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1. Mortar discretizations
Nonmatching triangulations,

Geometrically nonconforming partitions.

2. Domain decomposition algorithms
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Coupling different approximations in N different subdomains

X =
∏N

i=1 Xi, finite element
space

Glue (v1, · · · , vN ) ∈ X across the interface Fij

∫

Fij

(vi − vj)ψ ds = 0, ∀ψ ∈M(Fij) (1)

We call (1) mortar matching condition.
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Fij

Fik

Ωi
Fl

Ωj

Ωk

Fij = ∂Ωi ∩ ∂Ωj: interface
{Fl} : a collection of subdomain faces such that

⋃

l

Fl =
⋃

ij

Fij , Fl ∩ Fk = ∅

Fl : nonmortar side, {Fij , Fik} : mortar sides.
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✔ M(F ) on each nonmortar face F

✘ the same dimension as that of finite element functions
supported in F

✘ contains constant functions

✔ Examples, standard (left) and dual (right)
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F

F

(by Wohlmuth)
computationally more

efficient,
easy to implement
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✔ Mortar finite element space

X̂ ⊂ X =
∏N

i=1Xi satisfying mortar
matching condition

✔ Error estimate for a mortar discretization:

For elliptic problems with P1-finite elements in Xi,

N∑

i=1

‖u− uh‖2
1,Ωi

≤
N∑

i=1

h2
i | log(hi)| ‖u‖

2
2,Ωi

.

| log(hi)| : from geometrical nonconformity
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✔ Substructuring methods
(by Achdou, Maday, and Widlund)

Geometrically nonconforming partitions
Condition number bound (1 + log H

h
)2

✔ Overlapping Schwarz
(by Achdou and Maday)

✘ Convergence analysis
✘ Additional coarse space
✘ Condition number bound

(1 + (H
δ ))
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✔ Extension to 3D geometrically non-conforming
partitions

✔ Smaller coarse problems
✔ Simpler analysis

for

✔ Overlapping Schwarz methods
✔ Dual–Primal FETI methods (by Farhat et al)
✔ BDDC methods (by Dohrmann)
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(Joint work with Olof B. Widlund)

✔ Nonoverlapping subdomain partition {Ωi}i

equipped with mortar discretization
✔ Overlapping subregion partition {Ω̃j}j

✔ Coarse triangulation {Tk}k

overlapping subregions
(local problems)

coarse triangulation
(coarse problem)
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✔ Subregion finite element spaces

v ∈ X̃j ⊂ X̂

v has d.o.fs at the blue
nodes.
v at the purple nodes
determined by the mortar
matching.
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Subregion Ω̃j (circle)

✔ Local problems Find Tiu ∈ X̃j,

a(Tiu, vi) = a(u, vi), ∀vi ∈ X̃j.
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Coarse finite element space XH

✔ Ih(v) : XH → X defined by

Ih(v) = (Ih
1 (v), · · · , Ih

N (v)),

Ih
i (v): nodal interpolant to Xi.

✔ Interpolant Im : XH → X̂ defined by modifying Ih(v) on
the nonmortar side to satisfy the mortar matching.
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✔ Coarse function space

V H = Im(XH) ⊂ X̂.

✔ Coarse problem Find T0u ∈ V H ,

a(T0u, vH) = a(u, vH), ∀vH ∈ V H .
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✔ Condition number estimate

κ(
N∑

j=0

Tj) ≤ C max
j,k

{
(1 +

H̃j

δj
)(1 + log

Hk

hk
)

}

Note: Additional log-factor from geometrically
non-conforming partitions.

H̃j: subregion diameter
δj: overlapping width
Hk/hk: the num. of elements across

a subdomain Ωk
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✔ Form two equivalent linear systems of mortar
discretization

1. primal form
2. dual form

✔ Develop BDDC and FETI–DP
BDDC (primal formulation)
FETI–DP (dual formulation)

✔ Providing preconditioners as efficient as the ones in the
conforming case

κ(BDDC), κ(FDP ) ≤ C(1 + log(H/h))2
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Ŵ ⊆ W elements satisfying the mortar matching condition.

