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An outline of the lecture

• Introduction: the state of art in developing fast solvers.
• Finite-di�erence/fem preconditioners for hierarchical and spectral p

elements.
• Factorized preconditioners for spectral elements and their similarity

to the preconditioners-solvers for hierarchical elements.
• Examples of the factorized fast solvers for spectral elements :

X 2-d multigrid solver,
X 3-d fast solver based on the wavelet

multilevel decompositions,
X multilevel solver for faces.

• Almost optimal in the arithmetic cost domain decomposition
preconditioner-solver for hp spectral element methods.

• Conclusions.
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Preconditioners for hierarchical elements

M1,p = (Li(s) , i = 0, 1, . . . , p) � set of polynomials on (-1,1):

L0(s) = 1
2(1 + s) , L1(s) = 1

2(1− s) ,

Li(s) := βi

∫ s

−1 Pi−1(t) dt = γi[Pi(s)− Pi−2(s)] , i ≥ 2 ,

Pi are Legendre's polynomials and

βi =
1

2

√
(2j − 3)(2j − 1)(2j + 1) , γi = 0.5

√
(2i− 3)(2i + 1)/(2i− 1) .

Therefore, Li are specially normalized integrated Legendre's
polynomials.
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By hierarchical ref. el. Ehi is understood ref.el. on the cube
τ0 = (−1, 1)d with the basis in the space Qp,x

Md,p =
(
Lα(x) = Lα

1
(x1)Lα

2
(x2)...Lα

d
(xd) , α ∈ ω

)
,

ω := (α = (α1, α2, .., αd) : 0 ≤ α1, α2, .., αd ≤ p) ,

and with the sti�ness matrix A, induced byMd,p and Dirichlet
integral

aτ0
(u, v) =

∫
τ0

∇u · ∇v dx .

AI � internal sti�. matrix, generated by
◦
Md,p= (Lα, 2 ≤ αk ≤ p).
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If to reorder set
◦
Md,p, matrices AI , MI in d = 3 become block

diagonal
AI = diag [Aeee,Aeeo, ...,Aooe,Aooo] ,

MI = diag [Meee,Meeo, ...,Mooe,Mooo] .

At p = 2N + 1 all 8 blocks are N 3 ×N 3 matrices and, e.g.,

Aa1a2a3
= (aτ0

(Lα, Lα′))
N
αk,α

′
k=1 ,

with αk, α
′
k even/odd respectively to even/odd ak.
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These blocks are sums

Aabc = K1,a ⊗K0,b ⊗K0,c + K0,a ⊗K1,b ⊗K0,c + K0,a ⊗K0,b ⊗K1,c ,

Mabc = K0,a ⊗K0,b ⊗K0,c , a, b, c = e, o

of Kronecker products of triplets of N × N matrices, which may be
preconditioned by simple matrices

D = diag [4i2]Ni=1 , ∆ =
1

2


2 −1
−1 2 −1 0

. . . . . .
0 −1 2 −1

−1 2

 .



   St.-Petersburg State Polytechnical University

Laboratory of New Computational TechnologiesJJ J N I II 7/45JJ J N I II 7/45

Lemma 1. For 1-d preconditioners D,∆ and 3-d preconditioners

Λe = ∆⊗∆⊗D+∆×D⊗∆+D⊗∆⊗∆ , M = ∆⊗∆⊗∆ ,

there hold the inequalities

∆ ≺ K0,a ≺∆ , D ≺ K1,a ≺ D ,

Λe ≺ Aabc ≺ Λe , M ≺Mabc ≺M .

