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The Schrodinger equation

i0pu(t, ) + 0*u(t,z) + V(z)u(t,z) =0
u(0,z) = up(x)

Quantum mechanics, electromagnetic wave propagation,

optic (Fresnel equation)

Goal : Design efficient Schwarz Waveform Relaxation algorithms

for the Schrodinger equation

Schwarz Waveform Relaxation algorithm

— global in time domain decomposition method
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Classical Schwarz Waveform Relaxation
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Movie : slow convergence of the Classical Schwarz
Waveform Relaxation

Free Schrodinger equation
Computation over ; = (—=5,4Ax) and Q5 = (0,5) for 0 <t < 0.5
At = 0.00125, Ax = 0.0125

Movie : absolute value of the exact solution (—) and of the solution
computed with the Classical Schwarz algorithm (—)
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Optimal Schwarz Waveform Relaxation Algorithm
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(10 + 02 + V)us =01in Qy x (0,7
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Convergence in 2 iterations if and only if
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For non constant V : optimal operators not at hand




The Quasi-Optimal Algorithm
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The algorithm converges in
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The Robin Algorithm

Zero order approximation of the Optimal Algorithm :

0y + 02+ V)u¥ =0in Q x (0,T
T 1
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Complex Robin algorithm

For any p > 0, the algorithm converges in

L(0,T; L*(21)) x L*(0,T; L*(2))

Optimization with respect to p > 0 to improve the convergence




Numerical schemes

Finite volumes discretization

Interior = Crank Nicolson scheme

Quasi-Optimal algorithm : discretize \/—i0; + V

Approximation of Arnold and Ehrhardt

/=i, + VU(0,n) ~ ZSn— m)

where S(m) is given by a recurrence formula

Other possible approximations : Lubich and Schéadle,
Schmidt and Yevick, Antoine and Besse, ...




Numerical results

10



Optimal p for the Robin algorithm
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F1G. 1 — Variation of the quadratic error in time and space in {); as a

function of p. The overlap is equal to 1%. The star corresponds to the
theoretical optimal value pr. Free Schrodinger equation
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Comparison Classical/Robin algorithms
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F1G. 2 — Convergence history : comparison of the Classical and Opti-
mized Robin Schwarz algorithm. Free Schrodinger equation. § = 2%
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Robin algorithm without overlap
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FiGg. 3 — Convergence history for the Optimized Robin Schwarz algo-
rithm in the non overlapping case. Free Schrodinger equation
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Comparison Classical/Robin algorithms
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F1G. 4 — Convergence history : comparison of the Classical and Opti-
mized Robin Schwarz algorithm for a potential barrier. The overlap is
equal to 4%
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The Quasi-Optimal algorithm
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F1G. 5 — Convergence history for the Quasi-Optimal Schwarz algorithm
in presence of a parabolic potential
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Movie : Comparison of the Classical, Robin and
Quasi-Optimal algorithms

The Schrodinger equation with a parabolic potential
Computation over 2y = (—=5,4Az) and Q5 = (0,5) for 0 <t <1
At = 0.0025, Ax = 0.025

Movie 1 : absolute value of the exact solution (—) and of the solution
computed with the Classical Schwarz algorithm (—)

Movie 2 : absolute value of the exact solution (—) and of the solution
computed with the Robin algorithm (—)

Movie 3 : absolute value of the exact solution (—) and of the solution
computed with the Quasi-Optimal algorithm (—)

3 iterations
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Conclusions and perspectives

The Classical algorithm converges extremely slowly for the

Schrodinger equation with or without a potential

We have designed two alternative algorithms : a Complex
Optimized Robin algorithm and a Quasi-Optimal algorithm

These algorithms greatly improve the performances of the classical
Schwarz relaxation algorithm

We intend to extend our analysis to the two-dimensional case in a
close future
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