W̃ ⊆ W elements satisfying some of the mortar matching
condition, called primal constraints.
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Fij

Fik

Ωi
Fl

Ωj

Ωk

✔ Lagrange Multiplier space M(Fl)
✔ Mortar Matching condition

∫

Fl

(wi − φ)ψ ds = 0, ∀ψ ∈M(Fl)

where φ =

{
wj on Fij ,
wk on Fik.
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Ωi

F

jΩ

FikijF

Ωk

M(Fij) and IM(Fij)(1)

✔ Primal Constraints
∫

Fij

(wi − wj)IM(Fij)(1) ds = 0 (2)

✔ M(Fij) ⊂M(F ) (F : nonmortar face)

span of basis elements supported in F ij

✔ IM(Fij)(v) :the nodal interpolant to M(Fij)
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✔ To make the primal constraints explicit
✔ Much simpler presentation
✔ Computationally more stable

On each interface Fij , Tij is defined as

w = Tij

(
wΠ

w∆

)
, wΠ =

∫

Fij

wIM(Fij)(1) ds.
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nonmortar mortar

After transform

Primal wΠ

Dual w∆ → (w∆,n, w∆,m)

n: nonmortar (green)
m: the others (blue)

Genuine unknowns : wΠ, w∆,m
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✔ Mortar matching condition for w ∈ W̃

B∆,nw∆,n +B∆,mw∆,m +BΠwΠ = 0

w∆,n = −B−1
∆,n(B∆,mw∆,m +BΠwΠ) (3)
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✔ Mortar map Rt
G : WG → Ŵ ⊂ W̃

WG: space of genuine unknowns (w∆,m, wΠ).
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✔ Ki : local stiffness matrices
✔ Si : Schur complement (eliminating interior unknowns)
✔ Subassembly at primal unknowns

Si =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
=⇒ S̃ =

(
S∆∆ S∆Π

SΠ∆ SΠΠ

)

✔ Mortar discretization
Note that Rt

G : WG → Ŵ (⊂ W̃ )

RGS̃Rt
GwG = RGg̃.

Rt
GwG ∈ Ŵ is the desired solution.
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✔ Constraint minimization problem

Primal problem : RGS̃Rt
GwG = RGg̃

min
w∈W̃

{
1
2
wtS̃w + wtg̃

}
with Bw = 0,

B =
(

Bn,∆ Bm,∆ BΠ

)
.

✔ Mixed form
(

S̃ Bt

B 0

)(
w
λ

)
=

(
g̃
0

)

✔ Dual problem

BS̃−1Btλ = BS̃−1g̃
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✔ BDDC algorithm solves

RGS̃Rt
GwG = RGg̃

with a preconditioner (Coarse + Local problems)

✔ FETI-DP algorithm solves

BtS̃−1Bλ = BtS̃−1g̃

with a preconditioner (Local problems)



Coarse basis elements for the BDDC
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13
4

2
Ω i

For each primal unknown (red nodes), we find

1. φk(xΠ,l) = δkl

average one on the face and zero on the other faces
2. minimizing energy E(φk) = φt

kSiφk

(φ1 φ2 φ3 φ4) =

(
−S

(i)
∆∆S

(i)
∆Π

I
(i)
Π

)
, I

(i)
Π = I4×4.
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✔ Coarse finite element space
Subassembly of local coarse basis at the primal unknowns

Ψ =

(
−S−1

∆∆S∆Π

IΠΠ

)

✔ Coarse problem

FΠΠ = ΨtS̃Ψ = SΠΠ − SΠ∆S−1
∆∆S∆Π
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✔ Local finite element space

W
(i)
∆ : zero at the primal unknowns

(zero averages on faces)

✔ Local problem matrix S
(i)
∆∆

Si =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
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✔ Weighted sum of local and coarse problems

M̂−1 = D

((
S−1

∆∆ 0
0 0

)
+ ΨF−1

ΠΠΨT

)
D,

Ψ =

(
S−1

∆∆S∆Π

IΠΠ

)
: space of coarse basis

BDDC =
(
Rt

GM̂
−1RG

)
Rt

GS̃RG

We look for D such that

κ(BDDC) ≤ C(1 + log(H/h))2.
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(Joint work with Chang-Ock Lee)
Our goal is to provide the BDDC algorithm with weight D that
performs as good as the FETI-DP algorithm.

✔ FETI-DP preconditioner

B∆Σ∆S∆∆Σ∆B
t
∆

B∆ =
(
B∆,n B∆,m

)
n : nonmortar

Note: B∆,n is invertible.

