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Mortar element methods

(by Bernardi, Maday, and Patera (1994))

Coupling different approximations in NV different subdomains
discretizations

DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis

Additional
Applications

Numerical Results X — sz\il Xi, f|n|te element
Conclusions
space

Glue (v1,---,vn) € X across the interface Fj;

/F(?Jz — ’Uj)@b ds =0, Yy € M(FZ]) (1)

We call (1) mortar matching condition.




[] Geometrically Nonconforming partitions

Outline

;
discretizations 1] Q
DD for mortar Q FI

discretizations |

Overlapping Schwarz | F
BDDC and | Ui ik
FETI-DP for mortar I | Q

. k
Analysis
Additional ' Il
Applications |]

Numerical Results

Conclusions

Fi; = 0€); N 0€;: interface
{F;} : a collection of subdomain faces such that

JR=UFE;, EnNF,=0
l ij

F; : nonmortar side, {F;;, Fi;} : mortar sides.




Lagrange multipliers spaces

[0 M(F) on each nonmortar face F

E_D fotr_ mortar [ the same dimension as that of finite element functions
ISCretizations

Overlapping Schwarz SUppOrted in F

BDDC and . .

FETI_DP for mortar [ contains constant functions

Analysis .

Additional [0 Examples, standard (left) and dual (right)

Applications

Numerical Results

Conclusions 1 -
M = />Q \//o\. F

2"M(F) /
D ST e AW

(by Wohlmuth)
computationally more
efficient,
easy to implement

5 / 50




Outline

Mortar
discretizations

DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis

Additional
Applications

Numerical Results

Conclusions

[1 Mortar finite element space

XcX= qu;L X; satisfying mortar
matching condition

[1 Error estimate for a mortar discretization:

For elliptic problems with P;-finite elements in X,

Z Ju—u"[iq, < Zh2\ log(h

| log(h;)| : from geometrical nonconformity




[] Previous DD algorithms for mortar

discretization
outline [0  Substructuring methods
e (by Achdou, Maday, and Widlund)
ichwarz Geom.e.trically nonconforming partithi[or;s
BODCand Condition number bound (1 + log 7)
Analysis
Nt 0 Overlapping Schwarz
Numerical Results (by ACthU and Maday)

Conclusions

[1 Convergence analysis
[1 Additional coarse space
[1 Condition number bound

(1+(5))




[] New Results

Outline [0 Extension to 3D geometrically non-conforming

Mortar

DD for morter partitions
Overlapping Schwarz D Sma"er coarse prOblemS

BDDC and 1 1
FETI—DaP for mortar |:| S|mp|er anaIyS|S

Analysis
Additional for

Applications

discretizations

Numerical Results

0 Overlapping Schwarz methods
0 Dual-Primal FETI methods (by Farhat et al)
0 BDDC methods (by Dohrmann)

Conclusions




Overlapping Schwarz algorithm for mortar

discretization
putline (Joint work with Olof B. Widlund)
discretizations
DD for mortar [0 Nonoverlapping subdomain partition {€;},
equipped with mortar discretization
BDDC and

FETLDP for mortar [1 Overlapping subregion partition {ﬁj}j
[]

Analysis : :
naves Coarse triangulation {7} }

Applications

Numerical Results

Conclusions

-

_______________
LR

coarse triangulation
(coarse problem)

overlapping subregions
(local problems)




[] Subregion (local) problems

Outline [0 Subregion finite element spaces

Mortar
discretizations
DD for mortar

discretizations ) 6 X] C X\

BDDC and

FETI-DP for mortar

Analysis v has d.o.fs at the blue

Additional * .

Applications nOdeS / :. N

mencal Results v at the purple nodes L a

onclusions _ N '—'
determined by the mortar
matching.

Subregion Q; (circle)

0 Local problems Find Tju € X,

a(Tyu, v;) = a(u,v;), Yo; € X;.




[] Preconditioner (a coarse space contained in

the mortar finite element space)

Outline
Mortar
discretizations e -

DD for mortar
discretizations T
BDDC and
FETI-DP for mortar

Analysis _‘ . \
Additional Coarse finite element space X

Applications

Numerical Results

Conclusions D Ih('U) . XH — X defined by

Ih(v) — (I{L(U)v B I]}\LT(U))a

I(v): nodal interpolant to Xj.

