Robust Preconditioning in Elasticity

Joachim Schöberl

Center for Computational Engineering Sciences (CCES) RWTH Aachen University Germany

DD17, Strobl, 2006, July 3-7

System of PDEs

Linear elasticity:

$$A(u,v) = \int \mu \,\varepsilon(u) : \varepsilon(v) + \lambda \,\mathrm{div} \, u \,\mathrm{div} \, v \,dx$$

displacement $u \in [H_{0,D}^1]^d$, strain operator $\varepsilon(u) := 0.5(\nabla u + (\nabla u)^T)$ Lamé parameters μ, λ .

Timoshenko beam model:

$$A(w,\beta;v,\delta) = \int_0^1 \beta' \delta' \, dx + t^{-2} \, \int_0^1 (w'-\beta)(v'-\delta) \, dx$$

vertical displacement w, rotation β , thickness t,

In principle the same as a scalar PDE

System of PDEs

Linear elasticity:

$$A(u,v) = \int \boldsymbol{\mu} \, \varepsilon(u) : \varepsilon(v) + \boldsymbol{\lambda} \operatorname{div} \, u \, \operatorname{div} \, v \, dx$$

Nearly incompressible materials: $\lambda \gg \mu$

Timoshenko beam model:

$$A(w,\beta;v,\delta) = \int_0^1 \beta' \delta' \, dx + t^{-2} \int_0^1 (w'-\beta)(v'-\delta) \, dx$$

Thin beam: $t \ll 1$

In principle the same as a scalar PDE but dependency on parameters

Parameter Dependent Problems

[Arnold 81] Find $u \in V$:

$$A^{\varepsilon}(u,v) = f(v) \qquad \forall \ v \in V$$

with

$$A^{\varepsilon}(u,v) = a(u,v) + \frac{1}{\varepsilon} c(\Lambda u,\Lambda v)$$

small parameter:	$\varepsilon \in (0,1]$
symmetric bilinear form:	$a(u,u) \ge 0 \qquad \forall \ u \in V$
Hilbert space:	(Q,c(.,.))
operator:	$\Lambda: V \to Q$
with kernel:	$V_0:= {\sf kern}\;\Lambda$
Well posed for $\varepsilon = 1$:	$A^1(u,u) \simeq \ u\ _V^2$

A priori estimates

Univorm V-coercivity::

Non-uniform *V*-continuity:

$$A^{\varepsilon}(u,u) \ge A^1(u,u) \succeq ||u||_V^2$$

$$A^{\varepsilon}(u,u) \leq \varepsilon^{-1} A^{1}(u,u) \preceq \varepsilon^{-1} \|u\|_{V}^{2}$$

Non-robust a priori error estimate:

$$||u - u_h||_V \le \varepsilon^{-1/2} \inf_{v_h \in V_h} ||u - v_h||_V$$

Numerical example: Timoshenko beam Vertical load f = 1, compute w(1):

Primal FEM with Reduction Operators

The primal FEM

Find
$$u_h \in V_h$$
 s.t.: $a(u_h, v_h) + \frac{1}{\varepsilon}c(\Lambda u_h, \Lambda v_h) = f(v_h) \quad \forall v_h \in V_h$

often leads to bad results, knwon as *locking* phenomena.

(One) explanation:

This is a penalty approximation to $\Lambda u = 0$, but no FE functions fulfill $\Lambda u_h = 0$, i.e. $V_0 \cap V_h$ too small.

Primal FEM with Reduction Operators

The primal FEM

Find
$$u_h \in V_h$$
 s.t.: $a(u_h, v_h) + \frac{1}{\varepsilon}c(\Lambda u_h, \Lambda v_h) = f(v_h) \quad \forall v_h \in V_h$

often leads to bad results, knwon as *locking* phenomena.

(One) explanation:

This is a penalty approximation to $\Lambda u = 0$, but no FE functions fulfill $\Lambda u_h = 0$, i.e. $V_0 \cap V_h$ too small.

Weaken the high energy term by reduction operator R_h (reduced integration, B-bar method, mixed method, EAS, ...)