✔ Neumann-Dirichlet weight

Σ∆ =

(
Σ∆,n 0

0 Σ∆,m

)
Σ∆,n = (Bt

∆,nB∆,n)−1

Σ∆,m = 0
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✔ Resulting local problems

B∆Σ∆S∆∆Σ∆B
t
∆λ, S

(i)
∆∆Σ

(i)
∆ (B

(i)
∆ )tλ

S
(i)
∆∆

(
B

(i)
∆,n

−1
λ

0

)
,

S
(i)
∆∆ = K

(i)
∆∆ −K

(i)
∆I(K

(i)
II )−1K

(i)
I∆
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✔ Condition number bound

κ(FDP ) ≤ C(1 + log(H/h))2

✔ The most efficient one for problems with jump coefficients

−∇ · (ρ(x)∇u) = f

ρ(x) = ρi(> 0) for x ∈ Ωi

The convergence rate is independent of jumps though the
preconditioner does not reflect any information of jump.
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✔ New insight into the BDDC preconditioner (Li and
Widlund)

Block Cholesky factorization of S̃

(
I 0

SΠ∆S
−1
∆∆ I

)(
S∆∆ 0

0 FΠΠ

)(
I S−1

∆∆S∆Π

0 I

)

M̂−1 = DS̃−1D,

since

S̃−1 =

(
S−1

∆∆ 0
0 0

)
+ ΨF−1

ΠΠΨT , Ψ =

(
S−1

∆∆S∆Π

IΠΠ

)
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✔ FDP and BDDC operators

FDP = (BΣS̃ΣBt)BS̃−1Bt,

BDDC = (RGDS̃−1DRt
G)RGS̃Rt

G.

✔ Jump and Average operators

PΣ = ΣBtB

ED = Rt
GRGD
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If PΣ and ED satisfy

PΣ + ED = I

E2
D = ED, P 2

Σ = PΣ,

EDPΣ = PΣED = 0,

then the operators BDDC and FDP have the same spectra

except the eigenvalue 1.

✔ By Li and Widlund for conforming discretization.
The same result first proved by Mandel, Dohrmann, Tezaur in
a different context.

✔ We are able to extend the result to mortar
discretization. (jointly with Max Dryja and Olof Widlund)
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✔ The weight D satisfies the assumptions in the Theorem.

D =



Dn 0 0
0 Dm 0
0 0 DΠ


 ,

Dn = 0
Dm = I
DΠ = I

✔ The BDDC algorithm with the weight D has the same
spectra as the FETI-DP algorithm.

κ(BDDC) ≤ C(1 + log(H/h))2
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The following estimate is used for proving the condition number
bound:

‖πl(wi − φ)‖2

H
1/2

00
(Fl)

≤ C

(
1 + log

Hi

hi

)2

|wi|

2
Si

+
∑

j

|wj |
2
Sj


 ,

� φ = wj on Fij ⊂ Fl,
∫
Fij

(wi − wj)IFij (1) = 0
� πl is the mortar projection.
� φ ∈ H1/2−ε(Fl)
� Fij is not aligned with triangles in the nonmortar Fl.

In the analysis, we use
• additional finite element space W (Fij)

• the L2–projection onto W (Fij)
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✔ Choice of primal constraints is important to scalability

κ(BDDC), κ(FDP ) ≤ C(1 + log(H/h))2

1. 2D Stokes problem (edge average)

∫

Fij

(vi − vj)ψ ds = 0, ψ = 1

2. 3D elasticity problems
Six primal constraints on each face Fij

{rm}6
m=1 : rigid body motions

∫

Fij

(vi − vj) · ψ ds = 0,

ψ = IM(Fij)(rm): nodal interpolant
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(Joint work with Xuemin Tu)
We are able to replace the coarse problem F−1

ΠΠ by M̂−1
ΠΠ, a BDDC

preconditioner for FΠΠ.

Subdomains and subregions
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Ĥ/H, H/h: subregion, subdomain problem size



Numerical Results : comparison of the BDDC

and FETI-DP

Outline
Mortar
discretizations
DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI–DP for mortar

Analysis

Additional
Applications

Numerical Results

Conclusions

38 / 50

✔ Model problem

−∆u(x, y) = f(x, y) (x, y) ∈ Ω = [0, 1]2,

u(x, y) = 0 (x, y) ∈ ∂Ω.

