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• We want to solve certain PDEs (non-selfadjoint or indefinit

elliptic) discretized by FEM (or divided differences)

• Use GMRES (or other Krylov subspace method)

• Precondition with Additive Schwarz (with coarse grid correction)

• Schwarz methods optimality (energy norm)

and Minimal Residuals (2-norm)

• Left vs. right preconditioning
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Examples

• Helmholtz equation −∆u + cu = f

• Advection diffusion equation −∆u + b.∇u + cu = f

• zero Dirichlet b.c.
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General Problem Statement

Solve

Bx = f

B non-Hermitian, discretization of b(u, v) = f(v)

b(u, v) = a(u, v) + s(u, v) + c(u, v),

a(u, v) =

∫

Ω

∇u · ∇v dx,

s(u, v) =

∫

Ω

(b · ∇u)v + (∇ · bu)v dx, b ∈ R
d,

c(u, v) =

∫

Ω

c uv dx, and f(v) =

∫

Ω

f v dx.

Let A be SPD, the discretization of a(·, ·).
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Standard Finite Element Setting

Let Ω ⊂ R
d, with triangulation Th(Ω). Let V be the traditional finite

element space formed by piecewise linear and continuous functions

vanishing on the boundary of Ω. V ⊂ H1
0(Ω).

One-to-one correspondence between functions in finite element space

and nodal values.

We abuse the notation and do not distinguish between them.

Let ‖v‖a = a(v, v), and ‖v‖A = (vT Av)1/2 be the corresponding

norms in V and in R
n, respectively.
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Problem Statement (cont.)

• Use Krylov subspace iterative methods (e.g., GMRES)

• Left preconditioning: M−1Bx = M−1f

• Right preconditioning: BM−1(Mu) = f
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Schwarz Preconditioning

Class of Preconditioners based on Domain Decomposition

Decomposition of V into a sum of N + 1 subspaces RT
i Vi ⊂ V , and

V = RT
0 V0 + RT

1 V1 + · · · + RT
NVN .

RT
i : Vi → V extension operator from Vi to V . This decomposition

usually NOT a direct sum.

Subspaces RT
i Vi, i = 1, . . . , N are related to a decomposition of the

domain Ω into overlapping subregions Ωδ
i of size O(H) covering Ω.

The subspace RT
0 V0 is the coarse space.
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Schwarz Preconditioning (cont.)

For ui, vi ∈ Vi define

bi(ui, vi) = b(RT
i ui, R

T
i vi), ai(ui, vi) = a(RT

i ui, R
T
i vi).

Let

Bi = RiBRT
i , Ai = RiART

i

be the matrix representations of these local bilinear forms, i.e., the

local problems.
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Two versions of Additive Schwarz Preconditioning here

M−1 = RT
0 B0R0 +

∑p
i=1

RT
i B−1

i Ri,

or M−1 = RT
0 B0R0 +

∑p
i=1

RT
i A−1

i Ri,

where Bi = RiBRT
i and Ai = RiART

i (local problems)

Ri restriction, RT
i prolongation with overlap δ

B0 coarse problem, size O(H), discretization O(h).
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Let P = M−1B, be the preconditioned problem.

Theorem. [Cai and Widlund, 1993]

There exist constants H0 > 0, c(H0) > 0, and C(H0) > 0, such that

if H ≤ H0, then for i = 1, 2, and u ∈ V ,

a(u, Pu)

a(u, u)
≥ cp,

and

‖Pu‖a ≤ Cp‖u‖a,

where Cp = C(H0) and cp = C−2
0 c(H0).
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Two-level Schwarz preconditioners are optimal in the sense that

bounds for M−1B (or BM−1) are independent of the mesh size

and the number of subdomains, or slowly varying with them.

In our PDEs, we have optimal bounds:

(x, M−1Bx)A

(x, x)A
≥ cp and ‖M−1Bx‖A ≤ Cp‖x‖A.

Cai and Zou [NLAA, 2002] observed:

Schwarz bounds use energy norms, while GMRES minimizes l2 norms.

