Hp-spectral FEM's in fast domain decomposition algorithms

V. KORNEEV and A. RYTOV

An outline of the lecture

- Introduction: the state of art in developing fast solvers.
- \bullet Finite-difference/fem preconditioners for hierarchical and spectral p elements.
- Factorized preconditioners for spectral elements and their similarity to the preconditioners-solvers for hierarchical elements.
- Examples of the factorized fast solvers for spectral elements :
 - ✓ 2-d multigrid solver,
 - ✓ 3-d fast solver based on the wavelet multilevel decompositions,
 - ✓ multilevel solver for faces.
- Almost optimal in the arithmetic cost domain decomposition preconditioner-solver for hp spectral element methods.
- Conclusions.

Preconditioners for hierarchical elements

$$\mathcal{M}_{1,p} = (\mathcal{L}_i(s), \ i = 0, 1, \dots, p) - \text{set of polynomials on } (-1,1):$$
$$\mathcal{L}_0(s) = \frac{1}{2}(1+s), \qquad \qquad \mathcal{L}_1(s) = \frac{1}{2}(1-s),$$
$$\mathcal{L}_i(s) := \beta_i \int_{-1}^s P_{i-1}(t) \, dt = \gamma_i [P_i(s) - P_{i-2}(s)], \quad i \ge 2,$$

 P_i are Legendre's polynomials and

$$\beta_i = \frac{1}{2}\sqrt{(2j-3)(2j-1)(2j+1)}, \gamma_i = 0.5\sqrt{(2i-3)(2i+1)/(2i-1)}.$$

Therefore, \mathcal{L}_i are specially normalized integrated Legendre's polynomials.

By hierarchical ref. el. \mathcal{E}_{hi} is understood ref.el. on the cube $\tau_0 = (-1, 1)^d$ with the basis in the space $\mathcal{Q}_{p,x}$

$$\mathcal{M}_{d,p} = \left(L_{\boldsymbol{\alpha}}(\mathbf{x}) = \mathcal{L}_{\alpha_1}(x_1) \mathcal{L}_{\alpha_2}(x_2) \dots \mathcal{L}_{\alpha_d}(x_d) , \ \boldsymbol{\alpha} \in \omega \right),$$
$$\omega := \left(\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_d) : 0 \le \alpha_1, \alpha_2, \dots, \alpha_d \le p \right),$$

and with the stiffness matrix \mathbf{A} , induced by $\mathcal{M}_{d,p}$ and Dirichlet integral

$$a_{\tau_0}(u,v) = \int_{\tau_0} \nabla u \cdot \nabla v \, d\mathbf{x} \, .$$

 \mathbf{A}_{I} - *internal* stiff. matrix, generated by $\mathcal{M}_{d,p} = (L_{\boldsymbol{\alpha}}, 2 \leq \alpha_{k} \leq p).$

Laboratory of New Computational Technologies

If to reorder set $\mathcal{M}_{d,p}$, matrices \mathbf{A}_I , \mathbf{M}_I in d = 3 become block diagonal

$$\begin{split} \mathbf{A}_{I} &= \text{diag} \left[\mathbf{A}_{eee}, \mathbf{A}_{eeo}, ..., \mathbf{A}_{ooe}, \mathbf{A}_{ooo} \right] \,, \\ \mathbf{M}_{I} &= \text{diag} \left[\mathbf{M}_{eee}, \mathbf{M}_{eeo}, ..., \mathbf{M}_{ooe}, \mathbf{M}_{ooo} \right] \,. \end{split}$$

At p = 2N + 1 all 8 blocks are $N^3 \times N^3$ matrices and, e.g.,

$$\mathbf{A}_{a_1 a_2 a_3} = (a_{\tau_0}(L_{\boldsymbol{\alpha}}, L_{\boldsymbol{\alpha}'}))_{\alpha_k, \alpha'_k = 1}^N ,$$

with α_k, α'_k even/odd respectively to even/odd a_k .

These blocks are sums

$$\mathbf{A}_{abc} = \mathbb{K}_{1,a} \otimes \mathbb{K}_{0,b} \otimes \mathbb{K}_{0,c} + \mathbb{K}_{0,a} \otimes \mathbb{K}_{1,b} \otimes \mathbb{K}_{0,c} + \mathbb{K}_{0,a} \otimes \mathbb{K}_{0,b} \otimes \mathbb{K}_{1,c} ,$$

$$\mathbf{M}_{abc} = \mathbb{K}_{0,a} \otimes \mathbb{K}_{0,b} \otimes \mathbb{K}_{0,c}, \qquad a, b, c = e, o$$

of Kronecker products of triplets of $N \times N$ matrices, which may be preconditioned by simple matrices

$$\boldsymbol{\mathcal{D}} = \operatorname{diag} \left[4i^2\right]_{i=1}^N, \qquad \boldsymbol{\Delta} = \frac{1}{2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & 0 \\ & & \ddots & \ddots & \\ 0 & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{pmatrix}$$

Lemma 1. For 1-d preconditioners \mathcal{D}, Δ and 3-d preconditioners $\Lambda_{e} = \Delta \otimes \Delta \otimes \mathcal{D} + \Delta \times \mathcal{D} \otimes \Delta + \mathcal{D} \otimes \Delta \otimes \Delta$, $\mathcal{M} = \Delta \otimes \Delta \otimes \Delta$, there hold the inequalities $\Delta \prec \mathbb{K}_{0,a} \prec \Delta$, $\mathcal{D} \prec \mathbb{K}_{1,a} \prec \mathcal{D}$, $\Lambda_{e} \prec \Lambda_{abc} \prec \Lambda_{e}$, $\mathcal{M} \prec M_{abc} \prec \mathcal{M}$.

Proof. Ivanov/Korneev [1995] and Korneev/Jensen [1997], Korneev/Langer/Xanthis [2003]. **Finite-difference** interpretation

In 2-d

$oldsymbol{\Lambda}_{ ext{e}} = oldsymbol{\Delta} \otimes oldsymbol{\mathcal{D}} + oldsymbol{\mathcal{D}} \otimes oldsymbol{\Delta}$

and is the F-D approximation of the differential operator

$$Lu \equiv -2\left(x_1^2 \frac{\partial^2 u}{\partial x_2^2} + x_2^2 \frac{\partial^2 u}{\partial x_1^2}\right) , \quad x \in \pi_1 := (0,1)^2, \quad u|_{\partial \pi_1} = 0 ,$$

on the square mesh of size $\hbar = 1/(N+1)$. In 3-d, $\hbar^{-2}\Lambda_{\rm e}$ is the F-D approximation on the same mesh of the 4-th order operator

$$\begin{split} Lu &\equiv x_3^2 u_{,_{1,1,2,2}} + x_2^2 u_{,_{1,1,3,3}} + x_1^2 u_{,_{2,2,3,3}} = f(x) \,, \quad x \in \pi_1 := (0,1)^3 \,, \quad u|_{\partial \pi_1} = 0 \,, \end{split}$$
 where, e.g., $u_{,_{1,1,2,2}} = \partial^4 u / \partial x_1^2 \partial x_2^2$.

