Introduction

Laurence HALPERN

LAGA - Université Paris 13

DD17. July 2006

Outline

- Introduction
- 2 The SWR algorithm for advection diffusion equation
 - Description
 - Numerical experiments
 - Back to the theoretical problem
- The two-dimensional wave equation
 - Dirichlet transmission conditions
 - Optimized algorithms with overlap
- 4 Conclusion und perspectives

Coupling process

Issues

♦ For a given problem, split the domain : domain decomposition.

Issues

- ♦ For a given problem, split the domain : domain decomposition.
- ♦ For a given problem, different numerical methods in different zones : FEM/FD, SM/FEM, AMR.

Issues

- ♦ For a given problem, split the domain : domain decomposition.
- ♦ For a given problem, different numerical methods in different zones : FEM/FD, SM/FEM, AMR.
- Couple two different models in different zones.

Coupling process

Issues

- ♦ For a given problem, split the domain : domain decomposition.
- For a given problem, different numerical methods in different zones: FEM/FD, SM/FEM, AMR.
- Couple two different models in different zones.
- Furthermore the codes can be on distant sites.

Usual methods

Introduction

- ♦ Explicit + interpolation -> exchange of information every time step
- -> time consuming, possibly unstable for hyperbolic problems.

DDM for evolution problems

Usual methods

- \diamond Explicit + interpolation -> exchange of information every time step
- -> time consuming, possibly unstable for hyperbolic problems.
- ♦ Implicit > uniform time step.

DDM for evolution problems

The goals

- Different time and space steps in different subdomains,
- Different models in different subdomains,
- Different computing sites,
- ♦ Easy to use, fast and cheap.

The goals

Introduction

- Different time and space steps in different subdomains,
- Different models in different subdomains.
- Different computing sites,
- Easy to use, fast and cheap.

The means

- Work on the PDE level, globally in time,
- Split the space domain.
- Use time windows.
- Use the physical transmission conditions, transmit with improved (optimal/optimized) transmission conditions.
- Then discretize separately...

DDM for evolution problems

The goals

- Different time and space steps in different subdomains,
- Different models in different subdomains,
- Different computing sites,
- Easy to use, fast and cheap.

The means

- Work on the PDE level, globally in time,
- Split the space domain,
- Use time windows.
- Use the physical transmission conditions, transmit with improved (optimal/optimized) transmission conditions.
- Then discretize separately...

Optimized Schwarz Waveform Relaxation

Outline

- Introduction
- 2 The SWR algorithm for advection diffusion equation
 - Description
 - Numerical experiments
 - Back to the theoretical problem
- 3 The two-dimensional wave equation
 - Dirichlet transmission conditions
 - Optimized algorithms with overlap
- Conclusion und perspectives

Outline

- 1 Introduction
- 2 The SWR algorithm for advection diffusion equation
 - Description
 - Numerical experiments
 - Back to the theoretical problem
- The two-dimensional wave equation
 - Dirichlet transmission conditions
 - Optimized algorithms with overlap
- 4 Conclusion und perspectives

The Schwarz algorithm

$$\mathcal{L}u := \partial_t u + a \partial_x u + (\mathbf{b} \cdot \nabla) u - \nu \Delta u + c u \text{ in } \Omega \times (0, T)$$
$$\nu > 0.$$

$$\begin{cases} & \mathcal{L}u_1^{k+1} & = & f & \text{in } \Omega_1 \times (0, T) \\ u_1^{k+1}(\cdot, 0) & = & u_0 & \text{in } \Omega_1 \\ & \mathcal{B}_1 u_1^{k+1} & = & \mathcal{B}_1 u_2^k & \text{on } \Gamma_{12} \times (0, T) \\ \end{cases} \\ \begin{cases} & \mathcal{L}u_2^{k+1} & = & f & \text{in } \Omega_2 \times (0, T) \\ u_2^{k+1}(\cdot, 0) & = & u_0 & \text{in } \Omega_2 \\ & \mathcal{B}_2 u_2^{k+1} & = & \mathcal{B}_2 u_1^k & \text{on } \Gamma_{21} \times (0, T) \end{cases}$$

