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1 Introduction

In the theory of iterative substructuring domain decomposition methods, we typi-
cally assume that each subdomain is quite regular, e.g., the union of a small set of
coarse triangles or tetrahedra; see, e.g., [13, Assumption 4.3]. However, this is often
unrealistic especially if the subdomains result from using a mesh partitioner. The
subdomain boundaries might then not even be uniformly Lipschitz continuous. We
note that existing theory establishes bounds on the convergence rate of the algo-
rithms which are insensitive to even large jumps in the material properties across
subdomain boundaries as reflected in the coefficients of the problem. The theory for
overlapping Schwarz methods is less restrictive as far as the subdomain shapes are
concerned, see e.g. [13, Chapter 3], but little has been known on the effect of large
changes in the coefficients; see however [11] and recent work [6] and [12].

The purpose of this paper is to begin the development of a theory under much
weaker assumptions on the partitioning. We will focus on a recently developed over-
lapping Schwarz method, see [4], which combines a coarse space adopted from an
iterative substructuring method, [13, Algorithm 5.16], with local preconditioner com-
ponents selected as in classical overlapping Schwarz methods, i.e., based on solving
problems on overlapping subdomains. This choice of the coarse component will al-
low us to prove results which are independent of coefficient jumps. We note that
there is an earlier study of multigrid methods [5] in which the coarsest component
is similarly borrowed from iterative substructuring algorithms.

We will use nonoverlapping subdomains, and denote them by Ωi, i = 1, . . . , N ,
as well as overlapping subdomains Ω′j , j = 1, . . . , N ′. The interface between the Ωi
will be denoted by Γ.

So far, complete results have only been obtained for problems in the plane.
Although our results also hold for compressible plane elasticity, we will confine
ourselves to scalar elliptic problems of the following form:

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ IR2, (1)

with a Dirichlet boundary condition on a measurable subset ∂ΩD of ∂Ω, the bound-
ary of Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. The coefficient ρ(x) is
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strictly positive and assumed to be a constant ρi for x ∈ Ωi. We use piecewise lin-
ear, continuous finite elements and triangulations with shape regular elements and
assume that each subdomain is the union of a set of quasi uniform elements. The
weak formulation of the elliptic problem is written in terms of a bilinear form,

a(u, v) :=
N∑

i=1

ai(u, v) :=
N∑

i=1

ρi

∫

Ωi

∇u · ∇vdx.

Our study requires the generalization of some technical tools used in the proof
of a bound of the convergence rate of this type of algorithm; see [3, 8]. Some of
the standard tools are no longer available and we have to modify the basic line of
reasoning in the proof of our main result. Three auxiliary results, namely a Poincaré
inequality, a Sobolev-type inequality for finite element functions, and a bound for
certain edge terms, will be required in our proof; see Lemmas 2, 3, and 4. We will
work with John domains, see Section 2, and will be able to express our bounds on
the convergence of our algorithm in terms of a few geometric parameters.

2 John Domains and a Poincaré Inequality

We first give a definition of a John domain; see [7] and the references therein.

Definition 1 (John domain). A domain Ω ⊂ IRn – an open, bounded, and con-
nected set – is a John domain if there exists a constant CJ ≥ 1 and a distinguished
central point x0 ∈ Ω such that each x ∈ Ω can be joined to it by a curve γ : [0, 1]→ Ω
such that γ(0) = x, γ(1) = x0 and dist(γ(t), ∂Ω) ≥ C−1

J |x− γ(t)| for all t ∈ [0, 1].

This condition can be viewed as a twisted cone condition. We note that certain
snowflake curves with fractal boundaries are John domains and that the length of
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Fig. 1. The subdomains are obtained by first partitioning the unit square into
smaller squares. We then replace the middle third of each edge by the other two
edges of an equilateral triangle, increasing the length by a factor 4/3. The middle
third of each of the resulting shorter edges is then replaced in the same way and
this process is repeated until we reach the length scale of the finite element mesh.
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the boundary of a John domain can be arbitrarily much larger than its diameter;
see Figure 1.

In any analysis of any domain decomposition method with more than one level,
we need a Poincaré inequality. This inequality is closely related to an isoperimetric
inequality; see [10].

Lemma 1 (Isoperimetric inequality). Let Ω ⊂ IRn be a domain and let f be
sufficiently smooth. Then,

inf
c∈IR

(∫

Ω

|f − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω,n)

∫

Ω

|∇f | dx,

if and only if,
[min(|A|, |B|)]1−1/n ≤ γ(Ω,n)|∂A ∩ ∂B|. (2)

Here, A ⊂ Ω is arbitrary, and B = Ω \ A; γ(Ω,n) is the best possible constant and
|A| is the measure of the set A, etc.

