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Introduction

Coupling process

¢ For a given problem, split the domain : domain decomposition.

¢ For a given problem, different numerical methods in different zones :
FEM/FD, SM/FEM, AMR.

¢ Couple two different models in different zones.

{> Furthermore the codes can be on distant sites.
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Usual methods
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Usual methods
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o Implicit — > uniform time step.
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The SWR algorithm for advection diffusion equation

®0000

The Schwarz algorithm

Lu =0+ adu+ (b V)u—vAu+cuinQx(0,T)

v > 0.
:
B
1931 [41
rhz 2
Luftt = f in Q1 x (0, T)
uftt(,0) = w in
Blufﬂ = Blué‘ on F12 X (O, T)
Luk™ = f in Q x (0, T)
ut(,0) = w in Q
Bouftt = Bouf on Tz x(0,T)
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How to choose the transmission operators ?

Transmission conditions

Biut™ = Biuf on T2 x (0, T),  Bous™ = Bouf on Ty x (0, T)

8/29



The SWR algorithm for advection diffusion equation
(o] le]ele]

How to choose the transmission operators ?

Transmission conditions

Biuy™ = Bius on T12 x (0, T),  Bous™ = Bous on Tz x (0, T)

Classical Schwarz
B;j = | AND overlap.

8/29



The SWR algorithm for advection diffusion equation

(o] le]ele]

How to choose the transmission operators ?

Classical Schwarz
B;j = | AND overlap.

1D Numerical experiment

a=1,0=02,9=(0,6), T =2.5,L = 0.08.
ull.('v T)? U%(" T) u]?.’('v T)? Ug(', T) 7 U%(~, T)? Ug(', T)
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The SWR algorithm for advection diffusion equation
(o] le]ele]

How to choose the transmission operators ?

Transmission conditions

Byuy™ = Byuj on T x (0, T), Boustt = Byuf on Ty x (0, T)

Classical Schwarz
B; = | AND overlap.

Optimized Schwarz Waveform relaxation

B; = absorbing boundary operator+-optimization WITH OR WITHOUT
overlap
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The SWR algorithm for advection diffusion equation
(o] le]ele]

How to choose the transmission operators ?

Comparison
u%(W T)? U%(-, T)
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The SWR algorithm for advection diffusion equation
[o]e] lele]

The optimal SWR algorithm

Q) = (—o0, L) xR", Q= (0,00) x R".
B = 0 + 5(00.,)

a > 0, Fourier transform t — w,y < &k

51/2 — 23 51/2 +a

Si(iw, ik) = 5 , Sa(iw, i) = 5
v v

S(w, k) = a*> + 4v((i(w + b - k) + v|k|]> + ¢)

Convergence in 2 iterations (I if | subdomains).

Two options :
o Use the optimal transmission condition (easier in 1D)
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The optimal SWR algorithm

Q) = (—o0, L) xR", Q= (0,00) x R".
B = 0 + 5(00.,)

a > 0, Fourier transform t — w,y < &k

51/2 — 23 51/2 +a

Si(iw, ik) = 5 , Sa(iw, i) = 5
v v

S(w, k) = a*> + 4v((i(w + b - k) + v|k|]> + ¢)

Convergence in 2 iterations (I if | subdomains).

Two options :
o Use the optimal transmission condition (easier in 1D)

@ Approximate the optimal — > optimized transmission conditions
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The SWR algorithm for advection diffusion equation
[o]e]e] le]

Design of approximate SWR algorithms

boundary operators

S(w, k) := a® + 4v((i(w + b - k) + v|k|? + ¢)

51/2

—a
2v

Si(iw, ik) = ,0(w, k) = a® + 4v((i(w+b - k) +v|k]> +¢)

Suliw, ir) = T2, Pw, k) = p+a(i(w + b - k) + vIkI?), (p.q) € R.

2Vpu +q(0: +b-Vu—-vAyu)

Biu = Oyu — 2
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The SWR algorithm for advection diffusion equation
[o]e]e]e] ]

Well-posedness and convergence

Transmission conditions

Biu = Ocu — a_pu—i-q(at—i-b-Vu—I/Ayu)
v
a+p

Bou := Oyu — 5 u—q(0:+b-Vu—-vA,u)
v
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The SWR algorithm for advection diffusion equation
[o]e]e]e] ]

Well-posedness and convergence

Transmission conditions

Biu := Oyu — 2 pu—i—q(at—i-b - Vu—vAyu)

14

+p
12

Bou := Oyu — 2 u—q(0:+b-Vu—-vA,u)

Convergence factor

P—2\% _an,,
p(w, k, P,L) = <W) e 2

e/ "%(w,0,k) = p(w, k, P, L)e

j il

o)

(w, 0, k)
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The SWR algorithm for advection diffusion equation
[o]e]e]e] ]

Well-posedness and convergence

Transmission conditions

Biu := Oyu — 2 pu—i—q(at—i-b - Vu—vAyu)

14

+p
12

Convergence factor

p—§t/2\?
p(w7 k’ P, L) = (W) 67251/2L/V

Bou := Oyu — 2 u—q(0:+b-Vu—-vA,u)

e}‘+2(w,0, k) = p(w, k, P, L)e_]k(w’ 0, k)

