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Motivation and Ideas

Decoupling of multi physics problems to simpler physics problems

Embedding the physical characteristics to the numerical methods

(conservation of physics)

Parallelization and accelerating the solver-process

Higher order methods for time and space

Methods for non-smooth and degenerate problems

Fast computations for complicate and decoupable problems
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Model-Equation

Systems of parabolic-differential equations with first order time-

derivation and second order spatial-derivations

∂c

∂t
= f(c) + Ac + Bc , in Ω× (0, T ) , (1)

c(x, t) = g(x, t) , on ∂Ω× (0, T ) (Boundary-Condition) ,

c(x, 0) = c0(x) , in Ω (Initial-Condition) ,

where c = (c1, . . . , cn)t and f(c) = (f1(c), . . . , fn(c))t,

A =

0@ −v11 · ∇ · · · −vn1 · ∇
. . . · · · . . .

−v1n · ∇ · · · −vnn · ∇

1A , B =

0@ ∇D11 · ∇ . . . ∇Dn1 · ∇
. . . . . . . . .

∇D1n · ∇ . . . ∇Dnn · ∇

1A ,

Convection- and diffusion-operator with A, B : X → X and X = IRn a matrix-space.

sufficient smoothness ci ∈ C2,1(Ω, [0, T ]) for i = 1, . . . , n
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Decomposition Methods

Ideas :

Decoupling the time-scales, space-scales.

Decoupling the multi-physics.

Time-adaptivity, Space-adaptivity.

Parallelization in Time and Space.

Methods :

Operator-Splitting and Variational Splitting Methods (Time).

Iterative and extended Operator Splitting Methods (Time).

Waveform-Relaxation-Methods (Time).

Schwarz Wave form relaxation method (Space).

Additive and Multiplicative Schwarz method (Space).

Partition of Units combined with Splitting methods (Time and

Space).
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Spatial decomposition method : Overlapping Schwarz wave
form relaxation method

Given the following model problem

ut + Lu = f , in Ω× (0, T ) , (2)

Ω× (0, T ) := Ω1 × (0, T ) ∪ Ω2 × (0, T ) ,

u(x, 0) = u0 , (Initial-Condition) ,

u = g , on ∂Ω× (0, T ) ,

where L denotes for each time t a second-order partial differential

operator Lu = −∇D∇u + v∇u + cu for the given coeffients D ∈
IR+, v ∈ IRn, c ∈ IR+, and n is the dimension of the space.
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Schwarz-Waveform Relaxation method

We consider the method for two half steps, associated with the two

subdomains and we solve 2 subproblems

u1t + Lun
1 = f , in Ω1 × (0, T ) , (3)

u1(x, 0) = u10 , (Initial-Condition) ,

un
1 = g , on L0 = ∂Ω× (0, T ) ∩ ∂Ω1 × (0, T ) ,

un
1 = un−1

2 , on L2 = ∂Ω1 × (0, T )\∂Ω× (0, T ) ,

u2t + Lun
2 = f , in Ω2 × (0, T ) , (4)

u2(x, 0) = u20 , (Initial-Condition) ,

un
2 = g , on L3 = ∂Ω× (0, T ) ∩ ∂Ω2 × (0, T ) ,

un
2 = un

1 , on L1 = ∂Ω2 × (0, T )\∂Ω × (0, T ); ,
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Error of an Overlapping Schwarz wave form relaxation for the
scalar convection reaction diffusion equation

We consider the convection diffusion reaction equation, given by

ut = Duxx − νux − λu , (5)

defined on the domain Ω = [0, L] for T = [T0, Tf ], with the following

initial and boundary conditions

u(0, t) = f1(t), u(L, t) = f2(t), u(x, T0) = u0 .

To solve the model problem using overlapping Schwarz wave form

relaxation method, we subdivide the domain Ω in two overlapping

sub-domains Ω1 = [0, L2] and Ω2 = [L1, L], where L1 < L2 and

Ω1

⋂
Ω2 = [L1, L2] is the overlapping region for Ω1 and Ω2.