Transmission conditions

$$\mathcal{B}_1 u_1^{k+1} = \mathcal{B}_1 u_2^k \text{ on } \Gamma_{12} \times (0, T), \qquad \mathcal{B}_2 u_2^{k+1} = \mathcal{B}_2 u_1^k \text{ on } \Gamma_{21} \times (0, T)$$

Transmission conditions

$$\mathcal{B}_1 u_1^{k+1} = \mathcal{B}_1 u_2^k \text{ on } \Gamma_{12} \times (0, T), \qquad \mathcal{B}_2 u_2^{k+1} = \mathcal{B}_2 u_1^k \text{ on } \Gamma_{21} \times (0, T)$$

Classical Schwarz

$$\mathcal{B}_j \equiv I$$
 AND overlap.

Classical Schwarz

 $\mathcal{B}_i \equiv I$ AND overlap.

1D Numerical experiment

$$a = 1, \nu = 0.2, \Omega = (0, 6), T = 2.5, L = 0.08.$$

Transmission conditions

$$\mathcal{B}_1 u_1^{k+1} = \mathcal{B}_1 u_2^k \text{ on } \Gamma_{12} \times (0, T), \qquad \mathcal{B}_2 u_2^{k+1} = \mathcal{B}_2 u_1^k \text{ on } \Gamma_{21} \times (0, T)$$

Classical Schwarz

 $\mathcal{B}_i \equiv I$ AND overlap.

Optimized Schwarz Waveform relaxation

 $\mathcal{B}_{j} \equiv ext{absorbing boundary operator} + ext{optimization WITH OR WITHOUT}$ overlap

The optimal SWR algorithm

$$egin{aligned} \Omega_1 = (-\infty, L) imes \mathbb{R}^n, & \Omega_2 = (0, \infty) imes \mathbb{R}^n. \ \mathcal{B}_j \equiv \partial_x + \mathcal{S}_j (\partial_t, \partial_y) \end{aligned}$$

a > 0, Fourier transform $t \leftrightarrow \omega, y \leftrightarrow \kappa$

$$S_1(i\omega, i\kappa) = \frac{\delta^{1/2} - a}{2\nu}, S_2(i\omega, i\kappa) = \frac{\delta^{1/2} + a}{2\nu}.$$

$$\delta(\omega, k) = a^2 + 4\nu((i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu|k|^2 + c)$$

Convergence in 2 iterations (I if I subdomains).

Two options:

• Use the optimal transmission condition (easier in 1D)

The optimal SWR algorithm

$$egin{aligned} \Omega_1 &= (-\infty, L) imes \mathbb{R}^n, \quad \Omega_2 &= (0, \infty) imes \mathbb{R}^n. \ \mathcal{B}_j &\equiv \partial_x + \mathcal{S}_j (\partial_t, \partial_y) \end{aligned}$$

a > 0, Fourier transform $t \leftrightarrow \omega, y \leftrightarrow \kappa$

$$S_1(i\omega, i\kappa) = \frac{\delta^{1/2} - a}{2\nu}, S_2(i\omega, i\kappa) = \frac{\delta^{1/2} + a}{2\nu}.$$

$$\delta(\omega, k) = a^2 + 4\nu((i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu|k|^2 + c)$$

Convergence in 2 iterations (I if I subdomains).