We note that the domain does not need to be star-shaped or Lipschitz. For two
dimensions, we immediately obtain a standard Poincaré inequality by using the
Cauchy-Schwarz inequality.

Lemma 2 (Poincaré’s inequality). Let Ω ⊂ IR2 be a domain. Then,

inf
c∈IR
‖u− c‖2L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2L2(Ω), ∀u ∈ H1(Ω).

For n = 3 such a bound is obtained by using Hölder’s inequality several times. In
Lemma 2, we then should replace |Ω| by |Ω|2/3. The best choice of c is ūΩ , the
average of u over the domain.

Throughout, we will use a weighted H1(Ωi)−norm defined by

‖u‖2H1(Ωi)
:= |u|2H1(Ωi)

+ 1/H2
i ‖u‖2L2(Ωi) :=

∫

Ωi

∇u · ∇udx + 1/H2
i

∫

Ωi

|u|2dx.

Here, Hi is the diameter of Ωi. The weight originates from a dilation of a domain
with diameter 1. We will use Lemma 2 to remove L2−terms from full H1−norms.

3 The Algorithm, Technical Tools, and the Main Result

The domain Ω ⊂ IR2 is decomposed into nonoverlapping subdomains Ωi, each of
which is the union of finite elements, and with the finite element nodes on the
boundaries of neighboring subdomains matching across the interface Γ , which is the
union of the parts of the subdomain boundaries which are common to at least two
subdomains. The interface Γ is composed of edges and vertices. An edge Eij is an
open subset of Γ , which contains the nodes which are shared by the boundaries
of a particular pair of subdomains Ωi and Ωj . The subdomain vertices Vk are end
points of edges and are typically shared by more than two; see [9, Definition 3.1]
for more details on how these sets can be defined for quite general situations. We
denote the standard finite element space of continuous, piecewise linear functions
on Ωi by V h(Ωi) and assume that these functions vanish on ∂Ωi ∩ ∂ΩD.
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We will view our algorithm as an additive Schwarz method, as in [13, Chapter
2], being defined in terms of a set of subspaces. To simplify the discussion, we will
use exact solvers for both the coarse problem and the local ones. All that is then
required for the analysis of our algorithm is an estimate of a parameter in a stable
decomposition of any elements in the finite element space; see [13, Assumption 2.2
and Lemma 2.5]. Thus, we need to estimate C2

0 in

N′∑

j=0

a(uj , uj) ≤ C2
0a(u, u), ∀u ∈ V h,

for some {uj}, such that

u =

N′∑

j=0

RTj uj , uj ∈ Vj .

Here RTj : Vj −→ V h is an interpolation operator from the space of the j-th
subproblem, defined on Ω′j , into the space V h. By using [13, Lemmas 2.5 and 2.10],
we find that the condition number κ(Pad) of the additive Schwarz operator can
be bounded by (NC + 1)C2

0 where NC is the minimal number of colors required
to color the subdomains Ω′j such that no pair of intersecting subdomains have the
same color.

Associated with each space Vj is a projection Pj defined by

a(P̃ju, v) = a(u, v), ∀v ∈ Vj , and Pj = RTj P̃j .

The additive Schwarz operator, the preconditioned operator used in our iteration,
is

Pad =
N′∑

j=0

Pj .

The coarse space V0, which is described differently in [4], is spanned by functions
defined by their values on the interface and extended as discrete harmonic functions
into the interior of the subdomains Ωi. The discrete harmonic extensions minimize
the energy; see [13, Section 4.4]. There is one basis function, θVk (x), for each sub-
domain vertex; it is the discrete harmonic extension of the standard nodal basis
function. There is also a basis function, θEij (x), for each edge Eij , which equals 1
at all nodes on the edge and vanishes at all other interface nodes. The vertex and
edge functions provide a partition of unity.

The local spaces Vj , j = 1, . . . N ′, are defined as

Vj = V h(Ω′j) ∩H1
0 (Ω′j).

This is the standard choice as in [13, Chapter 3]. We assume that each Ω′j has a
diameter comparable to those of the subdomains Ωi which intersect Ω′j ; we also
assume that neighboring subdomains Ωi and Ωj have comparable diameters. The
overlap between the subdomains is characterized by parameters δj , as in [13, As-
sumption 3.1]; δj is the minimum width of the subset Ωj,δj of Ω′j which is also
covered by neighboring overlapping subdomains. We will assume that the width of
Ωj,δj is on the order of δj everywhere; our arguments can easily be extended to a
more general case.
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We can now formulate our main result, which is also valid for compressible
elasticity with piecewise constant Lamé parameters, provided that the coarse space
is enriched as in [4].

Theorem 1 (Condition number estimate). Let Ω ⊂ IR2 be an arbitrary John
domain with a shape regular triangulation. The condition number then satisfies

κ(Pad) ≤ C (1 +H/δ)(1 + log(H/h))2,

where C > 0 is a constant which only depends on the John and Poincaré param-
eters, the number of colors required for the overlapping subdomains, and the shape
regularity of the finite elements.