The convergence and error-estimates of ek+1 = u − uk+1
1 and

dk+1 = u − uk+1
2 given by (3) and (4) respectively, are presented by
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the following theorem

Theorem 1. Let ek+1 and dk+1 be the error from the solution of

the subproblems (3) and (4) by Schwarz wave form relaxation over Ω1

and Ω2, respectively, then

||ek+2(L1, t)||∞ ≤ γ||ek(L1, t)||∞ ,

and

||dk+2(L2, t)||∞ ≤ γ||dk(L1, t)||∞ ,

where

γ =
sinh(βL1)
sinh(βL2)

sinh(β(L2 − L)
sinh(β(L1 − L))

< 1 ,

with β =
√

ν2+4Dλ
2D .

Proof see [Geiser & Daoud, in review to NMPDE, 2006]
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Time-Decomposition methods : Sequential Splitting methods

Idea: Decoupling of complex equations in simpler

equations, solving simpler equations and re-coupling the results over

the initial-conditions.

Equations: ∂tc = Ac + Bc ,

where the initial-conditions are c(tn) = cn, (or Variational-formulation:

(∂tc, v) = (Ac, v) + (Bc, v) .)

Splitting-method of first order

∂tc
∗ = Ac∗ with c∗(tn) = cn ,

∂tc
∗∗ = Bc∗∗ with c∗∗(tn) = c∗(tn+1) ,

where the results of the methods are c(tn+1) = c∗∗(tn+1) ,

and there are some splitting-errors for these methods,

Literature : [Strang 68], [Karlsen et al 2001].
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Splitting-Errors of the Method

The error of the splitting-method of first order is

∂tc = (B + A)c ,

c̃ = exp(τ(B + A))c(tn) .

Local error for the decomposition and the full solution

e(c) = c̃(tn + τ)− exp(τB) exp(τA)c(tn) ,

= exp(τ(B + A))c(tn)− exp(τB) exp(τA)c(tn) ,

e(c)/τ =
1
2
τ(BA−AB)c(tn) + O(τ2) ,

O(τ) for A, B not commuting, otherwise one get exact results, where

τ = tn+1 − tn, [Strang 68].
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Higher order splitting-methods

Strang or Strang-Marchuk-Splitting, cf. [Marchuk 68, Strang68]

∂c∗(t)
∂t

= Ac∗(t), with tn ≤ t ≤ tn+1/2 and c∗(tn) = cn
sp, (6)

∂c∗∗(t)
∂t

= Bc∗∗(t), with tn ≤ t ≤ tn+1 , c∗∗(tn) = c∗(tn+1/2),

∂c∗∗∗(t)
∂t

= Ac∗∗∗(t) , tn+1/2 ≤ t ≤ tn+1 , c∗∗∗(tn+1/2) = c∗∗(tn+1),

where tn+1/2 = tn + 0.5τn and the approximation on the next time

level tn+1 is defined as cn+1
sp = c∗∗∗(tn+1).

The splitting error of the Strang splitting is

ρn =
1
24

τ2
n([B, [B,A]]− 2[A, [A,B]]) c(tn) + O(τ3

n) , (7)

see, e.g.[Hundsdorfer, Verwer 2003].
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Combined Methods

Introduction Iterative splitting-Methods

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn
sp, (8)

∂ci+1(t)
∂t

= Aci(t) + Bci+1(t), with ci+1(tn) = cn
sp, (9)

where c0(t) is any fixed function for each iteration. (Here, as before,

cn
sp denotes the known split approximation at the time level t = tn.)

The split approximation at the time-level t = tn+1 is defined as

cn+1
sp = c2m+1(tn+1). (Clearly, the functions ck(t) (k = i− 1, i, i + 1)

depend on the interval [tn, tn+1], too, but, for the sake of simplicity,

in our notation we omit the dependence on n.)
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Error for the Iterative splitting-method

Theorem 2. The error for the splitting methods is given as :

||ei|| = K||B||τn||ei−1||+ O(τ2
n) (10)

and hence

||e2m+1|| = Km||e0||τ2m
n + O(τ2m+1

n ), (11)

where τn is the time-step, e0 the initial error e0(t) = c(t)− c0(t) and

m the number of iteration-steps, K and Km are constants, ||B|| is the

maximum norm of operator B and A and B are bounded, monotone

operators.

Proof : Taylor-expansion and estimation of exp-functions. See the

work Geiser,Farago (2005).