Two options:

- Use the optimal transmission condition (easier in 1D)
- Approximate the optimal -> optimized transmission conditions

Design of approximate SWR algorithms

boundary operators

$$\delta(\omega, k) := a^2 + 4\nu((i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu|k|^2 + c)$$

$$S_1(i\omega, i\kappa) = \frac{\delta^{1/2} - a}{2\nu}, \delta(\omega, k) = a^2 + 4\nu((i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu|k|^2 + c)$$

$$\tilde{S}_1(i\omega,i\kappa) = \frac{P-a}{2\nu}, P(\omega,k) = \mathbf{p} + \mathbf{q}(i(\omega+\mathbf{b}\cdot\mathbf{k})+\nu|k|^2), (\mathbf{p},\mathbf{q}) \in \mathbb{R}^2.$$

$$\mathcal{B}_1 u := \partial_{\mathsf{x}} u - \frac{\mathsf{a} - \mathsf{p}}{2\nu} u + \mathsf{q} (\partial_t + \mathsf{b} \cdot \nabla u - \nu \Delta_y u)$$

Well-posedness and convergence

Transmission conditions

$$\mathcal{B}_1 u := \partial_{\mathsf{x}} u - rac{\mathsf{a} - \mathsf{p}}{2
u} u + \mathsf{q} (\partial_t + \mathbf{b} \cdot \mathbf{\nabla} u -
u \Delta_{\mathsf{y}} u)$$

$$\mathcal{B}_2 u := \partial_x u - \frac{a+p}{2\nu} u - q(\partial_t + \mathbf{b} \cdot \nabla u - \nu \Delta_y u)$$

Well-posedness and convergence

Transmission conditions

$$\mathcal{B}_1 u := \partial_{\mathsf{x}} u - rac{\mathsf{a} - \mathsf{p}}{2 \nu} u + q (\partial_t + \mathbf{b} \cdot \mathbf{\nabla} u - \nu \Delta_{\mathsf{y}} u)$$

$$\mathcal{B}_2 u := \partial_{\mathsf{x}} u - rac{\mathsf{a} + \mathsf{p}}{2 \nu} u - q (\partial_t + \mathbf{b} \cdot \mathbf{\nabla} u - \nu \Delta_{\mathsf{y}} u)$$

Convergence factor

$$\rho(\omega, k, P, L) = \left(\frac{P - \delta^{1/2}}{P + \delta^{1/2}}\right)^2 e^{-2\delta^{1/2}L/\nu}$$

$$\widehat{e_i^{k+2}}(\omega,0,k) = \rho(\omega,k,P,L)\widehat{e_i^k}(\omega,0,k)$$

Well-posedness and convergence

Transmission conditions

$$\mathcal{B}_1 u := \partial_{\mathsf{x}} u - rac{\mathsf{a} - \mathsf{p}}{2
u} u + \mathsf{q} (\partial_t + \mathbf{b} \cdot \mathbf{\nabla} u -
u \Delta_{\mathsf{y}} u)$$

$$\mathcal{B}_2 u := \partial_x u - \frac{a+p}{2\nu} u - q(\partial_t + \mathbf{b} \cdot \nabla u - \nu \Delta_y u)$$

Convergence factor

$$\rho(\omega, k, P, L) = \left(\frac{P - \delta^{1/2}}{P + \delta^{1/2}}\right)^2 e^{-2\delta^{1/2}L/\nu}$$

$$\widehat{e_i^{k+2}}(\omega,0,k) = \rho(\omega,k,P,L)\widehat{e_i^{k}}(\omega,0,k)$$

THEOREM

For p, q > 0, $p > \frac{a^2}{4\nu}q$, the algorithm is well-posed in suited Sobolev spaces and converges with and without overlap.

One dimension: influence of the parameters

Error obtained running the algorithm with first order transmission conditions for 5 steps and various choices of p and q.

> p^* , q^* : theoretical values, p^* , q^* : Taylor approximations.

