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Summary. We present globally convergent multigrid methods for the nonsymmet-
ric obstacle problems as arising from the discretization of Black–Scholes models of
American options with local volatilities and discrete data. No tuning or regulariza-
tion parameters occur. Our approach relies on symmetrization by transformation
and data recovery by superconvergence.

1 Introduction

Since Black and Scholes published their seminal paper [3] in 1973, the pricing of
options by means of deterministic partial differential equations or inequalities has
become standard practice in computational finance. An option gives the right (but
not the obligation) to buy (call option) or sell (put option) a share for a certain value
(exercise price K) at a certain time T (exercise date). On the exercise day T , the
value of an option is given by its pay–off function ϕ(S) = max(K−S, 0) =: (K−S)+
for put options and ϕ(S) = (S −K)+ for call options. In contrast to European op-
tions which can only be exercised at the expiration date T , American options can be
exercised at any time until expiration. As a consequence, the pay–off function ϕ(S)
constitutes an a priori lower bound for the value V of American options which leads
to an obstacle problem for V . While Black and Scholes started off with a constant
risk–less interest rate and volatility, existence, uniqueness, and discretization is now
well understood even for stochastic volatility [1]. On the other hand, an explosive
growth of different kinds of equity derivatives on global markets has led to a great
variety of well–tuned local volatility models, where the volatility is assumed to be
a deterministic (and sometimes even smooth) function of time and space [5, 6]. As
such kind of models are used for thousands and thousands of simulations each day,
highly efficient and reliable solvers are an ongoing issue in banking practice. Partic-
ular difficulties arise from the spatial obstacle problems resulting from implicit time

∗ This work was supported in part by DFG as Project E7 of Matheon. We
gratefully acknowledge the stimulating collaboration with Prof. Dr. P. Deuflhard
(ZIB/FU Berlin) and with our project partners Dr. M. Overhaus and Dr. A. Fer-
raris (DBQuant, Deutsche Bank London).



384 R. Forster et al.

discretization. The multigrid solver by Brandt and Cryer [4, 15, 16] lacks reliability
in terms of a convergence proof and might fail in actual computations. Globally
convergent multigrid methods with mesh–independent convergence rates [2, 12] are
available for symmetric problems. Such algorithms were applied in [11] after sym-
metrization of the underlying bilinear form by suitable transformation. However,
only constant coefficients were considered there.

In this paper, we present globally convergent multigrid methods for local volatil-
ity models with real–life data. To this end, we extend the above ‘symmetrization by
transformation’ approach to variable coefficients. No continuous functions but only
discrete market observations are available in banking practice. Therefore, we develop
a novel recovery technique based on superconvergence in order to provide sufficiently
accurate approximations of the coefficient functions and their derivatives. Finally,
we present some numerical computations for an American put option with discrete
dividends on a single share.

2 Continuous Problem and Semi–discretization in Time

The Black–Scholes model for the value V (S, t) of an American put option at asset
price S ∈ Ω∞ = [0,∞) and time t ∈ [0, T ) can be written as the following degenerate
parabolic complementary problem [1, 5]

− ∂V
∂t
− σ2

2
S2 ∂2V

∂S2 − µS ∂V∂S + rV ≥ 0 , V − ϕ ≥ 0 ,
(
− ∂V

∂t
− σ2

2
S2 ∂2V

∂S2 − µS ∂V∂S + rV
)(
V − ϕ

)
= 0 ,

(1)

in backward time t with stopping condition V (·, T ) = ϕ and the pay–off function
ϕ(S) = (K −S)+ with exercise price K. The risk–less interest rate r(t), the strictly
positive volatility surface σ(S, t), and µ(t) = r(t) − d(t) with continuous dividend
yield d(t) are given functions.

