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1 Introduction

The parareal algorithm, recalled in section 2 below, allows one to solve evolution
equations on (possibly massively) parallel architectures. The two building blocks
of the algorithms are a coarse-discretization predictor (solved sequentially) and a
fine-discretization corrector (solved in parallel). First developed in [9] and slightly
modified in [3], which is the algorithm presented below, the parareal algorithm
has received quite a bit of attention lately; see e.g. [1, 2, 4, 5, 6, 7, 10] and their
references. Section 3 recalls some results on the parareal algorithm when it is used
to solve ordinary and partial differential equations. One of the main shortcomings
of the parareal algorithm is that, as a predictor corrector scheme, it may generate
high-frequency instabilities.

An area of great potential for the parareal algorithm may thus be the long time
evolution of not-too-large systems of ordinary differential equations as they may arise
e.g. in molecular dynamics and in the Keplerian problem. The parareal algorithm,
however, does not preserve geometric properties such as the symplecticity of the
continuous flow of a Hamiltonian system.

We propose in this note a framework to construct a symplectic parareal-type
algorithm. The framework is based on the introduction of an interpolating step be-
tween the predicting step and the correcting step. The resulting Interpolated Predic-
tor Corrector (IPC) scheme is presented in section 4. We first derive an IPC scheme
for arbitrary systems of ordinary differential equations. We then show how the IPC
can be rendered symplectic by using the interpolation of appropriate generating
functions. Section 5 provides proof of concept by showing numerical simulations for
a simple one-dimensional Hamiltonian system.

2 Parareal Algorithm

Let us consider a system of ordinary differential equations of the form

dX

dt
(t) = b(t,X(t)), t ∈ [0, T ], X(0) = X0. (1)
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Here X(t) ∈ Rd for some finite d. We assume that the above system admits a unique
solution. We set a time step ∆T > 0 and a discretization Tn = n∆T and introduce
the solution operator g(t, x) over the small interval ∆T given by g(t,X) = X(t+∆T )
when X(t) = X. Let now g∆(t,X) be a discretization of g and define the coarse
solution

Xn+1
1 = g∆(Tn, Xn

1 ) for 0 ≤ n ≤ N − 1; X0
1 = X0. (2)

We introduce the correction operator δg(Tn, X) = g(Tn, X)− g∆(Tn, X).
Then we define iteratively the parareal approximations

Xn+1
k+1 = g∆(Tn, Xn

k+1) + δg(Tn, Xn
k ), k ≥ 1. (3)

Note that all the terms δg(Tn, Xn
k ) for 0 ≤ n ≤ N −1 may be performed in parallel.

Let us define the error εnk = Xn
k − X(Tn). Provided that g∆ provides a scheme of

order m and is such that g∆ and δg are Lipschitz continuous (see e.g. [2] for the
details), we obtain the following estimate:

|εnk | = |Xn
k −X(Tn)| ≤ C(∆T )k(m+1)

(
n

k

)
(1 + |X0|). (4)

For n = N and k = O(1) (the case of interest in practice), we thus obtain:

|XN
k −X(T )| ≤ CT (∆T )km(1 + |X0|). (5)

The iterative scheme (3) replaces a discretization of order m by a discretization of
order km after k− 1 iterations, involving k coarse solutions and k− 1 fine solutions
that can be calculated in parallel.

3 Two Remarks on the Parareal Algorithm

Provided that we seek a final solution at time T with an accuracy of order δt, we
have four parameters at our disposal: (i) the coarse time step ∆T ; (ii) the number
of parareal iterations k; (iii) the number N of successive uses of the parareal scheme
over intervals of size τ = T

N
and (iv) the number of available processors P . An

analysis of the choices for these parameters that maximize speedup and system
efficiency is presented in [2]. The main conclusions are as follows. When the number
of available processors is unlimited, i.e., at least of order (δt)−1/2, then an optimal
speedup is attained when ∆T , k, and N are chosen as ∆T ≈ (δT )1/2, k = 2, and
N = 1. Assuming that the number of processors is smaller and that it takes the
form P = (δt)−α for some 0 < α < 1/2, then optimality in the system efficiency
(i.e., in the use of all available processors) is achieved provided that the parameters
are chosen as ∆T ≈ (δT )(1+α)/3, k = 2, and N ≈ (δt)−2(1−2α)/2.

