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Brief introduction

Classical Schwarz methods

Slow convergence in particular for lower frequencies

No convergence if subdomains don’t overlap

Optimal Schwarz methods

Convergence in finite number of iterations

Converge for overlapping and non-overlapping subdomains

Involve non-local transmission operators

Expensive to implement

Optimized Schwarz methods

Local transmission conditions

Converge for overlapping and non-overlapping subdomains
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Problem setting

We consider the model problem

Lu := (η − ∆)u = f, in Ω = R
3

We require the solution to decay at infinity. We decompose Ω = Ω1 ∪ Ω2, in two

subdomains Ω1 and Ω2, where Ω1 = (−∞, L) × R
2 and Ω2 = (0,∞) × R

2. The

Jacobi Schwarz method:

Lun
1 = f in Ω1 Lun

2 = f in Ω2

un
1 (L, y, z) = un−1

2 (L, y, z) un
2 (0, y, z) = un−1

1 (0, y, z)

Figure 1: Decomposition of Ω in two overlapping subdomains.
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Classical Schwarz

Setting f = 0 and taking a Fourier transform in y and z directions, we obtain

(η + k2 + m2 − ∂xx)ûn
1 = 0 x < L, k ∈ R, m ∈ R ûn

1 (L, k, m) = ûn−1
2 (L, k, m),

(η + k2 + m2 − ∂xx)ûn
2 = 0 x > 0, k ∈ R, m ∈ R ûn

2 (0, k, m) = ûn−1
1 (0, k, m),

The solutions have the form

ûn
j (x, k, m) = Aj(k, m)eλ1(k,m)x + Bj(k, m)eλ2(k,m)x, j = 1, 2,

where λ1(k, m) =

p

k2 + m2 + η and λ2(k, m) = −
p

k2 + m2 + η. Using the

transmission conditions, we obtain

ûn
1 (x, k, m)= ûn−1

2 (L, k, m)eλ1(k,m)(x−L), ûn
2 (x, k, m)= ûn−1

1 (0, k, m)eλ2(k,m)x.

Evaluating the second equation at x = L for iteration index n − 1 and inserting it

into the first equation, we get over a double step the following relation

ûn
1 (x, k, m)=e−

√
k2+m2+ηLe

√
k2+m2+η(x−L)ûn−2

1 (0, k, m)

Evaluating this equation at x = 0, we get

ûn
1 (0, k, m)=e−2

√
k2+m2+ηLûn−2

1 (0, k, m)

.
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Classical Schwarz (continue)

The convergence factor ρ(η, k, m, L) of the classical Schwarz algorithm is given

by

ρcla = ρcla(η, k, m, L) := e−2
√

k2+m2+ηL ≤ 1, ∀k ∈ R, ∀m ∈ R

By induction, we obtain

û2n
1 (0, k, m) = ρn

claû0
1(0, k, m), û2n

2 (L, k, m) = ρn
claû0

2(L, k, m).

Figure 2: Dependence of the convergence factor ρcla on the frequencies k and

m for a fixed size of the overlap L = 1
100

and problem parameter η = 1.
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Optimal schwarz methods

Introducing the following modified algorithm with new transmission conditions

L(un
1 ) = f, in Ω1 ( S1 + ∂x)(un

1 )(L, ., .) = ( S1 + ∂x)(un−1
2 )(L, ., .)

L(un
2 ) = f, in Ω2 ( S2 + ∂x)(un

2 )(0, ., .) = ( S2 + ∂x)(un−1
1 )(0, ., .)

where Sj , j = 1, 2, are operators along the interface that depend on y and z.

