
A Schur Complement Method for DAE/ODE
Systems in Multi-Domain Mechanical Design

David Guibert1 and Damien Tromeur-Dervout1,2∗

1 CDCSP - ICJ UMR5208/CNRS Université Lyon 1 F-69622 Villeurbanne Cédex
2 INRIA/IRISA/Sage Campus de Beaulieu F-35042 Rennes Cédex
{dguibert,dtromeur}@cdcsp.univ-lyon1.fr

Summary. The large increase of unknowns in multi-domain mechanical modeling
leads to investigate new parallel implementation of ODE and DAE systems. Unlike
space domain decomposition, no geometrical information is given to decompose the
system. The connection between unknowns have to be built to decompose the system
in subsystems. A Schur Complement DDM can then be applied. During some time
steps, the Jacobian matrix can be frozen allowing to speed-up the Krylov solvers
convergence by projecting onto the Krylov subspace. This kind of DAE are stiff and
the numerical procedure needs special care.

1 Introduction

Problems coming from the multi-domain mechanical design lead to solve systems of
Ordinary Differential Equations (ODE) or Differential Algebraic Equations (DAE).
Designers of mechanical systems want to achieve realistic modeling, taking into
account more and more physics. Mathematically speaking, these features lead to
have DAE/ODE systems with a large number of unknowns. Moreover these systems
are usually stiff and eventually exhibits some discontinuities. So robust solvers with
adaptive time stepping strategy must be designed.

Up to now, the main approach to obtain an ODE system parallel solver uses
the parallelizing “across the method” of the time integrator. Runge-Kutta methods
involve several stages. The aim of this kind of parallelization is to compute each
stage of the method on a dedicated processor ([2, 1, 9, 3]).

This kind of parallelization is very limited. The number of processors involved
can only be equal to the number of stages of the method.

We have shown in ([3]) that a speed-up nearby 2.5 can be obtained on 3 proces-
sors using Radau IIa method (a 3-stage RK method, see [4, 5] for more details).

In this paper, we propose a new approach based on the Schur Complement
Method in order to decompose the system into smaller systems. In the Partial Dif-
ferential Equation framework, the decomposition is given by the geometrical data

∗ Funded: National Research Agency: technologie logicielle 2006-2009 PARADE
Project Mathgrid and cluster ISLES project HPC Région Rhône-Alpes



536 D. Guibert, D. Tromeur-Dervout

and the order of discretization scheme. Conversely in the DAE/ODE framework, no
a priori knowledge of the coupled variables is available. This is the main issue to be
solved.

We will show in section 2 how a Schur complement method can be implemented
in the resolution of an ODE system. A brief description of the LSODA integrator
will be given. Then in section 3, a strategy is applied to extract automatically the
dependencies between the variables. These dependencies are viewed as an adjacency
matrix and then, as in spatial domain decomposition, classical partitioning tools
can be used. The algorithm is explained in section 4 and some numerical results are
shown in section 5.

2 Differential Integrators

An initial value problem is considered,

for an ODE

(PODE)





dy

dt
= f(t, y(t)),

y(t0) = y0,
(1)

or for a DAE

(PDAE)





F (t, y(t), y′(t)) = 0,

y(t0) = y0,

y′(t0) = y′0.

(2)

The problem is assumed to be stiff. To solve the problem (P ), a “predictor-
corrector” scheme may be used. The main idea of such solver is to build a prediction
yn(0) of the solution from a polynomial fit. Then the prediction is corrected by
solving a nonlinear system

GODE(yn) = yn − β0hnf(tn, yn)−
k∑

i>0

αn,iyn−i = 0, (3)

GDAE(yn) = F

(
tn, yn, h

−1
n

q∑

i=0

αn,iyn−i

)
= 0, (4)

where β0 is a constant given by the integration scheme and hn the current time step
and αn,i are the parameters of the method in use.

This means that the solution yn at the time tn is computed as follows.

• A predicted value yn(0) is computed to be used as initial guess for the nonlinear
iteration (where αpn,i and βp0 are parameters of the prediction formula):

yn(0) =

k∑

i=1

αpi yn−i + βp0hn
dyn−1

dt
. (5)

• Correction step (by Newton iterations)

{(
∂G
∂y

(yn(m))
)
δyn = −G(yn(m)),

yn(m+1) = yn(m) + δyn
(6)



Schur Complement Method for DAE/ODE 537

with
∂GODE
∂y

= I − γ ∂f
∂y

= I − γJ, (7)

∂GDAE
∂y

=
∂F

∂y
+ α

∂F

∂y′
= J, (8)

where J is the Jacobian matrix, γ = β0hn and α = αn,0h
−1
n . At the end of the

iteration process yn = yn(m+1).