Find
$$u_h \in V_h$$
 s.t.: $a(u_h, v_h) + \frac{1}{\varepsilon}c(R_h\Lambda u_h, R_h\Lambda v_h) = f(v_h) \quad \forall v_h \in V_h$

Large enough kernel $V_{h,0} = \operatorname{kern} R_h \Lambda \cap V_h$

Numerical example: Timoshenko beam

Vertical load f = 1, compute w(1):

Analysis by mixed formulation

Primal method:

Find
$$u \in V$$
: $a(u, v) + \varepsilon^{-1}c(\Lambda u, \Lambda v) = f(v) \quad \forall v \in V$

Introduce new variable $p = \varepsilon^{-1} \Lambda u \in Q$.

$$\begin{array}{rclcrc} a(u,v) &+ & c(\Lambda v,p) &= & f(v) & & \forall v \in V \\ c(\Lambda u,q) &- & \varepsilon c(p,q) &= & 0 & & \forall q \in Q \end{array}$$

Analysis by mixed formulation

Primal method:

Find
$$u \in V$$
: $a(u, v) + \varepsilon^{-1}c(\Lambda u, \Lambda v) = f(v) \quad \forall v \in V$

Introduce new variable $p = \varepsilon^{-1} \Lambda u \in Q$.

$$\begin{array}{rcl} a(u,v) &+ & c(\Lambda v,p) &= & f(v) & \forall v \in V \\ c(\Lambda u,q) &- & \varepsilon c(p,q) &= & 0 & \forall q \in Q \end{array}$$

Mixed bilinear-from $B(\cdot, \cdot) : (V \times Q) \times (V \times Q) \rightarrow \mathbb{R}$

$$B((u,p),(v,q)) = a(u,v) + c(\Lambda u,q) + c(\Lambda v,p) - \varepsilon c(p,q)$$

Mixed problem:

$$\mathsf{Find}\ (u,p) \in V \times Q: \qquad B((u,p),(v,q)) = f(v) \qquad \forall \, (v,q) \in V \times Q$$

Well-posed mixed formulation

Define norm $\|.\|_{Q,0}$ such that the LBB condition is fulfilled by definition:

$$||q||_{Q,0} := \sup_{v \in V} \frac{c(\Lambda v, p)}{||v||_V}$$

Product space norm

$$\|(v,q)\|_{V\times Q}^2 = \|v\|_V^2 + \|q\|_{Q,0}^2 + \varepsilon \|q\|_c^2$$

Then B(.,.) is uniformely continuous:

$$\sup_{(u,p)} \sup_{(v,q)} \frac{B((u,p),(v,q))}{\|(u,p)\|_{V \times Q}} \leq 1$$

and uniformely $\inf - \sup$ stable:

$$\inf_{(u,p)} \sup_{(v,q)} \frac{B((u,p), (v,q))}{\|(u,p)\|_{V \times Q} \, \|(v,q)\|_{V \times Q}} \succeq 1$$

Example: Nearly incompressible elasticity

Find $u \in V = [H_{0,D}^1]^2$ and $p \in Q = L_2$ such that

$$\begin{split} \mu \int \varepsilon(u) : \varepsilon(v) \, dx &+ \int \operatorname{div} v \, p \, dx &= \int f \cdot v \, dx \qquad \forall v \in V \\ \int \operatorname{div} u \, q \, dx &- \lambda^{-1} \int p \, q \, dx &= 0 \qquad \forall q \in Q \end{split}$$

The limit problem for $\lambda \to \infty$ is a Stokes-like problem.

Mixed finite element discretization by Stokes-stable (discrete LBB !) element pairs, e.g.,

Example: Nearly incompressible elasticity

Find $u \in V = [H_{0,D}^1]^2$ and $p \in Q = L_2$ such that

$$\begin{split} \mu \int \varepsilon(u) : \varepsilon(v) \, dx &+ \int \operatorname{div} v \, p \, dx &= \int f \cdot v \, dx \qquad \forall v \in V \\ \int \operatorname{div} u \, q \, dx &- \lambda^{-1} \int p \, q \, dx &= 0 \qquad \forall q \in Q \end{split}$$

The limit problem for $\lambda \to \infty$ is a Stokes-like problem.