Optimality may be lost! (some details in a few slides).
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GMRES

Let v1, v2, . . . , vm be an orthonormal basis of Km(M−1B, r0) =

span{r0, M
−1Br0, (M

−1B)2r0, . . . , (M
−1B)m−1r0}.

xm = arg min{‖f − M−1Bx‖2}, x ∈ x0 + Km(M−1B, r0)

• With Vm = [v1, v2, . . . , vm], obtain Arnoldi relation:

M−1BVm = Vm+1Hm+1,m

Hm+1,m is (m + 1) × m upper Hessenberg

• Element in Km(M−1B, v1) is a linear combination of

v1, v2, . . . , vm, i.e., of the form Vmy, y ∈ R
m

• Find y = ym and we have xm = x0 + Vmym

‖M−1f − M−1Bx‖2 = ‖M−1r0 − M−1BVmy‖2 =

= ‖Vm+1βe1 − Vm+1H̄my‖2 = ‖βe1 − H̄my‖2

find y using QR factorization of H̄m.
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One convergence bound for GMRES [Elman 1982]

(unpreconditioned version)

‖rm‖ = ‖f − Bxm‖ ≤

(

1 −
c2

C2

)m/2

‖r0‖ ,

where

c = min
x6=0

(x, Bx)

(x, x)
and C = max

x6=0

‖Bx‖

‖x‖
.
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What Cai and Zou [NLAA, 2002] showed is that

for Additive Schwarz M−1B is NOT positive real,

i.e., there is no c > 0 for which

(x, M−1Bx)

(x, x)
≥ c.

Thus, this GMRES bound cannot be used in this case.

We may not have the optimality.
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Krylov Subspace Methods with Energy Norms

Proposed solution: Use GMRES minimizing the A-norm of the

residual.

[Note: many authors mention this, e.g., Ashby-Manteuffel-Saylor,

Essai, Greenbaum, Gutknecht, Weiss, ... ]

In this case, we have that M−1B is positive real with respect to the

A-inner product since

(x, M−1Bx)A

(x, x)A
≥ cp and ‖M−1Bx‖A ≤ Cp‖x‖A.
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Rework convergence bound for GMRES [Elman 1982]

(preconditioned version)

‖rm‖A = ‖M−1f − M−1Bxm‖A ≤

(

1 −
c2

C2

)m/2

‖M−1r0‖A ,

where

c = min
x6=0

(x, M−1Bx)A

(x, x)A
and C = max

x6=0

‖Bx‖A

‖x‖A
.
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Implementation:

Replace each inner product (x, y) with (x, y)A = xT Ay.

Only one matvec with A needed. Basis vectors are A-orthonormal.

Arnoldi relation: M−1BVm = Vm+1Hm+1.

‖M−1b − M−1Bx‖A = ‖M−1r0 − M−1BVmy‖A =

= ‖Vm+1βe1 − Vm+1H̄my‖A = ‖βe1 − H̄my‖2

Same QR factorization of H̄m, same code for the minimization.

We use this for analysis, but sometimes also valid for computations.
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Left vs. Right preconditioner

For right preconditioner BM−1u = f , M−1u = x.

(x, x)A = (M−1u, M−1u)A = (u, u)G, G = M−T AM−1.

• Every left preconditioned system M−1Bx = M−1f with the A

norm is completely equivalent to a right preconditioned system

with the M−T AM−1-norm.

‖r0 − BM−1Zmy‖M−T AM−1 = ‖M−1r0 − M−1BM−1Zmy‖A

= ‖βz1 − M−1BVmy‖A = ‖βe1 − H̄my‖2 .

Zm has the G-orthogonal basis of Km(r0, BM−1)
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Left vs. Right preconditioner

• Converse also holds: for every right preconditioner M with

S-norm, this is equivalent to left preconditioning with M using

the MT SM -norm. (True in particular for S = I)

• When using the same inner product (norm), left and right

preconditioning produce different upper Hessenberg matrices Hm.