For p,g >0, p > %q, the algorithm is well-posed in suited Sobolev
spaces and converges with and without overlap.
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The SWR algorithm for advection diffusion equation
[ Jelelele}

One dimension : influence of the parameters

-
45F
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4 4
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N
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155, \ L\/ b o
/
W * b
>
o5t s
]
— 3 6 5
2 .
o 05 q 1 is

Error obtained running the algorithm with first order transmission
conditions for 5 steps and various choices of p and gq.
p*, q* : theoretical values ,
p*, q* : Taylor approximations.
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The SWR algorithm for advection diffusion equation
[¢] lele]e}

One dimension : comparison
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The SWR algorithm for advection diffusion equation

[e]e] lele}

Two dimensions : coupling different numerical methods

The heat bubble hitting an airfoil

=3 ] 0 1 2 3 4 5 06 08 T 2 e [ [

Evolution of a heat bubble around an airfoil.
Coupling through Corba, “Common Object Request Broker Architecture”.
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The SWR algorithm for advection diffusion equation
[e]e]e] o]

Two dimensions : coupling different numerical methods

o F.Ein Q, F.D in €y,

@ Write the interface problem,

@ solve by Krylov,

Results for a time window=10 timesteps

the steady algorithm is :

the unsteady algorithm is :
do time iterations 1 :N

do Krylov iterations do Krylov iterations

with preconditioning do time iterations 1 :N

residual vectors = residual vectors =

size of interface size of interface x N
15 iterations x10. 100 iterations.

P.d'Anfray, J. Ryan,L.H. M2AN 2002
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The SWR algorithm for advection diffusion equation
[e]e]e]e] }

Robustness : rotating velocities

a(x,y) = 0.32 sin(4mx) sin(4y),
b(x,y) = 0.327 cos(4my) cos(4mx).

\

o7

interface 0.3 interface 0.4

interface 0.5
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The SWR algorithm for advection diffusion equation
o0

Optimization of the convergence factor

§(z) = a® +4vc+4vz,z = i(w+b - k) + v|k?

P(z —51/22 2 _osl/2
plz, P L) = (PEZ§+51/2EZ;) et
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§(z) = a® +4vc+4vz,z = i(w + b - k) + v|k|?

P(z —51/22 2 _osl/2
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The SWR algorithm for advection diffusion equation
o0

Optimization of the convergence factor

§(z) = a® +4vc+4vz,z = i(w+b - k) + v|k?

P(z —51/2 V4 2 1/2
plz, Py L) = (szi +51/2Ez;) et

@ Taylor expansion,P(z) = 1/6(0) 4+ 2vz/+/4(0),

@ Best approximation

T
inf sup |p(z,P,L)], K= X Ax)
J

Vi T
Tk
per, S2P T AD) c(x
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The SWR algorithm for advection diffusion equation
o0

Optimization of the convergence factor

§(z) = a® +4vc+4vz,z = i(w+b - k) + v|k?

P(z —51/2 z 2 1/2
plz, P L) = (PEZ; +51/2Ez;) et

@ Taylor expansion,P(z) = /0(0) 4+ 2vz/+/d(

@ Best approximation

T
inf sup |p(z,P,L)], K= X Ax)
J

Vi T
T Tk
PCP, soP T AD) c(x

For any n, for L = 0 or sufficiently small, the problem has a unique
solution characterized by an equioscillation property.
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The SWR algorithm for advection diffusion equation
oce

Asymptotic results

Example : overlapping case, L ~ CAx
o Dirichlet transmission conditions : |p| =~ 1 — a/Ax,
@ Taylor approximation : |p| ~ 1 — 8V/Ax,
o Optimization : p~ C,Ax™5, g ~ CqAX%, lp| = 1 — O(Ax3).
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The two-dimensional wave equation
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© The two-dimensional wave equation
9 Dirichlet transmission conditions
9 Optimized algorithms with overlap
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The two-dimensional wave equation

Schwarz Waveform relaxation algorithm

Lu:= uy — Au,

xcQCR™

/

t
Q
rlzz Q
Luk™ = f in Q x (0, 7)
ufti(,0) = w in
Bluf+1(L7 ) = B1U§(L, ) in (07 T)
Lustt = f in Qy x (0, T)
uf“(-70) = uop in Q2
Bous™(0,) = Boui(0,-) in(0,T)
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The two-dimensional wave equation
°

A numerical experiment

e=1, T =1,
Q=(0,1) x (0,1).
Two subdomains, overlap
L = 0.08.
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The two-dimensional wave equation
°

A numerical experiment

e=1, T =1,
Q=(0,1) x (0,1).
Two subdomains, overlap
L = 0.08.

Convergence history : Dirichlet transmission conditions with overlap

Convergence after n > % = 12 iterations
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The two-dimensional wave equation
[ Jelele)

Other transmission conditions

General transmission operators

J J
By = [ [0« + jor), B2 = [ (0 — ;0e).

