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Motivation and Ideas

Design of fast solvers with high accuracy

Efficient solver by decoupling in simpler equations or domains for

solving multi-physics problems

Parallelization and accelerating the solver-process

Physical correct splitting and analytical Decomposition method :

preservation of physics

Fast computations for complicate and decoupable problems
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Model-Equation

Systems of parabolic-differential equations with first order time-

derivation and second order spatial-derivations

∂c

∂t
= f(c) + Ac + Bc , in Ω× (0, T ) , (1)

c(x, t) = g(x, t) , on ∂Ω× (0, T ) (Boundary-Condition) ,

c(x, 0) = c0(x) , in Ω (Initial-Condition) ,

where c = (c1, . . . , cn)t and f(c) = (f1(c), . . . , fn(c))t,

A =

0@ −v11 · ∇ · · · −vn1 · ∇
. . . · · · . . .

−v1n · ∇ · · · −vnn · ∇

1A , B =

0@ ∇D11 · ∇ . . . ∇Dn1 · ∇
. . . . . . . . .

∇D1n · ∇ . . . ∇Dnn · ∇

1A ,

Convection- and diffusion-operator with A, B : X → X and X = IRn a matrix-space.

sufficient smoothness ci ∈ C2,1(Ω, [0, T ]) for i = 1, . . . , n
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First Part : Decomposition Methods

Ideas :

Decoupling the time-scales, space-scales.

Decoupling the multi-physics.

Time-adaptivity, Space-adaptivity.

Parallelization in Time and Space.

Methods :

Operator-Splitting and Variational Splitting Methods (Time).

Iterative and extended Operator Splitting Methods (Time).

Waveform-Relaxation-Methods (Time).

Schwarz Wave form relaxation method (Space).

Additive and Multiplicative Schwarz method (Space).

Partition of Units combined with Splitting methods (Time and

Space).
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Time-Decomposition methods

History and Literature:

ADI-methods (Alternating direction implicit), see : Peaceman-

Rachford (1955).

Strang-Marchuk-Splitting methods, see : Strang (1968).

Waveform-relaxation Methods, see : Vandewalle (1993).

Variational Splitting Methods, see : Lubich (2003).

Iterative Operator-Splitting Methods, see : Kanney, Miller, Kelly

(2003), Farago, Geiser (2005).

Extended Iterative Operator Splitting Methods, see : Geiser (2006).

Decoupling methods as preservation of physics, see : Geiser (2006).
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Introduction : Operator-Splitting-Method

Idea: Decoupling of complex equations in simpler

equations, solving simpler equations and re-coupling the results over

the initial-conditions.

Equations: ∂tc = Ac + Bc ,

where the initial-conditions are c(tn) = cn, (or Variational-formulation:

(∂tc, v) = (Ac, v) + (Bc, v) .)

Splitting-method of first order

∂tc
∗ = Ac∗ with c∗(tn) = cn ,

∂tc
∗∗ = Bc∗∗ with c∗∗(tn) = c∗(tn+1) ,

where the results of the methods are c(tn+1) = c∗∗(tn+1) ,

and there are some splitting-errors for these methods,

Literature : [Strang 68], [Karlsen et al 2001].
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Splitting-Errors of the Method

The error of the splitting-method of first order is

∂tc = (B + A)c ,

c̃ = exp(τ(B + A))c(tn) .

Local error for the decomposition and the full solution

e(c) = c̃(tn + τ)− exp(τB) exp(τA)c(tn) ,

= exp(τ(B + A))c(tn)− exp(τB) exp(τA)c(tn) ,

e(c)/τ =
1
2
τ(BA−AB)c(tn) + O(τ2) ,

O(τ) for A, B not commuting, otherwise one get exact results, where

τ = tn+1 − tn, [Strang 68].
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Higher order splitting-methods

Strang or Strang-Marchuk-Splitting, cf. [Marchuk 68, Strang68]

∂c∗(t)
∂t

= Ac∗(t), with tn ≤ t ≤ tn+1/2 and c∗(tn) = cn
sp, (2)

∂c∗∗(t)
∂t

= Bc∗∗(t), with tn ≤ t ≤ tn+1 , c∗∗(tn) = c∗(tn+1/2),

∂c∗∗∗(t)
∂t

= Ac∗∗∗(t) , tn+1/2 ≤ t ≤ tn+1 , c∗∗∗(tn+1/2) = c∗∗(tn+1),

where tn+1/2 = tn + 0.5τn and the approximation on the next time

level tn+1 is defined as cn+1
sp = c∗∗∗(tn+1).

