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Brief infroduction

» Classical Schwarz methods
» Slow convergence in parficular for lower frequencies
» No convergence if subdomains don’t overlap

» Optimal Schwarz methods
» Convergence in finite number of iterations
» Converge for overlapping and non-overlapping subdomains
» Involve non-local fransmission operators
» Expensive to implement

» Optimized Schwarz methods
» Local fransmission conditions
» Converge for overlapping and non-overlapping subdomains
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Problem setting

We consider the model problem
Lu:=(n—A)u=f, in Q=R?3

We require the solutfion to decay af infinity. We decompose 2 = Q1 U Q9, in two
subdomains 21 and Qs, where Q1 = (—oo, L) x R? and Q5 = (0, 00) x R2. The
Jacobi Schwarz method:

ﬁu?:f in Q4 ﬁ’U,QZf in Qo
u(L,y,z) = ug"_l(L,y, 2) ul(0,y,z) = u?_l(O, Y, 2)

X=L

Figure 1. Decomposition of Q in two overlapping subdomains.
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Classical Schwarz

Setting f = 0 and taking a Fourier transform in y and z directions, we obtain

r<L,keR, meR a(L,k,m)=1a3""(L, k,m),
z>0,keR, meR aZ(0,k,m) —ﬁ?_l(o,k,m),

The solutions have the form

a7 (x, k,m) = A (k, m)er(Fm)z 4 B; (k, m)e*2(Fm)z j=1,2,

where \1(k,m) = \/k?2 + m2 + nand Aa(k,m) = —\/k2 +m?2 + 7. Using the
fransmission conditions, we obtain

’&?(CIJ, k, m) _ An 1(L L m) Al(k,M)(m—L)’ ’&S(CIZ, k, m)zﬁ?_l(o, k),rn)e)\g(k,m)a:.

Evaluating the second equation aft x = L for iteration index n — 1 and inserting it
into the first equation, we get over a double step the following relatfion

,&711 (ZC, k, m) —e k2+m2+nL€Vk2+m2+n(x_L)ﬁ,?_2(O, k, m)
Evaluating this equation af x = 0, we get

Ay (0, k,m)=e 2VEFMEL =200, kg m)
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Classical Schwarz (continue)

The convergence factor p(n, k, m, L) of the classical Schwarz algorithm is given
by

peta = Peta(n, kym, L) i= e 2VFEMEENL <1 wE e R, Vm eR

By induction, we obtain

a3 (0, k,m) = p%, 43 (0, k,m), 43" (L, k,m) = p% a3(L, k,m).

Classical Schwarz

~ 100

100 O

Figure 2: Dependence of the convergence factor p.;, on the frequencies k and

m for a fixed size of the overlap L = ﬁ and problem parameter n = 1.
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Opftimal schwarz methods

Introducing the following modified algorithm with new fransmission condifions

(81 +0:)(ul ")L,.,.)
(S2 + dz)(uyP 1) (0,.,.)

L) =f, N (81 + )W) (L,.,.)
Lug)=f, N Q2 (82 +8:)g)(0,.,.)

where S;, 7 = 1,2, are operators along the interface that depend on y and z.
Taking a Fourier fransform, we obtain

N+ k2 +m2 —0zp)a? = 0, 2<L,kER, mER
((o1(k,m) +0)(a?)(L,k,m) = (o1(k,m) +0z) (@l )L, k,m),

and

(77+k2+m _85656),&3 = 0, z>0,keR, meR
(o2(k,m) +08:)(43)(0,k,m) = ( oa(k,m) + 9z)(a7~")(0,k,m),

where o;(k,m), j = 1,2, denotes the symbol of the operafor S;(y, z2), 5 = 1,2,
respectively.
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Opftimal Schwarz methods (confinue)

Taking again Fourier fransform and using the fransmission condifions and the fact
that

ouy
ox
we find that

our
= /1 + k2 + m24a7} | 8—;=—\/n+k2+m2ﬁ5’,

k,m) — k2 + m2 oo (k k2 + m?
a7 0,y m) = T = VI H R ool m) ¥V E RS E W a2 g g )

o1(k,m) 4+ \/n+ k2 +m?2 oa(k,m) — /1 + k2 + m?2

Defining the new convergence factor pepe Yy

o1(k,m) — \/n+ k2 +m?2 oa(k,m) + /n + k2 + m2
o1(k,m) +/n+ k2 +m?2 oa(k,m) — /1 + k2 +m?2