0 Interpolant I™ : XH — X defined by modifying I"(v) on
the nonmortar side to satisfy the mortar matching.
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[] The coarse problem
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DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis
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Conclusions

0 Coarse function space
vH = xt c X.
0 Coarse problem Find Tyu € V¥,

a(Tyu, v™) = a(u,v?), Vo' e V¥,



[] Condition number bound

Outline [0 Condition number estimate

Mortar
discretizations

DD for mortar N

discretizations ] L
k(> _T;) < Cmax< (1+ —2)(1+ log—)
BDDC and __ 7,k

FETI-DP for mortar ]—O

Analysis
Additional
Applications

Note: Additional log-factor from geometrically
Numerical Results non-conforming partitions.

Conclusions

—~—

H;: subregion diameter

0,: overlapping width

Hj./hy: the num. of elements across
a subdomain (2,
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[] BDDC and FETI-DP for the mortar

discretization
outline [1  Form two equivalent linear systems of mortar
discretizations 1 1 1
dscretizations discretization
discretizations
Overlapping Schwarz 1_ primal form
FETI-DP for mortar 2_ dual form
Analysis
Additional
Applications [1 Develop BDDC and FETI-DP
Numerical Results . .
Conclusions BDDC (prlma| formUIatlon)

FETI-DP (dual formulation)

[1  Providing preconditioners as efficient as the ones in the
conforming case

k(Bppc), k(Fpp) < C(1+ log(H/h))?
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Finite Element Spaces
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FETI-DP for mortar
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L
i

Space W Space W Space

W C W elements satisfying the mortar matching condition.

W C W elements satisfying some of the mortar matching
condition, called primal constraints.




Mortar Finite Element Spaces for the

geometrically nonconforming case

Outline 11
Mortar F
discretizations 1] Q
DD for mortar Q FI

discretizations |

Overlapping Schwarz | F

BDDC and | Ui ik
FETI-DP for mortar I I Qk

Analysis
Additional ' e
Applications |]
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Conclusions

[0 Lagrange Multiplier space M (F))
[1  Mortar Matching condition

[ (wi-ppds =0, vy eMF

w; on Fij,
w on F..
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[] Primal Constraints across F;; C I

Outline
Mortar
discretizations

DD for mortar Q
discretizations /}5{\ gg C i
R4
5 Rk

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis

Additional q Q
Applications

Numerical Results

Conclusions M(F’L]) and [M(Fw)(l)

[1  Primal Constraints

0 M(F;;) C M(F) (F : nonmortar face)
span of basis elements supported in Fij
0 Iar,)(v) :the nodal interpolant to M (Fj;)
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Change of unknowns (by Klawonn and

Widlund)
Outline [1 To make the primal constraints explicit
ortar
discretizations " |
discretizations [ Much simpler presentation
discretizations [] Computat|ona”y more Stable

Overlapping Schwarz

BDDC and .
On each interface F;;, T;; is defined as

Analysis

Additional

Applications WIT

Numeric-al Results w = TZ] , wir = / w[M(sz) (1) dS.
Conclusions WA F;.

nonmortar nonmortar

Before transform After transform
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Separation of unknowns in W

Outline
Mortar
discretizations
DD for mortar
discretizations

nonmortar
Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis
Additional
Applications After transform

Numerical Results

Conclusions

Primal wr

Dual wa — (wA,n7 wA,m)

n: nonmortar (green)
m: the others (blue)

Genuine unknowns : wrg, WA m
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Representation of 1V

Outline
Mortar
discretizations
DD for mortar
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Overlapping Schwarz
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FETI-DP for mortar

Analysis
Additional
Applications

Numerical Results

Conclusions

[1  Mortar matching condition for w € w
BA,nwA,n =+ BA,mwA,m =+ BHwH =0

WA = —Bg}n(BA,mwA,m + ann) (3)

nonmortar nonmortar

WA m and wry WA n, (green nodes)

0 Mortar map R, : Wg — W C W

Wg: space of genuine unknowns (WA p,, wir).




Mortar Discretization

outline 0 K, : local stiffness matrices

Dy et 0 S; : Schur complement (eliminating interior unknowns)
discretizations .