J=1 J=1
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The two-dimensional wave equation
[ Jelele)

Other transmission conditions

General transmission operators

J J
By = [ [0« + jor), B2 = [ (0 — ;0e).

Jj=1 Jj=1

Plane waves analysis

ef = af(w, k)" ef = ab(w, k)e”™.

2
(Ck) — 1, evanescent waves,

¢
oy /1— (C—k)z, propagating waves.

el 2
L (i) _1
e ¢ b s evanescent waves,

propagating waves.
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The two-dimensional wave equation
[o] lele)

Plane wave analysis : continue

Convergence factor, propagating case

0 angle of incidence on the interface, sin = %‘
J L 1— ck 2 J
Q; (w ) aj — cosf
|p|=H N :Ha--l-cosf).
il +1- (@) =l
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The two-dimensional wave equation
[o] lele)

Plane wave analysis : continue

Convergence factor, propagating case

0 angle of incidence on the interface, sinf = %‘

I lai — /1~ %)2 Jyo 0
=T ]|
=tlag+/1= ()7 =Y

‘‘‘‘‘‘‘‘‘
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The two-dimensional wave equation
[o] lele)

Plane wave analysis : continue

Convergence factor, propagating case

0 angle of incidence on the interface, sinf = %‘
J L 1 _ (ck 2 J
Q; (w) aj — cosf
|p|:H PR :Ha~+c050’
=laj+4/1= ()1 =t

Strategy 2 : optimization

Given eps, find n and «(n) such that

Q The overlap takes care of the wide angles 6 > 0,..(n) = arccos(%),

Q the convergence rate p is optimized by p(6max(n))" < eps.
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The two-dimensional wave equation
ooeo

Comparison

Example : eps = 1072

First order : n =3.7459 ~ 3 — 4 0. ~ 73°.
Second order : n = 1.9540 ~ 2,0 ~ 81°.

Iteration 0 1 2 3 4 5

Dirichlet | 0.7059 | 1.0555 | 0.8146 | 0.7340 | 0.7321 | 0.5760
Orthogonal O1 | 0.7059 | 0.5793 | 0.2035 | 0.0413 | 0.0061 | 0.0010
Optimized O1 | 0.7059 | 0.4403 | 0.1132 | 0.0216 | 0.0062 | 0.0018
Orthogonal O2 | 0.7059 | 0.5853 | 0.0701 | 0.0045 | 0.0003 | 0.0000
Optimized O2 | 0.7059 | 0.5847 | 0.0415 | 0.0099 | 0.0030 | 0.0004
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The two-dimensional wave equation
oooe

Theoretical results

Continuous level

@ Well-posedness of the best approximation problems (explicit),

o Well-posedness of the subdomain problems (Kreiss theory),

o Convergence of the algorithm (Fourier analysis, “a la”
Engquist-Majda).

Discrete level

@ Discretization by finite volumes schemes,

@ Well-posedness of the discrete algorithm,1D case.

@ Convergence of the discrete algorithm (Fourier analysis + energy
estimates) also nonconforming discretization in time. 1D case.

@ Error estimates for non conforming grids in time.
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Parabolic problems

@ 1D theoretical analysis (M. Gander and L.H.)

@ 2D with non constant velocity (V. Martin)

@ Shallow water (V. Martin)

@ Non conformal coupling (M.G., L.H., C. Japhet and M. Kern)

. ot
Hyperbolic problems

1D heterogeneous (M. Gander and L.H.) optimal SWR.

[

@ 2D homogeneous overlapping SWR (M. Gander and L.H.)
@ 1D Mesh refinement,

@ Nonoverlapping SWR in 2D (M. Gander and L.H.)

@ Nonlinear waves in 1D (L.H and J. Szeftel),

o
@ coupling a large scale oceanic model and a coastal model,
@ coupling Euler and Navier-Stokes in an AMR frame.

@ coupling ocean and atmosphere models.
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Conclusion und perspectives
Collaborators

@ Mostly : M. Gander (Université Geneve).
@ 1D wave equation : F. Nataf (CNRS P6).

@ 2D advection-diffusion : P. D'Anfray et J. Ryan (ONERA). V.
Martin (Amiens).

@ Heterogeneous problems (application to oceanography) : C. Japhet
(P13), M. Kern (INRIA), E. Blayo (Grenoble).

@ Schrodinger equation and non linear models : J. Szeftel.

@ Application to micromagnetism : S. Labbé (P11) et K.
Santugini(Genéve)

http ://www.math.univ-paris13.fr/ halpern See MS M04 today at 4pm.
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Conclusion und perspectives

Two applications

H2 Bubble — Shock Interaction

) )

=Non-interacting

PG acoustic waves
supersonic flow
=Euler N2-02 =Euler N2-02

non-reactive

non-reactive

=Coarse mesh
=Shock- bubble
2 interaction @-Imeraoﬂng acoustic @ =Vortex and flame front
=Navier-Stokes multi- waves =Navier-Stokes multi-
species reactive =Euler N2-O2 reactive species reactive
=Fine mesh =Fine mesh =Very fine mesh
Combustion
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Conclusion und perspectives

Two applications
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Ocean and ocean-atmosphere computations
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