Proof. Ivanov/Korneev [1995] and Korneev/Jensen [1997],
Korneev/Langer/Xanthis [2003].
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Finite-difference interpretation

In 2-d
Λe = ∆⊗D + D ⊗∆

and is the F-D approximation of the di�erential operator

Lu ≡ −2

(
x2

1
∂2u

∂x2
2

+ x2
2
∂2u

∂x2
1

)
, x ∈ π1 := (0, 1)2 , u|∂π1

= 0 ,

on the square mesh of size ~ = 1/(N + 1). In 3-d, ~−2Λe is the F-D
approximation on the same mesh of the 4-th order operator

Lu ≡ x2
3u,1,1,2,2

+x2
2u,1,1,3,3

+x2
1u,2,2,3,3

= f (x) , x ∈ π1 := (0, 1)3 , u|∂π1
= 0 ,

where, e.g., u
,1,1,2,2

= ∂4u/∂x2
1∂x

2
2.
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FEMpreconditioner

Suppose, d = 3,
◦
V (π1) is the space of continuous on π1 and piece

wise trilinear on each cell of the cubic mesh functions, vanishing on ∂π1,
and Λe,fem is the corresponding to this space matrix of bilinear form

bπ1
(u, v) =

3∑
k=1

∫
π1

ϕku,k+1,k+2v,k+1,k+2dx , ϕk = x2
k .

Lemma 2. The matrix 1
}Λe,fem is spectrally equivalent to Aabc and

Λe uniformly in p.
Proof. See, e.g, Korneev [2002].
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In 2-d, one can use the FE space
◦
VM (π1) of continuous and piece

wise linear functions on the triangulation, obtained by subdivision of
each square nest of the mesh in two triangles. Preconditioner Λe,fem is
matrix of the bilinear form

bπ1
(u, v) =

2∑
k=1

∫
π1

ϕku,3−kv,3−kdx ,

on the space
◦
VM (π1). We have Λe,fem � ~2Aabc, ~2Λe.
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Preconditioners for the spectral elements

GLL (Gauss-Lobatto-Legendre) nodes ηi satisfy equation

(1− η2
i )P

′
p(ηi) = 0 , i = 0, 1, .., p ,

whereas for GLC (Gauss-Lobatto-Chebyshev) nodes we have

ηi = cos (
π

p
(p− i)) , i = 0, 1, .., p .

Orthogonal tensor product grid x = ηα = (ηα1
, ηα2

, .., ηαd
), α ∈ ω ,

with GLC or GLC nodes is termed Gaussian, whereas both types of the
Lagrange reference elements are termed (for brevity) spectral. In their
coordinate polynomials Lα(x) = Lα

1
(x1)Lα

2
(x2)...Lα

d
(xd), 1-d polyno-

mials satisfy Li(ηj) = δi,j, 0 ≤ j ≤ p, where δi,j is the Kronecker's
delta.
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For steps }i := ηi − ηi−1, i ≤ N, of the Gaussian mesh, we have
}i � i/p2. Mesh of a more general class satisfy

c1
iγ

ℵ ≤ }i ≤ c2
iγ

ℵ , ℵ =
∑N

i=1 i
γ, γ ≥ 0,

on [-1,0] and is continued on [0,1] by symmetry.
X At γ = 0 ⇒ ℵ = N � quasiuniform mesh,
X at γ = 1 ⇒ ℵ = N(N + 1)/2 � mesh, called pseudospectral, for

which at c1 = c2 = 1, we have

}i = i/ℵ =
i

(N 2 +N)
= β(p) i/p2 , β ∈ [4, 8] .

ASp, APsp � notations for ref. el. sti�ness matrices for Gaussian and
pseudospectral nodes, respectively,
ASp, APsp � notations for preconditioners, which are FE matrices, in-

duced by the space H(τ0) ∩ C(τ 0) of continuous functions belonging to
Q1,x on each square nest of the corresponding mesh.
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Simpler preconditioner

A} = ∆} ⊗ D} ⊗ D} + D} ⊗∆} ⊗ D} + D} ⊗ D} ⊗∆} ,

where

D} = diag [h̃i =
1

2
(}i + }i+1)]

p
i=0 , h̃i = 0 for i = 0, p + 1 ,

and ∆} is FE matrix:

(∆} u)|i = − 1

}i

ui−1 + (
1

}i

+
1

}i+1
)ui −

1

}i+1
ui+1 , i = 1, 2, .., p− 1 ,

(∆} u)|i=0 = − 1

}1
(u1 − u0) , (∆} u)|i=p =

1

}p

(up − up−1) .
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Lemma 3. Let A} be obtained on Gaussian or pseudospectral
(γ = 1) mesh. Sti�ness matrix ASp of the spectral reference element
and matrices APsp,A} are spectrally equivalent uniformly in p, i.e.,

APsp,ASp,A} ≺ ASp ≺ A},ASp,APsp .