• When using A-inner product for left preconditioning and

M−T AM−1-inner product for right preconditioning, we have the

same upper Hessenberg matrices Hm.

• Experiments we will show with left preconditioning and A-norm

minimization are the same as with right preconditioning with

G-norm minimization, G = M−T AM−1.
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Energy Norms vs. ℓ2 Norm

Now, we “have” the optimality with energy norms.

What can we say about the ℓ2 norm? Use equivalence of norms:

‖x‖2 ≤
1

√

λmin(A)
‖x‖A, ‖x‖A ≤

√

λmax(A)‖x‖2

‖M−1rL
m‖2 ≤ ‖M−1rA

m‖2 ≤
1

√

λmin(A)
‖M−1rA

m‖A

≤
1

√

λmin(A)

(

1 −
c2

C2

)m/2

‖M−1r0‖A

≤

√

λmax(A)
√

λmin(A)

(

1 −
c2

C2

)m/2

‖M−1r0‖2

=
√

κ(A)

(

1 −
c2

C2

)m/2

‖M−1r0‖2
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“Asymptotic” Optimality of ℓ2 Norm

‖M−1rL
m‖2 ≤

√

κ(A)

(

1 −
c2

C2

)m/2

‖M−1r0‖2

For a fixed mesh size h, Additive Schwarz preconditioned GMRES

(2-norm) has a bound that goes to zero at the same speed as the

optimal bound (energy norm), except for a factor
√

κ(A)

(which of course depends on h)
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Numerical Experiments

• Helmholtz equation −∆u + cu = f , c = −5 or c = −120.

• Advection diffusion equation −∆u + b.∇u + cu = f

bT = [10, 20], c = 1, upwind finite differences

• both on unit square, zero Dirichlet b.c., f ≡ 1

• Discretization: 64 × 64 (n = 3969),

128 × 128 (n = 16129), or 256 × 256 (n = 65025) nodes

p = 4 × 4 or p = 8 × 8 subdomains

Overlap: 0, 1, 2 (1,3 or 5 lines of nodes)

• Tolerance ε = 10−8
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Figure 1: Helmholtz equation k = −5. GMRES minimizing the ℓ2 norm

(o), and the G-norm (*). 64× 64 grids, 4× 4 subdomains. δ = 0 Left:

G-norm of both residuals. Right: ℓ2 norm of both residuals.
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Figure 2: Helmholtz equation k = −120. GMRES minimizing the ℓ2

norm (o), and the G-norm (*). 128 × 128 grids, 8 × 8 subdomains.

δ = 1 Left: G-norm of both residuals. Right: ℓ2 norm of both residuals.
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Figure 3: Helmholtz equation k = −120. GMRES minimizing the ℓ2

norm (o), and the G-norm (*). 256 × 256 grids, 8 × 8 subdomains.

δ = 0 Left: G-norm of both residuals. Right: ℓ2 norm of both residuals.

25



0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration 

R
e

la
tiv

e
 G

−
n

o
rm

 r
e

si
d

u
a

l

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration 

R
e

la
tiv

e
 l 2

−
n

o
rm

 r
e

si
d

u
a

l
Figure 4: Advection-diffusion equation. GMRES minimizing the ℓ2 norm

(o), and the G-norm (*). 128 × 128 grids, 4 × 4 subdomains. δ = 2

Left: G-norm of both residuals. Right: ℓ2 norm of both residuals.
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Figure 5: Advection-diffusion equation. GMRES minimizing the ℓ2 norm

(o), and the G-norm (*). 256 × 256 grids, 8 × 8 subdomains. δ = 0

Left: G-norm of both residuals. Right: ℓ2 norm of both residuals.
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Conclusions

• GMRES in energy norm maintains optimality

• GMRES in ℓ2 norm achieves “asymptotic” optimality

• Observations on left vs. right preconditioning

• Numerical experiments illustrate this

Paper to appear in CMAME, available at

http://www.math.temple.edu/szyld
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