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@ Aitken-Schwarz DDM for uniform grids

3D Poisson Pb 762Mdof/60s 5Mbit/s

1256 proc 3 cray T3E

FFT of Schwarz DDM artificial interfaces = needs regular
discretization of the interfaces

Aitken acceleration of Fourier modes

Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and

Distributed Computing, special issue on Grid computing, 63(5) :564-577, 2003
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@ Aitken-Schwarz DDM for uniform grids
@ 3D Poisson Pb 762Mdof/60s 5Mbit/s
1256 proc 3 cray T3E
@ FFT of Schwarz DDM artificial interfaces = needs regular
discretization of the interfaces
@ Aitken acceleration of Fourier modes

@ Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and

Distributed Computing, special issue on Grid computing, 63(5) :564-577, 2003
-.JL @ Aim : extension of this method to non uniform meshes
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© NUDFT for Aitken-Schwarz method
@ Numerical results

e Summary and Future Work
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Acceleration of Schwarz Method for Elliptic Problems
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AFDTD M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
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@ 1D additive Schwarz algorithm for linear differential operators :
1 ; 1
o L[uf']=finQ, ufr = ugr,,

n+1 g n+-1
o Llu"'] =1 inQa, uyp, = uf,.
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@ 1D additive Schwarz algorithm for linear differential operators :
1 ; 1
o L[uf']=finQ, ufr = ugr,,
o Lug*']=finQq, uft! = uf,.

T2
@ the interface error operator T is linear, i.e
n+4-1 _ n
° Uy, — Ur, = 51(U2|r1 - )
n+1 _ n
LR = = d2(Ufr, = Ur,)-
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AFDTD M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
AS recall

@ 1D additive Schwarz algorithm for linear differential operators :
1 ; 1
o L[uf']=finQ, ufr = ugr,,
o Lug*']=finQq, uft! = uf,.

T2
@ the interface error operator T is linear, i.e
n+4-1 _ n
° Uy, — Ur, = 51(U2|r1 - )
n+1 _ n
LR = = d2(Ufr, = Ur,)-

@ Consequently
2 1 _ 1 0
° Ufr, — Uy, = 01(Upr, — Ugir, );
2 1 _ 1 0
© Uyp, — Uyp, = 02(Ujp, — “1|r2)a
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Acceleration of Schwarz Method for Elliptic Problems
| Pl
NUDFT
AFDTD M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
AS recall

@ 1D additive Schwarz algorithm for linear differential operators :

n+11 _ £ n+1 _ .n
o Luf™']="finy, uijr = Uy,

n+171 : n+1 _ ,.n
o Llug™']=1inQe, uyr, = uj)r,.

2|2
@ the interface error operator T is linear, i.e
n+4-1 _ n
° Uy, — Ur, = 51(U2|r1 - )
n+1 _ n
® Uy, — = 52(U1|r2 —Ur,)

@ Consequently
o v —ul  =o(ul —ud )
1|z 1Tz 1M, 2|y />
2 i i 0
® Uyr, — Uyr, = 02(Ujir, — U5, ),
@ Computation of 4y 5 :

L[V1/2] =0in Q1/2, er/2 = 1. thus (51/2 = V|'2/1 -

@ iff 5192 # 1 Aitken-Schwarz gives the solution with exactly 3 iterations and

possibly 2 in the analytical case.
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The algorithm in 2D or 3D writes :
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The algorithm in 2D or 3D writes :

@ step1 : reconstruct P from datas given by two Schwarz
iterates
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The algorithm in 2D or 3D writes :

@ step1 : reconstruct P from datas given by two Schwarz
iterates

@ step2 : apply one additive Schwarz iterate to the Poisson
problem with block solver of choice i.e multigrids, FFT etc...
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The algorithm in 2D or 3D writes :

o
NUDET o _step1 : reconstruct P from datas given by two Schwarz
AFDTD iterates

AS recall @ step2 : apply one additive Schwarz iterate to the Poisson

problem with block solver of choice i.e multigrids, FFT etc...
@ stepld:

e compute the Fourier expansion Elj"’ri, n=0,1 of the
traces on the artificial interface I';, i = 1..nd for the
initial boundary condition u‘orf and the Schwarz iterate

solution ujr .
e apply generalized Aitken acceleration based on

0> = (Id — P)~"(&" — PO°)

in order to get a‘oro
e recompose the trace U, in physical space.
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The algorithm in 2D or 3D writes :

o
NUDET o _step1 : reconstruct P from datas given by two Schwarz
AFDTD iterates

AS recall @ step2 : apply one additive Schwarz iterate to the Poisson

problem with block solver of choice i.e multigrids, FFT etc...
@ stepld:

e compute the Fourier expansion Elj"’ri, n=0,1 of the
traces on the artificial interface I';, i = 1..nd for the
initial boundary condition u‘orf and the Schwarz iterate

solution ujr .
e apply generalized Aitken acceleration based on

0> = (Id — P)~"(&" — PO°)

in order to get a‘oro
e recompose the trace U, in physical space.