Numerical computations require bounded approximations of the unbounded in-
terval Ω∞. Additional problems result from the degeneracy at S = 0. Hence, Ω∞ is
replaced by the bounded interval Ω = [Smin, Smax] ⊂ Ω∞, 0 < Smin < Smax < ∞.
Appropriate boundary conditions will now be discussed for the example of a put
option. Recall that a put option is the right to sell an asset for a fixed price K. If
the price of the asset S tends to infinity, the option becomes worthless, because the
holder would not like to lose an increasing amount of money by exercising it. Note
that ϕ(Smax) = 0 for sufficiently large Smax. On the other hand, if the asset price
tends to zero, then the holder would like to exercise the option almost surely to
obtain almost maximal pay–off ≈ K ≈ ϕ(Smin). Hence, we consider the truncation
of (1) with S ∈ Ω and boundary conditions

V (Smin) = ϕ(Smin) , V (Smax) = ϕ(Smax) . (2)

Note that the boundary conditions are consistent with the stopping condition
V (T, ·) = ϕ. As Smin → 0, Smax → ∞, the solutions of the resulting truncated
problem converge to the solution of the original problem [1].

As usual, we replace backward time t by forward time τ = T − t to obtain
an initial boundary value problem. We now apply a semidiscretization in time by
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the implicit Euler scheme using the given grid 0 = τ0 < τ1 < · · · < τN = T
with time steps hj := τj − τj−1. We introduce the abbreviations Vj = V (·, τj),
σj = σ(·, τj), µj := µ(τj), and rj := r(τj). Starting with the initial condition
V0 = ϕ, the approximation Vj on time level j = 1, . . . , N is obtained from the
complementary problem

−σ
2
j

2
S2V ′′j − µjSV ′j + (h−1

j + rj)Vj − h−1
j Vj−1 ≥ 0 , Vj − ϕ ≥ 0 ,

(
− σ2

j

2
S2V ′′j − µjSV ′j + (h−1

j + rj)Vj − h−1
j Vj−1

)(
Vj − ϕ

)
= 0 ,

(3)

on Ω with boundary conditions taken from (2). For convergence results see [1].

3 Symmetrization and Spatial Discretization

We now derive a reformulation of the spatial problem (3) involving a non–degenerate
differential operator in divergence form. To this end, we introduce the transformed
volatilities and the transformed variables

α(x) = σj(S(x)) , u(x) = e−β(x)Vj(S(x)) , S(x) = ex , x ∈ X , (4)

on the interval X = (xmin, xmax) with xmin = log(Smin), xmax = log(Smax), utilizing
the function

β(x) = 1
2
x+ log

(
α(x)

)
− log

(
α(0)

)
− µj

∫ x

0

ds

α2(s)
. (5)

Observe that α, β usually vary in each time step.

Theorem 1. Assume σj ∈ C2(Ω) and σj(S) ≥ c > 0 for all S ∈ Ω. Then the linear
complementary problem

−(au′)′ + bu− f ≥ 0 , u− ψ ≥ 0 ,
(
− (au′)′ + bu− f

)(
u− ψ

)
= 0 (6)

with coefficients

a = α2

2
, b = h−1

j + rj + 1
8α2

(
α2 − 2µj

)2 − α′′α2+2µjα
′

2α
, (7)

right hand side f = h−1
j e−βVj−1(S(·)), obstacle ψ = e−βϕ(S(·)), and boundary

conditions u(xmin) = ψ(xmin), u(xmax) = ψ(xmax) is equivalent to (3) in the sense
that u defined in (4) solves (6), if and only if Vj solves (3).

The proof follows from basic calculus. Observe that b might become negative for
strongly varying α(x) = σj(S(x)) due to the last term in the definition of b, which
could even lead to a stability constraint on the time step hj . We never encountered
such difficulties for realistic data.

For a given spatial grid xmin = x0 < x1 · · · < xM = xmax the finite element
discretization of (6) can be written as the discrete convex minimization problem

U = argmin
v∈K

∫

X

1
2

(
a(v′)2 + bv2

)
− fv dx (8)
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with K denoting the discrete, closed, convex set

K = {v ∈ C(X) | v|[xi−1,xi] is linear , v(xi) ≥ ψ(xi) ∀i = 1, . . . ,M,
v(x0) = ψ(x0), v(xM ) = ψ(xM )} .

The fast and reliable solution of (8) can be performed, e.g., by globally convergent
multigrid methods [2, 12].

4 Data Recovery

In reality, r(t), µ(t), and σ(S, t) are not available as given functions but have to
be calibrated from discrete market observations. To this end, it is common practice
in computational finance to introduce sufficient smoothness, e.g., by cubic spline
approximation of the local volatility [7, 14] which would suggest even C4–regularity
of σ(S, t). We refer to [1] for further information. From now on we assume that the
data are given in vectors or matrices of point values of sufficiently smooth functions.
The grid points usually have nothing to do with the computational grid.