The splitting error of the Strang splitting is

ρn =
1
24

τ2
n([B, [B,A]]− 2[A, [A,B]]) c(tn) + O(τ3

n) , (3)

see, e.g.[Hundsdorfer, Verwer 2003].
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Iterative splitting-Methods

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn
sp, (4)

∂ci+1(t)
∂t

= Aci(t) + Bci+1(t), with ci+1(tn) = cn
sp, (5)

where c0(t) is any fixed function for each iteration. (Here, as before,

cn
sp denotes the known split approximation at the time level t = tn.)

The split approximation at the time-level t = tn+1 is defined as

cn+1
sp = c2m+1(tn+1). (Clearly, the functions ck(t) (k = i− 1, i, i + 1)

depend on the interval [tn, tn+1], too, but, for the sake of simplicity,

in our notation we omit the dependence on n.)
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Error for the Iterative splitting-method

Theorem 1. The error for the splitting methods is given as :

||ei|| = K||B||τn||ei−1||+ O(τ2
n) (6)

and hence

||e2m+1|| = Km||e0||τ2m
n + O(τ2m+1

n ), (7)

where τn is the time-step, e0 the initial error e0(t) = c(t)− c0(t) and

m the number of iteration-steps, K and Km are constants, ||B|| is the

maximum norm of operator B and A and B are bounded, monotone

operators.

Proof : Taylor-expansion and estimation of exp-functions. See the

work Geiser,Farago (2005).
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Nonlinear Iterative splitting-Methods

∂ci(t)
∂t

= A(ci(t)) + B(ci−1(t)), with ci(tn) = cn
sp, (8)

∂ci+1(t)
∂t

= A(ci(t)) + B(ci+1(t)), with ci+1(tn) = cn
sp, (9)

where c0(t) is any fixed function for each iteration. (Here, as before,

cn
sp denotes the known split approximation at the time level t = tn.)

The split approximation at the time-level t = tn+1 is defined as

cn+1
sp = c2m+1(tn+1). (Clearly, the functions ck(t) (k = i− 1, i, i + 1)

depend on the interval [tn, tn+1], too, but, for the sake of simplicity,

in our notation we omit the dependence on n.)
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Consistency Theory for the nonlinear iterative splitting method

Theorem 2. Let us consider the nonlinear operator-equation in a

Banach space X

∂tc(t) = A(c(t)) + B(c(t)), 0 < t ≤ T

c(0) = c0

(10)

We linearised the nonlinear operators and obtain the linearised

equation

∂tc(t) = Ãc(t) + B̃c(t) + R(c̃), 0 < t ≤ T}; ,
Ã = ∂A

∂c (c̃)
B̃ = ∂B

∂c (c̃)
R(c̃) = A(c̃) + B(c̃)− c̃(∂A

∂c (c̃) + ∂B
∂c (c̃))

c(0) = c0 ,

(11)
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where Ã, B̃, Ã+B̃ :X → X are given linear operators being generators

of the C0-semigroup and c0 ∈ X is a given element. Then the iteration

process (8)–(9) is convergent and the and the rate of the convergence

is of second order.

We obtain the iterative result :

‖ei‖ = Kτn‖ei−1‖+O(τ2
n), (12)

and hence

‖e2m+1‖ = K1τ
2m+1
n ‖e0‖+O(τ2m+1

n ), (13)

where ei(t) = c(t)− ci(t) and 2m + 1 are the number of iterates.
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Proof 3. See [Geiser & Kravvaritis 2006, Preprint]

Let us consider the iteration (8)–(9) on the sub-interval [tn, tn+1]. For

the error function ei(t) = c(t)− ci(t) we have the relations

∂tei(t) = A(ei(t)) + B(ei−1(t)), t ∈ (tn, tn+1],

ei(tn) = 0
(14)

and

∂tei+1(t) = A(ei(t)) + B(ei+1(t)), t ∈ (tn, tn+1],

ei+1(tn) = 0
(15)

for m = 0, 2, 4, . . . , with e0(0) = 0 and e−1(t) = c(t).
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We obtain the linearised equations :

In the following we use the notations X2 for the product space

X×X enabled with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖} (u, v ∈ X).

The elements Ei(t), Fi(t) ∈ X2 and the linear operator A : X2 → X2

are defined as follows

Ei(t) =
[

ei(t)
ei+1(t)

]
; A =

[
∂A(ci−1)

∂c 0
∂A(ci−1)

∂c
∂B(ci−1)

∂c

]
. (16)

Fi(t) =

[
A(ei−1(t)) + B(ei−1(t))− ei−1

∂A(ei−1)
∂c

A(ei−1(t)) + B(ei−1(t))− ei−1
∂A(ei−1)

∂c − ei−1
∂B(ei−1)

∂c

]
;

(17)
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The relation can be written in the form

∂tEi(t) = AEi(t) + Fi(t), t ∈ (tn, tn+1],

Ei(tn) = 0.
(18)

Due to our assumptions, A is a generator of the one-parameter C0

semigroup (A(t))t≥0. We have to estimate the 2 terms : Fi(t) and

exp(A(t)) .