@ step4 : compute in parallel the solution in each subdomains
\ €, with new inner BCs and blocksolver of choice.
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J— Methods for non-uniform interface meshes (up to now) :

@ Projection technique : spectral interpolation of the
interface traces on a third regular grid + classical FFT
Boursier, Tromeur-Dervout and Vassilevsky, Parallel solution of Mixed Finite Element/ Spectral
Element systems for convection-diffusion equations on non matching grids,Preprint CDCSP-0300,

2004

@ Analysis of the error operator, solving for eigenvalues
and eigenvectors, chosen as generalized Fourier basis
Baranger, Garbey and Oudin-Dardun Generalized Aitken-like acceleration of the Schwarz method,
Lecture Notes in Computational Science and Engineering, pages 505-512, 2004. Based on
an a priori approximation of the error operator P. No
available tool to know how the eigenvalues of the
approximate P are close to the eigenvalues of true P.
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@ Define a set of basis functions ®; = (¢/(X;))o<j<n

T o strictly related to the nonuniform mesh and orthogonal
with respect to a sesquilinear form [[., .]], i.e
[[¢1, o]l = 0, if I # k.

e Compute the associated interface operator P j;
@ Approximate Py ;; with P[*[. 1 through a posteriori
estimates of Fourier coefficients behavior.

Instead of :
@ Approximate in the physical space P with P*.

@ Compute eigenvalues and eigenvectors of matrix P*.
@ Take eigenvectors as basis functions for generalized
Fourier decomposition.
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NonUniform Fourier Transform formulation

Definition

Let (X,‘)OS,'SN and z; = % such that x; = z; + ¢;, and

Pi(x) =exp(ilx), 0 << N/2
o1(x) = { D-Nexp(i(N—1Nx), N2+1<I<N, (1)
D = diag(ei)o<i<n

= ON—1(X) = ¢i(X).
Definition

Define sesquilinear form on Sy =span{¢,(x),0 </ < N},
using Hermite integration formula :

N N
[[f, 911 = > wf(x)g0a) + > Bilf (x)9(x)) + f(x1)g'(x1))
1=0 1=0

{v} and {5} : [[¢1, ?k]] = I = solve one L.S. (size 2N)
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H = ([[¢1, 9k]])1 k=0,.n = Id = [[ :, :]] hermitian
formutation Definition

The discrete Fourier coefficients of f are given by :

fo = [, 0]l k=—N/2,..,N/2
f=Mf+Mf, M,M e Mpy.1(C)

My (k, 1) = viék(X1) + Bidj(x1), Ma(k, 1) = Biok(x)

Proposition

N
NRF(x)) = > Fep(x), is exact Vf € TV/2([0, 2n])
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formufation @ Problem : in the applications one is given the vector f
which represents the values of a function f(x) on the
points (X;)o<j<n- No information is given on the vector f’
which is needed in definition 3.
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formufation @ Problem : in the applications one is given the vector f
which represents the values of a function f(x) on the
points (X;)o<j<n- No information is given on the vector f’
which is needed in definition 3.
@ Solution : we determine the vector f implicitly by
imposing
d

&(Hﬁ(f(x)))p(:x, =f(x), 1=0,..,N—1
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In an algebraic form, if we note M, the matrix whose
elements are :
My (1, k) = (X))
then the vector f" is obtained by solving the algebraic
system :
(idns1 — MyMo)f" = MyMi f

where idy is the identity matrix in Mpy.1(C).
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UDET @ Given a nonuniform mesh (x;)o<i<n, define the basis
formulation functions and solve one L.S. (size 2N) to determine the
two sets {+,} and {5;}.
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UDET @ Given a nonuniform mesh (x;)o<i<n, define the basis
formulation functions and solve one L.S. (size 2N) to determine the
two sets {+,} and {5;}.