The parareal algorithm is therefore quite efficient when the number of parareal
iterations is k = 2, which means that the coarse solver is used twice in a sequential
fashion and that the fine solver is used once in parallel. Larger values of k may be
beneficial to obtain a better accuracy or to allow for more conservative choices of the
(a priori unknown) parameters ∆T and N . Subsequent modifications of the parareal
algorithm in this paper implicitly recognize that k = 2 is a reasonable choice.
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The second remark pertains to the use of the parareal algorithm to solve par-
tial differential equations. Several studies have shown that the parareal algorithm
performed well for parabolic equations but showed some instabilities for hyperbolic
equations; see e.g. [4, 6]. Analytical calculations performed for simple examples of
partial differential equations in [3, 1] provide some explanations for this behavior.
In the framework of equations with constant coefficients, we obtain in the Fourier
domain the following evolution equation

∂û

∂t
(t, ξ) + P (ξ)û(t, ξ) = 0, ξ ∈ R, t > 0, û(0, ξ) = û0(ξ), ξ ∈ R. (6)

We define δ(ξ) = P (ξ)∆T and the propagator g(δ(ξ)) = e−δ(ξ).
Assume that the symbol P (ξ) is approximated by PH(ξ) to model spatial dis-

cretization and that the time propagator g(δ) is approximated by g∆(δH), where
δH(ξ) = PH(ξ)∆T . We then define the parareal scheme as:

ûn+1
k+1(ξ) = g∆(δH(ξ))ûnk+1(ξ) + δg(ξ)ûnk (ξ), δg(ξ) = g(δ(ξ))− g∆(δH(ξ)), (7)

with û0
k+1(ξ) = û0(ξ) and ûn0 (ξ) ≡ 0. We verify that we have:

ûnk+1(ξ) =
k∑

m=0

(
n

m

)
(δg(ξ))mgn−m∆ (δH(ξ))û0(ξ). (8)

The error term εnk (ξ) = ûn(ξ) − ûnk (ξ) satisfies the following equation: εn+1
k+1(ξ) =

g∆(δH(ξ))εnk+1(ξ)+(g(δ(ξ))−g∆(δH(ξ)))εnk (ξ), with boundary conditions ε0k+1(ξ) =
0 and εn0 (ξ) = ûn(ξ). We may prove by induction that:

εnk (ξ) = (δg(ξ))k
n−1∑

p1=1

· · ·
pk−2−1∑

pk−1=1

pk−1−1∑

pk=0

gpk (δ)g
n−pk−k
∆ (δH)û0(ξ). (9)

This provides the following bound for the error estimate

|εnk (ξ)| . |δg(ξ)|k
(
n

k

)
sup
p
|g∆|n−p−k(δH)|g|p(δ)|û0(ξ)|. (10)

The above equation shows a different behavior of the error estimate for low and
for high frequencies. For low frequencies, |δg(ξ)|k is small by consistency and the
error term |εnk (ξ)| is of the same order as in (4)-(5). For high frequencies however,
all we can expect from |δg(ξ)|k is that it is bounded. The term

(
n
k

)
≈ nk for k ≪ n

thus creates instabilities.
The lack of stability of the parareal scheme may be seen in (8). We observe that

for k + 1 ≥ 2, the large term
(
n
k

)
≈ nk can be compensated in three ways: when

|δg(ξ)|k is small, which happens for sufficiently small frequencies; when |g∆|(δH(ξ))
is small because the scheme is sufficiently damping at high frequencies; or when
û0(ξ) is small because u0(x) is sufficiently smooth. There are however many schemes
g∆(δH), which are stable, in the sense that un1 remains bounded uniformly in n, and
yet which generate unstable parareal schemes; we refer to e.g. [1] for additional
details.
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4 Interpolated Predictor Corrector Scheme

A reasonable conclusion that can be drawn from what we have seen so far is that
the parareal algorithm is adapted to solving small systems of equations over long
times. Such systems do not possess instabilities caused by high frequencies and
could greatly benefit from the high accuracy obtained by the parareal algorithm. In
several practical applications of long term evolutions however, accuracy is not the
only constraint. Users may also want their numerical solutions to satisfy some of the
geometric constraints that the exact solutions verify. One such geometric constraint
is symplecticity in the solution of Hamiltonian evolution equations:

q̇ = ∇pH(p,q), ṗ = −∇qH(p,q), (11)

where the symplectic two-form dp ∧ dq is preserved by the flow.
It turns out that the parareal algorithm is not symplectic, even when g and g∆

are symplectic. The reason is that the sum of symplectic operators appearing in (3)
is in general not symplectic. In order to make a parallel algorithm such as parareal
symplectic, we need to replace the addition of jumps in (3) by compositions of
symplectic maps (since composition of symplectic maps is indeed clearly symplectic).