Jürgen Geiser 14



The combined time-space iterative splitting method

Based on the iterative operator-splitting method we extend the split-

ting method be an embedded Schwarz-waveform-relaxation method.

We solve the following sub-problems consecutively for i =
0, 2, . . . 2m and j = 0, 2, . . . 2n. In this notation i represents the

iteration index for the time-splitting and j represents the iteration

index for the spatial-splitting.
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Initial idea:

∂ci,j(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j−1(t) + B|Ω1

ci−1,j(t) + B|Ω2
ci−1,j−1(t),

with ci,j(t
n
) = c

n
(12)

∂ci+1,j(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j−1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci−1,j−1(t),

with ci+1,j(t
n
) = c

n
(13)

∂ci,j+1(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j+1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci−1,j−1(t),

with ci,j+1(t
n
) = c

n
(14)

∂ci+1,j+1(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j+1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci+1,j+1(t),

with ci+1,j+1(t
n
) = c

n
(15)

where cn is the known split approximation at the time level t = tn.
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The nonoverlapping time-space iterative splitting method

We denote for the semi-discretisation in space the variable k as the

node for the point xk and we obtain k ∈ (0, . . . , p), where p is the

number of nodes. We have the decomposition if the space, where Ω1

is of the points 0, . . . , p/2 and Ω2 is of p/2 + 1, . . . , p, we assume

p is even. So we assume Ω1 ∩ Ω2 = {} and we have the following

algorithm :
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∂(ci,j)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j−1)k(t)

+ B̃|Ω1
(ci−1,j)k(t) + B̃|Ω2

(ci−1,j−1)k(t),

with (ci,j)k(t)(t
n
) = (c

n
)k (16)

∂(ci+1,j)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j−1)k(t)

+ B̃|Ω1
(ci+1,j)k + B̃|Ω2

(ci−1,j−1)k(t),

with (ci+1,j)k(t
n
) = (c

n
)k (17)

∂(ci,j+1)k(t
n)(t)

∂t
= Ã|Ω1

(ci,j)k(t
n
)(t) + Ã|Ω2

(ci,j+1)k(t
n
)(t)

+ B̃|Ω1
(ci+1,j)k(t

n
)(t) + B̃|Ω2

(ci−1,j−1)k(t
n
)(t),

with (ci,j+1)k(t
n
)(t

n
) = (c

n
)k(t

n
) (18)

∂(ci+1,j+1)k(t
n)(t)

∂t
= Ã|Ω1

(ci,j)k(t
n
)(t) + Ã|Ω2

(ci,j+1)k(t
n
)(t)

+ B̃|Ω1
(ci+1,j)k(t

n
)(t) + B̃|Ω2

(ci+1,j+1)k(t
n
)(t),

with (ci+1,j+1)k(t
n
)(t

n
) = (c

n
)k(t

n
) (19)

where cn is the known split approximation at the time level t = tn.
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We have the operators :

Ã|Ω1
(ci,j)k =


A(ci,j)k for k ∈ {0, . . . , p/2}

0 for k ∈ {p/2 + 1, . . . , p} (20)

Ã|Ω2
(ci,j)k =


0 for k ∈ {0, . . . , p/2}

A(ci,j)k for k ∈ {p/2, . . . , p} (21)

Similar are the assignments for operator B.

B̃|Ω1
(ci,j)k =


B(ci,j)k for k ∈ {0, . . . , p/2}

0 for k ∈ {p/2 + 1, . . . , p} (22)

B̃|Ω2
(ci,j)k =


0 for k ∈ {0, . . . , p/2}

B(ci,j)k for k ∈ {p/2, . . . , p} (23)
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The overlapping time-space iterative splitting method

We denote for the semi-discretisation in space the variable k as the

node for the point xk and we obtain k ∈ (0, . . . , p), where p is the

number of nodes. Now we assume the overlapping case, so we assume

Ω1 ∩ Ω2 6= {}. We have the following sets : Ω\Ω2 = {0, . . . , p1},
Ω1 ∩Ω2 = {p1 + 1, . . . , p2} and Ω\Ω1 = {p2 + 1, . . . , p}. We assume

p1 < p2 < p and can derive the following overlapping algorithm :
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∂(ci,j)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j, ci,j−1)k(t) + Ã|Ω\Ω1