Exact solution: u(x, y) = y(1 − y) sin πx

✔ CGM: relative residual norm ≤ 1.0e-6

✔ N : the number of subdomains
✔ H/h: the number of elements on a subdomain edge
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✔ Subdomain partition and triangulation

Ω00

Ω01

Ω10

Ω

Ω

ij

33
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✔ Local problem size (when N = 4 × 4)

FDP BDDC
H/h λmin λmax λmin λmax

4 1.40 4.09 1.00 4.09
8 1.01 5.72 1.00 5.72
16 1.00 7.72 1.00 7.72
32 1.01 1.00e+1 1.00 1.00e+1
64 1.01 1.28e+1 1.00 1.28e+1

✔ The number of subdomains (when H/h = 4)

FDP BDDC
N λmin λmax λmin λmax

4 × 4 1.40 4.09 1.00 4.09
8 × 8 1.37 4.41 1.00 4.41

16 × 16 1.32 4.49 1.00 4.49
32 × 32 1.30 4.57 1.00 4.62
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✔ Discontinuous Coefficients

−∇ · (ρ(x)∇u(x)) = f(x)

where ρ(x) = ρi(> 0) for x ∈ Ωi.
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1.Neumann-Dirichlet

M̂−1
ND =

(
B∆,n

−1

0

)t

S∆∆

(
B∆,n

−1

0

)

2.Neumann-Neumann

M̂−1
NN = (B∆Bt

∆)−1B∆S∆∆Bt
∆(B∆Bt

∆)−1

3.Neumann-Neumann with weight

M̂−1
NNW = (B∆D−1

∆ Bt
∆)−1B∆D−1

∆ S∆∆D−1
∆ Bt

∆(B∆D−1
∆ Bt

∆)−1

Note D∆ depends on ρi
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Ω00

Ω01

Ω10

Ω

Ω

ij

33

Ω

Ω
ρ

Ω
ρ =10

Ω
ρ=1

00

00

01

01
ρ =5000

11

11

10

10
=250

α(x, y) =





1 (i, j) = (even, even)
250 (i, j) = (odd, even)
5000 (i, j) = (even, odd)
10 (i, j) = (odd, odd)

Ratio of meshes:
hij

hkl
'
(

ρij

ρkl

)1/4



Performance of the Neumann-Dirichlet

preconditioner

Outline
Mortar
discretizations
DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI–DP for mortar

Analysis

Additional
Applications

Numerical Results

Conclusions

44 / 50

N max(Hij/hij) M̂−1
NN M̂−1

ND M̂−1
NNW

16 17 3 3
32 26 3 3

2 × 2 64 39 4 3
128 50 4 4
256 60 4 4

16 75 4 3
4 × 4 32 81 4 4

64 111 4 4
128 130 4 4

16 113 3 3
8 × 8 32 136 4 4

64 168 4 4
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Scalability w.r.t. the number
of subdomains
H/h = 6, 8, 10

N Cond Iter

16 × 16 12.36 23
32 × 32 12.37 24
48 × 48 12.40 24
64 × 64 12.41 24
80 × 80 12.41 25

Scalability w.r.t. the local problem size
C = κ/(1 + log(H/h))2

5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

local pb. size

C
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Table 1: 2D subregion (Ĥ/H = 4, H/h = 4, 5), 3D subregion
(Ĥ/H = 3, H/h = 3)

2D 3D

Subregion Cond Iter Subregion Cond Iter

42 9.04 18 23 10.65 18
82 9.44 20 33 17.69 25
122 9.45 20 43 18.78 28
162 9.46 20 53 20.07 32
202 9.43 19 63 21.22 33
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C1 = κ/(1 + log( Ĥ
H ))2, Ĥ

H : subregion pb. size

C2 = κ/(1 + log(H
h ))2, H

h : subdomain pb. size

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2D, subregion (subdomain) pb. size

C
1
 

C
2
 

2 2.5 3 3.5 4 4.5 5 5.5 6
2

3

4
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3D, subregion (subdomain) pb size

c
1
 

c
2
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Scalability w.r.t the number
of subregions
Ĥ/H = 4
Ĥ/h = 6, 8, 10

N̂ Cond Iter

42 12.70 26
82 12.79 27
122 12.81 28
162 12.81 29
202 12.82 29

Scalability w.r.t the subregion (subdomain) pb. size

C1 = κ/(1 + log Ĥ
H )2, C2 = κ/(1 + log H

h )2

0 5 10 15 20 25
0

1
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subregion (subdomain) pb. size

c
1
 c

2
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We extend the DD algorithms to mortar discretizations on
3D-geometrically non-conforming partitions.

1. Overlapping Schwarz algorithm
2. FETI-DP with the Neumann-Dirichlet preconditioner

. Elliptic problems in 2D, 3D

. Stokes problem in 2D

. 3D compressible elasticity

. The most efficient for the problems with coefficient
jumps

3. BDDC algorithm well connected to the FETI-DP
4. BDDC with an inexact coarse problem
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Thank you!
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