Overlapping Schwarz [0  Subassembly at primal unknowns

BDDC and
FETI-DP for mortar

. sz.:(SX’A SX%>:>§_<SM o)

S 1 )
,:I\ppllca?tlons Sl(_[)A Sl(—ﬂ)—I SHA SHH
umerical Results

Conclusions

[0  Mortar discretizationA -
Note that RS, : Wg — W(C W)

RG gRtG?UG — RGg

Rtawe € W is the desired solution.
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[] Equivalent dual problem

outline 0  Constraint minimization problem
discretizations ~

DD for mortar 1 . t L ~
DD for mortar Primal problem : RoSRywa = Ragg

Overlapping Schwarz

BDDC and : _J1,..tQ t~ . _
min, . {5 + /5] with Bu =0,

Analysis

Additional B = ( Boan Bma DBn )

Applications
Numerical Results

Conclusions D MiXEd fOrm

[0  Dual problem

BS™'B'A = BS '3
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[] BDDC and FETI-DP for Mortar discretization

Outline 0 BDDC algorithm solves

Mortar
discretizations
DD for mortar

discretizations RGSR%’U]G _ RGg

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis
Additional

Applications 0 FETI-DP algorithm solves

Numerical Results

with a preconditioner (Coarse + Local problems)

Conclusions

B'ST'B) = B'S7j

with a preconditioner (Local problems)
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[] Coarse basis elements for the
preconditioner (by Dohrmann)

Outline
Mortar
discretizations ® ()
DD for mortar
discretizations

®

Overlapping Schwarz

/&)

2
BDDC and ¢3 Qjle
FETI-DP for mortar f

Analysis
Additional
Applications

()
@

Numerical Results

Conclusions

For each primal unknown (red nodes), we find

1. ¢p(rmy) = Ou
average one on the face and zero on the other faces

2. minimizing energy E(¢y) = ¢4.S;o

_S(@) S(i) Z,
N G B o
IT
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[] Coarse problem

Outline
Mortar
discretizations
DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis
Additional
Applications

Numerical Results

Conclusions

[0 Coarse finite element space
Subassembly of local coarse basis at the primal unknowns

U — —SAASam
I

[0 Coarse problem

Frn = ¥'SU = Spn — StuaSakSam




[] Local problems

Outli .-

putline [0 Local finite element space
discretizations (Z) ]

DD for mortar WA’ : zero at the primal unknowns
discretizations

Overlapping Schwarz (zero averages on faces)
FETI-DP for mortar . ;

Analysis D LOcal prObIem matrlX SX)A
Additional

Applications ] ]
Numerical Results S(Z) S(Z)
Conclusions SZ — AA AH

SiA St




[] BDDC preconditioner

Outline [1  Weighted sum of local and coarse problems

Mortar
discretizations

DD for mortar S_l O
discretizations —
_ —1
Overlapping Schwarz M 1 — D << AA ) —|— \DFHH\DT) D,

BDDC and O O
FETI-DP for mortar

Analysis

Additional glg
Applications U = AAPAIL ) gpace of coarse basis
Numerical Results [HH

Conclusions

Bppo = (REM ' Re) RGSRe
We look for D such that

k(Bppc) < C(1 + log(H/h))2.
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FETI-DP preconditioner with

Neumann-Dirichlet weight

Outline (Joint work with Chang-Ock Lee)
discretizations Our goal is to provide the BDDC algorithm with weight D that
gscrftiza}b"; h performs as good as the FETI-DP algorithm.
verlapping Schwarz
.
FETI-DP for mortar I  FETI-DP preconditioner
Analysis
Addi?c/ional t
Applications BA EA SAA EA BA

Numerical Results

Conclusions

BA = ( BAan Bam ) n . nonmortar
Note: Ba ,, is invertible.