Here, H/h is shorthand for maxi(Hi/hi), as in many domain decomposition papers;
hi is the diameter of the smallest element of Ωi. Similarly, H/δ is the largest ratio
of Hi and the smallest of the δj of the subregions Ω′j that intersect Ωi.

The logarithmic factors of our main result can be improved to a first power if a
sufficiently large subset of each subdomain edge is Lipschitz. If the coefficients do
not have large jumps across the interface, the coarse space is suitably enriched, and
the subregions satisfy [13, Assumption 4.3], we can eliminate the logarithmic factors
altogether.

To prove this theorem, we need two auxiliary results, in addition to Poincaré’s
inequality. The first is a discrete Sobolev inequality:

Lemma 3 (Discrete Sobolev inequality).

‖u‖2L∞(Ωi) ≤ C(1 + log(H/h))‖u‖2H1(Ωi)
, ∀u ∈ V h(Ωi). (3)

The constant C > 0 depends only on the John parameter and the shape regularity of
the finite elements.

The inequality (3) is well-known in the theory of iterative substructuring meth-
ods. Proofs for domains satisfying an interior cone condition are given in [1] and in
[2, Sect. 4.9].

The second important tool provides estimates of the edge functions.

Lemma 4 (Edge functions). The edge function θEij can be bounded as follows:

‖θEij‖2H1(Ωi)
≤ C(1 + log(Hi/hi)), (4)

and
‖θEij‖2L2(Ωi) ≤ CH

2
i (1 + log(Hi/hi)). (5)

Proofs of Lemmas 3 and 4 are given in [3] and [8], respectively. We note that in-
equality (4) can be established using ideas similar to those in [13, Section 4.6.3].
The proof of inequality (5) requires a new idea. We note that a uniform L2−bound
holds for more regular edges or if all angles of the triangulation are acute.
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4 Proof of Theorem 1

As in many other proofs of results on domain decomposition algorithms, we can
work on one subdomain at a time. With local bounds, there are no difficulties in
handling variations of the coefficients across the interface.

We recall that the coarse space is spanned by the θVk , the discrete harmonic
extensions of the restrictions of the standard nodal basis functions to Γ , and the edge
functions θEij . The vertex basis functions have bounded energy, while, according to
(4), the edge functions have an energy that grows in proportion to (1 + log(H/h)).
The coarse space component u0 ∈ V0 in the decomposition of an arbitrary finite
element function u(x) is chosen as

u0(x) =
∑

k

u(Vk)θVik (x) +
∑

ij

ūEij θEij (x).

Here, ūEij is the average of u over the edge. This interpolation formula is the two-
dimensional analog of [13, Formula (5.13)] and it reproduces constants. In the case
of regular edges, we can estimate the edge averages by using the Cauchy–Schwarz
inequality and an elementary trace theorem. In our much more general case, we
instead get two logarithmic factors by estimating the edge averages by ‖u‖L∞ and
using Lemmas 3 and 4. The norms of the vertex terms of u0 are bounded by one
logarithmic factor. Replacing u(x) by u(x)− ūΩi and using Lemma 2, to remove the
L2−terms of the H1−norms, we find that

|u0|2H1(Ωi)
≤ C(1 + log(H/h))2|u|2H1(Ωi)

,

and
a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Similarly, we can prove

‖u− u0‖2L2(Ωi) ≤ C(1 + log(H/h))2H2
i |u|2H1(Ωi)

. (6)

In the case of regular subdomain boundaries, or if all angles of the triangulation are
acute, no logarithmic factors are necessary in (6).

We now turn to the estimate related to the local spaces. Again, we will carry out
the work on one subdomain Ωi at a time. Let w := u−u0 and define a local term in
the decomposition by uj = Ih(θjw). We will borrow extensively from [13, Sections
3.2 and 3.6]. Thus, Ih interpolates into V h and the θj , supported in Ω′j , provide
a partition of unity. These functions vary between 0 and 1 and their gradients are
bounded by |∇θj | ≤ C/δj and they vanish outside the areas of overlap.

We note only a fixed number of Ω′j intersect Ωi; we will only consider the con-
tribution from one of them, Ω′j . As in our earlier work, the only term that requires
a careful estimate is ∇θjw. We cover the set Ωj,δj with patches of diameter δj and
note that on the order of Hi/δj of them will suffice. Just as in the proof of [13,
Lemma 3.11], we have

∫

Ωi

|∇θjw|2 ≤ C/δ2j
(
δ2j |w|2H1(Ωi)

+ (Hi/δj)δ
2
j ‖w‖2H1(Ωi)

)
.

The proof is completed by using (6) and the bound on the energy of u0.
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