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Limitations of the standard theory

We will consider finite element approximations of a selfadjoint elliptic
problem on a region Ω (scalar elliptic or linear elasticity.) The domain Ω is
subdivided into nonoverlapping subdomains Ωi. In between the interface Γ.

We will consider tools for proofs of results on iterative substructuring
methods, such as FETI-DP and BDDC.

We will also consider two-level overlapping Schwarz methods with a
coarse space component borrowed from iterative substructuring methods,
in particular BDDC. In addition, the preconditioner will also have local
components based on overlapping subregions. Related work in the past by
Dryja, Sarkis, and W. (on special multigrid methods); cf. Numer. Math.
1996. That paper introduced quasi-monotonicity. More recent work by
Sarkis et al.

1/14



Olof Widlund DD17, Strobl, Austria, July 2006

Assumptions in previous work

In the theory for methods involving such coarse components, we typically
assume that:
The partition into subdomains Ωi is such that each subdomain is the

union of shape-regular coarse tetrahedral elements of a global conforming

mesh TH and the number of such tetrahedra forming an individual

subdomain is uniformly bounded.

In the theory for two-level Schwarz methods, we often assume that a
conventional coarse space is used, defined on a coarse triangulation, and that
the coefficients do not vary a lot or that they are at least quasi-monotone.

Why are these assumptions unsatisfactory?
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Figure 1: Finite element meshing of a mechanical object. 3/14
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Figure 2: Partition into thirty subdomains. Courtesy Charbel Farhat.
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What is needed for more general results?

In all theory for multi-level domain decomposition methods, we need a
Poincaré inequality.

Theorem [Poincaré’s Inequality and a Relative Isoperimetric Inequality]
Let Ω ⊂ Rn be open, bounded and connected. Then,

inf
k∈R

(
∫

Ω

|f − k|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)

∫

Ω

|∇f | dx,

if and only if,

[min(‖A‖, ‖B‖)]1−1/n ≤ γ(Ω, n)‖∂A ∩ ∂B‖. (1)

Here A ⊂ Ω, B = Ω \ A.
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This result can be found in a book Lin and Yang,
“Geometric Measure Theory – An Introduction”.

Using Hölder’s inequality several times, we find, for n = 3, that

inf
k∈R

‖u − k‖L2(Ω) ≤ γ(Ω, n)Vol(Ω)1/3‖∇u‖L2(Ω).

This is the conventional form of Poincaré’s inequality. (Thanks to Fanghua
Lin and Hyea Hyun Kim.)

The parameter in this inequality enters into all bounds of our result and
it is closely related to the second eigenvalue of the Laplacian with Neumann
boundary conditions.

We (re)learn from this result that we have to expect slow convergence
if the subdomains are not shape regular. We can also have problems if
elements at the boundary are not shape regular. (Consider a slim bar.)

6/14



Olof Widlund DD17, Strobl, Austria, July 2006

But we also see that under reasonable assumptions on our subregions,
we can expect a satisfactory parameter in the Poincaré inequality.

Another important tool is a simple trace theorem:

β‖u‖2
L2(∂Ω) ≤ C(β2|u|2H1(Ω) + ‖u‖2

L2(Ω)).

The parameter β measures the thickness of Ω. This result is borrowed from
Nečas’ 1967 book and it is proven under the assumption that the region is
Lipschitz; C is proportional to the Lipschitz constant.

One can easily construct subdomains which are not Lipschitz, but there
are also trace theorems for more general regions under reasonable geometric
assumptions.

I have not yet put these matters in a final form. In the literature, we
find Fritz John regions, carrots, cigars, etc.

7/14



Olof Widlund DD17, Strobl, Austria, July 2006

Overlapping Schwarz methods

Consider a scalar elliptic equation defined by a bilinear form

∑

∫

Ωj

ρj ∇u · ∇v dx.

The coefficients ρj are arbitrary positive constants and the Ωj are quite
general subdomains.