Laboratory of New Computational Technologies

FEM preconditioner

Suppose, d = 3, $\mathcal{V}(\pi_1)$ is the space of continuous on $\overline{\pi}_1$ and piece wise trilinear on each cell of the cubic mesh functions, vanishing on $\partial \pi_1$, and $\Lambda_{\text{e,fem}}$ is the corresponding to this space matrix of bilinear form

$$b_{\pi_1}(u,v) = \sum_{k=1}^3 \int_{\pi_1} \varphi_k u_{k+1,k+2} v_{k+1,k+2} dx, \qquad \varphi_k = x_k^2$$

Lemma 2. The matrix $\frac{1}{\hbar} \Lambda_{e,fem}$ is spectrally equivalent to \mathbf{A}_{abc} and $\mathbf{\Lambda}_{e}$ uniformly in p.

Proof. See, e.g, Korneev [2002].

In 2-d, one can use the FE space \mathcal{V}_{Δ} (π_1) of continuous and piece wise linear functions on the triangulation, obtained by subdivision of each square nest of the mesh in two triangles. Preconditioner $\Lambda_{e,\text{fem}}$ is matrix of the bilinear form

$$b_{\pi_1}(u,v) = \sum_{k=1}^2 \int_{\pi_1} \varphi_k u_{,3-k} v_{,3-k} dx ,$$

on the space $\overset{\circ}{\mathcal{V}}_{\scriptscriptstyle \Delta}(\pi_1)$. We have $\Lambda_{\rm e,fem} \simeq \hbar^2 \mathbf{A}_{abc}, \hbar^2 \Lambda_{\rm e}$.

Preconditioners for the spectral elements

GLL (Gauss-Lobatto-Legendre) nodes η_i satisfy equation

$$(1 - \eta_i^2) P'_p(\eta_i) = 0, \qquad i = 0, 1, ..., p,$$

whereas for GLC (Gauss-Lobatto-Chebyshev) nodes we have

$$\eta_i = \cos\left(\frac{\pi}{p}(p-i)\right), \qquad i = 0, 1, ..., p.$$

Orthogonal tensor product grid $\mathbf{x} = \boldsymbol{\eta}_{\boldsymbol{\alpha}} = (\eta_{\alpha_1}, \eta_{\alpha_2}, .., \eta_{\alpha_d}), \ \boldsymbol{\alpha} \in \boldsymbol{\omega}$, with GLC or GLC nodes is termed Gaussian, whereas both types of the Lagrange reference elements are termed (for brevity) spectral. In their coordinate polynomials $L_{\boldsymbol{\alpha}}(\mathbf{x}) = \mathcal{L}_{\alpha_1}(x_1)\mathcal{L}_{\alpha_2}(x_2)...\mathcal{L}_{\alpha_d}(x_d)$, 1-d polynomials satisfy $\mathcal{L}_i(\eta_j) = \delta_{i,j}, \ 0 \leq j \leq p$, where $\delta_{i,j}$ is the Kronecker's delta. For steps $\hbar_i := \eta_i - \eta_{i-1}, i \leq N$, of the Gaussian mesh, we have $\hbar_i \simeq i/p^2$. Mesh of a more general class satisfy

 $c_1 \frac{i^{\gamma}}{\aleph} \leq \hbar_i \leq c_2 \frac{i^{\gamma}}{\aleph}, \qquad \aleph = \sum_{i=1}^N i^{\gamma}, \qquad \gamma \geq 0,$

on [-1,0] and is continued on [0,1] by symmetry. \checkmark At $\gamma = 0 \implies \aleph = N$ – quasiuniform mesh,

✓ at $\gamma = 1 \implies \aleph = N(N+1)/2$ – mesh, called pseudospectral, for which at $c_1 = c_2 = 1$, we have

$$\hbar_i = i/\aleph = \frac{i}{(N^2 + N)} = \beta(p) \, i/p^2 \,, \qquad \beta \in [4, 8] \,.$$

 A_{Sp} , A_{Psp} – notations for ref. el. stiffness matrices for Gaussian and pseudospectral nodes, respectively,

 $\mathcal{A}_{\mathrm{Sp}}, \mathcal{A}_{\mathrm{Psp}}$ – notations for preconditioners, which are FE matrices, induced by the space $\mathcal{H}(\tau_0) \cap C(\overline{\tau}_0)$ of continuous functions belonging to $\mathcal{Q}_{1,x}$ on each square nest of the corresponding mesh. Simpler preconditioner

$$\mathbb{A}_{\hbar} = \mathbf{\Delta}_{\hbar} \otimes \mathbb{D}_{\hbar} \otimes \mathbb{D}_{\hbar} + \mathbb{D}_{\hbar} \otimes \mathbf{\Delta}_{\hbar} \otimes \mathbb{D}_{\hbar} + \mathbb{D}_{\hbar} \otimes \mathbb{D}_{\hbar} \otimes \mathbf{\Delta}_{\hbar} \,,$$

where

$$\mathbb{D}_{\hbar} = \text{diag} \left[\widetilde{h}_i = \frac{1}{2} (\hbar_i + \hbar_{i+1}) \right]_{i=0}^p, \quad \widetilde{h}_i = 0 \text{ for } i = 0, p+1,$$

and Δ_{\hbar} is FE matrix:

$$\begin{aligned} (\mathbf{\Delta}_{\hbar} \mathbf{u})|_{i} &= -\frac{1}{\hbar_{i}} u_{i-1} + (\frac{1}{\hbar_{i}} + \frac{1}{\hbar_{i+1}}) u_{i} - \frac{1}{\hbar_{i+1}} u_{i+1}, \quad i = 1, 2, ..., p - 1, \\ (\mathbf{\Delta}_{\hbar} \mathbf{u})|_{i=0} &= -\frac{1}{\hbar_{1}} (u_{1} - u_{0}), \quad (\mathbf{\Delta}_{\hbar} \mathbf{u})|_{i=p} = \frac{1}{\hbar_{p}} (u_{p} - u_{p-1}). \end{aligned}$$