One dimension: comparison

10⁻¹⁰

6 8 10

iteration

Two dimensions: coupling different numerical methods

Two dimensions: coupling different numerical methods

Programming

- F.E in Ω_1 , F.D in Ω_2 ,
- Write the interface problem,
- solve by Krylov,

Results for a time window=10 timesteps

the steady algorithm is:

do time iterations 1 :N do Krylov iterations with preconditioning residual vectors = size of interface 15 iterations ×10.

the unsteady algorithm is:

```
do Krylov iterations
do time iterations 1 :N
residual vectors =
size of interface x N
100 iterations.
```

P.d'Anfray, J. Ryan, L.H. M2AN 2002

Robustness: rotating velocities

$$\delta(z) = a^2 + 4\nu c + 4\nu z, z = i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu |\mathbf{k}|^2$$
$$\rho(z, P, L) = \left(\frac{P(z) - \delta^{1/2}(z)}{P(z) + \delta^{1/2}(z)}\right)^2 e^{-2\delta^{1/2}L}$$

$$\delta(z) = a^{2} + 4\nu c + 4\nu z, z = i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu |\mathbf{k}|^{2}$$

$$\rho(z, P, L) = \left(\frac{P(z) - \delta^{1/2}(z)}{P(z) + \delta^{1/2}(z)}\right)^{2} e^{-2\delta^{1/2}L}$$

• Taylor expansion, $P(z) = \sqrt{\delta(0)} + 2\nu z / \sqrt{\delta(0)}$,

$$\delta(z) = a^{2} + 4\nu c + 4\nu z, z = i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu |\mathbf{k}|^{2}$$
$$\rho(z, P, L) = \left(\frac{P(z) - \delta^{1/2}(z)}{P(z) + \delta^{1/2}(z)}\right)^{2} e^{-2\delta^{1/2}L}$$

- Taylor expansion, $P(z) = \sqrt{\delta(0)} + 2\nu z / \sqrt{\delta(0)}$,
- Best approximation

$$\inf_{P\in\mathbb{P}_n}\sup_{z\in\mathcal{K}}|\rho(z,P,L)|,\quad K=(\frac{\pi}{T},\frac{\pi}{\Delta t}),k_j\in(\frac{\pi}{X_j},\frac{\pi}{\Delta x_j})$$

$$\delta(z) = a^{2} + 4\nu c + 4\nu z, z = i(\omega + \mathbf{b} \cdot \mathbf{k}) + \nu |\mathbf{k}|^{2}$$
$$\rho(z, P, L) = \left(\frac{P(z) - \delta^{1/2}(z)}{P(z) + \delta^{1/2}(z)}\right)^{2} e^{-2\delta^{1/2}L}$$

- Taylor expansion, $P(z) = \sqrt{\delta(0)} + 2\nu z / \sqrt{\delta(0)}$,
- Best approximation

$$\inf_{P\in\mathbb{P}_n}\sup_{z\in\mathcal{K}}|\rho(z,P,L)|,\quad K=(\frac{\pi}{T},\frac{\pi}{\Delta t}),k_j\in(\frac{\pi}{X_j},\frac{\pi}{\Delta x_j})$$

THEOREM

For any n, for L=0 or sufficiently small, the problem has a unique solution characterized by an equioscillation property.

Asymptotic results

Example : overlapping case, $L \approx C\Delta x$

- Dirichlet transmission conditions : $|\rho| \approx 1 \alpha \Delta x$,
- Taylor approximation : $|\rho| \approx 1 \beta \sqrt{\Delta x}$,
- Optimization : $p \approx C_p \Delta x^{-\frac{1}{5}}$, $q \approx C_q \Delta x^{\frac{3}{5}}$, $|\rho| \approx 1 O(\Delta x^{\frac{1}{5}})$.