We want to apply the Schur complement method to this linear system. In do-
main decomposition in space, regular data dependencies are inherent to the spatial
discretization scheme, which enables a relatively easy introduction of the Schur com-
plement. The interface nodes are on the physical junction between the subdomains.
In DAE/ODE, there is no regular data dependencies (even by renumbering locally
the unknowns). In the considered problems, the coupling are embedded in the whole
function f which is not —necessarily— explicitly known. Indeed, the function f is
composed by several sub-models which are sometimes hidden (too complex, or used
as black boxes). Hence a decomposition of the matrix is far from trivial to implement.

3 Automatic Partitioning of DAE/ODE Systems

In this section, we propose a method to partition automatically the unknowns of the
dynamic system. We assume that the function f is composed by some subfunctions
fi seen as black boxes. This means that for a function fi only its outputs and inputs
are known. Let us illustrate this on the following example





dy1
dt

= f1(y1, y2, y4),

dy2
dt

= f2(y1, y3),

dy3
dt

= f3(y3, y4),

dy4
dt

= f4(y3, y4).

(9)

A modification of the variables y1 and/or y3 may change the value of the output of
f2, the time derivative of y2.

The coupling between the variables and their derivatives can be summarized into
an incidence matrix (see the graph theory for example in [6])




1 1 0 1
1 0 1 0
0 0 1 1
0 0 1 1


 . (10)

The value 1 can be viewed as a dependence between two nodes in the computation
of one column of the Jacobian matrix.

Having this pattern, we know that in graph theory formulation, the reduction
of the coupling between the nodes of a graph is done by minimizing of the number
of edges cut in the graph. A graph partitioning tool such as [7] is used.



538 D. Guibert, D. Tromeur-Dervout

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1547
0 50 100 150 200 250

0

50

100

150

200

250

nz = 1547

Fig. 1. Example of the Jacobian matrix of a V10 engine pump problem. Initial
pattern on top and the pattern using 4 partitions

4 Algorithm

Now we concentrate on the algorithm to solve the linear system. The first step was
the construction of the pattern of the Jacobian matrix (i.e. the incidence matrix
corresponding to the interaction between the variables). The use of a graph parti-
tioning tool decouples the system in sub-systems, separating the variables in internal
variables and interface variables (those that need the values of variables belonging
to another subdomain).

Given a partition, consider a doubly bordered block diagonal form of a matrix
A = I − γJ or A = J (provided by the integrator)

A =




B1 F1 · · · 0

. . .
...

. . .
...

BN 0 · · · FN
E1 C11 · · · C1N

. . .
...

. . .
...

EN CN1 · · · CNN




=

(
B F
E C

)
. (11)

Locally on each subdomain one has to solve:

(
Bi Fi
Ei Cii

)(
xi
yi

)
+

(
0∑

j 6=i Cijyj

)
=

(
fi
gi

)
. (12)

We assume that Bi is not singular. Then

xi = B−1
i (fi − Fiyi). (13)

Upon substituting a reduced system is obtained:

Siyi +
∑

j 6=i
Cijyj = gi − EiB−1

i fi with Si = Cii − EiB−1
i Fi. (14)



Schur Complement Method for DAE/ODE 539

Multiplying by S−1
i , one obtain the following preconditioned reduced system for

the interface




I S−1
1 C12 · · · S−1

1 C1N

S−1
2 C21 I · · · S−1

2 C2N

...
. . .

...
S−1
N CN1 · · · S−1

N CNN−1 I






y1
...
yN


 =



ĝ1
...
ĝN


 . (15)

A solution method involves four steps:

• Obtain the right hand side of the preconditioned reduced system

ĝi = S−1
i

(
gi − EiB−1

i fi
)
. (16)

• “Form” the Schur complement matrix.
– A LU decomposition of the matrix without pivoting gives the LU decompo-

sition of the matrix Si
(
Bi Fi
Ei Cii

)
=

(
LBi 0
EiU

−1
Bi

LSi

)(
UBi L

−1
Bi
Fi

0 USi

)
. (17)

• Solve the preconditioned reduced system.
• Back-substitute to obtain the other unknowns (fully parallel step).

4.1 Resolution of the Reduced System

The reduced system is solved by an iterative solver. The iterative solver only needs
to define the matrix-vector action.

For the iterative scheme we use the generalized conjugate residual (GCR) method
(as in [8]). The GCR method is described for a system of the form Ax = b.

1. Compute r0 = b−Ax0. set p0 = r0.
2. For j = 0, 1, 2, ..., until convergence do:

a) αj =
(rj ,Apj)

(Api,Apj)

b) xj+1 = xj + αjpj
c) rj+1 = rj − αjApj
d) compute βij = − (Arj+1,Apj)

(Api,Api)
, for i = 0, 1, ..., j

e) pj+1 = rj+1 +
∑j
i=0 βijpi

end do

Additionally to the vectors {pj}kj=1, which are ATA-orthogonal, extra vectors
{Apj}kj=1 have to be stored. Since the projection of b onto the space AK with
K = span{pj}kj=1 is equal to

k∑

j=1

(b, Apj)

(Apj , apj)
Apj , (18)

the projection of the solution x = A−1b onto K is

x̂ =
k∑

j=1

(b, Apj)

(Apj , apj)
Apj . (19)

This observation implies that the projection onto the accumulated Krylov subspace
may compute the unknown solution quite easily (involving k scalar products). Table
1 exhibits that the numerical speed-up is nearby of 15%.