We could estimate the right hand side Fi(t) in the following lemma

Lemma 4. Let us consider the the bounded Jacobians of A(u) and

B(u). We could then estimate the Fi(t) as

||Fi(t)|| ≤ C||ei−1|| (19)

Proof see [Geiser & Kravvaritis 2006]
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We estimate our abstract Cauchy problem (18) that be solved as

Ei(t) =
∫ t

tn
exp(A(t− s))Fi(s)ds, t ∈ [tn, tn+1]. (20)

Hence, using the denotation

‖Ei‖∞ = supt∈[tn,tn+1] ‖Ei(t)‖ (21)

we have

‖Ei‖(t) ≤ ‖Fi‖∞
∫ t

tn
‖exp(A(t− s))‖ds =

= C ‖ei−1‖
∫ t

tn
‖exp(A(t− s))‖ds, t ∈ [tn, tn+1].

(22)

We have estimate ||Fi|| ≤ C||ei−1||.
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Since (A(t))t≥0 is a semigroup therefore the so called growth
estimation

‖ exp(At)‖ ≤ K exp(ωt); t ≥ 0 (23)

holds with some numbers K ≥ 0 and ω ∈ IR.

Assume that (A(t))t≥0 is a bounded or exponentially stable semi-

group, i.e. (23) holds with some ω ≤ 0. Then obviously the

estimate

‖ exp(At)‖ ≤ K; t ≥ 0 (24)

holds, and, hence on base of (22), we have the relation

‖Ei‖(t) ≤ Kτn‖ei−1‖, t ∈ (0, τn). (25)

Assume that (A(t))t≥0 has an exponential growth with some ω > 0.
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Using (22) we have∫ tn+1

tn
‖exp(A(t− s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (26)

where

Kω(t) =
K

ω
(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1]. (27)

Hence

Kω(t) ≤ K

ω
(exp(ωτn)− 1) = Kτn +O(τ2

n) (28)

The estimations (25) and (28) result in that

‖Ei‖∞ = Kτn‖ei−1‖+O(τ2
n). (29)

and we obtain result by using definition of Ei

‖ei‖ = Kτn‖ei−1‖+O(τ2
n). (30)
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Extended Iterative splitting methods

For the extended iterative splitting methods with weighting factors

∂ci(t)
∂t

= Aci(t) + ω Bci−1(t), with ci(tn) = cn (31)

and c0(tn) = cn , c−1 = 0.0,

with ci(tn) = ω cn + (1− ω) ci(tn+1) ,

∂ci+1(t)
∂t

= ω Aci(t) + Bci+1(t), (32)

with ci+1(tn) = ω cn + (1− ω) ci(tn+1) ,

where cn is the known split approximation at the time level t = tn.

The split approximation at the time-level t = tn+1 is defined as

cn+1 = c2m+1(tn+1). Our parameter ω ∈ [0, 1]. For ω = 0 we have

the sequential-splitting and for ω = 1 we have the iterative splitting

method.
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Stability Theory

We concentrate on the stability theory for the linear ordinary

differential equations with commutative operators. First we apply the

recursion for the general case and obtain the commutative case.

The stability for the extended iterative splitting method (31) and

(32) is studied. We treat the special case for the initial-values

with ci(tn) = cn and ci+1(tn) = cn for an overview. The general

case ci+1(tn) = ωcn + (1 − ω)ci(tn+1) could be treated in the same

manner.

We consider the suitable vector norm || · || on IRM , together with its

induced operator norm. We assume that

|| exp(τ A)|| ≤ 1 and || exp(τ B)|| ≤ 1 for all τ > 0.

and also implies || exp(τ (A + B))|| ≤ 1.
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For the linear problem (31) and (32) it follows by integration that

ci(t) = exp((t− tn)A)cn +
∫ t

tn
exp((t− s)A) ω Bci−1(s) ds , (33)

ci+1(t) = exp((t− tn)B)cn +
∫ t

tn
exp((t− s)B) ω Aci(s) ds . (34)

With elimination of ci we get

ci+1(t) = exp((t− tn)B)cn + ω
∫ t

tn exp((t− s)B) A exp((s− tn)A) cn ds

+ω2
∫ t

s=tn

∫ s

s′=tn exp((t− s)B) A exp((s− s′)A) B ci−1(s′) ds′ ds . (35)

For the following commuting case we could evaluate the double

integral
∫ t

s=tn

∫ s

s′=tn as
∫ t

s′=tn

∫ t

s=s′ and could derive the weighted

stability-theory.
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Commuting operators

