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Development of Multilevel BDDC Method

• BDDC (Dohrmann 2002): method from the Balancing Domain

Decomposition (BDD) family (Mandel 1993), related to the Additive

Schwarz framework of Neumann Neumann type (Dryja, Widlund 1995).

BDD is Neumann-Neumann (De Roeck, Le Tallec, Vidrascu 1992,

Glowinski, Wheeler 1988) with a coarse space; BDDC has a different

coarse space. BDD is an approach dual to FETI (Farhat, Roux 1991).

The eigenvalues of BDDC and FETI-DP are same except possibly for 0

and 1 (Mandel, Dohrmann, Tezaur 2005).

• Motivation: Large coarse problem is a bottleneck (case of many

substructures) =⇒ necessity of a multilevel algorithm.

• Three-level BDDC (BDDC with two coarse levels) in two and three

dimensions (Tu 2004, 2005).



New Here

• Abstract multilevel/multispace BDDC formulation.

• Algebraic multilevel condition number estimate.

• Polylogarithmic multilevel condition number estimate for any fixed

number of levels.

• Multilevel BDDC numerical experiments.



Substructuring for a Problem with H/h=4
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Substructuring for a Three-level Model Problem
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Abstract BDDC (Two Levels):
Variational Setting of the Problem and Algorithm Components

u ∈ U : a(u, v) = (f, v) , ∀v ∈ U

a symmetric, positive definite on U and positive semidefinite on W ⊃ U .

Example:
W = W1 × · · · ×WN (spaces on substructures)
U = functions continuous across interfaces

Choose preconditioner components:

space W̃ , U ⊂ W̃ ⊂W, such that a is positive definite on W̃ .
Example: functions with continuous coarse dofs, such as values at
substructure corners

projection E : W̃ → U, range E = U .
Example: averaging across substructure interfaces



Abstract BDDC Preconditioner

Given a on W ⊃ U , A : U → U , a(v, w) = (Av, w) ∀v, w ∈ U
Choose W̃ , U ⊂ W̃ ⊂W and projection E : W̃ → U

Theorem 1 The abstract BDDC preconditioner M : U −→ U ,

M : r 7−→ u = Ew, w ∈ W̃ : a (w, z) = (r, Ez) , ∀z ∈ W̃ ,

satisfies

κ =
λmax(MA)

λmin(MA)
≤ ω = sup

w∈W̃

‖Ew‖2a
‖w‖2a

.

This framework is similar to partial subassembly by Li and Widlund (2005).

In implementation, W̃ is decomposed into

W̃ = W̃∆ ⊕ W̃Π

W̃∆ = functions with zero coarse dofs ⇒ local problems on substructures
W̃Π = functions given by coarse dofs & energy minimal
⇒ global coarse problem



Abstract Multi-Space (Multilevel) BDDC

Decompose the space W̃ and choose projections Qk as

U ⊂ W̃ =
∑N

k=1 Vk ⊂W, Qk : Vk → U

Vk energy orthogonal: Vk ⊥a Vℓ, k 6= ℓ,

so ∀u ∈ W̃ : u =
N∑

k=1

vk, vk ∈ Vk

assume ∀u ∈ U : u =
N∑

k=1

Qkvk

Equivalently, assume Πk : W̃ → Vk are orthogonal projections, and

I =
N∑

k=1

Πk on W̃ , I =
N∑

k=1

QkΠk on U



Abstract Multi-Space (Multilevel) BDDC

Theorem 2 The abstract multi-space BDDC preconditioner M : U −→ U ,

M : r 7→ u, u =
N∑

k=1

Qkvk, vk ∈ Vk : a (vk, zk) = (r, Qkzk) , ∀zk ∈ Vk,

satisfies

κ =
λmax(MA)

λmin(MA)
≤ ω = max

k
sup

vk∈Vk

‖Qkvk‖
2
a

‖vk‖
2
a

.

For N = 1 we recover the abstract BDDC algorithm and condition number

bound. Proved from generalized Schwarz theory (Dryja and Widlund, 1995).

Unlike in the Schwarz theory, we decompose W̃ ⊃ U , not U .

In a sense, the projections Qk : Vk → U decompose the projection

E : W̃ → U .