[1  Neumann-Dirichlet weight

s Xan O San = (BAnBan)™
S0 00 Sam Sam =0
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[] FETI-DP preconditioner with
Neumann-Dirichlet weight

Outline [1 Resulting local problems

Mortar
discretizations
DD for mortar

discretizations BAZASAAZABtA)\v S(Z) ( )(BX))tA

Overlapping Schwarz

S(z) <B(Z)n A)

Analysis ’
Additional O
Applications

Numerical Results

Conclusions SX)A — K(A)A K(A)[(Kgbj)) 1K§A)

29 / 50



[] FETI-DP preconditioner with

Neumann-Dirichlet weight

Outline [1  Condition number bound

Mortar
discretizations
DD for mortar

discretizations K/(FDP) S C(]- —|— lOg(H/h))2

Overlapping Schwarz

BDDC and
[1  The most efficient one for problems with jump coefficients

Analysis
Additional

Applications -V - (p(a:)Vu) — f

Numerical Results

Conclusions

p(z) = pi(>0) for z € Q;

The convergence rate is independent of jumps though the
preconditioner does not reflect any information of jump.
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Connection between FETI-DP and BDDC

Outline (1 New insight into the BDDC preconditioner (Li and

Mortar

discretizations W|d | un d )

DD for mortar
discretizations

Overlapping Schwarz BIOCk ChOIQSky faCtOrizatiOn Of g

BDDC and
FETI-DP for mortar

Analysis [ O SAA O I SglASAH
Additional —1
Applications SHA SAA I O FHH O I

Numerical Results

Conclusions

—

M~'=DS'D,

0 0 It
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S = ( San 0 ) +UF v, U= < Saadan )




[] Connection between FETI-DP and BDDC

Outline ] FDP and BDDC operatOI’S

Mortar
discretizations
DD for. mc?rtar ~ / ~—1 t
discretizations FDP p— (BZSZB )BS B 3

Overlapping Schwarz

BDDC and
Gl pt \ ;. Gt
Analysis BDDC — (RGDS DRG)RGSRG
Additional
Applications
Numerical Results 0  Jump and Average operators
Conclusions
Prs =YXB'B
Ep = RLRD
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Theorem

Outline If P~ and Ep satisfy

Mortar
discretizations
DD for mortar

discretizations PE + ED — I

Overlapping Schwarz

Fb=FEp, Fi=P:
FETI-DP for mortar

Analysis EDPE = PEED — 07

Additional

Applications

Numerical Results then the operators Bppc and Fpp have the same spectra

Conclusions

except the eigenvalue 1.

[1 By Li and Widlund for conforming discretization.
The same result first proved by Mandel, Dohrmann, Tezaur in
a different context.

[1  We are able to extend the result to mortar
discretization. (jointly with Max Dryja and Olof Widlund)
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[] Weight D for the BDDC algorithm

Outline [1  The weight D satisfies the assumptions in the Theorem.

Mortar
discretizations
DD for mortar

discretizations D?’L O

0 D, =0
0

Overlapping Schwarz L .

BDDC and D - O Dm 9 Dm - I
FETI-DP for mortar O O D D — [
Analysis 11 11

Additional
Applications

Numerical Resuls [ The BDDC algorithm with the weight D has the same
. spectra as the FETI-DP algorithm.

k(Bppc) < C(1 4 log(H/h))?
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Analysis for geometrically non—conforming

partitions

Outline The following estimate is used for proving the condition number

Mortar
discretizations bOU nd .

DD for mortar
discretizations

Overlapping Schwarz H 2
BDDC and 2 () 2 2
R s | (i = )00y < (1410850 ) (il + 3wyl |
00 i ;

Additional
Applications

pumerica fests | > @ =wj on Fyj C B, [, (wi —w;) I, (1) =0
> m; is the mortar projection.
> ¢ € HY/27¢(F)
> F;; is not aligned with triangles in the nonmortar Fj.

In the analysis, we use
e additional finite element space W (F;)

e the L°—projection onto W (F};)
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[] Applications to more general PDEs

Outline [1  Choice of primal constraints is important to scalability

Mortar
discretizations
DD for mortar

discretizations IQ(BDDC), K/(FDP) S C(l + lOg(H/h))2
Overlapping Schwarz

BDDC and

FETI-DP for mortar 1. 2D Stokes problem (edge average)

Analysis

Applications
Numerical Results L (Ui - /U])w dS — O, w == 1
-

Conclusions

2. 3D elasticity problems
Six primal constraints on each face Fj;
{Jf'm},,(’fn:1 . rigid body motions

/ (Vi—Vj)-¢dS:O,
Fi;

