Optimized and Quasi-Optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger equation

Laurence Halpern¹ and Jérémie Szeftel²

¹ LAGA UMR 7539
 Université Paris 13

Department of Mathematics
 Princeton University
 and
 MAB UMR 5466
 Université Bordeaux 1

The Schrödinger equation

$$\begin{cases} i\partial_t u(t,x) + \partial_x^2 u(t,x) + V(x)u(t,x) = 0 \\ u(0,x) = u_0(x) \end{cases}$$

Quantum mechanics, electromagnetic wave propagation, optic (Fresnel equation)

Goal: Design efficient Schwarz Waveform Relaxation algorithms for the Schrödinger equation

Schwarz Waveform Relaxation algorithm

= global in time domain decomposition method

Classical Schwarz Waveform Relaxation

Optimal Schwarz Waveform Relaxation Algorithm

The Quasi-Optimal Algorithm

The Robin Algorithm

Numerical schemes

Numerical results

Classical Schwarz Waveform Relaxation

$$\begin{cases} (i\partial_t + \partial_x^2 + V)u_1^k = 0 \text{ in } \Omega_1 \times (0, T) \\ u_1^k(\cdot, 0) = u_0 \text{ in } \Omega_1 \\ u_1^k(L, \cdot) = u_2^{k-1}(L, \cdot) \text{ in } (0, T) \end{cases} \begin{cases} (i\partial_t + \partial_x^2 + V)u_2^k = 0 \text{ in } \Omega_2 \times (0, T) \\ u_2^k(\cdot, 0) = u_0 \text{ in } \Omega_2 \\ u_2^k(0, \cdot) = u_1^{k-1}(0, \cdot) \text{ in } (0, T) \end{cases}$$

Convergence factor:

$$\Theta(\tau, L) = exp\left[-\left(\frac{-\tau + V + \sqrt{1 + (\tau - V)^2}}{2}\right)^{1/2}L\right]$$

$$\lim_{\tau \to +\infty} \Theta(\tau, L) = 1$$

Movie : slow convergence of the Classical Schwarz Waveform Relaxation

Free Schrödinger equation

Computation over $\Omega_1 = (-5, 4\Delta x)$ and $\Omega_2 = (0, 5)$ for $0 \le t \le 0.5$

$$\Delta t = 0.00125, \, \Delta x = 0.0125$$

Movie : absolute value of the exact solution (—) and of the solution computed with the Classical Schwarz algorithm (—)

200 iterations

Optimal Schwarz Waveform Relaxation Algorithm

$$\begin{cases} (i\partial_t + \partial_x^2 + V)u_1^k = 0 \text{ in } \Omega_1 \times (0, T) \\ u_1^k(\cdot, 0) = u_0 \text{ in } \Omega_1 \\ (\partial_x + \mathcal{S}_1)u_1^k(L, \cdot) \\ = (\partial_x + \mathcal{S}_1)u_2^{k-1}(L, \cdot) \text{ in } (0, T) \end{cases} \begin{cases} (i\partial_t + \partial_x^2 + V)u_2^k = 0 \text{ in } \Omega_2 \times (0, T) \\ u_2^k(\cdot, 0) = u_0 \text{ in } \Omega_2 \\ (\partial_x + \mathcal{S}_2)u_2^k(0, \cdot) \\ = (\partial_x + \mathcal{S}_2)u_1^{k-1}(0, \cdot) \text{ in } (0, T) \end{cases}$$

Convergence in 2 iterations if and only if

$$\sigma_1 = (\tau - V)^{1/2}, \quad \sigma_2 = -(\tau - V)^{1/2}$$
$$(\tau - V)^{1/2} = \begin{cases} \sqrt{\tau - V} & \text{if } \tau \ge V \\ -i\sqrt{-\tau + V} & \text{if } \tau < V \end{cases}$$

For non constant V: optimal operators not at hand

The Quasi-Optimal Algorithm

$$\begin{cases} (i\partial_t + \partial_x^2 + V)u_1^k = 0 \text{ in } \Omega_1 \times (0, T) \\ u_1^k(\cdot, 0) = u_0 \text{ in } \Omega_1 \\ (\partial_x + \sqrt{-i\partial_t - V(L)})u_1^k(L, \cdot) \\ = (\partial_x + \sqrt{-i\partial_t - V(L)})u_2^{k-1}(L, \cdot) \end{cases} \begin{cases} (i\partial_t + \partial_x^2 + V)u_2^k = 0 \text{ in } \Omega_2 \times (0, T) \\ u_2^k(\cdot, 0) = u_0 \text{ in } \Omega_2 \\ (\partial_x - \sqrt{-i\partial_t - V(0)})u_2^k(0, \cdot) \\ = (\partial_x - \sqrt{-i\partial_t - V(0)})u_1^{k-1}(0, \cdot) \end{cases}$$
$$(\tau - V(x))^{1/2} = \begin{cases} \sqrt{\tau - V(x)} \text{ if } \tau \ge V(x) \\ -i\sqrt{-\tau + V(x)} \text{ if } \tau < V(x) \end{cases}$$