(ci,j−1)k(t)

+ B̃|Ω\Ω2
(ci−1,j)k(t) + B̃|Ω1∩Ω2

(ci−1,j, ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci,j)k(t)(t
n
) = (c

n
)k (24)

∂(ci+1,j)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j, ci,j−1)k(t) + Ã|Ω\Ω1

(ci,j−1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j, ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci+1,j)k(t
n
) = (c

n
)k (25)

∂(ci,j+1)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j+1, ci,j)k(t) + Ã|Ω\Ω1

(ci,j+1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j, ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci,j+1)k(t
n
)(t

n
) = (c

n
)k(t

n
) (26)

∂(ci+1,j+1)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j+1, ci,j)k(t) + Ã|Ω\Ω1

(ci,j+1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j, ci+1,j+1)k(t) + B̃|Ω\Ω1
(ci+1,j+1)k(t),

with (ci+1,j+1)k(t
n
)(t

n
) = (c

n
)k(t

n
) . (27)
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We have the operators :

Ã|Ω\Ω2
(ci,j)k =


A(ci,j)k for k ∈ {0, . . . , p1}

0 for k ∈ {p1 + 1, . . . , p} (28)

Ã|Ω1∩Ω2
(ci,j, ci,j+1)k =


A((ci,j + ci,j+1)/2)k for k ∈ {p1 + 1, . . . , p2}

0 for k ∈ {p2 + 1, . . . , p} (29)

Ã|Ω\Ω1
(ci,j)k =


0 for k ∈ {0, . . . , p2}

A(ci,j)k for k ∈ {p2 + 1, . . . , p} (30)

Similar are the assignments for operator B.

B̃|Ω\Ω2
(ci,j)k =


B(ci,j)k for k ∈ {0, . . . , p1}

0 for k ∈ {p1 + 1, . . . , p} (31)

B̃|Ω1∩Ω2
(ci,j, ci,j+1)k =


B((ci,j + ci,j+1)/2)k for k ∈ {p1 + 1, . . . , p2}

0 for k ∈ {p2 + 1, . . . , p} (32)

B̃|Ω\Ω1
(ci,j)k =


0 for k ∈ {0, . . . , p2}

B(ci,j)k for k ∈ {p2 + 1, . . . , p} (33)
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Dicretisation of the operators

The discretization of the operators is given as :

A(ci,j)k = D/(∆x)2(−(ci,j)k+1 + 2(ci,j)k − (ci,j)k−1)

−v/∆x((ci,j)k − (ci,j)k−1) (34)

B(ci,j)k = λ(ci,j)k , (35)
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Consistency and stability analysis of the combined method

Theorem 3. Let us consider the nonlinear operator-equation in a

Banach space X

∂tc(t) = A1(c(t)) + A2(c(t)) + B1(c(t)) + B2(c(t)), 0 < t ≤ T ,

c(0) = c0 ,
(36)

where A1, A2, B1, B2, A1 + A2 + B1 + B2 : X → X are given linear

operators being generators of the C0-semigroup and c0 ∈ X is a given

element. Then the iteration process (12)–(15) is convergent and the

rate of the convergence is of second order.

We obtain the iterative result :

we obtain

‖ei,j‖ = Kτn‖ei−1,j−1‖+O(τ2
n), (37)
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and hence

‖ei+1,j+1‖ = K1τ
2
n‖ei−1,j−1‖+O(τ3

n), (38)

which proves our statement.

Proof see [Geiser & Kravvaritis 2006]

Let us consider the iteration (12)–(15) on the sub-interval [tn, tn+1].
For the error function ei(t) = c(t)− ci(t) we have the relations

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) (39)

+B1(ei−1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (t
n
, t

n+1
], ei,j(t

n
) = 0 , (40)
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and

∂tei+1,j(t) = A1(ei,j(t)) + A2(ei,j−1(t)) (41)

+B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (t
n
, t

n+1
], ei+1,j(t

n
) = 0 , (42)

and

∂tei,j+1(t) = A1(ei,j(t)) + A2(ei,j+1(t)) (43)

+B1(ei+1,j(t)) + B2(ei−1,j−1(t)),

t ∈ (t
n
, t

n+1
], ei,j+1(t

n
) = 0 , (44)

and

∂tei,j(t) = A1(ei,j(t)) + A2(ei,j+1(t)) (45)