Lemma 3. Let \mathbb{A}_{\hbar} be obtained on Gaussian or pseudospectral $(\gamma = 1)$ mesh. Stiffness matrix \mathbb{A}_{Sp} of the spectral reference element and matrices \mathcal{A}_{Psp} , \mathbb{A}_{\hbar} are spectrally equivalent uniformly in p, i.e.,

$\mathcal{A}_{\mathrm{Psp}}, \mathcal{A}_{\mathrm{Sp}}, \mathbb{A}_{\hbar} \prec \mathbf{A}_{\mathrm{Sp}} \prec \mathbb{A}_{\hbar}, \mathcal{A}_{\mathrm{Sp}}, \mathcal{A}_{\mathrm{Psp}}.$

Let \mathbf{M}_{Sp} be mass matrix of spectral element, $\mathcal{M}_{\mathrm{Sp}}$, $\mathcal{M}_{\mathrm{P/Sp}}$ be its FE preconditioners, generated by space $\mathcal{H}(\tau_0)$ on Gaussian or pseudospectral mesh , and $\mathbb{M}_{\hbar} := \mathbb{D}_{\hbar} \otimes \mathbb{D}_{\hbar} \otimes \mathbb{D}_{\hbar}$. Then uniformly in p

$\mathcal{M}_{\mathrm{Psp}}, \mathcal{M}_{\mathrm{Sp}}, \mathbb{M}_{\hbar} \prec \mathbf{M}_{\mathrm{Sp}} \prec \mathbb{M}_{\hbar}, \mathcal{M}_{\mathrm{Sp}}, \mathcal{M}_{\mathrm{Psp}}.$

Proof. Most important contribution by Bernardi/Maday [1992],who studied 1-d case. Step to more dimensions in Canuto [1994] Casarin [1997].

Note :

– in the multi-d preconditioner $\Lambda_{\rm e}$ for hierarchical ref. el. $\mathcal{E}_{\rm hi}$, matrices Δ and \mathcal{D} are preconditioners for the mass and stiffness matrices in 1-d, respectively,

– whereas, in the multi-d preconditioner \mathbb{A}_{\hbar} for spectral ref. el. \mathcal{E}_{sp} , matrices Δ_{\hbar} and \mathbb{D}_{\hbar} are preconditioners for the **stiffness and mass** matrices in 1-d.

Factored preconditioners for spectral elements

Let us introduce $(p-1) \times (p-1)$ matrices

$$\begin{split} \boldsymbol{\Delta}_{\rm Sp} &= \text{ tridiag} \left[-1, 2, -1 \right], \\ \boldsymbol{\mathcal{D}}_{\rm Sp} &= \text{ tridiag} \left[1, 4, ..., N^2, (N-1)^2, (N-2)^2, ..., 4, 1 \right], \end{split}$$

$$(p-1)^3 \times (p-1)^3$$
 matrices

$$\widetilde{\mathbf{\Lambda}}_{I,\mathrm{Sp}} = \ oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes (oldsymbol{\Delta}_{\mathrm{Sp}} + oldsymbol{\mathcal{D}}_{\mathrm{Sp}}) + oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes (oldsymbol{\Delta}_{\mathrm{Sp}} + oldsymbol{\mathcal{D}}_{\mathrm{Sp}}) \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} + (oldsymbol{\Delta}_{\mathrm{Sp}} + oldsymbol{\mathcal{D}}_{\mathrm{Sp}}) \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}},$$

 $egin{aligned} oldsymbol{\Lambda}_{I,\mathrm{Sp}} = \ oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\Delta}_{\mathrm{Sp}} + oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{\mathcal{D}}_{\mathrm{Sp}} & = oldsymbol{\mathcal{D}}_{\mathrm{Sp}} \otimes oldsymbol{$

diagonal transformation $(\mathbf{p-1})^3\times(\mathbf{p-1})^3$ matrix

 $\mathbf{C} = p^{-4} \mathbb{D}_{\hbar}^{-1/2} \otimes \mathbb{D}_{\hbar}^{-1/2} \otimes \mathbb{D}_{\hbar}^{-1/2} \qquad (\mathbf{C} = p^{-2} \mathbb{D}_{\hbar}^{-1/2} \otimes \mathbb{D}_{\hbar}^{-1/2} \text{ for } 2-\mathbf{d}),$

and matrices
$$\widetilde{\Delta}_{\hbar} = \mathbb{D}_{\hbar}^{1/2} \Delta_{\hbar} \mathbb{D}_{\hbar}^{1/2}$$
 and
 $\widetilde{A}_{\hbar} := \mathbf{C}^{-1} \mathbb{A}_{\hbar} \mathbf{C}^{-1} = p^{8} \mathbb{D}_{\hbar}^{1/2} \otimes \mathbb{D}_{\hbar}^{1/2} \otimes \mathbb{D}_{\hbar}^{1/2} \mathbb{A}_{\hbar} \mathbb{D}_{\hbar}^{1/2} \otimes \mathbb{D}_{\hbar}^{1/2} \otimes \mathbb{D}_{\hbar}^{1/2} =$

$$p^{8} \left(\mathbb{D}_{\hbar}^{2} \otimes \mathbb{D}_{\hbar}^{2} \otimes \widetilde{\Delta}_{\hbar} + \mathbb{D}_{\hbar}^{2} \otimes \widetilde{\Delta}_{\hbar} \otimes \mathbb{D}_{\hbar}^{2} + \mathbb{D}_{\hbar}^{2} \otimes \mathbb{D}_{\hbar}^{2} \otimes \widetilde{\Delta}_{\hbar} \right).$$

Theorem1. If matrices $\widetilde{\mathbb{A}}_{I,\hbar}$, $\Lambda_{I,\mathrm{Sp}}$, $\widetilde{\Lambda}_{I,\mathrm{Sp}}$ are obtained on Gaussian or pseudospectral mesh $\hbar_i \simeq i/p^2$ for $1 \leq i \leq N$, then they are spectrally equivalent uniformly in p.

Proof. Korneev/Rytov [2005].

Corollary 1. Let $\Lambda_{I,C} := \mathbf{C}\Lambda_{I,\mathrm{Sp}}\mathbf{C}$ and $\widetilde{\Lambda}_{I,C} := \mathbf{C}\widetilde{\Lambda}_{I,\mathrm{Sp}}\mathbf{C}$. Under conditions of Theorem 1

$$\mathbf{\Lambda}_{I,C}, \widetilde{\mathbf{\Lambda}}_{I,C} \prec \mathbf{A}_{I,\mathrm{Sp}} \prec \mathbf{\Lambda}_{I,C}, \widetilde{\mathbf{\Lambda}}_{I,C}$$
 .