The algorithm converges in

$$(H^{1/4}(0,T,L^2(\Omega_1)) \cap H^{-1/4}(0,T,H^1(\Omega_1))) \times (H^{1/4}(0,T,L^2(\Omega_2)) \cap H^{-1/4}(0,T,H^1(\Omega_2)))$$

The Robin Algorithm

Zero order approximation of the Optimal Algorithm:

$$\begin{cases} (i\partial_t + \partial_x^2 + V)u_1^k = 0 \text{ in } \Omega_1 \times (0, T) \\ u_1^k(\cdot, 0) = u_0 \text{ in } \Omega_1 \\ (\partial_x - ip)u_1^k(L, \cdot) \\ = (\partial_x - ip)u_2^{k-1}(L, \cdot) \text{ in } (0, T) \end{cases} \begin{cases} (i\partial_t + \partial_x^2 + V)u_2^k = 0 \text{ in } \Omega_2 \times (0, T) \\ u_2^k(\cdot, 0) = u_0 \text{ in } \Omega_2 \\ (\partial_x + ip)u_2^k(0, \cdot) \\ = (\partial_x + ip)u_1^{k-1}(0, \cdot) \text{ in } (0, T) \end{cases}$$

Complex Robin algorithm

For any p > 0, the algorithm converges in

$$L^{\infty}(0,T;L^2(\Omega_1)) \times L^{\infty}(0,T;L^2(\Omega_2))$$

Optimization with respect to p > 0 to improve the convergence

Numerical schemes

Finite volumes discretization

Interior = Crank Nicolson scheme

Quasi-Optimal algorithm : discretize $\sqrt{-i\partial_t + V}$

Approximation of Arnold and Ehrhardt

$$\sqrt{-i\partial_t + V}U(0,n) \simeq \sum_{m=0}^n \frac{S(n-m)U(0,m)}{S(n-m)U(0,m)}$$

where S(m) is given by a recurrence formula

Other possible approximations: Lubich and Schädle, Schmidt and Yevick, Antoine and Besse, ... Numerical results

Optimal p for the Robin algorithm

FIG. 1 – Variation of the quadratic error in time and space in Ω_1 as a function of p. The overlap is equal to 1%. The star corresponds to the theoretical optimal value p_T . Free Schrödinger equation

Comparison Classical/Robin algorithms

Fig. 2 – Convergence history : comparison of the Classical and Optimized Robin Schwarz algorithm. Free Schrödinger equation. $\delta=2\%$

Robin algorithm without overlap

Fig. 3 – Convergence history for the Optimized Robin Schwarz algorithm in the non overlapping case. Free Schrödinger equation

Comparison Classical/Robin algorithms

Fig. 4 – Convergence history : comparison of the Classical and Optimized Robin Schwarz algorithm for a potential barrier. The overlap is equal to 4%

The Quasi-Optimal algorithm

Fig. 5 – Convergence history for the Quasi-Optimal Schwarz algorithm in presence of a parabolic potential

Movie: Comparison of the Classical, Robin and Quasi-Optimal algorithms

The Schrödinger equation with a parabolic potential

Computation over
$$\Omega_1 = (-5, 4\Delta x)$$
 and $\Omega_2 = (0, 5)$ for $0 \le t \le 1$
$$\Delta t = 0.0025, \ \Delta x = 0.025$$

- Movie 1: absolute value of the exact solution (—) and of the solution computed with the Classical Schwarz algorithm (—)
- Movie 2: absolute value of the exact solution (—) and of the solution computed with the Robin algorithm (—)
- Movie 3: absolute value of the exact solution (—) and of the solution computed with the Quasi-Optimal algorithm (—)

3 iterations

Conclusions and perspectives

- The Classical algorithm converges extremely slowly for the Schrödinger equation with or without a potential
- We have designed two alternative algorithms : a Complex Optimized Robin algorithm and a Quasi-Optimal algorithm
- These algorithms greatly improve the performances of the classical Schwarz relaxation algorithm
- We intend to extend our analysis to the two-dimensional case in a close future