+B1(ei+1,j(t)) + B2(ei+1,j+1(t)),

t ∈ (t
n
, t

n+1
], ei,j(t

n
) = 0 , (46)

for i, j = 0, 2, 4, . . . , with e0,0(0) = 0 and e−1,0 = e0,−1 = e−1,−1(t) = c(t).
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In the following we derive the linear system of equations. We

use the notations X2 for the product space X ×X enabled with the

norm ‖(u, v)‖ = max{‖u‖, ‖v‖} (u, v ∈ X). The elements Ei(t),
Fi(t) ∈ X2 and the linear operator A : X2 → X2 are defined as

follows

Ei,j(t) =


ei,j(t)

ei+1,j(t)
ei,j+1(t)

ei+1,j+1(t)

 ; A =


A1 0 0 0
A1 A2 0 0
A1 A2 B1 0
A1 A2 B1 B2

 , (47)

Fi,j(t) =


A2(ei,j−1(t)) + B1(ei−1,j(t)) + B2(ei−1,j−1)

B1(ei−1,j(t)) + B2(ei−1,j−1)
B2(ei−1,j−1)

0

 .

(48)
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Then, using the notations (48), the relations (40)–(46) can be

written in the form

∂tEi,j(t) = AEi,j(t) + Fi,j(t), t ∈ (tn, tn+1],

Ei,j(tn) = 0.
(49)

Due to our assumptions, A is a generator of the one-parameter C0

semigroup (A(t))t≥0.

Hence using the variations of constants formula, the solution of the

abstract Cauchy problem (49) with homogeneous initial condition can

be written as

Ei,j(t) =
∫ t

tn
exp(A(t− s))Fi,j(s)ds, t ∈ [tn, tn+1]. (50)

Hence, using the denotation

‖Ei,j‖∞ = supt∈[tn,tn+1] ‖Ei,j(t)‖ , (51)
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We could estimate the right hand side Fi(t) and exp(A(t))

We could then estimate the Fi(t) as

||Fi,j(t)|| ≤ C||ei−1,j−1|| . (52)

and ∫ tn+1

tn
‖exp(A(t− s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (53)

and hence

Kω(t) ≤ K

ω
(exp(ωτn)− 1) = Kτn +O(τ2

n) , (54)

We obtain the a priori error-estimates

‖ei,j‖ = Kτn‖ei−1,j−1‖+O(τ2
n) . (55)
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Parallelization of the Time-Decomposition method :
Windowing

The idea for parallelization in time are the windowing, that the

processors has an amount of time-steps to compute and to share

the end-result of the computation as an initial-condition for the next

processor.

tn

Processor 1 Processor 2 Processor 3

t t tt t tn+4 n+7 n+11 n+15 n+19

Window 1
Window 2
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Numerical Experiments

We consider the one-dimensional convection-reaction-diffusion

equation

∂tu + v∂xu− ∂xD∂xu = −λu , in Ω× (T0, Tf) , (56)

u(x, 0) = uex(x, 0) , (Initial-Condition) , (57)

u(x, t) = uex(x, t) , on ∂Ω× (T0, Tf) , (58)

where Ω× [T0, Tf ] = [0, 150]× [100, 105].

The exact solution is given as

uex(x, t) =
u0

2
√

Dπt
exp(−(x− vt)2

4Dt
) exp(−λt) . (59)

The initial condition and the Dirichlet boundary conditions are defined

using the exact solution (59) at starting time T0 = 100 and with

u0 = 1.0. We have λ = 10−5, v = 0.001 and D = 0.0001.
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First example : A-B splitting combined with Schwarz wave
form relaxation method

In order to solve the model problem using overlapping Schwarz wave

form relaxation method, we divide the domain Ω in two overlapping

sub-domains Ω1 = [0, L2] and Ω2 = [L1, L], where L1 < L2, and

Ω1

⋂
Ω2 = [L1, L2] is the overlapping region for Ω1 and Ω2.

For the sequential operator splitting method (A-B splitting). For

this purpose we divide each of these two equations in terms of the

operators A = D ∂2

∂x2 − ν ∂
∂x and B = −λ.