Finite – difference interpretation

Matrix $\Lambda_{I,\mathrm{Sp}}$ is 7-point F-D approximation of diff. operator

$$\begin{split} L_{\rm Sp} u &= -\left[\phi^2(x_2)\phi^2(x_3)u_{,_{1,1}} + \phi^2(x_1)\phi^2(x_3)u_{,_{2,2}} + \phi^2(x_1)\phi^2(x_2)u_{,_{3,3}}\right] \,,\\ \text{at } u|_{\partial\tau_0} &= 0 \text{ and } \phi(x) = \min(x+1,x-1). \text{ Indeed, for } \hbar = 2/p,\\ \phi_i &= \phi(-1+i\hbar) \text{ and } \mathbf{u} = (u_{\mathbf{i}})_{i_1,i_2,i_3=1}^{p-1}, \end{split}$$

$$\mathbf{\Lambda}_{I,\mathrm{sp}}\mathbf{u}|_{\mathbf{i}} = -\frac{1}{\hbar^2} \sum_{k=1,2,3} \phi_{i_{k+1}}^2 \phi_{i_{k+2}}^2 [u_{\mathbf{i}-\mathbf{e}_k} - 2u_{\mathbf{i}} + u_{\mathbf{i}+\mathbf{e}_k}], \quad 1 \le i_1, i_2, i_3 \le (p-1),$$

where $\mathbf{i} = (i_1, i_2, i_3)$, indices k, k + 1, k + 2 are understood modulo 3, $\mathbf{e}_k = (\delta_{k,l})_{l=1}^3$ is the unite vector. For d = 2,

$$L_{\rm Sp} u = - \left[\phi^2(x_2) u_{_{\!\!\!\!,1,1}} + \phi^2(x_1) u_{_{\!\!\!,2,2}} \right] \,, \quad u|_{\partial \tau_0} = 0 \,,$$

$$\mathbf{\Lambda}_{I,\mathrm{sp}} \mathbf{u}|_{\mathbf{i}} = -\sum_{k=1,2} \phi_{i_{3-k}}^2 [u_{\mathbf{i}-\mathbf{e}_k} - 2u_{\mathbf{i}} + u_{\mathbf{i}+\mathbf{e}_k}], \quad \mathbf{i} = (i_1, i_2).$$

Finite element preconditioners

Let d = 2. We divide square nests of size \hbar in pairs of triangles and, on such triangulation, introduce the space $\overset{\circ}{\mathcal{V}}_{\Delta}(\tau_0) \in C(\overline{\tau}_0)$ of piece wise linear functions, vanishing on $\partial \tau_0$. The FE preconditioner $\mathbf{B}_{I,\mathrm{sp}}$ is the matrix of the bilinear form

$$b_{\tau_0}(u,v) = \sum_{k=1}^3 \int_{\tau_0} \phi_{3-k}^2 u_{,k} v_{,k} \, dx$$

on this space. In 2 and 3-d, $\mathbf{B}_{I,sp}$ can be defined by the FE spaces of bilinear and trilinear functions, respectively. We have

$$\mathbf{B}_{I,\mathrm{sp}} symp \hbar^{4-d} \mathbf{\Lambda}_{I,\mathrm{Sp}}$$

Comparison

- At d = 2 in each quarter of τ_0 , operator L_{Sp} coincides with L up to the constant multiplier (and rotation and transportation of the axes).
- The same is true for F-D operators Λ_e , $\Lambda_{I,sp}$.
- At d = 3, differential and F-D operators are different even in the order: L is of 4-th order, whereas L_{Sp} is of 2-nd.
- However, multipliers Δ , \mathcal{D} and respectively \mathcal{D}_{Sp} , Δ_{Sp} in representations of Λ_e , $\Lambda_{I,sp}$ by sums of Kroneckers products are similar.
- An additional difficulty for deriving fast solvers for 3-d hierarchical elements directly on the basis of Λ_e is that it is a F-D analogue of 4-th order differential operator. More over, this operator contains only mixed derivatives. The use of the spectral elements and the preconditioner $\Lambda_{I,C}$ simplifies the problem by reducing it to designing a fast solver for $\Lambda_{I,\text{sp}}$, which is the F-D approximation of the 2-nd order differential operator containing only derivatives $\partial^2/\partial x_k^2$, k = 1, 2, 3.

Conclusions

 \star All fast solvers for systems with the hierarchical reference element stiffness matrices (or spectrally equivalent , e.g., Λ_e) are easily adjusted into fast solvers for systems with the spectral reference element stiffness matrices or spectrally equivalent to them matrices like $\Lambda_{L,\mathrm{sp}}$ \star The arithmetic costs of the latter and the former solvers are the same in the order. \star At least, these conclusions are true for the all known fast solvers see, e.g., [K1], [K2], [KA], [B], [BSS], for systems with matrices Λ_{e} .

Example 1

${\bf Algebraic\, multilevel\, solver\, for\, 2d\, spectral\, elements}$

We set p = 2N, $N = 2^{\ell_0 - 1}$ and introduce

• sequence of ℓ_0 embedded meshes of the sizes $\hbar_l = 2^{-l}, \ l = 1, 2, .., \ell_0$, with the nodes $x = \hbar_l(i, j) - (1, 1)$,

• sequence of spaces $\mathcal{V}_l(\tau_0)$ with $\mathcal{V}_{\ell_0}(\tau_0) = \overset{\circ}{\mathcal{V}}_{\vartriangle}(\tau_0)$ and

• FE matrices \mathbf{B}_l with $\mathbf{B}_{\ell_0} = \mathbf{B}_{I,\mathrm{Sp}}$.

Each space $\mathcal{V}_l(\tau_0)$ and the matrix \mathbf{B}_l are the space \mathcal{V}_{Δ} (τ_0) and the matrix $\mathbf{B}_{I,\mathrm{Sp}}$ for the mesh of the level l.