Outline

- 1 Introduction
- 2 The SWR algorithm for advection diffusion equation
 - Description
 - Numerical experiments
 - Back to the theoretical problem
- 3 The two-dimensional wave equation
 - Dirichlet transmission conditions
 - Optimized algorithms with overlap
- 4 Conclusion und perspectives

Schwarz Waveform relaxation algorithm

$$\mathcal{L}u := u_{tt} - c^2 \Delta u, \quad \mathbf{x} \in \Omega \subset \mathbb{R}^m$$

$$\begin{cases} \mathcal{L}u_1^{k+1} &= f & \text{in } \Omega_1 \times (0,T) \\ u_1^{k+1}(\cdot,0) &= u_0 & \text{in } \Omega_1 \\ \mathcal{B}_1u_1^{k+1}(L,\cdot) &= \mathcal{B}_1u_2^k(L,\cdot) & \text{in } (0,T) \end{cases}$$

$$\begin{cases} \mathcal{L}u_2^{k+1} &= f & \text{in } \Omega_2 \times (0,T) \\ u_2^{k+1}(\cdot,0) &= u_0 & \text{in } \Omega_2 \\ \mathcal{B}_2u_2^{k+1}(0,\cdot) &= \mathcal{B}_2u_1^k(0,\cdot) & \text{in } (0,T) \end{cases}$$

A numerical experiment

Data

$$c=1,\ T=1,$$
 $\Omega=(0,1) imes(0,1).$ Two subdomains, overlap $L=0.08.$

A numerical experiment

Data

$$c=1,\ T=1,$$
 $\Omega=(0,1) imes(0,1).$ Two subdomains, overlap $L=0.08.$

Convergence history: Dirichlet transmission conditions with overlap

Convergence after $n > \frac{cT}{I} = 12$ iterations

Other transmission conditions

General transmission operators

$$\mathcal{B}_1 = \prod_{j=1}^J (\partial_x + \alpha_j \partial_t), \mathcal{B}_2 = \prod_{j=1}^J (\partial_x - \alpha_j \partial_t).$$

Other transmission conditions

General transmission operators

$$\mathcal{B}_1 = \prod_{j=1}^J (\partial_x + \alpha_j \partial_t), \mathcal{B}_2 = \prod_{j=1}^J (\partial_x - \alpha_j \partial_t).$$

Plane waves analysis

$$\begin{aligned} e_1^k &= a_1^k(\omega,k)e^{\sigma(x-L)}, e_2^k = a_2^k(\omega,k)e^{\sigma x}. \\ \sigma &= \begin{cases} \frac{|\omega|}{c}\sqrt{\left(\frac{ck}{\omega}\right)^2 - 1}, & \text{evanescent waves,} \\ \frac{i\omega}{c}\sqrt{1 - \left(\frac{ck}{\omega}\right)^2}, & \text{propagating waves.} \end{cases} \\ |\rho| &= \begin{cases} e^{-L\frac{|\omega|}{c}}\sqrt{\left(\frac{ck}{\omega}\right)^2 - 1}, & \text{evanescent waves,} \\ \prod_{j=1}^J \left|\frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}\right| & \text{propagating waves.} \end{cases} \end{aligned}$$

Introduction

Convergence factor, propagating case

 θ angle of incidence on the interface, $\sin \theta = \frac{ck}{\omega}$.

$$|\rho| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}} \right| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \cos \theta}{\alpha_j + \cos \theta} \right|.$$

Convergence factor, propagating case

 θ angle of incidence on the interface, $\sin \theta = \frac{ck}{\omega}$.

$$|\rho| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}} \right| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \cos \theta}{\alpha_j + \cos \theta} \right|.$$

Strategy 1 : orthogonal absorption $\alpha = 1$

Convergence factor, propagating case

 θ angle of incidence on the interface, $\sin\theta = \frac{ck}{\omega}.$

$$|\rho| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}} \right| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \cos \theta}{\alpha_j + \cos \theta} \right|.$$

Strategy 2 : optimization

Given eps, find n and $\alpha(n)$ such that

Convergence factor, propagating case

 θ angle of incidence on the interface, $\sin\theta = \frac{ck}{\omega}.$

$$|\rho| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}} \right| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \cos \theta}{\alpha_j + \cos \theta} \right|.$$