For more transparency of the formula (35) we consider a well-

conditioned system of eigenvectors and the eigenvalues λ1 of A and

λ2 of B instead of the operators A,B themselves. Replacing the

operators A and B by λ1 and λ2 respectively, we obtain after some

calculations

ci+1(t) = cn 1
λ1 − λ2

(ωλ1 exp((t− tn)λ1)

+((1− ω)λ1 − λ2) exp((t− tn)λ2))

+ cn ω2 λ1λ2

λ1 − λ2

∫ t

s=tn
(exp((t− s)λ1)

− exp((t− s)λ2)) ds . (36)

Note that this relation is symmetric in λ1 and λ2.
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Strong Stability

We define zk = τλk, k = 1, 2. We start with c0(t) = un and we

obtain

c2m(tn+1) = Sm(z1, z2) cn , (37)

where Sm is the stability function of the scheme with m-iterations.

We use (36) and obtain after some calculations

S1(z1, z2) = ω2 cn +
ω z1 + ω2 z2

z1 − z2
exp(z1) cn (38)

+
(1− ω − ω2) z1 − z2

z1 − z2
exp(z2) cn
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S2(z1, z2) = ω4 cn +
ω z1 + ω4 z2

z1 − z2
exp(z1) cn (39)

+
(1− ω − ω4) z1 − z2

z1 − z2
exp(z2) cn

+
ω2 z1 z2

(z1 − z2)2
((ωz1 + ω2z2) exp(z1)

+(−(1− ω − ω2)z1 + z2) exp(z2)) cn

+
ω2 z1 z2

(z1 − z2)3
((−ωz1 − ω2z2)(exp(z1)− exp(z2))

+((1− ω − ω2)z1 − z2)(exp(z1)− exp(z2))) cn

Let us consider the stability given by the following eigenvalues in a

wedge
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W = {ζ ∈ IC : | arg(ζ) ≤ α}

For the stability we have |Sm(z1, z2)| ≤ 1 whenever z1, z2 ∈ Wπ/2.

The stability of the two iterations is given in the following theorem

with respect to the stability.

Theorem 5. We have the following stability :

For S1 we have a strong stability with

maxz1≤0,z2∈Wα |S1(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω = 1
4√3

For S2 we have a strong stability with

maxz1≤0,z2∈Wα |S2(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω ≤(
1

8 tan2(α)+1

)1/8

Proof see [Geiser 2006, Preprint]
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Parallelization of the Time-Decomposition method :
Windowing

The idea for parallelization in time are the windowing, that the

processors has an amount of time-steps to compute and to share

the end-result of the computation as an initial-condition for the next

processor.

tn

Processor 1 Processor 2 Processor 3

t t tt t tn+4 n+7 n+11 n+15 n+19

Window 1
Window 2
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Numerical Experiments

First example : 2D Diffusion-Reaction equation
We deal with the time dependent 2-D equation:

∂tu(x, y, t) = uxx + uyy − 4(1 + y2)e−tex+y2

u(x, y, 0) = ex+y2
in Ω = [−1, 1]× [−1, 1]

u(x, y, t) = e−tex+y2
on ∂Ω

with exact solution

u(x, y, t) = e−tex+y2

We choose the time Itervall [0,1] and again use Finite Differences for

the space with ∆x = 2/19.

We define our operators by splitting the plane into two halfs.

We choose one splitting intervall.
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Iterative Number of Max-error

Steps splitting-partitions

1 1 2.7183e+000

2 1 8.2836e+000

3 1 3.8714e+000

4 1 2.5147e+000

5 1 1.8295e+000

10 1 6.8750e-001

15 1 2.5764e-001

20 1 8.7259e-002

25 1 2.5816e-002

30 1 5.3147e-003

35 1 2.8774e-003

Table 1: Numerical results for the first example with the Iterative Operator Splitting
method and BDF3 with h = 10−1.
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Second Example : Bernoulli-Equation

We deal with the non linear Bernoulli-Equation:

∂u(t)
∂t

= λ1u(t) + λ2u
n(t)

u(0) = 1

with solution

u(t) =
[
(1 +

λ2

λ1
) exp(λ1t(1− n))− λ2

λ1
)
]− 1

1−n

We choose n = 2 , λ1 = −1, λ2 = −100 and h = 10−2
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Iterative Number of error

Steps splitting-partitions

2 1 7.3724e-001

2 2 2.7910e-002

2 5 2.1306e-003

10 1 1.0578e-001

10 2 3.9777e-004

20 1 1.2081e-004

20 2 3.9782e-004

Table 2: Numerical results for the Bernoulli-Equation with the Iterative Operator
Splitting method and BDF3.
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Future Work

1. Theory for the Stability of the iterative splitting methods.

2. Commutative, non-commutative theory : How to decouple

3. Dense coupling via full iterative coupling

4. Numerical examples
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