Let MSp be mass matrix of spectral element, MSp, MP/Sp be its FE
preconditioners, generated by space H(τ0) on Gaussian or pseudospec-
tral mesh , and M} := D} ⊗ D} ⊗ D}. Then uniformly in p

MPsp,MSp,M} ≺MSp ≺M},MSp,MPsp .

Proof. Most important contribution by Bernardi/Maday [1992],who
studied 1-d case. Step to more dimensions in Canuto [1994] Casarin
[1997].
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Note :
� in the multi-d preconditioner Λe for hierarchical ref. el. Ehi, matrices

∆ and D are preconditioners for the mass and stiffness matrices in
1-d, respectively,
� whereas, in the multi-d preconditioner A} for spectral ref. el. E sp,

matrices ∆} and D} are preconditioners for the stiffness and mass
matrices in 1-d.
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Factored preconditioners for spectral elements

Let us introduce (p− 1)× (p− 1) matrices

∆Sp = tridiag [−1, 2,−1] ,
DSp = tridiag [1, 4, .., N 2, (N − 1)2, (N − 2)2, .., 4, 1] ,

(p− 1)3 × (p− 1)3 matrices

Λ̃I,Sp = DSp ⊗DSp ⊗ (∆Sp + D−1
Sp ) + DSp ⊗ (∆Sp + D−1

Sp )⊗DSp+
(∆Sp + D−1

Sp )⊗DSp ⊗DSp ,

ΛI,Sp = DSp ⊗DSp ⊗∆Sp + DSp ⊗∆Sp ⊗DSp + ∆Sp ⊗DSp ⊗DSp ,

diagonal transformation (p− 1)3 × (p− 1)3 matrix

C = p−4 D−1/2
} ⊗ D−1/2

} ⊗ D−1/2
} (C = p−2 D−1/2

} ⊗ D−1/2
} for 2−d) ,
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and matrices ∆̃} = D1/2
} ∆} D1/2

} and

Ã} := C−1A}C
−1 = p8 D1/2

} ⊗ D1/2
} ⊗ D1/2

} A} D1/2
} ⊗ D1/2

} ⊗ D1/2
} =

p8
(
D2

} ⊗ D2
} ⊗ ∆̃} + D2

} ⊗ ∆̃} ⊗ D2
} + D2

} ⊗ D2
} ⊗ ∆̃}

)
.

Theorem1. If matrices ÃI,}, ΛI,Sp, Λ̃I,Sp are obtained on Gaussian or
pseudospectral mesh }i � i/p2 for 1 ≤ i ≤ N , then they are spectrally
equivalent uniformly in p.

Proof. Korneev/Rytov [2005].

Corollary 1. Let ΛI,C := CΛI,SpC and Λ̃I,C := CΛ̃I,SpC. Under
conditions of Theorem 1

ΛI,C, Λ̃I,C ≺ AI,Sp ≺ ΛI,C, Λ̃I,C .



   St.-Petersburg State Polytechnical University

Laboratory of New Computational TechnologiesJJ J N I II 18/45JJ J N I II 18/45

Finite− difference interpretation

Matrix ΛI,Sp is 7-point F-D approximation of di�. operator

LSpu = −
[
φ2(x2)φ

2(x3)u,1,1
+ φ2(x1)φ

2(x3)u,2,2
+ φ2(x1)φ

2(x2)u,3,3

]
,

at u|∂τ0
= 0 and φ(x) = min(x + 1, x − 1). Indeed, for ~ = 2/p,

φi = φ(−1 + i~) and u = (ui)
p−1
i1,i2,i3=1,

ΛI,spu|i = − 1

~2

∑
k=1,2,3

φ2
ik+1
φ2

ik+2
[ui−ek

−2ui+ui+ek
] , 1 ≤ i1, i2, i3 ≤ (p−1) ,

where i = (i1, i2, i3), indices k, k + 1, k + 2 are understood modulo 3,
ek = (δk,l)