Strategy 2: optimization

Given eps, find n and $\alpha(n)$ such that

① The overlap takes care of the wide angles $\theta \geq \theta_{max}(n) = \arccos(\frac{nL}{cT})$,

Convergence factor, propagating case

 θ angle of incidence on the interface, $\sin\theta = \frac{ck}{\omega}$.

$$|\rho| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}}{\alpha_j + \sqrt{1 - \left(\frac{ck}{\omega}\right)^2}} \right| = \prod_{j=1}^{J} \left| \frac{\alpha_j - \cos \theta}{\alpha_j + \cos \theta} \right|.$$

Strategy 2: optimization

Given eps, find n and $\alpha(n)$ such that

- The overlap takes care of the wide angles $\theta \geq \theta_{max}(n) = \arccos(\frac{nL}{cT})$,
- **2** the convergence rate ρ is optimized by $\rho(\theta_{max}(n))^n < eps.$

Comparison

Example : $eps = 10^{-2}$

First order : $n = 3.7459 \approx 3 - 4$, $\theta_{\text{max}} \approx 73^{\circ}$.

Second order : $n = 1.9540 \approx 2$, $\theta_{\text{max}} \approx 81^{\circ}$.

Iteration	0	1	2	3	4	5
Dirichlet	0.7059	1.0555	0.8146	0.7340	0.7321	0.5760
Orthogonal O1	0.7059	0.5793	0.2035	0.0413	0.0061	0.0010
Optimized O1	0.7059	0.4403	0.1132	0.0216	0.0062	0.0018
Orthogonal O2	0.7059	0.5853	0.0701	0.0045	0.0003	0.0000
Optimized O2	0.7059	0.5847	0.0415	0.0099	0.0030	0.0004

Theoretical results

Continuous level

- Well-posedness of the best approximation problems (explicit),
- Well-posedness of the subdomain problems (Kreiss theory),
- Convergence of the algorithm (Fourier analysis, "à la" Engquist-Majda).

Discrete level

- Discretization by finite volumes schemes,
- Well-posedness of the discrete algorithm,1D case.
- Convergence of the discrete algorithm (Fourier analysis + energy estimates) also nonconforming discretization in time. 1D case.
- Error estimates for non conforming grids in time.

Outline

- Introduction
- 2 The SWR algorithm for advection diffusion equation
 - Description
 - Numerical experiments
 - Back to the theoretical problem
- The two-dimensional wave equation
 - Dirichlet transmission conditions
 - Optimized algorithms with overlap
- 4 Conclusion und perspectives

Parabolic problems

- 1D theoretical analysis (M. Gander and L.H.)
- 2D with non constant velocity (V. Martin)
- Shallow water (V. Martin)
- Non conformal coupling (M.G., L.H., C. Japhet and M. Kern)

Hyperbolic problems

- 1D heterogeneous (M. Gander and L.H.) optimal SWR.
- 2D homogeneous overlapping SWR (M. Gander and L.H.)
- 1D Mesh refinement,
- Nonoverlapping SWR in 2D (M. Gander and L.H.)
- Nonlinear waves in 1D (L.H and J. Szeftel),

Mixed

- coupling a large scale oceanic model and a coastal model,
- coupling Euler and Navier-Stokes in an AMR frame.
- coupling ocean and atmosphere models.

Collaborators

- Mostly : M. Gander (Université Genève).
- 1D wave equation : F. Nataf (CNRS P6).
- 2D advection-diffusion : P. D'Anfray et J. Ryan (ONERA). V. Martin (Amiens).
- Heterogeneous problems (application to oceanography): C. Japhet (P13), M. Kern (INRIA), E. Blayo (Grenoble).
- Schrödinger equation and non linear models : J. Szeftel.
- Application to micromagnetism : S. Labbé (P11) et K. Santugini(Genève)

http://www.math.univ-paris13.fr/ halpern See MS M04 today at 4pm.

Two applications

Two applications

Ocean and ocean-atmosphere computations