Taking a Fourier transform, we obtain

(η + k2 + m2 − ∂xx)ûn
1 = 0, x < L, k ∈ R, m ∈ R

( σ1(k, m) + ∂x)(ûn
1 )(L, k, m) = ( σ1(k, m) + ∂x)(ûn−1

2 )(L, k, m),

and

(η + k2 + m2 − ∂xx)ûn
2 = 0, x > 0, k ∈ R, m ∈ R

( σ2(k, m) + ∂x)(ûn
2 )(0, k, m) = ( σ2(k, m) + ∂x)(ûn−1

1 )(0, k, m),

where σj(k, m), j = 1, 2, denotes the symbol of the operator Sj(y, z), j = 1, 2,

respectively.
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Optimal Schwarz methods (continue)

Taking again Fourier transform and using the transmission conditions and the fact

that

∂ûn
1

∂x
=

p

η + k2 + m2ûn
1 ,

∂ûn
2

∂x
= −

p
η + k2 + m2ûn

2 ,

we find that

ûn
1 (0, k, m) =

σ1(k, m) −

p

η + k2 + m2

σ1(k, m) +

p

η + k2 + m2

σ2(k, m) +

p
η + k2 + m2

σ2(k, m) −
p

η + k2 + m2
ρcla ûn−2

1 (0, k, m)

Defining the new convergence factor ρopt by

ρopt = ρ(η, k, m, L, σ1, σ2) :=
σ1(k, m) −

p
η + k2 + m2

σ1(k, m) +
p

η + k2 + m2

σ2(k, m) +

p

η + k2 + m2

σ2(k, m) −

p

η + k2 + m2
ρcla

If we choose

σ1(m) :=

p
η + k2 + m2 , and σ2(m) := −

p

η + k2 + m2 ,

then, ρopt ≡ 0 , and the algorithm converges in two iterations, independently of

the initial guess, the overlap size L and the problem parameter η.
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Optimized Schwarz methods

Now, we approximate the symbols σj by polynomials in ik and im as

follow

σ
app
1 (k, m) = p1 + q1(k

2 + m
2), σ

app
2 (k,m) = −p2 − q2(k

2 + m
2). (1)

The convergence factor of the optimized Schwarz methods becomes

ρ = ρ(η, k,m, L, p1, q1, p2, q2) =

p
η + k2 + m2 − p1 − q1(k

2 + m2)p
η + k2 + m2 + p1 + q1(k2 + m2)

×
p

η + k2 + m2 − p2 − q2(k
2 + m2)p

η + k2 + m2 + p2 + q2(k2 + m2)
ρcla

Theorem

The optimized Schwarz method with transmission conditions defined by

the symbols (1) converges for pj > 0 , qj ≥ 0 , j = 1, 2, faster than the

classical Schwarz method, |ρ(k, m)| < |ρcla(k, m)| for all k and m.
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Optimized Schwarz methods (continue)

Low frequency approximations

Expanding the symbols σj(k,m), j = 1, 2, we find

σ1(k, m) =
√

η +
1

2
√

η
k

2 +
1

2
√

η
m

2 + O1(k
4
, m

4),

and

σ2(k, m) = −√
η − 1

2
√

η
k

2 − 1

2
√

η
m

2 + O2(k
4
, m

4).

Zeroth order Taylor approximation (p1 = p2 =
√

η; q1 = q2 = 0)

ρT0(η, k,m, L) =

 p
η + k2 + m2 −√

ηp
η + k2 + m2 +

√
η

!2

ρcla .

Second order Taylor approximation (p1 = p2 =
√

η; q1 = q2 = 1
2
√

η
)

ρT2(η, k,m, L) =
 p

η + k2 + m2 −√
η − 1

2
√

η
k2 − 1

2
√

η
m2p

η + k2 + m2 +
√

η + 1
2
√

η
k2 + 1

2
√

η
m2

!2

ρcla
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Optimized Schwarz methods (continue)
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Optimized Schwarz methods (continue)

Theorem The optimized Schwarz methods with Taylor transmission conditions and

overlap L = h have an asymptotically superior performance than the classical

Schwarz method with the same overlap. As h goes to zero, we have

max
|k|≤ π

h
,|m|≤ π

h

ρcla(η, k, m, h)| = 1 − 2
√

η h + O(h2)

max
|k|≤ π

h
,|m|≤ π

h

|ρT0(η, k, m, h)| = 1 − 4
√

2η1/4
√

h + O(h)

max
|k|≤ π

h
,|m|≤ π

h

|ρT2(η, k, m, h)| = 1 − 8η1/4
√

h + O(h).