540 D. Guibert, D. Tromeur-Dervout

Table 1. Numerical speed-up of the GCR method using the projection onto the
accumulated Krylov subspace on the V10 engine pump problem

Krylov projection #proc CPU time numerical speed-up

no 4 1750 1

yes 4 1515 1.15

5 Some Numerical Results

The speed-up obtained is quite good as shown in Table 2 by the elapsed times for
solving the previous V10 engine pump problem. The partition number is increased
from 1 to 4. One processor is used to solve one subdomain problem.

Table 2 exhibits a speed-up higher on 3 processors using this Schur DDM ap-
proach than using the parallelizing across the method. But with the Schur DDM
that has been proposed here, the number of processors (which is equal to the parti-
tion number) is only limited by parallel performance considerations. For the small
case considered here with 387 unknowns, the optimum partition number is 4 (see
3).

Table 2. Speed-up obtained on the V10 engine pump problem

#proc CPU time speed-up #Jac #discont #steps

1 6845 1 65355 1089 311115

2 4369 1.56 66131 1061 315357

3 1820 3.76 65787 1059 313064

4 1513 4.52 65662 1043 313158

Table 3. Percentage of interface unknowns with respect to then number of proces-
sors ne

ne+ n−ne
np

on the V10 engine pump problem (n = 287 unknowns).

#proc (np) 1 2 3 4 8 16

#interface unknowns (ne) 0 21 31 47 80 126

ratio of interface (%) 0 13 26 43 75 92

This limitation comes from the ratio between the number of interface unknowns
and the computing complexity to solve subdomain problems. For the test case under
consideration, the speed-up is supra-linear, because of two effects. The first one is
a smaller full LU decomposition locally (i.e. on each processor). The second one is
the parallelizing of the resolution on each subdomain that fits in the cache memory.
Nevertheless, we expect only a linear speed-up when a sparse LU decomposition will
be applied.



Schur Complement Method for DAE/ODE 541

6 Conclusion

A Schur domain decomposition method has been investigated to solve systems of
ordinary/algebraic differential equations. Because the data dependencies are not reg-
ular, an automatic process has been developed to separate the unknown variables
in interface unknown variables and subdomain internal unknown variables. This ap-
proach was absolutely needed because the function f(t, y) is given as a black box with
only knowledge on the input variables and on the components of f to be affected.
The condition number of the linear systems involved in the time integrator required
a preconditioned linear Krylov solver. Some techniques to reuse computed informa-
tion to speed-up the convergence have been investigated and save some elapsed-time.
Next works will investigate some numerical tools to reuse computed information
when some parts of the system become non-active or active during the cycle of sim-
ulation. Some questions are still open: what can be the numerical criterion to reuse
the Krylov subspace when some dynamical systems situation reappears? May it be
possible to use reduced systems obtained by proper orthogonal decomposition to
model the interactions of other sub-systems to one given sub-system in the Schur
DDM. This is the kind of question that will be addressed in the framework of the
“PARallel Algebraic Differential Equations” ANR project.

References

[1] K. Burrage and H. Suhartanto. Parallel iterated method based on multistep
Runge-Kutta of Radau type for stiff problems. Adv. Comput. Math., 7(1-2):59–
77, 1997. Parallel methods for ODEs.

[2] K. Burrage and H. Suhartanto. Parallel iterated methods based on multistep
Runge-Kutta methods of Radau type. Adv. Comput. Math., 7(1-2):37–57, 1997.
Parallel methods for ODEs.

[3] D. Guibert and D. Tromeur-Dervout. Parallel adaptive time domain decompo-
sition for stiff systems of ODE/DAE. Computers & Structures, 85(9):553–562,
2007.

[4] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations.
I—Nonstiff Problems, volume 8 of Springer Series in Computational Mathemat-
ics. Springer-Verlag, Berlin, second edition, 1993.

[5] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II—Stiff and
Differential-Algebraic Problems, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, second edition, 1996.

[6] P. Hansen and D. de Werra, editors. Regards sur la Théorie des Graphes, Lau-
sanne, 1980. Presses Polytechniques Romandes.

[7] Metis. http://glaros.dtc.umn.edu/gkhome/views/metis. Karypis Lab.
[8] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, second edition, 2003.
[9] P. J. van der Houwen and B. P. Sommeijer. Parallel iteration of high-order Runge-

Kutta methods with stepsize control. J. Comput. Appl. Math., 29(1):111–127,
1990.