Also the following notations are used:

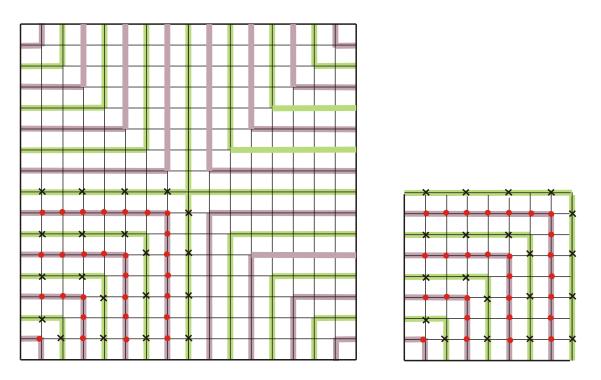
- X_l the subset of internal nodes,
- V_l and W_l vector-spaces, related to subsets of nodes X_l and $X_{W,l} := X_l \smallsetminus X_{l-1}$, so that

$$V_l = V_{l-1} \oplus W_l = W_l \oplus W_{l-1} \oplus \ldots \oplus W_2 \oplus V_1.$$

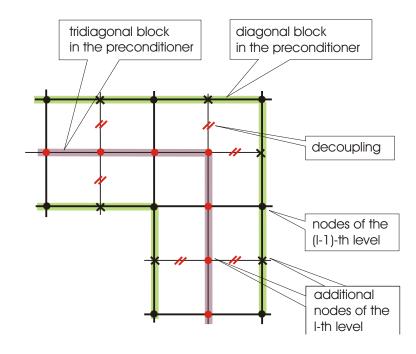
- $\mathbf{P}_{l-1}: V_{l-1} \to V_l$ usual interpolation matrix from the mesh "l 1" on the next finer mesh "l".
- $\mathbf{R}_l: V_l \to W_l$ restriction matrix to the set of nodes $X_{W,l}$.
- \mathbf{B}_{V_l} , \mathbf{B}_{W_l} blocks on the diagonal of \mathbf{B}_l related to the subspaces V_l and W_l .

One multilevel iteration

If \mathcal{B}_{W_l} is a preconditioner for \mathbf{B}_{W_l} , one multigrid iteration for $\mathbf{B}_l \mathbf{u} = \mathbf{U}$ **F**, producing $\mathbf{u}^{k+1,l} := \text{Mgm}(l, \mathbf{B}_l, \mathbf{F}, \mathbf{u}^{k,l})$ for a given $\mathbf{u}^{k,l}$ is: If l > 1, then do Pre-smoothing in the subspace W_l : $\mathbf{v} := \mathbf{u}^{k,l}$: do ν times $\mathbf{v} := \mathbf{v} - \sigma_l^{-1} \mathbf{R}_l^\top \boldsymbol{\mathcal{B}}_{W_l}^{-1} \mathbf{R}_l (\mathbf{B}_l \mathbf{v} - \mathbf{F});$ Correction of the solution on the lower level in the space V_{l-1} : $\mathbf{d}_{l-1} := \mathbf{P}_{l-1}^* (\mathbf{F} - \mathbf{B}_l \mathbf{v}); \ \mathbf{w} = 0;$ do μ_{l-1} iterations $\mathbf{w} = \mathbf{Mgm}(l-1, \mathbf{B}_{l-1}, \mathbf{d}_{l-1}, \mathbf{w})$; $\mathbf{v} := \mathbf{v} + \mathbf{P}_{l-1}\mathbf{w};$ Post-smoothing in the subspace W_l : do ν times $\mathbf{v} := \mathbf{v} - \sigma_l^{-1} \mathbf{R}_l^\top \boldsymbol{\mathcal{B}}_{W_l}^{-1} \mathbf{R}_l (\mathbf{B}_l \mathbf{v} - \mathbf{F});$ $\mathbf{u}^{k+1,l} = \mathbf{v}$ else, then solve $B_1 u = F$ by the exact method



Lines \Im_j along which smoothing is performed in the multigrid solvers for spectral (left) and hierarchical reference elements (right)



Line preconditioning.

Two factors influence efficiency : 1) efficiency of preconditioners \mathcal{B}_{W_l} , i.e., the values of $c_k > 0$ in the inequalities

 $c_1 \mathcal{B}_{W_l} \leq \mathbf{B}_{W_l} \leq c_2 \mathcal{B}_{W_l} ,$

and the cost of solving systems with the matrices \mathcal{B}_{W_l} . 2) the value of c_0 in the strengthened Cauchy inequality

 $(b_{\tau_0}(u,v))^2 \leq c_0 b_{\tau_0}(u,u) b_{\tau_0}(v,v), \quad c_0 < 1, \quad \forall u \in \mathcal{V}_{l-1}, \ \forall v \in \mathcal{W}_l ,$ where $\mathcal{W}_l(\tau_0) := \mathcal{V}_l(\tau_0) \ominus \mathcal{V}_{l-1}(\tau_0).$

Lemma 4. $c_1 \ge 1 - 2/\sqrt{11}$, $c_2 \le 1 + 2/\sqrt{11}$, $c_0 \le 97/176 < 2/3$. Proof. Repeats the proof of Beuchler [2002] for hierarchical reference element.

Convergence of the multigrid iterations

Theorem 2 (Korneev/Rytov [2005]). Let $\mathbf{B}_l \mathbf{u} = \mathbf{F}$ be solved by the multigrid method in which $\sigma = 2/(c_1 + c_2)$, $\mu \geq 3$ and ν be greater than some $\nu_o(c_0, c_1, c_2)$. Then the convergence factor

$$\rho_{l,\text{mult}} := \sup_{\mathbf{u}^k \in U_l} \|\mathbf{u}^{k+1} - \mathbf{u}\|_{\mathbf{B}_l} / \|\mathbf{u}^k - \mathbf{u}\|_{\mathbf{B}_l}$$

is bounded by the constant $\rho < 1$ independent of p, l and \mathbf{u}^k .

Proof. Follows from results of Schieweck [1985] and Pflaum [2000] and Lemma 4.

Multigrid iteration as a preconditioner

Let \mathbf{M}_{μ} be the linear error transmission operator for one multigrid iteration for system $\mathbf{B}_{I,\mathrm{sp}}\mathbf{u} = \mathbf{F}$. Then \varkappa multigrid iterations implicitly define the preconditioner $\mathbf{Mg}_{\mathrm{Sp}}$ for $\widehat{\mathbf{\Lambda}}_{I,C}$ and $\mathbf{A}_{I,\mathrm{sp}}$, the inverse to which is $\mathbf{Mg}_{\mathrm{sp}}^{-1} = \hbar^{-2}\mathbf{C}(\mathbf{I} - \mathbf{M}_{\mu}^{\varkappa})\mathbf{B}_{I,\mathrm{sp}}^{-1}\mathbf{C}, \ \mathbf{C} = p^{-2}\mathbb{D}_{\hbar}^{-1/2} \otimes \mathbb{D}_{\hbar}^{-1/2}.$

Theorem 3 (Korneev/Rytov [2005]). Let $\mu = 3$, $\nu \geq 3$ and $\varkappa \geq 1$. Then

$$\underline{c} \mathbf{M} \mathbf{g}_{\mathrm{sp}}^{-1} \leq \mathbf{A}_{I,\mathrm{sp}}^{-1} \leq \overline{c} \mathbf{M} \mathbf{g}_{\mathrm{sp}}^{-1} ,$$

with constants $\underline{c}, \overline{c} > 0$ independent of p (and \varkappa). The procedure of the matrix-vector multiplication by \mathbf{Mg}_{sp}^{-1} requires $\mathcal{O}(p^2)$ arithmetic operations.