Popt = 10(777 ka m, L7 o1, 0-2) i=

If we choose

o1(m) :=vn+k2+m2, and o2(m):=—/n+k2+m?2 ,

then, popt = 0 ., and the algorithm converges in two iterations, independently of
the initial guess, the overlap size L and the problem parameter n.
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Opfimized Schwarz methods

Now, we approximate the symbols ¢; by polynomials in ¢k and ¢m as

follow

ot (k,;m) =p1 + qu(k* +m?), o5 (k,m) = —p2 — g2(kK* +m*). (1)

The convergence factor of the optimized Schwarz methods becomes

p=p(n,k,m,L,p1,q1,pz2,q) V1 + k2 +m?2—p1—q(k?+m?)
— s vy s Lvy P15y 41, P25 42 —
V1 + k2 4+m? 4+ p1 + q (k2 +m?)

VAR 4 m? —ps — ga(k + M)

Pcla
VN + k2 +m?2 + pa + q2(k? +m?)

Theorem
The optimized Schwarz method with fransmission conditions defined by

the symbols (1) convergesfor p; >0, ¢g; > 0,5 = 1,2, faster than the

classical Schwarz method, |p(k, m)| < |peia(k, m)| for all k and m.
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Opftimized Schwarz methods (confinue)

Low frequency approximations
Expanding the symbols o, (k,m), j = 1,2, we find

o1(k,m) = \/_—i——k +Lm + O1(k*,m*),

2ym 2ym
and X X
oa2(k,m) = —\/n — W_k — ﬁm + O (k*, m™).

Zeroth order Taylor approximation (p1 = p> = /1, g1 = q2 = 0)

2
Vn+k2+m?—/n ,
cla -
VN +k2+m?+ /1

Second order Taylor approximation (pi = p> = /7. g1 = q2 = 7)

pro(n,k,m,L) = (

2

2 2
ViR m2 4+ 5 k2+7m2

pr2(n, k,m, L) = (
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Opftimized Schwarz methods (confinue)
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Opftimized Schwarz methods (confinue)

Theorem The optimized Schwarz methods with Taylor transmission conditions and
overlap L = h have an asymptotically superior performmance than the classical
Schwarz method with the same overlap. As h goes to zero, we have

max  pea(n, k,m,h)| =1—2\n h + O(h?)

|k|<#,Im|<%

pe X lpro(n,k,m, ) =1 - W2t Vi + O(h)
~7,Mm _E

max _ |pra(n, k,m,h)]| =1 —8n"* VR + O(h).
k< Elm|<E

Without overlap, the optimized Schwarz methods with Taylor fransmission
conditions are asymptotically comparable to the classical Schwarz method with
overlap L = h. As h goes to zero, we have

max _ |pro(mkym,0) = 1—4¥L b 4 O®K?)

k< T [m|<E -

max l\pr2(n, k,m,0)] =1 — 8ﬂ h + O(h?).

k<%, Im|<# 0
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Opftimized Schwarz methods (confinue)

Uniformly optimized approximations
For the zeroth order optimized Schwarz method we have the min-max

problem

VEk2+m2+n—p1
VE2+m2+n+p

6—2\/ k2—|—m2—|—nL>

Vk? +m2+n—ps
VE2+m2+n+po

min | max
p; >0 k,m

For the second order optimized Schwarz method we have the min-max
problem

\/k2—|—m2—|—77—p1 — qik® — rim?
VE24+m2+n+p1+ @k? + rim?

min max
pjaq_jarjzo k,m

\/k2—|—m2—|—77—p2—q2k2—r2m2
VE2+m? + 14 p2 + q2k? + ram?

6—2\/ k2—|—m2—|—77L>
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Opftimized Schwarz methods (confinue)

Zeroth order optimized tarnsmission condifions
Setting p1 = p2 = p, the convergence factor becomes

2
k? +m?+4+n— o /"2
pOOO<k7m7L7nap> -= (ékQ T 2 T Z +§> € 2V k2 2+77L.

and the corresponding min-max problem is given by

2
k2 2 _
min(max pooo(k, m, L7 n’p)) — min | max \/ +m“+n—p 6_21 /K2 +m2+nL
p>0  km p>0 k,m \/]C2 i m2 T . N D

Let fuin AN fmax 0 the minimal and the maximal frequency,
respectively.
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Opftimized Schwarz methods (confinue)

Theorem (Optimal Robin parameter). For L > 0 and f,,q. = oo, the
unigue solution p* of the min-max problem (2) is given by