Algebraic View of the Abstract BDDC preconditioner
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The same bilinear form a defines A : U → U and Ã : W̃ → W̃ ⊃ U

The preconditioner M to A is obtained by solving a problem with the same

bilinear form on the bigger space W̃ and mapping back to U via the

projection E and its transpose ET .



Algebraic View of the Abstract Multi-Space BDDC Preconditioner
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The same bilinear form a defines A : U → U and Ãi : Vi → Vi,
∑N

i=1 Vi ⊃ U

The preconditioner M to A is obtained by solving problems with the same

bilinear form on the bigger spaces Vi and mapping back to U via the

projections Qi and their transposes QT
i .



BDDC with Interiors as Multi-Space BDDC

Abstract BDDC was presented here as operating on the space of discrete
harmonic functions. The original BDDC formulation had “interior correction”.

UI

P
←
⊂

U
E
←
⊂

W̃

Lemma 3 The original BDDC preconditioner is the abstract multi-space

BDDC method with N = 2 and the spaces and operators

V1 = UI , V2 = W̃ , Q1 = I, Q2 = (I − P ) E.

The space W̃ has an a-orthogonal decomposition

W̃ = W̃∆ ⊕ W̃Π.

so the problem on W̃ splits into independent problems on W̃∆ and W̃Π.

Example:
W̃∆ = functions zero on substructure corners
W̃Π = given by values on substructure corners and energy minimal



BDDC with Interiors as Multi-Space BDDC

Abstract BDDC was presented here as operating on the space of discrete

harmonic functions. The original BDDC formulation had “interior correction”.

UI

P
←
⊂

U
E
←
⊂

W̃

q

W̃Π ⊕ W̃∆

Lemma 4 The original BDDC preconditioner is the abstract multi-space

BDDC method with N = 3 and the spaces and operators

V1 = UI , V2 = W̃Π, V3 = W̃∆, Q1 = I, Q2 = Q3 = (I − P ) E.

Solving on UI ⇒ independent Dirichet problems on substructures

Solving on W̃∆ ⇒ independent constrained Neumann problems on

substructures + correction in UI

Solving on W̃Π ⇒ Global coarse problem with substructures as coarse

elements and energy minimal function as coarse shape functions.



Three-Level BDDC

Coarse problem solved approximately by the BDDC preconditioner

U
q

UI1

P1
←
⊂

U1

E1
←
⊂

W̃1

q

W̃Π1 ⊕ W̃∆1
q

UI2

P2
←
⊂

U2

E2
←
⊂

W̃2

q

W̃Π2 ⊕ W̃∆2

Lemma 5 The three-level BDDC preconditioner is the abstract multi-space

BDDC method with N = 5 and the spaces and operators

V1 = UI1, V2 = W̃∆1, V3 = UI2, V4 = W̃Π2, V5 = W̃∆2,

Q1 = I, Q2 = Q3 = (I − P1) E1, Q4 = Q5 = (I − P1) E1 (I − P2) E2.



Multilevel BDDC
Coarse problem solved by the BDDC preconditioner, recursive

U
q

UI1

P1
←
⊂

U1

E1
←
⊂

W̃1

q

W̃Π1 ⊕ W̃∆1
q

UI2

P2
←
⊂

U2

E2
←
⊂

W̃2

q

W̃Π2 ⊕ W̃∆2
q

...
q

UIL−1

PL−1
←
⊂

UL−1

EL−1
←
⊂

W̃L−1

q

W̃ΠL−1 ⊕ W̃∆L−1



An Example of Action of Operators Ek and Pk

Hk-1

Hk

Pk
Ek

Values on this substructure and neighbors are averaged Ek then extended as

“discrete harmonic” by Pk.

Basis functions on level k are given by dofs on level k + energy minimal

w.r.t. basis functions on level k − 1. Discrete harmonics on level k are given

by boundary values + energy minimal w.r.t. basis functions on level k − 1.



Multilevel BDDC

Coarse problem solved by the BDDC preconditioner, recursive

Lemma 6 The multilevel BDDC preconditioner is the abstract multi-space

BDDC preconditioner with N=2L-2 and

V1 = UI1, V2 = W̃∆1, V3 = UI2,

V4 = W̃∆2, V5 = UI3, ...