@ Solve the algebraic system (size N) :
(idn+1 — MyMo)f = MyMy f

to determine f’ implicitly.
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UDET @ Given a nonuniform mesh (x;)o<i<n, define the basis
formulation functions and solve one L.S. (size 2N) to determine the
two sets {+,} and {5;}.

@ Solve the algebraic system (size N) :
(idn+1 — MyMo)f = MyMy f

to determine f’ implicitly.
@ Compute Fourier coefficients through matrix-vector

products : 5
f=Mf+ Mgf’
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T N e=h,/8 | e=hy/4 | e=h,/2 e=hy
40 || 0.13E-14 | 0.39E-15 | 0.56E-13 | 0.62E-7
6.17E+3 | 1.21E+4 | 1.26E+5 | 4.24E+10
100 || 0.77E-14 | 0.17E-14 | 0.69E-12 | 0.83E-7
8.40E+4 | 1.82E+5 | 1.25E+6 | 2.07E+10
200 || 0.13E-13 | 0.16E-13 | 0.27E-12 | 0.5E-6
6.02E+5 | 1.27E+6 | 5.75E+6 | 9.35E+11
400 || 0.26E-13 | 0.29E-13 | 0.11E-10 | 0.53E-8
5.18E+6 | 1.24E+7 | 2.96E+8 | 7.30E+10

TAB.: ||f — NE(f)]lo and conds([[., .]]) for

f(x) = exp(—40(x — (27/3))2), with h, = 27/N.
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NUDFT @ Given a nonuniform cartesian 2D mesh _
X x Y := {(X;, ¥})o<ij<n} C R? define the basis
functions, the sesquilinear form :

N N N
gl = YD anf@g ) + > mdy(fg)(x, y)) +
j=0 1=0 =0

N N N
3261 ( D0t .3 + > mdr (78) 0. 1))
j=0 1=0 1=0
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NUDFT @ Given a nonuniform cartesian 2D mesh _
X x Y := {(X;, ¥})o<ij<n} C R? define the basis
functions, the sesquilinear form :

N N N
gl = YD anf@g ) + > mdy(fg)(x, y)) +
j=0 1=0 =0

N N
81 ( 0t 05,3 + 3~ mdn (79) (. 1))

j=0 /=0 1=0

@ Fourier coefficients computed algebraically by
previously solving implicitly for 0xf, 0, f and Oxy f.
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Numerical results 2D

N || e=hy/2 e=hy e=2h, | e=4h,
27 [ 11E-13 | 3.7E-13 9.5E-7 | 2.09E+3
1.5E+3 8E+3 25E+6 | 2.2E+12

28 || 2.62E-13 | 1.48E-10 8E-4 3E+6
6E+3 5E+5 1.7E+10 | 1E+14

TAB.: [|f — M (f)]|l« and conds([[.,.]]) for f(x, y) = cos?(x) cos(y),

with h, = 27/ N.
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Advantages of NUDFT

@ Advantages :

e better performance than FFT on nonuniform meshes
when applied to Aitken-Schwarz DDM

e O(N2) operations — cheaper in time in comparison with
the O(N?) operations to solve for the eigenvalues and
eigenvectors of the full interface operator

e Adaptive approximation of the trace transfer operator P,
based on a posteriori error estimates of Fourier modes
convergence
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Advantages of NUDFT

@ Advantages :

e better performance than FFT on nonuniform meshes
when applied to Aitken-Schwarz DDM

e O(N2) operations — cheaper in time in comparison with
the O(N?) operations to solve for the eigenvalues and
eigenvectors of the full interface operator

e Adaptive approximation of the trace transfer operator P,
based on a posteriori error estimates of Fourier modes
convergence

@ Gridding : interpolation and use of the FFT on an

oversam pled g rid Greengard and Lee, Accelerating the Nonuniform Fast Fourier
Transform, SIAM REVIEW, vol.46, No.3, pp.443-454, 2004



[CRoNCY
B8

NUDFT
AFDTD

NUDFT for
Aitken-
Schwarz
method

© NUDFT for Aitken-Schwarz method

Outline



D]
Validation of the NUDFT for the construction of the interface operator P
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At interfaces 'y and I's, the Fourier coefficients of the error
NUDET for of additive Schwarz algorithm can be rearranged on the

Aitken- o
Schwarz fO rm:

method
2
5n+2)(r1) = P& (M)
n
&M2(r2) = Py, & (r2)
Numerically, P ; is computed by applying two Schwarz
iterates for each Fourier mode of the interface solution