Without overlap, the optimized Schwarz methods with Taylor transmission

conditions are asymptotically comparable to the classical Schwarz method with

overlap L = h. As h goes to zero, we have

max
|k|≤ π

h
,|m|≤ π

h

|ρT0(η, k, m, 0)| = 1 − 4

√
η

π
h + O(h2)

max
|k|≤ π

h
,|m|≤ π

h

|ρT2(η, k, m, 0)| = 1 − 8

√
η

π
h + O(h2).
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Optimized Schwarz methods (continue)

Uniformly optimized approximations

For the zeroth order optimized Schwarz method we have the min-max

problem

min
pj≥0

 

max
k,m

�����pk2 + m2 + η − p1p

k2 + m2 + η + p1

����� �����pk2 + m2 + η − p2p

k2 + m2 + η + p2
����� e−2

√
k2+m2+ηL

!
.

For the second order optimized Schwarz method we have the min-max

problem

min
pj ,qj ,rj≥0

 

max
k,m

�����pk2 + m2 + η − p1 − q1k
2 − r1m

2p
k2 + m2 + η + p1 + q1k2 + r1m2

����������pk2 + m2 + η − p2 − q2k
2 − r2m

2p
k2 + m2 + η + p2 + q2k2 + r2m2

����� e−2
√

k2+m2+ηL

!
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Optimized Schwarz methods (continue)

Zeroth order optimized tarnsmission conditions

Setting p1 = p2 = p, the convergence factor becomes

ρOO0(k,m, L, η, p) :=

 p

k2 + m2 + η − pp

k2 + m2 + η + p

!2

e
−2

√
k2+m2+ηL

.

and the corresponding min-max problem is given by

min
p≥0

(max
k,m

ρOO0(k,m, L, η, p)) = min
p≥0

 
max
k,m

 p
k2 + m2 + η − pp
k2 + m2 + η + p

!2

e
−2

√
k2+m2+ηL

!

Let fmin and fmax be the minimal and the maximal frequency,

respectively.
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Optimized Schwarz methods (continue)

Theorem (Optimal Robin parameter). For L > 0 and fmax = ∞, the

unique solution p∗ of the min-max problem (2) is given by

ρOO0(k̄min, m̄min, L, η, p
∗) = ρOO0(k̄(p∗), m̄(p∗), L, η, p

∗),

where

k̄
2(p, L, η)+m̄

2(p, L, η) = f̄
2(p, L, η) and f̄(p, L, η) =

p
L(2p + L(p2 − η))

L
,

and

k̄
2
min + m̄

2
min = f

2
min.

For L = 0 and fmax, finite, the optimal parameter p∗ is given by the

closed form

p
∗ = ((f2

min + η)(f2
max + η))1/4

,
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Optimized Schwarz methods (continue)

Proof The partial derivative of ρOO0 w.r.t. p is

∂ρOO0

∂p
= 4

(p −

p

k2 + m2 + η)

p

k2 + m2 + ηe−2
√

k2+m2+ηL

(

p

k2 + m2 + η + p)3

If p <

p

f2
min + η, increasing p decreases ρOO0 for all k and m such that

k2 + m2 > f2
min. We can restrict the range for p to p ≥

p
f2
min + η. Hence

ρOO0 has roots at k = k1 and m = m1 such that k2
1 + m2

1 = p2 − η, then we

define the function

R(k,m, L, η, k1, m1) :=

p
k2 + m2 + η −
p

k2
1 + m2

1 + ηp
k2 + m2 + η +

p
k2
1 + m2

1 + η
e
−
√

k2+m2+ηL

The proof is based on the fact that the min-max problem is equivalent to

the optimization problem

min
k1,m1

k2

1
+m2

1
≥f2

min

0B� max
k,m

f2

min
≤k2+m2≤f2

max

|R(k,m, L, η, k1, m1)|

1CA ,
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Optimized Schwarz methods (continue)

f
min

f
min

f

fk
min

f
1

m
min

k2+m2=f2
min

f
1

kk
1

m
1

m

k2+m2=f2
1

ρ
OO0

ρ
OO0

ρ
OO0

ρ
OO0

k2+m2=f 2
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Optimized Schwarz methods (continue)

Theorem (Robin asymptotic performance)

The asymptotic performance of the Schwarz method with optimized

Robin transmission conditions and overlap L = h, as h goes to zero, is

given by

max
k,m

fmin≤
√

k2+m2≤ π
h

|ρOO0(η, k,m, h, η, p
∗)| = 1−4.21/6(f2

min+η)1/6
h

1/3 +O(h2/3).