Intermediate function values can be approximated to second order by piecewise

linear interpolation. As our transformation technique also requires ∂σ
∂S

and ∂2σ
∂S2 , we

now derive an algorithm for the approximation of higher derivatives by successive
linear interpolation in suitable superconvergence points. Note that superconvergence
has a long history in finite elements (cf., e.g., [13] and the literature cited therein).
For two–dimensional functions such as σ(S, t), this recovery technique can be applied
separately in both variables.

From now on, let wk = w(sk) denote given function values at given grid points
s0 < s1 < · · · < sK with mesh size h = maxk=1,...,K(sk−sk−1). Starting with

s
(0)
k = sk, we introduce a hierarchy of pivotal points

s
(n)
k =

sk + · · ·+ sk−n
n+ 1

, k = n, . . . ,K , n ≤ K . (9)

Note that s
(n)
n < s

(n)
n+1 < · · · < s

(n)
K with s

(n)
k ∈ (s

(n−1)
k−1 , s

(n−1)
k ) and

0 ≤ max
k=n+1,...,K

(s
(n)
k − s(n)

k−1) ≤ h . (10)

In the case of equidistant grids the pivotal points either coincide with grid points
(n even) or with midpoints (n uneven). Let

L
(n)
k−1(s) =

s
(n)
k − s

s
(n)
k − s(n)

k−1

, L
(n)
k (s) =

s− s(n)
k−1

s
(n)
k − s(n)

k−1

denote the linear Lagrange polynomials on the interval [s
(n)
k−1, s

(n)
k ]. We now introduce

piecewise linear approximations pn of w(n) by successive piecewise interpolation.
More precisely, we set

p0(s) =
k∑

j=k−1

w(sj)L
(0)
j (s) , pn(s) =

k∑

j=k−1

p′n−1(s
(n)
j )L

(n)
j (s) (11)

for s ∈ [sk−1, sk], k = 1, . . . ,K, and s ∈ [s
(n)
k−1, s

(n)
k ], k = n + 1, . . . ,K, respec-

tively. The approximation pn can be regarded as the piecewise linear interpolation
of divided differences.
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Lemma 1. The derivative p′n−1 has the representation

p′n−1(s
(n)
k ) = n! w[sk−n, . . . , sk] , k = n, . . . ,K , (12)

where w[sk−n, . . . , sk] denotes the divided differences of w with respect to sk−n, . . . , sk.

Proof. Recall that s
(n)
k ∈ (s

(n−1)
k−1 , s

(n−1)
k ). Using the definitions (9), (11), we imme-

diately get

p′n−1(s
(n)
k ) =

pn−1(s
(n−1)
k )− pn−1(s

(n−1)
k−1 )

s
(n−1)
k − s(n−1)

k−1

=
n
(
p′n−2(s

(n−1)
k )− p′n−2(s

(n−1)
k−1 )

)

sk − sk−n

so that the assertion follows by straightforward induction.

We are now ready to state the main result of this section.

Theorem 2. Assume that w ∈ Cn+2[s0, sK ] and let pn be defined by (11). Then

max
s∈[s

(n)
n ,s

(n)
K

]

|w(n)(s)− pn(s)| ≤ (n+ 1
2
)‖w(n+2)‖∞ h2

holds with ‖w(n+2)‖∞ = maxx∈[s0,sK ] |w(n+2)(x)|.

Proof. Let s ∈ [s
(n)
k−1, s

(n)
k ] and denote εn(s) = w(n)(s) − p′n−1(s). Exploiting the

linearity of interpolation and a well–known interpolation error estimate (cf., e.g., [8,
Theorem 7.16]), we obtain

w(n)(s)− pn(s) = w(n+2)(ζ)
2

(s− s(n)
k−1)(s− s(n)

k ) +L
(n)
k−1(s)εn(s

(n)
k−1) +L

(n)
k (s)εn(s

(n)
k )

with some ζ ∈ (s
(n)
k−1, s

(n)
k ). In the light of (10), it is sufficient to show that

|εn(s
(n)
k−1)|+ |εn(s

(n)
k )| ≤ n‖w(n+2)‖∞h2. Utilizing (9) and Lemma 1, we get

εn(s
(n)
k ) = w(n)

(
1

n+ 1

k∑

i=k−n
si

)
− n! w[sk−n, . . . , sk] =: A−B .