,OOOOU_'Cmina mmin, L7 777p*> — p000<%(p*>7 m(p*)a L7 nap*>7

where

_ ) _ L(2p + L(p? —
k*(p, L,n)+m*(p, L,n) = f*(p,L,n) and f(p,L,n) = VECp L(p 77))’
and

72 — 2 2
kmin —|— Mmin = fmin'

For L = 0 and fuax, finite, the optimal parameter p* is given by the

closed form
p* — ((fr?lln + n)(fr%lax + 77>>1/47
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Opftimized Schwarz methods (confinue)

Proof The partial derivative of pOO0 w.r.t. pis

0pooo _ 4(19— \/k2 + m?2 —I—n)\/k2 + m?2 +ne_2\/m’3
o (VE? +m? +n +p)?

If p < \/f2,, + 7. increasing p decreases pooo for all k and m such that
k> +m? > f2;,. We can restrict the range for p to p > /f2.. +n. Hence
pooo has rootfs at k = k; and m = m; such that k¥ + m3 = p* —n, then we
define the function

_ \/k2—i—m2—|—n— \/k%+m%+n€—\/k2—l—m2+nL
VE2+m2+n+ kI +mi+n

R(k,m,L,n,ki,m1) :

The proof is based on the fact that the min-max problem is equivalent to
the optimization problem

min max |R(k,ma L,n, k1, m1)| )
kl,?’fbl 5 kam
R24m2>f2. \ [, <k24+m2<f2
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Opftimized Schwarz methods (confinue)
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Opftimized Schwarz methods (confinue)

Theorem (Robin asymptotic performance)
The asymptotic performance of the Schwarz method with optimized

Robin transmission conditions and overlap L = h, as h goes to zero, is
given by

max lpooo(n, kym, hyn,p*)| = 1—4.2"C(f24+m)"® B2 +OR?).

The asymptotic performance without overlap, L = 0, is given by

2 1/4
max lpooo(n, k,m,0,n,p")| =1— 4(fmm\;%77) Vh +O(h).

k,m

fmin< V k2+m2§%

Key of the proof, for L > 0, we make the ansatz p* = Ch® fora < 0, we
obtain

Pt = A(faim + 77)1/3 j,—1/3
2
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Opftimized Schwarz methods (confinue)

Second Order Optimized Transmission conditions
Setting p1 = p2 = p, g1 = ¢2 = q, and r; = r, = ¢, the convergence factor
becomes

Y

2
\/k2 +m? + n—p— Q<k2 =+ m2>> 6_2\/k2+m2—|—77L

pOOQ(k7m7L7n7p7Q) — (\/k2+m2+n+p+q(k2+m2)

To determine the optimal parameters p and ¢ for the Optimized Schwarz
method of order 2, we need to solve the min-max problem

min (maX |p002(k7 m, L7 1, P, q)|) —
p,q=>0 k,m

2
2 2 L o 2 2
min | max \/k + m* + n—>p Q<k +m ) 6—2\/k2—|—m2—|—77L (3)
p,q>0 \/k2+m2—|—77—i—p—|—q(k2—|—m2)

k,m
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Opftimized Schwarz methods (confinue)

Theorem (Optimal Second Order Parameters) For L > 0 and fiax = 00
the solution p*, ¢* of the min-max problem (3) is given by the unique root

of the system of equations
POO2(I_fmina mmin, L7 77729*7 q*) — pOOQ(I_Cla ml) L7 77729*7 q*) — pOOQ(%Qa m27 L7 77719*, q*)a

Where l_€1r2nin —I_ lr_n’l?nin — fI%lil’l? Ond

252 — L+2g—2Lpg—+/L2+4Lq—4L2pq+4q2—16Lpg2+16Lq3n+4L2¢2n
1 Tmy = 5142

72 , -2 __ L+2q—2Lpq++/L2+4Lq—4L2pq+49g?—16Lpqg?+16Lg3n+4L2q%n
k
2+ my = YL

For L = 0 and funax finite, the optimal parameters p* and ¢* are given by

o T P4
V2V s 10V Fin t Y 2 Ui Y B (fRaxtm) 1/
4)
q* — 1
V2(\ Flaxtn+t/£2, Y 2(f2 . +m Y/ B(F2 s tm)1 /8
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Opftimized Schwarz methods (confinue)