The asymptotic performance without overlap, L = 0, is given by

max
k,m

fmin≤
√

k2+m2≤ π
h

|ρOO0(η, k,m, 0, η, p
∗)| = 1 − 4

(f2
min + η)1/4

√
π

√
h + O(h).

Key of the proof, for L > 0, we make the ansatz p∗ = Chα for α < 0, we

obtain

p
∗ =

4(f2
min + η)1/3

2
h
−1/3
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Optimized Schwarz methods (continue)

Second Order Optimized Transmission conditions

Setting p1 = p2 = p, q1 = q2 = q, and r1 = r2 = q, the convergence factor

becomes

ρOO2(k,m, L, η, p, q) =

 p

k2 + m2 + η − p − q(k2 + m2)p

k2 + m2 + η + p + q(k2 + m2)

!2

e
−2

√
k2+m2+ηL

,

To determine the optimal parameters p and q for the Optimized Schwarz

method of order 2, we need to solve the min-max problem

min
p,q≥0

(max
k,m

|ρOO2(k,m, L, η, p, q)|) =

min
p,q≥0

 

max
k,m

 p
k2 + m2 + η − p − q(k2 + m2)p
k2 + m2 + η + p + q(k2 + m2)

!2

e
−2

√
k2+m2+ηL

!

(3)
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Optimized Schwarz methods (continue)

Theorem (Optimal Second Order Parameters) For L > 0 and fmax = ∞
the solution p∗, q∗ of the min-max problem (3) is given by the unique root

of the system of equations

ρOO2(k̄min, m̄min, L, η, p
∗
, q

∗) = ρOO2(k̄1, m̄1, L, η, p
∗
, q

∗) = ρOO2(k̄2, m̄2, L, η, p
∗
, q

∗),

where k̄2
min + m̄2

min = f2
min, and

k̄
2
1 + m̄

2
1 =

L+2q−2Lpq−
√

L2+4Lq−4L2pq+4q2−16Lpq2+16Lq3η+4L2q2η

2Lq2

k̄2
2 + m̄2

2 =
L+2q−2Lpq+

√
L2+4Lq−4L2pq+4q2−16Lpq2+16Lq3η+4L2q2η

2Lq2

For L = 0 and fmax finite, the optimal parameters p∗ and q∗ are given by

p∗ =

√
f2

min
+η

√
f2
max

+η+η
√

2(
√

f2
max

+η+
√

f2

min
+η)1/2(f2

min
+η)1/8(f2

max
+η)1/8

q∗ = 1√
2(
√

f2
max

+η+
√

f2

min
+η)1/2(f2

min
+η)1/8(f2

max
+η)1/8

(4)
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Optimized Schwarz methods (continue)

Theorem(Second order)

The asymptotic performance of the Schwarz method with optimized

second order transmission conditions and overlap L = h, as h goes to

zero, is given by

max
k,m

fmin≤
√

k2+m2≤fmax

|ρOO2(η, k, m, h, η, p
∗
, q

∗)| = 1−4.23/5(f2
min+η)1/10

h
1/5 +O(h2/5)

The asymptotic performance without overlap, L = 0, is given by

max
k,m

fmin≤
√

k2+m2≤fmax

|ρOO2(η, k, m, 0, η, p
∗
, q

∗)| = 1−4

√
2(f2

min + η)1/8

π1/4
h

1/4 +O(h1/2).

Proof The optimized parameters of the Schwarz method with second

order and overlap L = h, are given by

p
∗ = 2−3/5(f2

min + η)2/5
h
−1/5

q
∗ = (2(f2

min + η))−1/5
h

3/5
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Optimized Schwarz methods (continue)

Two-sided Optimized Robin Transmission Condition

Theorem (Optimal two-sided Robin conditions) If there is overlap, L > 0, then the

optimal two-sided Robin parameters are given by

p∗1 =
1 −

p

1 + 4η(q∗)2 − 4p∗q∗

2q∗
, p∗2 =

1 +

p
1 + 4η(q∗)2 − 4p∗q∗

2q∗
, (5)

where p∗ and q∗ are solutions of (3) with L replaced by 2L. If there is no overlap,

L = 0, then the optimal two-sided Robin parameters are (5) where p∗ and q∗ are

given by (4).