Mixed finite element discretization by Stokes-stable (discrete LBB !) element pairs, e.g.,

A priori estimates by stability and approximation:

$$\|(u - u_h, p - p_h)\|_{V \times Q} \leq \inf_{v_h \in V_h, q_h \in Q_h} \|(u - v_h, p - p_h)\|_{V \times Q} \leq h^{\alpha} \left(\|u\|_{H^{1+\alpha}} + \|p\|_{H^{\alpha}}\right)$$

Solvers for linear system

Indefinite matrix equation

$$\left(\begin{array}{cc} A & B^T \\ B & -\varepsilon C \end{array}\right) \left(\begin{array}{c} u \\ p \end{array}\right) = \left(\begin{array}{c} f \\ 0 \end{array}\right)$$

• Block Transformation:

Inexact Uzawa, SIMPLE, GMRES

Axelsson-Vassilevski, Bramble-Pasciak, Langer-Queck, Rusten-Winther, Bank-Welfert-Yserentant, Klawonn, Bramble-Pasciak-Vassilev, Zulehner, Benzi-Golub-Liesen, ...

Use (standard) preconditioners for A and for Schur-complement $B^T A^{-1}B + \varepsilon C$.

• Multigrid for indefinite problem:

Braess-Blömer, Brenner, Huang, Wittum, Braess-Sarazin, Zulehner, Schöberl-Zulehner

Use special smoothers (squared system, Vanka, SIMPLE)

Schur complement system

Indefinite matrix equation

$$\left(\begin{array}{cc} A & B^T \\ B & -\varepsilon C \end{array}\right) \left(\begin{array}{c} u \\ p \end{array}\right) = \left(\begin{array}{c} f \\ 0 \end{array}\right)$$

Elimination of p from second line leads to the Schur complement system

$$\left(A + \frac{1}{\varepsilon}B^T C^{-1}B\right)u = f$$

Cheap if C is (block-)diagonal.

Positive definite matrix of smaller dimension, but very ill conditioned for $\varepsilon \to 0$

Goal: Design of ε -robust solver

Elimination of dual variable on the finite element level

Finite element system: Find $u_h \in V_h$ and $p_h \in Q_h$ such that

$$\begin{array}{rcl} a(u_h, v_h) &+ c(\Lambda u_h, p_h) &= f(v_h) \quad \forall v_h \in V_h \\ c(\Lambda u_h, q_h) &- \varepsilon c(p_h, q_h) &= 0 \qquad \forall q_h \in Q_h \end{array}$$

Second line defines p_h :

$$p_h = \varepsilon^{-1} P_{Q_h}^c \Lambda u_h$$

Use in first line:

$$a(u_h, v_h) + \varepsilon^{-1} c(P_{Q_h}^c \Lambda u_h, P_{Q_h}^c \Lambda p_h) = f(v_h) \qquad \forall v_h \in V_h$$

Elimination of dual variable on the finite element level

Finite element system: Find $u_h \in V_h$ and $p_h \in Q_h$ such that

$$\begin{array}{rcl} a(u_h, v_h) &+ c(\Lambda u_h, p_h) &= f(v_h) & \forall v_h \in V_h \\ c(\Lambda u_h, q_h) &- \varepsilon c(p_h, q_h) &= 0 & \forall q_h \in Q_h \end{array}$$

Second line defines p_h :

$$p_h = \varepsilon^{-1} P_{Q_h}^c \Lambda u_h$$

Use in first line:

$$a(u_h, v_h) + \varepsilon^{-1} c(P_{Q_h}^c \Lambda u_h, P_{Q_h}^c \Lambda p_h) = f(v_h) \qquad \forall v_h \in V_h$$

Elasticity with reduction operators:

$$A_h^{\varepsilon}(u,v) = \int \mu \varepsilon(u) : \varepsilon(v) + \lambda \,\overline{\operatorname{div}\, u}^h \,\overline{\operatorname{div}\, v}^h \, dx$$