A natural coarse space is the range of the following interpolation operator

Ih
Bu(x) =

∑

V k∈Γ

u(V k)θVk
(x) +

∑

Ei⊂W

ūEiθEi(x) +
∑

F k⊂Γ

ūF kθF k(x).

Here ūEi and ūF k are averages over edges and faces of the subdomains.

8/14



Olof Widlund DD17, Strobl, Austria, July 2006

θVk
(x) the standard nodal basis functions of the vertices of the

subdomains, θEi(x) = 1 at the nodes of the edge Ei and vanishes at
all other interface nodes, and θF k(x) is a similar function defined for the
face F k. These functions are extended as discrete harmonic functions in
the interior of the subdomains. Note that this interpolation operator, IB,
preserves constants. A slightly richer coarse space will preserve all linear
functions; useful for elasticity.

Faces, edges, and vertices of quite general subdomains can be defined in
terms of certain equivalence classes. We will now consider the energy of the
face terms and estimate their energy in terms of the energy of the function
interpolated. We can estimate the averages ūF k by Cauchy-Schwarz and
the trace theorem.

Estimates of the energy of θF k(x) well known for special regions, e.g.,
tetrahedra; bounds are C(1 + log(H/h)H. We will consider, in detail, two
dimensions only, and construct functions ϑE forming a partition of unity.
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Figure 3: Construction of ϑE in 2D.
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The overlapping subregions are unions of elements and can be chosen
quite generally. We assume that they have satisfactory Poincaré parameters
and each has a diameter comparable to the subregions which they intersect.
The interface Γ can intersect these subregions arbitrarily.

The proof of our result uses a traditional argument on stable
decompositions, which is a main part of the abstract Schwarz theory.
The coarse component contributes a logarithmic factor that orginates with
the bound for θF functions and a bound on the edge averages ūE. The
bounds for the local components are done using a partition of unity related
to the overlapping subregions and a Friedrichs inequality on patches of
diameter δ. The patches are chosen so that the coefficient of the elliptic
problem is constant in each of them; see also Chap. 3 of the T. & W. book.
A second factor (1 + H/δ) comes from estimates of the local components;
Brenner has shown that this factor cannot be improved.

11/14



Olof Widlund DD17, Strobl, Austria, July 2006

Result on the two-level overlapping Schwarz method

Theorem. Under the given assumptions, the condition number κ of

the preconditioned operator satisfies

κ ≤ C(1 + H/δ)(1 + log(H/h)).

Here C is independent of the mesh size, the number of subdomains,

the coefficients ρi, etc. H/δ measures the relative overlap between

neighboring overlapping subregions. H/h measures the maximum number

of elements across any subregion. The logarithmic factor can be removed,

in some cases, if the coefficients are comparable and the coarse space

contains the linear functions.
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Extension of theory for iterative substructuring methods

The technical tools necessary for the traditional analysis of the rate of
convergence of iterative substructuring methods are collected in Section 4.6
of the T. & W. book. Among the tools necessary for the analysis of BDDC
and FETI-DP in three dimensions is a bound on the energy of

Ih(ϑF ku)

and bounds on the corresponding edge functions. These bounds feature a
second logarithmic factor. The old results on special subdomains can be
extended to much more general subdomains; no new ideas are required.
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It is known that the estimate of the condition numbers of BDDC and
FETI–DP can be reduced to bound of an averaging operator ED across the
interface. On each subdomain face, e.g., we have a weighted average of the
traces of functions defined in the relevant pair of subdomains. The weights
depend on the coefficients of the elliptic problem. We have to cut the traces
using ϑF k, etc. We then estimate the energy of resulting components in
terms of the energy of the functions, given on the subdomains, from which
the averages are computed. Two logarithmic factors result.

These bounds have previously been developed quite rigorously for
the case of simple polyhedral subdomains, for scalar elliptic problems,
compressible elasticity, flow in porous media, Stokes and almost
incompressible elasticity. For each of these cases, we have to select
the coarse component and certain scale factors of the preconditioner quite
carefully; that is not today’s story. What is new is that we can obtain bounds,
in many cases, which are of good quality for more general subdomains.
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