3
l=1 is the unite vector. For d = 2,

LSpu = −
[
φ2(x2)u,1,1

+ φ2(x1)u,2,2

]
, u|∂τ0

= 0 ,

ΛI,spu|i = −
∑

k=1,2 φ
2
i3−k

[ui−ek
− 2ui + ui+ek

] , i = (i1, i2) .
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Finite element preconditioners

Let d = 2. We divide square nests of size ~ in pairs of triangles and,
on such triangulation, introduce the space

◦
VM (τ0) ∈ C(τ 0) of piece wise

linear functions, vanishing on ∂τ0. The FE preconditioner BI,sp is the
matrix of the bilinear form

bτ0
(u, v) =

3∑
k=1

∫
τ0

φ2
3−ku,kv,k dx

on this space. In 2 and 3-d, BI,sp can be de�ned by the FE spaces of
bilinear and trilinear functions, respectively. We have

BI,sp � ~4−dΛI,Sp .
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Comparison

• At d = 2 in each quarter of τ0, operator LSp coincides with L up to
the constant multiplier (and rotation and transportation of the axes).
• The same is true for F-D operators Λe, ΛI,sp.
• At d = 3, di�erential and F-D operators are di�erent even in the order:
L is of 4-th order, whereas LSp is of 2-nd.
• However, multipliers ∆, D and respectively DSp, ∆Sp in representa-
tions of Λe, ΛI,sp by sums of Kroneckers products are similar.
• An additional di�culty for deriving fast solvers for 3-d hierarchical
elements directly on the basis of Λe is that it is a F-D analogue of 4-th
order di�erential operator. More over, this operator contains only mixed
derivatives. The use of the spectral elements and the preconditioner ΛI,C

simpli�es the problem by reducing it to designing a fast solver for ΛI,sp,
which is the F-D approximation of the 2-nd order di�erential operator
containing only derivatives ∂2/∂x2

k, k = 1, 2, 3.
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Conclusions

FAll fast solvers for systems with the hier-
archical reference element stiffness matrices (
or spectrally equivalent , e.g. , Λe) are easily
adjusted into fast solvers for systems with the
spectral reference element stiffness matrices or
spectrally equivalent to them matrices like ΛI,sp

FThe arithmetic costs of the latter and the
former solvers are the same in the order.
FAt least, these conclusions are true

for the all known fast solvers see, e.g.,
[K1],[K2],[KA],[B],[BSS], for systems with ma-
trices Λe.
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Example 1
Algebraicmultilevel solver for 2d spectral elements

We set p = 2N, N = 2`0−1 and introduce
� sequence of `0 embedded meshes of the sizes ~l = 2−l, l = 1, 2, .., `0,
with the nodes x = ~l(i, j)− (1, 1),

� sequence of spaces V l(τ0) with V `0
(τ0) =

◦
VM (τ0) and

� FE matrices Bl with B`0
= BI,Sp.

Each space V l(τ0) and the matrix Bl are the space
◦
VM (τ0) and the

matrix BI,Sp for the mesh of the level l.
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Also the following notations are used:
- Xl � the subset of internal nodes,
- Vl andWl � vector-spaces, related to subsets of nodes Xl and XW,l :=
Xl rXl−1, so that

Vl = Vl−1 ⊕Wl = Wl ⊕Wl−1 ⊕ ...⊕W2 ⊕ V1 .

- Pl−1 : Vl−1 → Vl � usual interpolation matrix from the mesh "l− 1"
on the next �ner mesh "l".