Discrete kernel:

$$V_{h0} = \{ v_h \in V_h : \int_T \operatorname{div} v_h \, dx = 0 \ \forall T \in \mathcal{T} \}$$

Timoshenko beam

Conforming bilinear form:

$$A((w,\beta),(v,\delta)) = \int \beta' \delta' \, dx + t^{-2} \int (w'-\beta)(v'-\delta) \, dx$$

has the kernel

$$V_0 = \{(v, \delta) : \delta = v'\}$$

 $t \rightarrow 0$ is a penalty approximation to the 4^{th}-order Bernoulli model A(w,v) = f(v) with

$$A(w,v) = \int w''v''\,dx$$

Reduction of a (stable !) mixed system with $w \in P^1, \beta \in P^1, q \in P^0$ leads to

$$A_h((w_h,\beta_h),(v_h,\delta_h)) = \int \beta'_h \delta'_h \, dx + t^{-2} \int \overline{(w'_h - \beta_h)}^h \, \overline{(v'_h - \delta_h)}^h \, dx$$

$\varepsilon\text{-}\textbf{Robust}$ local preconditioner

$$A_h^{\varepsilon}(u,v) = a(u,v) + \varepsilon^{-1}c(R_h\Lambda u, R_h\Lambda v)$$

Space splitting $V = \sum V_i$ fulfilling the decomposition inequalities

$$\inf_{\substack{u_h = \sum u_i \\ u_i \in V_i}} \sum \|u_i\|_V^2 \le c_1(h) \|u_h\|_V^2 \qquad \forall u_h \in V_h$$

$$\inf_{\substack{u_{h,0}=\sum u_i\\u_i\in V_i\cap V_{h,0}}} \sum \|u_i\|_a^2 \le c_2(h) \|u_{h,0}\|_V^2 \qquad \forall u_{h,0}\in V_{h,0}$$

Inverse inequality

$$||q_h||_c \le c_3(h) ||q_h||_{Q,0}$$

Then the (local) additive Schwarz preconditioner D_h fulfills the ε -robust spectral estimates

$$\{c_2(h) + c_1(h)/c_3(h)\}^{-1}D_h \leq A_h \leq D_h$$

Similar H(div) and H(curl): Vassilevski-Wang, Cai-Goldstein-Pasciak, Arnold-Falk-Winther, Hiptmair,

Joachim Schöberl

Local sub-spaces for nearly incompressible materials

$$R_h \operatorname{div} u_h = 0 \Leftrightarrow \int_T \operatorname{div} u_h = 0 \Leftrightarrow \int_{\partial T} n^T u \, ds = 0 \qquad \forall T \in \mathcal{T}_h$$

Discrete divergence-free base functions:

Sub-space covering:

Timoshenko beam splitting

Two-level preconditioner

2-level norm:

$$\|v_h\|_C^2 = \inf_{v_h = E_H v_H + \sum v_i} \left\{ \|v_H\|_{A_H}^2 + \sum \|v_i\|_{A_h}^2 \right\}$$

Norm equivalence $C \simeq A_h$ requires:

- Continuous prolongation operator $E_H : (V_H, \|.\|_{A_H}) \to (V_h, \|.\|_{A_h})$
- Existence of continuous interpolation operator $\Pi_H : (V_h, \|.\|_{A_h}) \to (V_H, \|.\|_{A_H})$

ε -Robust two-Level preconditioner

Coarse grid bilinear form:

$$A_{H}^{\varepsilon}(u_{H}, v_{H}) = a(u_{H}, v_{H}) + \varepsilon^{-1}c(R_{H}\Lambda u_{H}, R_{H}\Lambda v_{H})$$
$$V_{H0} = \ker R_{H}\Lambda$$

Fine grid bilinear form:

$$A_h^{\varepsilon}(u_h, v_h) = a(u_h, v_h) + \varepsilon^{-1} c(R_h \Lambda u_h, R_h \Lambda v_h)$$
$$V_{h0} = \operatorname{kern} R_h \Lambda$$