One way to do this gives rise to the following Interpolated Predictor Cor-
rector (IPC) scheme. Let us forget about symplectic structures for the moment and
consider an arbitrary system of ordinary differential equations such as (1). We still
define the coarse predictor Xn

1 as the solution of (2). Now instead of viewing the
exact propagator as g = g∆ + (g − g∆), which is the main ingredient used in the
parareal algorithm (3), we consider the following decomposition;

g = ψ∆ ◦ g∆, ψ∆ ≡ g ◦ g−1
∆ . (12)

This definition assumes that the approximation of identity g∆ is indeed invertible
on Rd. We suppress explicit time dependency to simplify.

Once Xn
1 is calculated sequentially for n ≥ 0, we can calculate ψ∆(Xn+1

1 ) for
all n ≥ 0 with the requested accuracy and in parallel for the sequence 0 ≤ n ≤
N − 1 provided that N processors are available. In the second step of the predictor-
corrector algorithm, we need to be able to evaluate ψ∆ ◦ g∆ at the points Xn

2

sequentially. Since ψ∆◦g∆ has only been evaluated at the points Xn
1 , an interpolation

step is necessary.
Let us assume that the dynamical system has sufficiently smooth trajectories.

Then ψ∆ is a smooth function on Rd. In fact, it is an approximation of Identity of
order (∆T )m+1 if the coarse scheme g∆ is of orderm. The function ψ∆ : Rd → Rd can
then be approximated by an interpolated function, which we will denote by I(ψ∆).
Such an interpolation is chosen so that I(ψ∆)(Xn

1 ) = ψ∆(Xn
1 ) for all 0 ≤ n ≤ N−1.

Once an interpolation I(ψ∆) is chosen, we define the IPC scheme as:

Xn+1
2 = I(ψ∆) ◦ g∆(Xn

2 ), n ≥ 0, X0
2 = X0. (13)

See Fig. 1. We obtain the following result.

Theorem 1. Let us assume that I(ψ∆) − ψ∆ is a Lipschitz function on Rd with
Lipschitz constant of order (∆T )M+1. Then the IPC scheme is an accurate scheme
of order M , so that e.g. |X(N∆T )−XN

2 | ≤ CT (∆T )M (1 + |X0|).
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Fig. 1. Construction of the IPC scheme

The proof is classical: I(ψ∆) ◦ g∆ is consistent with an accuracy of order (∆T )M+1

while I(ψ∆) ◦ g∆ generates a stable, thus convergent, scheme.
The main ingredient in the construction remains to find an appropriate choice

for the interpolating operator I. Note however that ψ∆ is a smooth map of size
O(∆Tm+1), which is known at N nearby points along a trajectory. Under suffi-
cient geometric constraints, we may thus hope that polynomial interpolations may
converge to the true map ψ∆ with spectral accuracy in the vicinity of the discrete
trajectory Xn

1 . What would be the most accurate and least expensive way to obtain
this interpolation remains to be investigated. Note that M above is arbitrary and
not necessarily of the form 2m as for the parareal algorithm with k = 2. The two-
step IPC scheme can be arbitrarily accurate provided that the flow is sufficiently
smooth and the interpolation sufficiently accurate.

Symplectic scheme. We now come back to the original problem of devising a
parallel scheme that would preserve the symplecticity of the continuous equations.
The operator ψ∆ constructed above is clearly symplectic as a composition of sym-
plectic maps. The interpolation I however may not preserve symplecticity if e.g.
polynomial approximation is used. In order to construct a symplectic interpolation,
we use the concept of generating function; see [8].

