^2)$ operations → cheaper in time in comparison with the $O(N^3)$ operations to solve for the eigenvalues and eigenvectors of the full interface operator
 - Adaptive approximation of the trace transfer operator P, based on a posteriori error estimates of Fourier modes convergence

- **Gridding:** interpolation and use of the FFT on an oversampled grid

Advantages of NUDFT

Advantages:

- Better performance than FFT on nonuniform meshes when applied to Aitken-Schwarz DDM
- $O(N^2)$ operations \rightarrow cheaper in time in comparison with the $O(N^3)$ operations to solve for the eigenvalues and eigenvectors of the full interface operator
- Adaptive approximation of the trace transfer operator P, based on a posteriori error estimates of Fourier modes convergence

Gridding: interpolation and use of the FFT on an oversampled grid

At interfaces Γ_1 and Γ_2, the Fourier coefficients of the error of additive Schwarz algorithm can be rearranged on the form:

\[
\hat{e}_1^{(n+2)}(\Gamma_1) = P_{[\ldots]} \hat{e}_1^{(n)}(\Gamma_1) \\
\hat{e}_2^{(n+2)}(\Gamma_2) = P_{[\ldots]} \hat{e}_2^{(n)}(\Gamma_2)
\]

Numerically, $P_{[\ldots]}$ is computed by applying two Schwarz iterates for each Fourier mode of the interface solution (computed through the NUDFT), as a relation between all the modes at the two iterates.
Numerical computation of the interface operator P

- Take one basis function on the interface (blue line):

- Applying NUDFT to the basis function, obtain a symmetric decomposition:
Numerical computation of the interface operator P

- With 2 Schwarz iterates determine how this function is modified by the additive Schwarz algorithm:

- Applying NUDFT, compute the influence of one Fourier mode on all modes:

- Fill k-column of matrix $P_{[,\cdot]}$, not symmetric.
Validation of the NUDFT for the construction of the interface operator P

Uniform grids: NUDFT \rightarrow FFT

$P_{[[.,.]]}$ diagonal and $\|P_{[[.,.]]} - P_{an}\|_{\infty} = O(10^{-12})$
Adaptive construction of matrix P

- Nonuniform cartesian grids and/or non separable differential operator
- P is no longer diagonal
- we can approximate $P[[.,]]$ using only the most important modes, then accelerate only these modes through the equation:

$$
\tilde{v}_\infty = (Id - P^*[[.,]])^{-1}(\tilde{v}^{n+1} - P^*[[.,]]\tilde{v}^n)
$$

where \tilde{v} is the subset of \tilde{u} used to approximate $P[[.,]]$ with $P^*[[.,]]$. Other modes are not accelerated.

$P^*[[.,]]$ columns can be built in parallel and the number of columns computed during the Schwarz iterates can be set according to the computer architecture.
Nonuniform cartesian grids and/or non separable differential operator.

P is no longer diagonal.

we can approximate $P_{[[..]]}$ using only the most important modes, then accelerate only these modes through the equation:

$$
\tilde{v}^\infty = (Id - P^*_{[[..]]})^{-1}(\tilde{v}^{n+1} - P^*_{[[..]]}\tilde{v}^n)
$$

where \tilde{v} is the subset of \tilde{u} used to approximate $P_{[[..]]}$ with $P^*_{[[..]]}$. Other modes are not accelerated.

$P^*_{[[..]]}$ columns can be built in parallel and the number of columns computed during the Schwarz iterates can be set according to the computer architecture.
Outline

1. Aitken-Schwarz recall
2. New NUDFT formulation
3. NUDFT for Aitken-Schwarz method
4. Numerical results
5. Summary and Future Work
Solution of 2D convection-diffusion equation with Aitken-Schwarz DDM: the trace of the iterate solutions on the irregular mesh are projected on a Fourier orthogonal basis. The Fourier modes are accelerated through the Aitken technique.

\[\nabla \cdot (a(x, y) \nabla u(x, y)) = f(x, y), \quad \text{on } \Omega = [0, 1]^2 \]
\[u(x, y) = 0, \quad (x, y) \in \partial \Omega \]
\[a(x, y) = a_0 + (1 - a_0)(1 + \tanh((x - (3h \ast y + 1/2 - h))/\mu))/2, \]
and \(a_0 = 10^1, \mu = 10^{-2} \).
Numerical results

Figure: acceleration using sub-blocks of $P_{[[..]]}$ with 90 points on the interface, overlap $= 5$ and $\epsilon = h_u/2$. Black line refers to results in Baranger, Garbey and Oudin-Dardun *The Aitken-Like Acceleration of the Schwarz Method on Non-Uniform Cartesian Grids*, Technical Report Number UH-CS-05-18, 2005.
Numerical results

Fig.: influence of the approximation of the interface operator $P_{[[..]]}$ on the convergence of the interface error
Convergence of AS in random porous media

\(K \) follows a log-normal random process

\[
\nabla \cdot (K(x, y)\nabla u) = f, \text{ on } \Omega \\
u = 0, \text{ on } \partial \Omega
\]

\(K(x, y) \in [0.0091, 242.66] \)

Convergence of AS

Work under progress in collaboration with J-R De Dreuzy and J. Erhel SAGE/IRISA
Summary and Future Work

- Extend ASDDM to nonuniform cartesian meshes by means of the NUDFT technique
- Reduce the numerical complexity by adaptively approximating the trace transfer operator P
- Validate the technique in the 2D case and DD in stripes
- Works also for Nonuniform non matching cartesian grids
- Under investigation: NUDFT \rightarrow NUFFT