Prolongation operator $E_H: V_H \rightarrow V_h$ has to map

$$E_H: V_{H0} \to V_{h0}$$

to be uniformely bounded. Since for $u_H \in V_{H0}$

$$||E_H u_H||_{A_h^{\varepsilon}}^2 = ||E_H u_H||_a^2 + \frac{1}{\varepsilon} ||R_h \Lambda E_H u_H||_c^2 \quad \text{and} \quad ||u_H||_{A_H^{\varepsilon}}^2 = ||u_H||_a^2$$

Robust prolongation for nearly incompressible materials

$$u_{H} \in kern(\Lambda_{H}) \quad \Leftrightarrow \quad \int_{\partial T} n^{T} u_{H} \, \mathrm{ds} = 0$$
$$E_{H} u_{H} \in kern(\Lambda_{h}) \quad \Leftrightarrow \quad \int_{\partial t_{i}} n^{T} (E_{H} u_{H}) \, \mathrm{ds} = 0, \qquad i = 1 \dots 4$$

- 1. Conforming (quadratic) prolongation at ∂T
- 2. Adjust inner nodes by solving local Dirichlet problems

Robust prolongation for the Timoshenko beam

Fortin operator

Error estimates are based on equivalent mixed formulations. Discrete LBB condition is usually verified by the Fortin operator $\Pi^F : V \to V_h$:

Continuous:
$$\|\Pi^F\|_V \leq 1$$

Preserves weak constraints: $R_h \Lambda v = R_h \Lambda \Pi^F v$

This is a robust interpolation operator from $(V, \|\cdot\|_{A^{\varepsilon}})$ to $(V_h, \|\cdot\|_{A^{\varepsilon}_h})$:

$$\begin{aligned} \|\Pi_{h}^{F}v\|_{A_{h}^{\varepsilon}}^{2} &= \|\Pi_{h}^{F}v\|_{a}^{2} + \varepsilon^{-1} \|R_{h}\Lambda\Pi_{h}^{F}v\|_{c}^{2} \leq \|v\|_{V}^{2} + \varepsilon^{-1} \|R_{h}\Lambda v\|_{c}^{2} \\ &\leq \|u\|_{A^{1}}^{2} + \varepsilon^{-1} \|\Lambda v\|_{c}^{2} \leq \|u\|_{A^{\varepsilon}}^{2} \end{aligned}$$

Such operators are used to define the coarse grid function in the 2-level decomposition

History

- J. S.: Proceedings to EMG 96: Multigrid method with 2-level analysis for nearly incompressible materials and Timoshenko
- J. S.: Numer. Math. 99: Multigrid analysis for nearly incompressible materials
- J. S.: Thesis, 99: Multigrid method and analysis for Reissner Mindlin plates
- J. S. and W. Zulehner, 03: Iteration in mixed variables (Vanka smoother)

In preparation:

• J. S. and R. Stenberg: Multigrid for MITC and stabilized MITC

Unit square model problem

$$A_h(u_h, u_h) = \int_{\Omega} \varepsilon(u_h) : \varepsilon(u_h) \, \mathrm{d} \mathbf{x} + \frac{1}{\varepsilon} \int_{\Omega} (\overline{\mathrm{div} \ u_h})^2 \, \mathrm{d} \mathbf{x}$$

Multigrid preconditioner C with

- Symmetric V-1-1 cycle
- Block Gauss Seidel smoother
- Robust prolongation

Condition number $\kappa(C^{-1}A)$ for different choices of the Poisson ration $\nu\approx 0.5-\varepsilon$

Level	Nodes	$\nu = 0.3$	$\nu = 0.49$	$\nu = 0.4999$	$\nu = 0.499999$
2	25	1.05	1.14	1.16	1.16
3	81	1.37	2.27	2.60	2.61
4	289	1.46	2.51	2.88	2.89
5	1089	1.49	2.59	2.99	2.99
6	4225	1.49	2.61	3.02	3.02
7	16641	1.49	2.63	3.03	3.03
8	66049	1.49	2.64	3.04	3.04

Nearly incompressible sub-domains

$$\Omega_1, \Omega_2$$
 : $E = 100, \nu = 0.3$
 Ω_3, Ω_4 : $E = 1, \nu = 0.49999$