- Rl : Vl → Wl � restriction matrix to the set of nodes XW,l.
- BVl

, BWl
� blocks on the diagonal of Bl related to the subspaces Vl

and Wl.
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One multilevel iteration

If BWl
is a preconditioner for BWl

, one multigrid iteration for Blu =
F , producing uk+1,l := Mgm(l,Bl,F,u

k,l) for a given uk,l is:
If l > 1, then do

Pre-smoothing in the subspace Wl:
v := uk,l ;
do ν times v := v − σ−1

l R>l B−1
Wl

Rl(Blv − F) ;
Correction of the solution on the lower level in the space Vl−1:

dl−1 := P∗l−1(F−Blv) ; w = 0 ;
do µl−1 iterations w = Mgm(l − 1,Bl−1,dl−1,w) ;
v := v + Pl−1w ;

Post-smoothing in the subspace Wl:
do ν times v := v − σ−1

l R>l B−1
Wl

Rl(Blv − F) ;
uk+1,l = v

else, then solve Blu = F by the exact method
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Lines =j along which smoothing is performed in the multigrid solvers
for spectral (left) and hierarchical reference elements (right)
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decoupling

nodes of the
(l-1)-th level

additional 
nodes of the
l-th level

diagonal block
in the preconditioner

tridiagonal block
in the preconditioner

Line preconditioning.
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Two factors influence efficiency : 1) e�ciency of preconditioners
BWl

, i.e., the values of ck > 0 in the inequalities

c1BWl
≤ BWl

≤ c2BWl
,

and the cost of solving systems with the matrices BWl
. 2) the value of

c0 in the strengthened Cauchy inequality

(bτ0
(u, v))

2 ≤ c0 bτ0
(u, u)bτ0

(v, v), c0 < 1, ∀u ∈ Vl−1, ∀v ∈ Wl ,

where Wl(τ0) := Vl(τ0)	 Vl−1(τ0).

Lemma 4. c1 ≥ 1− 2/
√

11, c2 ≤ 1 + 2/
√

11, c0 ≤ 97/176 < 2/3 .

Proof. Repeats the proof of Beuchler [2002] for hierarchical reference
element.
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Convergence of the multigrid iterations

Theorem2 (Korneev/Rytov [2005]). Let Blu = F be solved by
the multigrid method in which σ = 2/(c1 + c2), µ ≥ 3 and ν be greater
than some νo(c0, c1, c2). Then the convergence factor

ρl,mult := sup uk∈Ul
‖uk+1 − u‖ Bl

/‖uk − u‖ Bl

is bounded by the constant ρ < 1 independent of p, l and uk.

Proof. Follows from results of Schieweck [1985] and P�aum [2000] and
Lemma 4.
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Multigrid iteration as a preconditioner

Let Mµ be the linear error transmission operator for one multigrid
iteration for system BI,spu = F. Then κ multigrid iterations implicitly
de�ne the preconditioner MgSp for Λ̂I,C and AI,sp, the inverse to which
is Mg−1

sp = ~−2C(I−Mκ
µ)B−1

I,spC, C = p−2D−1/2
~ ⊗ D−1/2

~ .

Theorem3 (Korneev/Rytov [2005]). Let µ = 3, ν ≥ 3 and κ ≥ 1.
Then

c Mg−1
sp ≤ A−1

I,sp ≤ c Mg−1
sp ,

with constants c, c > 0 independent of p ( and κ). The procedure
of the matrix-vector multiplication by Mg−1

sp requires O(p2) arithmetic
operations.
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Example 2
Multiresolution wavelet solver for 3d spectral elements

Since, e.g., ΛI,Sp is a sum of Kronecker products of matrices ∆Sp, DSp
related to 1-d integrals, fast solver for ΛI,Sp is constructed by deriving
multilevel preconditioners for these matrices.

For simplicity, we set again p = 2N, N = 2`0−1, and for l = 1, 2, ..., l0
introduce
• uniform mesh of size }l = 21−l on the interval (−1, 1)

xl
i = −1 + i}l, i = 0, 1, 2, .., 2Nl, x0 = −1, x2Nl

= 1, Nl = 2l−1

• space V l(−1, 1) of continuous piece wise linear functions, vanishing at
x = −1, 1,
• nodal=hat basis function σl

i ∈ V l(−1, 1), such that σl
i(x

l
j) = δi,j and

V l(−1, 1) = span
(
σl

i

)pl−1

i=1 , pl = 2l,
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• Gram matrices in the nodal basis