V2L−4 = W̃∆L−2, V2L−3 = UIL−1,,

V2L−2 = W̃L−1

Q1 = I, Q2 = Q3 = (I − P1) E1,

Q4 = Q5 = (I − P1) E1 (I − P2) E2, ...

Q2L−4 = Q2L−3 = (I − P1) E1 · · ·
(
I − PL−2

)
EL−2.

Q2L−2 = (I − P1) E1 · · ·
(
I − PL−1

)
EL−1

Recall condition number bound:

κ =
λmax(MA)

λmin(MA)
≤ ω = max

k
sup

vk∈Vk

‖Qkvk‖
2
a

‖vk‖
2
a

.



Algebraic Condition Estimate of Multilevel BDDC

Lemma 7 If

‖(I − P1)E1w1‖
2
a ≤ ω1 ‖w1‖

2
a ∀w1 ∈ W̃1,

‖(I − P2)E2w2‖
2
a ≤ ω2 ‖w2‖

2
a ∀w2 ∈ W̃2,

...
∥∥(I − PL−1)EL−1wL−1

∥∥2
a ≤ ωL−1

∥∥wL−1
∥∥2
a ∀wL−1 ∈ W̃L−1.

then the multilevel BDDC preconditioner satisfies κ ≤
∏L−1

i=1 ωi.

• All spaces are subspaces of the single space W .

• The functions (I − Pi)Eiwi are discrete harmonic functions on level i

with energy minimal extension into the interior after averaging on level i,

such that wi has continuous coarse dofs (such as values at corners) at

the decomposition level i− 1.



Condition Number Estimate with Corner Contraints

Theorem 8 The multilevel BDDC preconditioner with corner constraints only

satisfies

κ ≤ C1

(
1 + log

H1

h

)2

C2

(
1 + log

H2

H1

)2

· · ·CL−1

(
1 + log

HL−1

HL−2

)2

.

For L = 3 we recover the estimate by Tu (2004).

This bound implies at most polylogarithmic growth of the condition number

in the ratios of mesh sizes for a fixed number of levels L

For fixed Hi/Hi−1 the growth of the condition number can be exponential in

L and this is indeed seen in numerical experiments

With additional constraints, such as side averages, the condition number will

be less but the bound is still principally the same, though possibly with

(much) smaller constants. For small enough constants, the exponential

growth of the condition number may no longer be apparent.



Numerical Examples

A multilevel BDDC implemented in Matlab for the 2D Laplace equation on a

square domain with periodic boundary conditions.

2D Laplace equation results for H/h = 2.
Nlev corners only corners and faces ndof

iter κ iter κ
2 2 1.5625 1 1 16
3 8 1.8002 5 1.1433 64
4 11 2.4046 7 1.2703 256
5 14 3.4234 8 1.3949 1,024
6 17 4.9657 9 1.5199 4,096
7 20 7.2428 9 1.6435 16,384
8 25 10.5886 10 1.7696 65,536



2D Laplace equation results for H/h = 4
Nlev corners only corners and faces ndof

iter κ iter κ
2 9 2.1997 6 1.1431 256
3 14 4.0220 8 1.5114 4,096
4 21 7.7736 10 1.8971 65,536
5 30 15.1699 12 2.2721 1,048,576

2D Laplace equation results for H/h = 8
Nlev corners only corners and faces ndof

iter κ iter κ
2 14 3.1348 7 1.3235 4,096
3 23 7.8439 10 2.0174 262,144
4 36 19.9648 13 2.7450 16,777,216



Conclusion

• Described an algorithm for multilevel BDDC preconditioning and derived

a condition number estimate for case of corner constraints.

• Method tested on Laplace equation in 2D. Numerical results confirm the

theory.

• The new concept of multi-space BDDC and algebraic estimate of its

condition number could be of independent interest.



Future developments

• 3D condition number bounds.

• Other types of constraints - why does the condition number grow so

much less when side averages are added in 2D?

• Lower bounds.

• Additive estimates like in the hierarchical basis method?

• Extensions of the adaptive approach (Mandel, Soused́ık 2005) to the

multilevel case =⇒ solution of problems that are both very large and

numerically difficult.