The Hermite–Genocchi formula (cf., e.g., [8, Theorem 7.12]) yields

B = n!

∫

Σn

w(n)

(
k∑

i=k−n
xisi

)
dx ,

where Σn denotes the n–dimensional unit simplex

Σn = {x ∈ Rn+1|∑n
i=0 xi = 1 and xi ≥ 0} .

As |Σn| = 1/n!, the value A is just the centroid formula for the quadrature of the
integral B [9]. It is obtained by simply replacing the integrand by its barycentric
value. Using a well–known error estimate [10], we obtain

|εn(s
(n)
k )| ≤ ‖w(n+2)‖∞

2(n+ 1)(n+ 2)

k∑

i=k−n
|si − s(n)

k |2 .

Now the assertion follows from the straightforward estimate |si − s(n)
k | ≤ nh.
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Fig. 1. Local volatility σ and computed values V at time t = 0.

In the remaining boundary regions s ∈ [s0, s
(n)
n ] and s ∈ [s

(n)
K , sK ], the function

pn can still be defined according to (11) once a hierarchy of additional pivotal points

s
(n)
k for k = 0, . . . , n− 1 and k = K + 1, . . . ,K + n has been selected. However, the

approximation in such regions then reduces to first order, unless additional boundary
conditions of u at s0 and sK are incorporated.

5 Numerical Results

For confidentiality reasons, we consider an American put option on an artificial
single share with Euribor interest rates, strike price K = 10e, and an artificial but
typical volatility surface σ as depicted in the left picture of Figure 1 (see also [5, 6])
for the different expiry dates T = 3/12, 1, and 4 years. Discrete dividends of δi = 0.3
e are paid after ti = 4/12, 16/12, 28/12, 40/12 years. In order to incorporate discrete
dividend payments into our model (1), V (S) is replaced by Ṽ (S̃), ϕ, σ are replaced
by the shifted functions ϕ̃(S̃) = ϕ(S̃ + D), σ̃(S̃, ·) = σ(S̃ + D, ·) and we set d = 0.
Here, D(t) is the present value of all dividends yet to be paid until maturity [5,
p. 7f.]. We set S̃min = e−1 and S̃max = e3.5. Finally, V (S) = Ṽ (S−D) is the desired
value of the option.

Local volatility data are given on a grid S0 = 0.36 < S1 < · · · < SK = 100.
The transformed grid points xk = log(Sk) are equidistant for Sk < 4, Sk > 30 while
the original grid points Sk are equidistant for 4 < Sk < 30 thus reflecting nicely
the slope of the volatility surface for small S. To approximate α′, α′′ occurring in
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Fig. 2. Iteration history and averaged convergence rates
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Theorem 1, we use the recovery procedure (11) with respect to an extension of the

hierarchy S
(2)
k as defined in (9), though second order accuracy is only guaranteed

for s ∈ [S
(2)
2 , S

(2)
K ] (cf. Theorem 2). For the actual data set, the coefficient b is

positive and thus the transformed problem (6) is uniquely solvable, if the time steps
satisfy hj < 0.35 years. Note that much smaller time steps are required for accuracy
reasons.

The transformed interval X = [−1, 3.5] is discretized by an equidistant grid with
mesh size H = 1/128 = 2−7 and we use the uniform time step h = T/100 years, for
simplicity. Such step sizes are typical as to desired accuracies. The solutions at time
t = 0 for the different expiry dates are depicted in the right picture of Figure 1.
Note that only the options with the long maturity of 1 or 4 years are influenced
by dividend payments until expiry date. The spatial problems of the form (6) were
solved by truncated monotone multigrid [12] with respect to J = 7 grid levels as
obtained by uniform coarsening. The initial iterates on time level j were taken from
the preceding time level for j > 1 and from the obstacle function ψ for j = 1. We
found that two or three V (1, 1) sweeps were sufficient to reduce the algebraic error
‖uj − uνj ‖ in the energy norm below 10−10. The corresponding iteration history on
the initial time level is shown in the left picture of Figure 2. The iteration history
for H = 1/32768 = 2−15 and the averaged convergence rates as depicted in the right
picture illustrate the convergence behavior for decreasing mesh size.
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