Y = Ipi(p,;)(rm): nodal interpolant
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Inexact Coarse problem

putline (Joint work with Xuemin Tu)
discretizations —1 Ar—1
Dy eazations We are able to replace the coarse problem Fiy by My, a BDDC
discretizations preconditioner for Fiypg.
Overlapping Schwarz
BDDC and
FETI-DP for mortar S e ey I s oy I o N ey o B —
Analysis — [
SEceaimEnaaaEcE B
Applications — - H M H H H H S
Numerical Results o - 7
Conclusions ZET:::::IET::::: —
::::IET:::::IET: '
O . —
— — .
EEnSntnSnEnSnSnl Unknowns at a subregion,
- - 0
Subdomains and subregions (Fo

Condition number analysis (1 4 log(H /H))2(1 + log(H/h))?
H/H, H/h: subregion, subdomain problem size




[] Numerical Results : comparison of the BDDC

and FETI-DP
outline [0 Model problem
discretizations
DD for. mc?rtar 9
e —Au(z,y) = f(z,y) (z,y) € 2=1[0,1]7,
EED'II?IEI;ISC:CN mortar U(C[;, y) — O (:E? y) E aQ
Analysis
Addi?c/ional . .
Applications Exact solution: u(x,y) = y(1 — y)sinmx
Conclusions 0 CGM: relative residual norm < 1.0e-6
[0 N: the number of subdomains

[]

H/h: the number of elements on a subdomain edge
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[] Comparison of the BDDC and FETI-DP

Outline . .o . .
putline [0 Subdomain partition and triangulation
discretizations
DD for mortar
discretizations

Overlapping Schwarz 933

BDDC and
FETI-DP for mortar

Analysis Q

Additional 1)
Applications

Numerical Results Q
Conclusions 01




Outline
Mortar
discretizations
DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis
Additional
Applications

Numerical Results

Conclusions

Comparison of the BDDC and FETI-DP

[]

Local problem size (when N =4 x 4)

Fpp Bppc
H / h )\mz’n Amax Amz’n Amax
4 1.40 4.09 1.00 4.09
8 1.01 .72 1.00 .72
16 1.00 7.72 1.00 7.72
32 1.01 1.00e+1 1.00 1.00e+1
64 1.01 1.28e+1 1.00 1.28e+1

[0  The number of subdomains (when H/h = 4)

Fpp Bppc
N /\mzn /\ma:c man max
4 X 4 1.40 4.09 1.00 4.09
8 X 8 1.37 4.41 1.00 4.41
16 X 16 1.32 4.49 1.00 4.49
32 X 32 1.30 4.57 1.00 4.62




[] Numerical Results : performance of the

Neumann-Dirichlet preconditioner

Outline 0  Discontinuous Coefficients

Mortar
discretizations
DD for mortar

discretizations _v . (IO(I)VU(ZC)) — f(x)
Overlapping Schwarz
BDDC and
FETI-DP for mortar
Analysis

Additional
Applications

Numerical Results

Conclusions

where p(x) = p;(> 0) for x € €.
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Preconditioners for Fpp

Outline 1.Neumann-Dirichlet

Mortar
discretizations

DD for mortar 1 t 1
discretizations ~5_1 BA 'n_ BA fn_
Overlapping Schwarz MND — : SAA 7

BDDC and O
FETI-DP for mortar

Analysis
Additional 2.Neumann-Neumann

Applications

.
Conclusions M]:Ul\] — (BABtA)_lBASAABtA(BABtA)_l

3.Neumann-Neumann with weight

—

Mynw = (BaDR'BR) ' BADA ' SaaDA' BA(BaDA'By) ™!

Note DA depends on p;
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[] Performance of the Neumann-Dirichlet

preconditioner

Outline Qo 1+ N
Mortar Q R,T5000 p,=10
discretizations 33

DD for mortar
discretizations

Overlapping Schwarz Q

BDDC and

FETI-DP for mortar Q R I Qo
. pogl p10:250

Analysis QOl 0

Additional

Applications

Numerical Results QOO QlO

Conclusions

1 (z,7) = (even, even)
— 250 (Zaj) — (Odd, even)
afz,y) = 5000 (7,7) = (even, odd)
10 (4,5) = (odd, odd)
Ratio of meshes: Z_kﬂl ~ (%>1/4
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[] Performance of the Neumann-Dirichlet

preconditioner
Outline
|vilsocfl:ceatrizations —1 —1 —1
%_D for mortar N | max(Hg;/hij) | Myy | Myp | Mynw
(Ci)lscrletlza'tlons ].6 17 3 3
verlapping Schwarz
BDDC and 32 26 3 3
FETI-DP for mortar
Analysis 2 X 2 64 39 4 3
Applcatios 128 50 | 4 :
256 60 | 4 4
16 75 4 3
4 x 4 32 31 4 4
64 111 4 4
128 130 4 4
16 113 3 3
8 X8 32 136 4 4
64 168 4 4