For the discretization of equation (6) we apply the finite-difference

method for the spatial discretization and the implicite Euler method

for the time discretization.
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We provide a variety of results for several sizes of space- and

time-partition, and also for various overlap sizes.

Precisely, we treat the cases h = 1, 0.5, 0.25 as spatial step-size,

∆t = 5, 10, 20 as time step.

The considered subdomains are Ω1 = [0, 80] and Ω2 = [70, 150],
Ω1 = [0, 60] and Ω2 = [30, 150] and Ω1 = [0, 100] and Ω2 = [30, 150],
with overlap sizes 10, 30 and 70, respectively.

Both the approximated and the exact solution are evaluated at the

end-time t = 105. The errors given in Table 2 are the maximum errors

that occurred over the whole space domain, i.e. they are calculated

using the ∞−norm for vectors.
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time-step err err err err err err

∆t = 5 2.85e− 3 2.24e− 3 1.28e− 3 2.66e− 4 2.21e− 4 2.20e− 4

∆t = 10 3.94e− 3 2.61e− 3 2.56e− 3 3.03e− 4 3.02e− 4 3.01e− 4

∆t = 20 5.03e− 3 2.81e− 3 2.73e− 3 8.51e− 4 5.22e− 4 5.14e− 4

overlap 10 30 70 10 30 70

space-step h = 1 h = 0.5

Table 1: Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.

time-step err err err

∆t = 5 2.09e− 5 1.99e− 5 1.97e− 5

∆t = 10 4.55e− 5 4.34e− 5 4.29e− 5

∆t = 20 8.10e− 4 5.66e− 4 4.88e− 4

overlap 10 30 70

space-step h = 0.25

Table 2: Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.
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Second Example : Combined method : Time-Space iterative
operator splitting method

For the solution of (56) with the combined time-space iterative

splitting method we divide again the equation in terms of the operators

A = D ∂2

∂x2 − ν ∂
∂x

and

B = −λ.

The index k = 0, 1, . . . p is associated with the subdomains, i.e. for

k = 0, . . . , p/2 we are working on Ω1 and for k = p/2 + 1, . . . , p on

Ω2. For the first set of values for k we have actually only the effect

of the restrictions of the operators A and B on Ω1. Similarly, the

second set of values for k indicates the action of the restrictions of

both operators on Ω2.
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The indices i and j are related to the time- and space-discretization,

respectively. For every k = 0, . . . , p/2 and for every interval of the

space-discretization we solve the appropriate problems on Ω1, for every

interval of the time-discretization. Similarly for k = p/2 + 1, . . . , p on

Ω2.

By a closer examination of the scheme (24)–(27), taking into

account the definitions (32)–(23), we observe that the problems to be

solved in the innermost loop are of the form ∂tc = Ac+Bc, c(x, tn) =
cn, where c appears with appropriate indices i and j.

Both the approximated and the exact solution are evaluated at the

end-time t = 105. The errors given in the following tables are the

maximum errors that occurred over the whole space domain, i.e. they

are calculated using the ∞−norm for vectors.

The results are given in Table 4.
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time-step err err err err err err

∆t = 5 4.38e− 2 1.47e− 2 3.49e− 3 2.59e− 4 2.13e− 4 1.54e− 4

∆t = 10 5.12e− 2 2.26e− 2 7.46e− 3 2.45e− 4 2.22e− 4 2.15e− 4

∆t = 20 6.14e− 2 4.39e− 2 1.20e− 2 7.43e− 4 5.21e− 4 4.53e− 4

overlap 10 30 70 10 30 70

space-step h = 1 h = 0.5

Table 3: Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.

time-step err err err

∆t = 5 7.23e− 6 6.49e− 6 8.29e− 6

∆t = 10 3.49e− 5 3.47e− 5 3.37e− 5

∆t = 20 5.23e− 4 5.42e− 4 3.21e− 4

overlap 10 30 70

space-step h = 0.25

Table 4: Error for the scalar convection diffusion reaction-equation using the
Schwarz waveform relaxation method for three different sizes of overlapping 10,30
and 70.
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Future Work

1. Theory for the Stability of the time-space iterative splitting

methods.

2. Commutative, non-commutative theory : How to decouple

3. Degenerated problems and non-smooth problems

4. Numerical examples
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