Example 2

Multiresolution wavelet solver for 3d spectral elements

Since, e.g., $\Lambda_{I,\text{Sp}}$ is a sum of Kronecker products of matrices Δ_{Sp} , \mathcal{D}_{Sp} related to 1-d integrals, fast solver for $\Lambda_{I,\text{Sp}}$ is constructed by deriving multilevel preconditioners for these matrices.

For simplicity, we set again p = 2N, $N = 2^{\ell_0 - 1}$, and for $l = 1, 2, ..., l_0$ introduce

• uniform mesh of size $\hbar_l = 2^{1-l}$ on the interval (-1, 1)

$$x_i^l = -1 + i\hbar_l, \ i = 0, 1, 2, ..., 2N_l, \quad x_0 = -1, \ x_{2N_l} = 1, \quad N_l = 2^{l-1}$$

• space $\mathcal{V}_l(-1, 1)$ of continuous piece wise linear functions, vanishing at x = -1, 1,

• nodal=hat basis function $\sigma_i^l \in \mathcal{V}_l(-1, 1)$, such that $\sigma_i^l(x_j^l) = \delta_{i,j}$ and

$$\mathcal{V}_{l}(-1,1) = \text{span} \left(\sigma_{i}^{l}\right)_{i=1}^{p_{l}-1}, \qquad p_{l} = 2^{l},$$

• Gram matrices in the nodal basis

$$\boldsymbol{\Delta}_{l} = \hbar_{l} \left(\int_{-1}^{1} (\sigma_{i}^{l})', (\sigma_{j}^{l})' \right)_{i,j=1}^{p_{l}-1}, \qquad \boldsymbol{\mathcal{M}}_{l} = \hbar_{l}^{-1} \left(\int_{-1}^{1} \phi^{2} \sigma_{i}^{l}, \sigma_{j}^{l} \right)_{i,j=1}^{p_{l}-1},$$

• single scale wavelet basis $(\psi_k^l)_{k=1}^{p_{l-1}}$ in the space $\mathcal{W}_l := \mathcal{V}_l \ominus \mathcal{V}_{l-1}$, so that $\mathcal{W}_l = \operatorname{span} [\psi_k^l]_{k=1}^{p_{l-1}}$,

• multiscale wavelet basis $(\psi_k^l)_{k,l=1}^{p_{l-1},l_0}$, composed of single scale bases according to the representation

$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus .. \oplus \mathcal{W}_{l_1}, \text{ where } \mathcal{V} = \mathcal{V}_{l_0}, \mathcal{W}_1 = \mathcal{V}_1,$$

• Gram matrices in the multiscale wavelet basis

$$\begin{split} \boldsymbol{\Delta}_{\text{wlet}} &= \left((\hbar_k \hbar_l)^{1/2} \int_{-1}^1 (\psi_i^k)', (\psi_j^l)' \, dx \right)_{i,j=1;\,k,l=1}^{p_{l-1};\,l_0}, \\ \boldsymbol{\mathcal{M}}_{\text{wlet}} &= \left((\hbar_k \hbar_l)^{-1/2} \int_{-1}^1 \phi^2 \, \psi_i^k, \psi_j^l \, dx \right)_{i,j=1;\,k,l=1}^{p_{l-1};\,l_0}, \end{split}$$

• diagonal matrices with the main diagonals from $\Delta_{
m wlet}$ and $\mathcal{M}_{
m wlet}$

$$\mathbb{D}_{1} = \operatorname{diag} \left[\hbar_{l} \int_{-1}^{1} ((\psi_{i}^{l})')^{2} dx \right]_{i,l=1}^{p_{l-1},l_{0}}, \quad \mathbb{D}_{0} = \operatorname{diag} \left[\hbar_{l}^{-1} \int_{-1}^{1} \phi^{2}(\psi_{i}^{l})^{2} dx \right]_{i,l=1}^{p_{l-1},l_{0}}.$$

The transformation matrix from the multiscale wavelet basis to the basis $(\sigma_k^{l_0})_{k=1}^{p-1}$ is denoted by **Q**. If **v** and **v**_{wavelet} are the vectors of the coefficients of a function from $\mathcal{V}(0, 1)$ in the one scale nodal and the multiscale wavelet bases, respectively, then **v** = **Q v**_{wavelet}.

Theorem 4. There exist wavelet bases $(\psi_k^l)_{k,l=1}^{p_{l-1},l_0}$ such that matrices Δ_{wlet} and $\mathcal{M}_{\text{wlet}}$ are simultaneously spectrally equivalent to their diagonals \mathbb{D}_1 and \mathbb{D}_0 , respectively, (uniformly in p) and multiplications $\mathbf{Q} \mathbf{v}_{\text{wlet}}$ and $\mathbf{Q}^T \mathbf{v}$ require $\mathcal{O}(p)$ arithmetic operations.

Proof. Basically it is the same as the proof of a similar result by Beuchler/Schneider/Schwab [2004] in the case of hierarchical element.

Theorem 5. Let

$$\mathcal{A}_{I,\mathrm{sp}\leftarrow w}^{-1} = \begin{cases} (\mathbf{Q}^T \otimes \mathbf{Q}^T) [\mathbb{D}_0 \otimes \mathbb{D}_1 + \mathbb{D}_1 \otimes \mathbb{D}_0]^{-1} (\mathbf{Q} \otimes \mathbf{Q}), & d = 2, \\ (\mathbf{Q}^T \otimes \mathbf{Q}^T \otimes \mathbf{Q}^T) [\mathbb{D}_0 \otimes \mathbb{D}_1 \otimes \mathbb{D}_1 + \mathbb{D}_1 \otimes \mathbb{D}_0 \otimes \mathbb{D}_1 + \\ \mathbb{D}_1 \otimes \mathbb{D}_1 \otimes \mathbb{D}_0]^{-1} (\mathbf{Q} \otimes \mathbf{Q} \otimes \mathbf{Q}), & d = 3, \end{cases}$$

then $\mathcal{A}_{I, \mathrm{sp} \leftarrow w} \simeq \mathbf{A}_I$ and therefore

cond
$$[\mathcal{A}_{I,\mathrm{sp}\leftarrow w}^{-1}\mathbf{A}_I] \prec 1$$
.