Performance of the BDDC preconditioner for

2D geometrically non-conforming case

(l(\j/_litrlt';: | Scalability w.r.t. the number N Cond | Iter
DlsDcrffrlzr?\t;StTr of subdomains 16 x 16 || 12.36 | 23
e e | H/h = 6,8,10 32 x 32 || 12.37 | 24
30DCand 48 % 48 || 12.40 | 24
Analysi 64 % 64 || 12.41 | 24
Applications 80 x 80 || 12.41 | 25

Numerical Results

Conclusions

Scalability w.r.t. the local problem size
C =r/(1+log(H/h))?

1-5 T T T T T T T T
\ C

1 o

05 | | | | | | | |
5 10 15 20 25 30 35 40 45 50
local pb. size
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Inexact coarse problem (geometrically conforming

case, scalability w.r.t. the number of subregions)

Outline

Mortar

DD for mortar Table 1: 2D subregion (H/H =4, H/h = 4,5), 3D subregion

discretizations g

Overlapping Schwarz (H/H — 3, H/h — 3)

BDDC and

FETI-DP for mortar 2D SD

ﬁzjlif;i,al Subregion | Cond | Iter || Subregion | Cond | lter

42 0.04 | 18 23 10.65 | 18

Conclusions 82 944 20 33 1769 25
122 9.45 | 20 43 18.78 | 28
162 9.46 | 20 53 20.07 | 32
207 9.43 | 19 63 21.22 | 33

46 / 50



Inexact coarse problem (geometrically conforming

case, scalability w.r.t. subregion (subdomain) problem size)

Outline ~ ~
g/i'::rrtjtrizations Ch=r/(1+ log(%))2 %: subregion pb. size
oot Cy = k/(1+log(£))?, £L: subdomain pb. size

Overlapping Schwarz

BDDC and

FETI-DP for mortar 2 ‘ ‘ ! w w w :

Additional '

Applications 1t — :I CZ

Numerical Results ——

Conclusions 0.5¢ ] C]_
0 | | | | | | |
4 6 8 10 12 14 16 18 20

2D, subregion (subdomain) pb. size

2 25 3 35 4 45 5 55 6
3D, subregion (subdomain) pb size




2D Geometrically non-conforming case (BDDC

with an inexact coarse solver)

Outline

Mortar Scalability w.r.t the number N | Cond | Iter
DD for mortar Q\f subregions 42 11270 | 26
Overtapoing Sevwcz | H [ H = 4 82 | 12.79 | 27
sopcend | H/h=6,8,10 122 | 12.81 | 28
ot 6| 12811 29
Applications 20% | 12.82 | 29

Numerical Results

Conclusions

Scalability w.r.t the subregion (subdomain) pb. size
Ci = r/(1+log2)?, Cy=r/(1+logt)?

1 o C2 i

—_— ® — —_—0 |
0 5 10 15 20 25
subregion (subdomain) pb. size
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Conclusions

Outline
Mortar
discretizations
DD for mortar
discretizations

Overlapping Schwarz

BDDC and
FETI-DP for mortar

Analysis

Additional
Applications

Numerical Results

Conclusions

We extend the DD algorithms to mortar discretizations on
3D-geometrically non-conforming partitions.

1. Overlapping Schwarz algorithm

2. FETI-DP with the Neumann-Dirichlet preconditioner
> Elliptic problems in 2D, 3D
> Stokes problem in 2D
> 3D compressible elasticity
> The most efficient for the problems with coefficient
jumps

3. BDDC algorithm well connected to the FETI-DP

4. BDDC with an inexact coarse problem
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Outline

Mortar
discretizations

DD for mortar
discretizations
Overlapping Schwarz
BDDC and
FETI-DP for mortar
Analysis

Additiona
Applications
Numerical Results

Conclusions

The end

Thank you!
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