Level	Nodes	its
2	196	2
3	672	11
4	2464	14
5	9408	15
6	36736	16
7	145152	16

3D Nearly Incompressible Elasticity

Two cubes, one nearly incompressible ($\nu = 0.4999$) Hybrid elements based on a stabilized Hellinger Reissner formulation, BDM_1 elements

12288 tets, 28930 faces, 260370 unknowns

Iteration numbers

Robust Multigrid (V-3-3):

	– (/		
level	unknowns	$\nu = 0.3$	$\nu = 0.49$	$\nu = 0.4999$
1	0.5k			
2	4.3k	20	26	30
3	33k	20	29	36
4	260k	21	32	42

Robust Smoother (3-3):

level	unknowns	$\nu = 0.3$	$\nu = 0.49$	$\nu = 0.4999$
1	0.5k			
2	4.3k	55	74	140
3	33k	98	148	351

Standard Multigrid (V-3-3):

level	unknowns	$\nu = 0.3$	$\nu = 0.49$	$\nu = 0.4999$
1	0.5k			
2	4.3k	62	181	1721
3	33k	64	271	2000+

CG iteration, error reduction 10^{-10}

Reissner Mindlin Plate

The unknown variables are:

- vertical displacement $w \in H^1_{0,D}(\Omega)$
- rotation vector $\beta \in [H^1_{0,D}(\Omega)]^2$

Inner energy consisting of bending and shear term:

$$A(w,\beta;w,\beta) = \int_{\Omega} D\varepsilon(\beta) : \varepsilon(\beta) + \frac{1}{t^2} \int |\nabla w - \beta|^2 \, dx$$

Stabilized mixed method by Chapelle and Stenberg in primal variables:

$$A_h(w,\beta;w,\beta) = \int_{\Omega} D\varepsilon(\beta) : \varepsilon(\beta) + \int \frac{1}{(h+t)^2} |\nabla w - \beta|^2 \, dx + \int \left(\frac{1}{t^2} - \frac{1}{(h+t)^2}\right) |\overline{\nabla w - \beta}|^2 \, dx$$

Numerical results for Reissner Mindlin

Dirichlet problem on $[0,1]^2$, E=1, $\nu=0.2$:

Multigrid preconditioner with Symmetric V-1-1 cycle, Block - Gauss - Seidel smoother, Robust prolongation.

Condition	number	$\kappa(C^{-})$	$^{1}A):$
-----------	--------	-----------------	-----------

Level	h	Nodes	$t = 10^{-1}$	$t = 10^{-2}$	$t = 10^{-3}$	$t = 10^{-4}$
2	1/2	33	1.0	1.1	1.1	1.1
3	1/4	113	1.5	5.4	6.2	6.2
4	1/8	417	1.6	6.1	9.1	9.1
5	1/16	1601	1.9	4.5	11.5	11.8
6	1/32	6273	2.0	3.8	11.5	12.6
7	1/64	24633	2.1	3.7	9.5	12.4

Thin structures with high order EAS reduction operators

Comparison of relative condition numbers for standard and EAS elements:

[A. Becirovic + J.S., Proc. to IASS Salzburg, 2005]

Computations on cylindrical shells

Tensor product elements, anisotropic polynomial order

R = 0.5, t = 0.01, h = 0.25 p = 6, $p_z = 2$: 144 its, $\kappa = 118$ p = 8, $p_z = 2$: 175 its, $\kappa = 223$

bending dominated case

Netgen 4.5

New Mixed Finite Elements

Mixed elements for approximating displacements and stresses.

- tangential components of displacement vector
- normal-normal component of stress tensor

Triangular Finite Element:

Tetrahedral Finite Element:

Prismatic Finite Element:

Robust with respect to volume and shear locking

[J.S. and Astrid Sinwel]

Conclusion

We have considered

- Robust discretization methods for parameter dependent problems
- Robust preconditioners for the arising matrix equations

Ongoing work

- Construction of locking free 3D elements
- High order elements and p-version preconditioning