We now assume that X = (q,p) ∈ R2n solves an equation of the form (11).
Because ψ∆ is an approximation of identity on R2d, there exists, at least locally [8],
a generating function S(q∗,p) = q∗ ·p+δ(q∗,p), where δ maps a subset in R2d to R

and where (q∗,p∗) = ψ∆(q,p). We assume here that S and δ are defined globally;
an assumption that can be alleviated by appropriate partition of unity of R2d. The
maps ψ∆ and S are then related by the following equations

q∗ = q− ∂δ

∂p
(q∗,p), p∗ = p +

∂δ

∂q∗
(q∗,p). (14)

The coarse scheme provides the set of N points (g∆(Xn
1 ), ψ∆(g∆(Xn

1 ))) of the form
((q,p), (q∗,p∗)) . We find an interpolation I(δ)(q∗,p) of δ(q∗,p) so that (14) is
exactly satisfied at such a set of points. Owing to (14), the interpolated generating
function I(δ) now implicitly generates a map on R2d, which we will call I(ψ∆). This
map is by construction symplectic, and provided that the interpolation I(δ) of δ is
accurate (say of order ∆TM+1), then so is the interpolation I(ψ∆). We may then
apply Theorem 1 and obtain a symplectic IPC scheme of order M .
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Note that the interpolation of the generating function may be performed locally
by appropriate choice of a partition of unity. The interpolated map I(δ) would
then take the form

∑
i∈I Ii(δi)φi with obvious notation. The astute reader may also

have noticed that the symplectic map I(ψ∆) so constructed depends on the coarse
trajectoryXn

1 and thus on its seedX0. When several trajectories are considered, then
the interpolations cannot be performed independently if one wants a truly symplectic
scheme. One may either perform one interpolation based on all coarse trajectories,
or make sure that the interpolation performed on a new trajectory is compatible
with the interpolations obtained from previous trajectories. Such complications also
arise when the symplectic IPC is restarted in the sense considered in section 3. When
the number N of successive uses of the symplectic IPC is greater than 2, then we
need to ensure that the interpolations generated at each restart of the algorithm are
compatible with each-other.

As we have noted earlier, the optimal way to perform the interpolation step is still
research to be done, whether in the framework of symplectic maps or that of more
general maps. In the next section, we show proof of concept by considering a one-
dimensional Hamiltonian system and a symplectic IPC schemes based on a global
interpolation. Such an interpolation is not optimal and may be computationally
prohibitively expensive in higher dimensions.

5 Numerical Simulations

We consider the one-dimensional Hamiltonian (pendulum) system (11) with

H(q, p) =
1

2
p2 + sin q. (15)

We choose a discretization g∆ which is second-order and symplectic. The N = 50
locations of the parareal solution Xn

2 presented in section 2 for 1 ≤ n ≤ N are shown
for several choices of the coarse time step ∆T = 0.5, ∆T = 0.65 and ∆T = 0.7,
respectively, in Fig. 2 (they correspond to different final times). The fine time step is
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Fig. 2. Parareal solution Xn
2 for 1 ≤ n ≤ 50 and ∆T = 0.5, 0.65, and 0.7.

chosen sufficiently small so that the operator g is estimated almost exactly, also by
the second-order symplectic scheme. The parareal solution significantly departs from
the surface of constant Hamiltonian for large values of ∆T (as it would for larger
times and smaller values of ∆T ). This is an indication that the parareal scheme
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looses the symplectic structure of the flow, and this even though both g and g∆ are
symplectic.

−2 0 2

−2

−1

0

1

2

∆T = 0.7, 50 fine points

−2 0 2

−2

−1

0

1

2

∆T = 20, 50 fine points

−2 0 2

−2

−1

0

1

2

∆T = 20, 500 fine points

Fig. 3. Symplectic IPC parareal Xn
2 for 1 ≤ n ≤ 50 and ∆T = 0.7, 20, and 40.

Let now M be the number of discretization points per ∆T for the fine solu-
tion operator g. The solution of the IPC scheme Xn

2 presented in section 4 is
shown in Fig. 3 for values of (∆T,M) equal to (0.7, 50), (20, 50), and (20, 500),
respectively. The generating function S(q∗, p) is constructed globally on the square
(−2.8, 2.8)× (−2.3, 2.3). Its interpolation is a polynomial of sufficiently high degree
so that the 2N constraints in (14) generate an under-determined system of linear
equations, which is solved by standard least squares. The pseudo-inversion ensures
that the resulting interpolation satisfies the constraints exactly and is smooth. The
IPC scheme preserves symplecticity independent of ∆T and M . When the fine cal-
culation is not sufficiently accurate (M is too small), ψ∆ is not estimated accurately
and the resulting trajectory may deviate from the true trajectory. With M = 500,
the estimate of ψ∆ becomes more accurate and so is its (global) interpolation.
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