The computational cost of the operation $\mathcal{A}_{I,\mathrm{sp}\leftarrow w}^{-1}\mathbf{v}$ for any \mathbf{v} is $\mathrm{ops}\left[\mathcal{A}_{I,\mathrm{sp}\leftarrow w}^{-1}\mathbf{v}\right] = \mathcal{O}(p^d).$

Example 3

Multiresolution wavelet solver for faces

Good master preconditioner-solver for one face subproblem may be matrix spectrally equivalent to the matrix of the norm

$$||_{1/2,F_0}^2 = |v||_{1/2,F_0}^2 + \int_{F_0} \frac{|v(x)|^2}{\operatorname{dist}[x,\partial F_0]} \, dx \,, \quad \forall \ v \in \overset{\circ}{\mathcal{Q}}_{p,x} \,,$$

for a typical face $F_0 = (-1, 1) \times (-1, 1)$ of the reference element. By diagonal entries $d_{0,i}, d_{1,i}$ of $\mathbb{D}_0, \mathbb{D}_1$, respectively, one can define diagonal $(2N-1)^2 \times (2N-1)^2$ matrix $\mathbb{D}_{1/2}$ with diagonal entries

$$d_{i,j}^{(1/2)} = d_{0,i} d_{0,j} \sqrt{d_{1,i}/d_{0,i} + d_{1,j}/d_{0,j}}$$

Theorem 6 (Korneev/Rytov [2005]). Let $\mathbb{S}_{0}^{-1} = (\mathbf{Q}^{\top} \otimes \mathbf{Q}^{\top}) \mathbb{D}_{1/2}^{-1} (\mathbf{Q} \otimes \mathbf{Q}), \qquad \mathbf{S}_{0} = \mathbf{C} \mathbb{S}_{0} \mathbf{C}.$ Then for all $v \in \overset{\circ}{\mathcal{Q}}_{p,x}$ and the corresponding vectors \mathbf{v} , the norms $_{00} |v|_{1/2,\tau_{0}}$ and $||\mathbf{v}||_{\mathbf{S}_{0}}$, respectively, are equivalent uniformly in p, i.e.,

 $_{00}|v|_{1/2,\tau_0} \asymp ||\mathbf{v}||_{\boldsymbol{\mathcal{S}}_0}.$

Proof. Basis tool is Peetre's K-interpolation method.

 S_0 is a multiscale wavelet precoditioner for which $\operatorname{ops}[S_0^{-1}\mathbf{v}] = \mathcal{O}(p^2), \forall \mathbf{v}, \text{ and, therefore, } \operatorname{ops}[\mathbf{S}_0^{-1}\mathbf{v}] = \mathcal{O}(p^2) \text{ as well. Similar preconditioner-solver for faces of hierarchical elements was approved in Korneev/Langer/Xanthis [2003].}$

DOMAIN DECOMPOSITION ALGORITHM

The problem to be solved

$$a_{\Omega}(u,v) := \int_{\Omega} \varrho(x) \nabla u \cdot \nabla v \, dx = (f,v)_{\Omega}, \qquad \forall v \in \overset{\circ}{H}{}^{1}(\Omega),$$

in the domain $\overline{\Omega} = \bigcup_{r=1}^{\mathcal{R}} \overline{\tau}_r$, which is an assemblage of compatible and in general curvilinear finite elements occupying domains τ_r . It is assumed that finite elements satisfy the generalized conditions of shape regularity. The positive coefficient $\varrho(x)$ is assumed to be pice wise constant, *i.e.*, $\varrho(x) = \varrho_r$ for $x \in \tau_r$.

The finite element stiffness matrix may be represented in the block forms

$$\mathbf{K} = \begin{pmatrix} \mathbf{K}_{I} & \mathbf{K}_{IB} \\ \mathbf{K}_{BI} & \mathbf{K}_{B} \end{pmatrix} = \begin{pmatrix} \mathbf{K}_{I} & \mathbf{K}_{IF} & \mathbf{K}_{IW} \\ \mathbf{K}_{FI} & \mathbf{K}_{F} & \mathbf{K}_{FW} \\ \mathbf{K}_{WI} & \mathbf{K}_{WF} & \mathbf{K}_{WW} \end{pmatrix} = \\ \begin{pmatrix} \mathbf{K}_{I} & \mathbf{K}_{IF} & \mathbf{K}_{IE} & \mathbf{K}_{IV} \\ \mathbf{K}_{FI} & \mathbf{K}_{F} & \mathbf{K}_{FE} & \mathbf{K}_{FV} \\ \mathbf{K}_{EI} & \mathbf{K}_{EF} & \mathbf{K}_{E} & \mathbf{K}_{EV} \\ \mathbf{K}_{VI} & \mathbf{K}_{VF} & \mathbf{K}_{VE} & \mathbf{K}_{V} \end{pmatrix} , \quad \text{where}$$

I – stands for internal d.o.f., F – faces, E – edges, V – vertices, B – interface boundary, W – wire basket.

We consider the DD Dirichlet-Dirichlet preconditioner-solver ${\cal K}$

$$\mathcal{K}^{-1} = \overline{\mathcal{K}}_{I}^{+} + \mathbf{P}_{V_{B} \to V} \mathcal{S}_{B}^{-1} \mathbf{P}_{V_{B} \to V}^{\top}, \qquad (0.1)$$
$$\mathcal{S}_{B}^{-1} = \overline{\mathcal{S}}_{F}^{+} + \mathbf{P}_{V_{W} \to V_{B}} (\mathcal{S}_{W}^{B})^{-1} \mathbf{P}_{V_{W} \to V_{B}}^{\top}.$$

i) The block diagonal preconditioner-solver for the internal Dirichlet problems on finite elements has the form

$$\overline{oldsymbol{\mathcal{K}}}_I^{\,+} := egin{pmatrix} oldsymbol{\mathcal{K}}_I^{-1} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{pmatrix} \,,$$

where $\mathcal{K}_{I} = \text{diag} [h_{1}\varrho_{1}\mathcal{B}_{I,\text{sp}}, h_{2}\varrho_{2}\mathcal{B}_{I,\text{sp}}, \dots, h_{\mathcal{R}}\varrho_{\mathcal{R}}\mathcal{B}_{I,\text{sp}}]$ $\mathcal{B}_{I,\text{sp}} = \mathcal{A}_{I,\text{sp}\leftarrow w}$ – multiresolution preconditioner-solver of Theorem 5. ii) Block diagonal preconditioner-solver for internal problems on faces

$$\overline{\boldsymbol{\mathcal{S}}}_{F}^{+} = \begin{pmatrix} \boldsymbol{\mathcal{S}}_{F}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix}, \quad \text{where} \quad \boldsymbol{\mathcal{S}}_{F} = \text{diag} \left[\kappa_{1} \boldsymbol{\mathcal{S}}_{0}, \kappa_{2} \boldsymbol{\mathcal{S}}_{0}, \dots, \kappa_{Q} \boldsymbol{\mathcal{S}}_{0} \right],$$