Corollary The asymptotic performance of the two-sided optimized Schwarz

method with overlap L = h is given by

max
k,m

fmin≤
√

k2+m2≤fmax

|ρ(η, k, m, h, η, p∗1, p∗2)| = 1−4.23/5(f2
min+η)1/10 h1/5 +O(h2/5).

(6)

The asymptotic performance without overlap, L = 0, is given by

max
k,m

fmin≤
√

k2+m2≤fmax

|ρ(η, k, m, 0, η, p∗1, p∗2)| = 1−4

√
2(f2

min + η)1/8

π1/4
h1/4 +O(h1/2).

(7)
Opt. Schwarz in 3d – p. 22/31



Optimized Schwarz methods (continue)
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Optimized Schwarz methods (continue)
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Numerical experiments
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Exact solution in domain 2
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Numerical solution in domain 2
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Figure 3: Screen shoots of the solutions and difference between exact and nu-

merical solutions, with n=20 and overlap h = 1/20.
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Numerical experiments

Schwarz Taylor 0 Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2

h Schwarz as an iterative solver

1/10 52 26 20 9 8 6

1/20 63 26 20 9 8 6

1/40 75 27 20 9 8 6

1/80 86 26 20 9 8 6

1/160 93 26 20 9 8 6

Schwarz used as a preconditioner

1/10 11 8 7 6 6 4

1/20 11 8 7 6 6 4

1/40 12 8 7 6 6 4

1/80 11 8 7 6 6 4

1/160 12 8 7 6 6 4

Table 1: Number of iterations of the classical Schwarz method compared to the

different optimized methods with fixed overlap L = 1
10

between subdomains.

Opt. Schwarz in 3d – p. 26/31



Numerical experiments

Classical Taylor 0 Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2

h Schwarz as an iterative solver

1/10 52 26 20 9 8 6

1/20 106 37 26 11 9 6

1/40 214 53 36 14 11 7

1/80 425 76 52 17 13 9

1/160 852 108 75 22 16 10

Schwarz used as a preconditioner

1/10 11 8 7 6 6 4

1/20 15 9 8 6 6 4

1/40 20 10 9 7 7 5

1/80 29 12 11 8 8 5

1/160 40 14 13 9 9 5

Table 2: Number of iterations of the classical Schwarz method compared to the

different optimized methods with variable overlap L = h between subdomains.
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Numerical experiments
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Figure 4: Number of iterations required by the classical and the optimized

Schwarz methods, with overlap L = h. On the left the methods are used as it-

erative solvers, and on the right as preconditioners for a Krylov method.

Opt. Schwarz in 3d – p. 28/31



Numerical experiments

Taylor 0 Taylor 2 Optimized 0 Two-sided Optimized 0 Optimized 2

h Optimized Schwarz as an iterative solver

1/10 302 97 48 23 7

1/20 608 192 66 28 8

1/40 1211 393 94 39 9

1/80 2433 785 140 42 11

1/160 4855 1576 201 56 14

Optimized Schwarz used as a preconditioner

1/10 26 16 12 10 6

1/20 37 22 14 11 6

1/40 54 34 18 12 7

1/80 78 47 21 13 8

1/160 107 65 25 14 8

Table 3: Number of iterations of different optimized Schwarz methods without

overlap between subdomains.
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Numerical experiments
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Figure 5: Number of iterations required by the optimized Schwarz methods with-

out overlap between subdomains. On the left the methods are used as iterative

solvers, and on the right as preconditioners for a Krylov method.
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Concluding remarks

We analyzed for three-dimensional positive definite model the

influence of transmission conditions on the convergence factor of

the classical Schwarz method.

We showed analytically and numerically the great performance

using optimized methods.

The achieved performances are obtained without increasing the

cost of computations.

The analysis of three-dimensional problems is more involved

technically but leads to similar results compared to two-dimensional

case.
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