Theorem(Second order)
The asymptotic performance of the Schwarz method with optimized

second order transmission conditions and overlap L = h, as h goes to
zero, is given by

max lpoo2(n, k,m, h,n,p*,q*)| = 1-4.2%° (fa,+n) " RS 1 O(R*/°

k,m

fmin < \V k2+m2§fmax

The asymptotic performmance without overlap, L = 0, is given by

* % 2 r2nin + 1/8
max |POO2<777kam,07777p »d >| — 1_4\/_(f Tl/4 n> h1/4 +O<h1/2>

k,m

fming \V/ k2+m2§fmax

Proof The optimized parameters of the Schwarz method with second
order and overlap L = h, are given by

p* _ 2—3/5(f§lin 4+ 77)2/5]7/—1/5

¢ = 2(famm +n) RO
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Opftimized Schwarz methods (confinue)

Two-sided Optimized Robin Transmission Condition
Theorem (Optimal two-sided Robin conditions) If there is overlap, L > 0, then the
optimal two-sided Robin parameters are given by

. _ 1= V/1+4n(¢*)? — 4p*q*

1+ 1+ 4n(¢*)? — 4p*¢*
P1 2" -

ror . ®

*
’ p2

where p* and ¢* are solufions of (3) with L replaced by 2L. If there is no overlap,
L = 0, then the optimal two-sided Robin parameters are (5) where p* and ¢* are
given by (4).

Corollary The asymptotic performance of the two-sided optimized Schwarz
method with overlap L = h is given by

o (0, k,m, hym,pt, p5)| = 1-4.2%/5(f2,,+m) /0 RS +O(R?/P).
Smin <V k2+m2§fmax
6)

The asymptotic performance without overlap, L = 0, is given by

* ok ﬂ(fr?run + 77)1/8
rl?afrii |P(77ak>m>0>77ap1ap2)| =1-4 7'('1/4 h’l/4 +O(h1/2)
Smin <V k2+m2§fmax
(/)
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Opftimized Schwarz methods (confinue)
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Opftimized Schwarz methods (confinue)
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Numerical experiments
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Numerical experiments

Schwarz Taylor O Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2
h Schwarz as an iterative solver
1/10 52 26 20 9 8 6
1/20 63 26 20 9 8 6
1/40 75 27 20 9 8 6
1/80 86 26 20 9 8 6
1/160 93 26 20 9 8 6
Schwarz used as a preconditioner
1/10 11 8 7 6 6 4
1/20 11 8 7 6 6 4
1/40 12 8 7 6 6 4
1/80 11 8 7 6 6 4
1/160 12 8 7 6 6 4

Table 1: Number of iterations of the classical Schwarz method compared to the
different optimized methods with fixed overlap L = 1—10 between subdomains.
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Numerical experiments

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2
h Schwarz as an iterative solver
1/10 52 26 20 9 8 6
1/20 106 37 26 11 9 6
1/40 214 53 36 14 11 7
1/80 425 76 52 17 13 9
1/160 852 108 75 22 16 10
Schwarz used as a preconditioner
1/10 11 8 7 6 6 4
1/20 15 9 8 6 6 4
1/40 20 10 9 7 7 5
1/80 29 12 11 8 8 5
1/160 40 14 13 9 9 5

Table 2: Number of iterations of the classical Schwarz method compared to the
different optimized methods with variable overlap L = h between subdomains.

Opt. Schwarzin 3d - p. 27/3



Numerical experiments
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Figure 4. Number of iterations required by the classical and the optimized
Schwarz methods, with overlap L = h. On the left the methods are used as it-
erative solvers, and on the right as preconditioners for a Krylov method.
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Numerical experiments

Taylor O Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2
h Optimized Schwarz as an iterative solver
1/10 302 97 48 23 7
1/20 608 192 66 28 8
1/40 1211 393 94 39 9
1/80 2433 785 140 42 11
1/160 4855 1576 201 56 14
Optimized Schwarz used as a preconditioner
1/10 26 16 12 10 6
1/20 37 22 14 11 6
1/40 54 34 18 12 7
1/80 78 47 21 13 8
1/160 107 65 25 14 8

Table 3: Number of iterations of different optimized Schwarz methods without
overlap between subdomains.
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Numerical experiments

10°F
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Figure 5: Number of iterations required by the optimized Schwarz methods with-
out overlap between subdomains. On the leftf the methods are used as iterative
solvers, and on the right as preconditioners for a Krylov method.
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Concluding remarks

» We analyzed for three-dimensional positive definite model the
influence of fransmission conditions on the convergence factor of
the classical Schwarz method.

» We showed analytically and numerically the great performance
using optimized methods.

» The achieved performances are obtained without increasing the
cost of computations.

» The analysis of three-dimensional problems is more involved
tfechnically but leads to similar results compared to two-dimensional
case.
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