∆l = }l

(∫ 1

−1
(σl

i)
′, (σl

j)
′
)pl−1

i,j=1

, Ml = }−1
l

(∫ 1

−1
φ2 σl

i, σ
l
j

)pl−1

i,j=1

,

• single scale wavelet basis (ψl
k)

pl−1

k=1 in the space W l := V l 	 V l−1, so
that W l = span [ψl

k ]pl−1

k=1,
• multiscale wavelet basis (ψl

k )pl−1, l0
k,l=1 , composed of single scale bases ac-

cording to the representation

V =W1 ⊕W2 ⊕ ..⊕W l1, where V = V l0, W1 = V1,

• Gram matrices in the multiscale wavelet basis

∆wlet =
(
(}k}l)

1/2
∫ 1
−1(ψ

k
i )
′, (ψl

j)
′ dx

)pl−1; l0

i,j=1; k,l=1
,

Mwlet =
(
(}k}l)

−1/2
∫ 1
−1 φ

2 ψk
i , ψ

l
j dx

)pl−1; l0

i,j=1; k,l=1
,
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• diagonal matrices with the main diagonals from ∆wlet and Mwlet

D1 = diag [}l

∫ 1

−1
((ψl

i)
′)2 dx] pl−1,l0

i,l=1 , D0 = diag [}−1
l

∫ 1

−1
φ2(ψl

i)
2 dx] pl−1,l0

i,l=1 .

The transformation matrix from the multiscale wavelet basis to the ba-
sis (σl0

k )p−1
k=1 is denoted by Q. If v and vwavelet are the vectors of the

coe�cients of a function from V(0, 1) in the one scale nodal and the
multiscale wavelet bases, respectively, then v = Qvwavelet.

Theorem 4. There exist wavelet bases (ψl
k)

pl−1,l0
k,l=1 such that matrices

∆wlet and Mwlet are simultaneously spectrally equivalent to their di-
agonals D1 and D0, respectively, (uniformly in p) and multiplications
Qvwlet and QT v require O(p) arithmetic operations.
Proof. Basically it is the same as the proof of a similar result by

Beuchler/Schneider/Schwab [2004] in the case of hierarchical element.
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Theorem 5. Let

A−1
I,sp←w =


(QT ⊗QT )[ D0 ⊗ D1 + D1 ⊗ D0 ]−1(Q⊗Q), d = 2,

(QT ⊗QT ⊗QT )[D0 ⊗ D1 ⊗ D1 + D1 ⊗ D0 ⊗ D1+

D1 ⊗ D1 ⊗ D0]
−1(Q⊗Q⊗Q), d = 3 ,

then AI,sp←w � AI and therefore

cond [A−1
I,sp←wAI ] ≺ 1 .

The computational cost of the operation A−1
I,sp←wv for any v is

ops [A−1
I,sp←wv] = O(pd).
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Example 3
Multiresolution wavelet solver for faces

Good master preconditioner-solver for one face subproblem may be
matrix spectrally equivalent to the matrix of the norm

00| v |21/2,F0
= | v |21/2,F0

+

∫
F0

|v(x)|2

dist [x, ∂F0]
dx , ∀ v ∈

◦
Qp,x ,

for a typical face F0 = (−1, 1) × (−1, 1) of the reference element. By
diagonal entries d0,i, d1,i of D0,D1, respectively, one can de�ne diagonal
(2N − 1)2 × (2N − 1)2 matrix D1/2 with diagonal entries

d
(1/2)
i,j = d0,id0,j

√
d1,i/d0,i + d1,j/d0,j .
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Theorem 6 (Korneev/Rytov [2005]). Let

S−1
0 = (Q> ⊗Q>) D−1

1/2 (Q⊗Q) , S0 = CS0 C .

Then for all v ∈
◦
Qp,x and the corresponding vectors v, the norms

00| v |1/2,τ0
and ||v||S0

, respectively, are equivalent uniformly in p, i.e.,

00| v |1/2,τ0
� ||v||S0

.