- Q is the number of faces $F_k \subset \Omega$, - κ_k are multipliers

$$\kappa_k = (h_{r_1(k)}\varrho_{r_1(k)} + h_{r_2(k)}\varrho_{r_2(k)}),$$

with $r_1(k)$, $r_2(k)$ being numbers of two elements $\overline{\tau}_{r_1(k)}$ and $\overline{\tau}_{r_2(k)}$, sharing the face F_k ,

- $-h_r$ is the characteristic size of an element,
- $-\boldsymbol{\mathcal{S}}_0$ is the preconditioner-solver for one face, defined in Theorem 4.

iii) Preconditioner-solver $\boldsymbol{\mathcal{S}}_{W}^{B}$ for wire basket subproblem of relatively small dimension $\mathcal{O}(\mathcal{R}p) \times \mathcal{O}(\mathcal{R}p)$. We borrow it from Casarin [1997] and Pavarino/Widlund [1996], assuming that its arithmetical cost does not disturb optimality of DD solver, *i.e.*, $\operatorname{ops}[(\boldsymbol{\mathcal{S}}_{W}^{B})^{-1}\mathbf{v}] = \mathcal{O}(\mathcal{R}p^{3})$.

The prolongation operations include :

iv) prolongation $\mathbf{P}_{V_B \to V}$ from interelement boundary on the whole computational domain $\overline{\Omega}$, completed by means of inexact solver with the preconditioner $\mathcal{B}_{I,\mathrm{sp}}$,

v) simple prolongation $\mathbf{P}_{V_W \to V_B}$ from wire basket on interelement boundary, not requiring solution of any systems, which is the same as in Pavarino/Widlund [1996] and Casarin [1997]. **Theorem 7**. Suppose, the generalized conditions of shape regularity are fulfilled and the coefficient $\rho > 0$ is piece wise constant. Then the bound for the relative condition number of DD preconditioner-solver \mathcal{K} is

$$\operatorname{cond} \left[\mathbf{\mathcal{K}}^{-1} \mathbf{K} \right] \le c (1 + \log p)^2.$$

Suppose additionally that the wire basket solver satisfy the above assumption **iii**). Then the number of arithmetic operations needed for solving the system $\mathcal{K}^{-1}\mathbf{v} = \mathbf{f}$ has the majorant

 $\operatorname{ops} \left[\mathcal{K}^{-1} \mathbf{f} \right] \le \mathcal{O}(p^3 (1 + \log p) \mathcal{R}), \quad \forall \mathbf{f}.$

CONCLUSIONS

Factored preconditioners, presented in this lecture for the spectral reference element stiffness and mass matrices, allow to design almost optimal in computationl work preconditioners-solvers for three most important subproblems, arising in DD algorithms for elliptic equations in 3d domains. Indeed, two of these preconditioners-solvers are optimal.

In the presented DD preconditioner-solver, only one sparse subsystem of the relatively small dimension $\mathcal{O}(\mathcal{R}) \times \mathcal{O}(\mathcal{R})$, which is a part of the wire basket subproblem, was not supplied with the solver optimal with the respect to its dimension $\mathcal{O}(\mathcal{R})$.

Related publications

[AK] Anufriev I and Korneev V. Fast domain decomposition method for deterriorating elliptic equation of 4-th order in 3-d. In proc. of 5-th All-Russian seminar Mesh methods for boundary values problems and applications, Kazan, 17-21 Sept. 2004. Kazan State Univ., 2004, 8–14.(In Russian)

[BM1] Bernardi Ch and Maday Y. Polynomial interpolation results in Sobolev spaces. Journal Computational and Applied Mathematics. 1992; 43:53–80.

[**BM2**] **Bernardi Ch and Maday Y**. Approximations spectrales de problèmes aux limites elliptiques (Math. Appl. 10), Springer-Verlag: Paris, 1992.

[B] Beuchler S. Multigrid solver for the inner problem in domain decomposition methods for p-FEM. SIAM J. Num. Anal. 2002; 40(4): 928-944.

[BSS] Beuchler S, Schneider R and SchwabC. Multiresolution weighted norm equivalence and applications. Num. Math. 2004; 98(1): 67-97.

[Ca] Canuto C. textcolorcyan Stabilization of spectral methods by finite element bubble functions. Computer Methods in Applied Mechanics and Engineering. 1994; 116(): 13 – 26.

[Cas] Casarin MA. Quasi-optimal Schwarz methods for the conforming spectral element discretization. SIAM J. Numer. Anal. 1997; 34(6): 2482–2502.

[K1] Korneev VG. Almost optimal method for solving Dirichlet problems on subdomains of decomposition of hierarchical hp-version. Differential'nye uravnenia (Differential equations). 2001; 37(7) : 1–10.(in Russian)

[K2] Korneev VG. Local Dirichlet problems on subdomains of decomposition in hp discretizations, and optimal algorithms for their solution. Matematicheskoie modelirovanie (Mathematical modelling). 2002; 14(5): 51 - 74. [KLX1] Korneev V, Langer U and Xanthis; L. On fast domain decomposition solving procedures for hp-discretizations of 3-d elliptic problems. Comput. Meth. in Appl. Math. 2003; 3(4): 536–559.

[KLX2] Korneev V, Langer U and Xanthis L. Fast adaptive domain decomposition algorithms for hp-discretizations of 2-d and 3-d elliptic equations: recent advances. Hermis- $\mu\pi$: An International Journal of Computer Math. and Appl. 2003; 4: 27–44.

[KXA] Korneev VG, Xanthis L and Anufriev IE. Hierarchical and Lagrange *hp* discretizations and fast domain decomposition solvers for them. SFB Report 02-18, Johannes Kepler University Linz:Linz, 2002.

[PW] Pavarino LF and WidlundOB. Iterative substructuring methods for spectral element discretizations of elliptic systems I; Compressible linear elasticity. J. Num. Anal. 1999; 37(2): 353–374.

[SWX] Shen J, Wang F, Xu J. A finite element multigrid preconditioner for Chebyshev – collocation methods. Appl. Num. Math. 2000; (33): 471–477.