(computed through the NUDFT), as a relation between all
the modes at the two iterates.
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Numerical computation of the interface operator P
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@ Take one basis function on the interface (blue line) :

NUDFT for ’
Aitken- ’
Schwarz v

method \
Q1 \ a5

@ Applying NUDFT to the basis function, obtain a
symmetric decomposition :

mode k
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s Numerical computation of the interface operator P
NUDFT o o o - . .
AFDTD @ With 2 Schwarz iterates determine how this function is

modified by the additif Schwarz algorithm :

NUDFT for
Aitken-
Schwarz

method
@

@ Applying NUDFT, compute the influence of one Fourier
mode on all modes :

influence du mode k
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Validation of the NUDFT for the construction of the interface operator P

P
NUDFT
AFDTD ) )
Uniform grids : NUDFT — FFT
Pir.,;y diagonal and || Py j — Panlleo = O(10712)
NUDFT for 1C
Aitken- S
Schwarz =1
method g 08l
N
©
z 06+
=
Q
&
g 0.4
L,
@
o
g 0.2f
£
3
0 : . . :
0 20 40 50 30

Fourier mode
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Adaptive construction of matrix P

@ Nonuniform cartesian grids and/or non separable
differential operator

@ Pis no longer diagonal

@ we can approximate Py j using only the most
important modes, then accelerate only these modes
through the equation :

v = (Id = P ) NV = Py ")

where ¥ is the subset of & used to approximate Py j;
with P [[ 1 Other modes are not accelerated.
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Adaptive construction of matrix P

@ Nonuniform cartesian grids and/or non separable
differential operator
@ Pis no longer diagonal

@ we can approximate Py j using only the most
important modes, then accelerate only these modes
through the equation :

where ¥ is the subset of & used to approximate Py j;

with Pji ;- Other modes are not accelerated.

@ Py j columns can be built in parallel and the number of
columns computed during the Schwarz iterates can be
set according to the computer architecture
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AS-DDM on a strongly non separable operator and irregular matching grids
[ P
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Solution of 2D convection-diffusion equation with Aitken-Schwarz
DDM : the trace of the iterate solutions on the irregular mesh are
projected on a Fourier orthogonal basis. The Fourier modes are
accelerated through the Aitken technique.

Numerical
results

V.(a(x,y)V)u(x,y) = f(x,y), onQ =]0,1[?
u(x,y)=0, (x,y)e€ o

alx,y)=a+ (1 —ao)(1+tanh((x — (Bhxy +1/2 — h))/u))/2,
and g9 = 10", u = 1072,
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g ol “*o—-t._r__:__\
5 - gy
8
8 5l S ——AS-10
Numerical ‘g AS-30
results ‘5_/ AS-89
8 10+ ——S
uniform
1% 5 10 15
iteration
FiG.: acceleration using sub-blocks of A j with 90 points on the
interface, overlap= 5 and € = h,/2. Black line refers to results in
Baranger, Garbey and Oudin-Dardun The Aitken-Like
A Acceleration of the Schwarz Method on Non-Uniform Cartesian

meesrss  @Grids, Technical Report Number UH-CS-05-18; 2005.
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log10{error)

1 100 200 300 400
Modes used to construct P

FiG.: influence of the approximation of the interface operator
Py..; on the convergence of the interface error
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Convergence of AS in random porous media

K follows a log-normal random process

160
140
120
100

80k

60
40
20

V.(K(x,y)Vu) = f, onQ

u=0, on 0N
— 5
T iy TS 52 BlogKxy) [ —-s
SGe ——AS-P
= o@ S 4 0
> ANy 5
i< — i
o~ = <x & e s
Bl e - ~ 2
- < ——— | 10
= Q--
e 5 1
=
e S S 15 ‘ ‘ ‘
20 40 60 80 0 5 10 15

K(x,y) € [0.0091,242.66]

Work under progress in collaboration with J-R De Dreuzy and J. Erhel SAGE/IRISA

iteration

Convergence of AS
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@ Extend ASDDM to nonuniform cartesian meshes by
means of the NUDFT technique

@ Reduce the numerical complexity by adaptively
approximating the trace transfer operator P
@ Validate the technique in the 2D case and DD in stripes

Summary and
Future Work

@ Works also for Nonuniform non matching cartesian

grids
@ Under investigation : NUDFT — NUFFT
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