Proof. Basis tool is Peetre's K-interpolation method.
S0 is a multiscale wavelet precoditioner for which ops [S−1

0 v] =
O(p2), ∀v, and, therefore, ops [S−1

0 v] = O(p2) as well. Similar
preconditioner-solver for faces of hierarchical elements was approved in
Korneev/Langer/Xanthis [2003].
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DOMAIN DECOMPOSITION ALGORITHM

The problem to be solved

aΩ(u, v) :=

∫
Ω
%(x)∇u · ∇v dx = (f, v)Ω , ∀ v ∈

◦
H

1(Ω) ,

in the domain Ω = ∪Rr=1τ r , which is an assemblage of compatible and in
general curvilinear �nite elements occupying domains τr. It is assumed
that �nite elements satisfy the generalized conditions of shape regularity.
The positive coe�cient %(x) is assumed to be pice wise constant, i.e.,
%(x) = %r for x ∈ τr.
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The �nite element sti�ness matrix may be represented in the block forms

K =

(
KI KIB

KBI KB

)
=

 KI KIF KIW

KFI KF KFW

KWI KWF KWW

 =

 KI KIF KIE KIV

KFI KF KFE KFV

KEI KEF KE KEV

KV I KV F KV E KV

 , where

I � stands for internal d.o.f., F � faces, E � edges, V � vertices, B �
interface boundary, W � wire basket.
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We consider the DD Dirichlet-Dirichlet preconditioner-solver K

K−1 = K +
I + PVB→V S−1

B P>VB→V ,

S−1
B = S +

F + PVW→VB
(SB

W )−1P>VW→VB
.

(0.1)

i) The block diagonal preconditioner-solver for the internal Dirichlet
problems on �nite elements has the form

K +
I :=

(
K−1

I 0
0 0

)
,

where KI = diag [h1%1BI,sp, h2%2BI,sp, . . . , hR%RBI,sp]

BI,sp = AI,sp←w � multiresolution preconditioner-solver of Theorem 5.
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ii) Block diagonal preconditioner-solver for internal problems on faces

S +
F =

(
S−1

F 0
0 0

)
, where SF = diag [κ1S0, κ2S0, . . . , κQS0] ,

� Q is the number of faces Fk ⊂ Ω,
� κk are multipliers

κk = (hr1(k)%r1(k) + hr2(k)%r2(k)) ,

with r1(k), r2(k) being numbers of two elements τ r1(k) and τ r2(k), sharing
the face Fk,
� hr is the characteristic size of an element,
� S0 is the preconditioner-solver for one face, de�ned in Theorem 4.
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iii) Preconditioner-solver SB
W for wire basket subproblem of relatively

small dimension O(Rp) × O(Rp). We borrow it from Casarin [1997]
and Pavarino/Widlund [1996], assuming that its arithmetical cost does
not disturb optimality of DD solver, i.e., ops[(SB

W )−1v] = O(Rp3).

The prolongation operations include :

iv) prolongation PVB→V from interelement boundary on the whole com-
putational domain Ω, completed by means of inexact solver with the
preconditioner BI,sp,
v) simple prolongation PVW→VB

from wire basket on interelement bound-
ary, not requiring solution of any systems, which is the same as in
Pavarino/Widlund [1996] and Casarin [1997].
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Theorem 7. Suppose, the generalized conditions of shape regularity
are ful�lled and the coe�cient ρ > 0 is piece wise constant. Then the
bound for the relative condition number of DD preconditioner-solver K
is

cond [K−1K] ≤ c(1 + log p)2 .

Suppose additionally that the wire basket solver satisfy the above as-
sumption iii). Then the number of arithmetic operations needed for
solving the system K−1v = f has the majorant

ops [K−1f ] ≤ O(p3(1 + log p)R) , ∀f .
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CONCLUSIONS

Factored precondtioners, presented in this lecture for the spectral
reference element sti�ness and mass matrices, allow to design almost
optimal in computationl work preconditioners-solvers for three most im-
portant subproblems, arising in DD algorithms for elliptic equations in
3d domains. Indeed, two of these preconditioners-solvers are optimal.

In the presented DD preconditioner-solver, only one sparse subsystem
of the relatively small dimension O(R) ×O(R), which is a part of the
wire basket subproblem, was not supplied with the solver optimal with
the respect to its dimension O(R).
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