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Summary. Optimized Schwarz Waveform Relaxation algorithms have been devel-
oped over the last few years for the computation in parallel of evolution problems.
In this paper, we present their main features.

1 Introduction

Model complexity in today’s computation emphasizes the need for coupling
models in different geographical zones. For evolution problems, it is desirable
to design a coupling process where, the lesser subdomain boundary informa-
tion is exchanged the better. This goal is different from the usual domain
decomposition purpose, where either the scheme is explicit, and the exchange
of information takes place every time-step, or the scheme is implicit (leading
to a steady problem, usually elliptic), and domain decomposition techniques
can be used, see [16] and [18].

The Schwarz Waveform Relaxation algorithms take their name from the
waveform relaxation algorithms, developed in circuit simulation, see [3], and
Schwarz method for solving in parallel, partial differential equations of elliptic
type, see [17, 12]. The purpose is to solve the space-time partial differential
equation in each subdomain in parallel, and to transmit domain boundary
information to the neighbors at the end of the time interval. The basic idea
comes from the world of absorbing boundary conditions: for a model prob-
lem, approximations of the Dirichlet-Neumann map are developed, which can
be written in the Fourier variables. These approximations lead to transmis-
sion conditions which involve time and tangential derivatives. The coefficients
in these transmission conditions are in turn computed so as to optimize the
convergence factor in the algorithm. This process can be written as a com-
plex best approximation problem of a homographic type, and solved either
explicitly or asymptotically. This gives a convergent algorithm that we call
Optimized Schwarz Waveform Relaxation algorithm, which outperforms the
classical one, i.e. where transmission is made only by exchange of Dirichlet
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data. It can be performed with or without overlap, and convergence is in
any case much faster. It can be used with any high performance numerical
method in the subdomains, extended to variables coefficients by a freezing pro-
cess, [14], and to systems of equations, [13]. Finally, it can be used to couple
different discretizations in different subdomains, and acts as a preconditioner
for the full interface problem in space time [4].

The purpose of this paper is to present the main features of the optimized
Schwarz waveform relaxation algorithms, to give a few proofs which are un-
published and which illustrate our mathematical techniques. For an extensive
historical presentation, see [1], and for examples of applications see [9].

2 Description of the Schwarz Waveform Relaxation
Algorithm

Suppose we want to solve an evolution equation Lu = f in the domain {2 on
the time domain (0,7"), with initial data wug, and boundary conditions which
will not be considered in this paper. {2 is split into subdomains §2;, 1 < j < J,
overlapping or non-overlapping. For each index j, V(j) is the set of indices of
the neighbors of §2;, and we write for k£ > 1
Eu? =f in 2; x (0,7,
u;‘?(',O) = g in £2;, ) (1)
Bjiuk = Bjuy ™" on 092, N 2 x (0,T),1 € V(j),

with an initial guess Bj;u on the interfaces. This algorithm can be viewed as a
Jacobi type iterative method, or as a preconditioner for an interface problem.
We are only interested here in discussing the transmission conditions.

3 Classical Schwarz Waveform Relaxation Algorithm

As presented in the original paper [17], and analyzed in [12], the method
concerns the Laplace equation and Dirichlet transmission conditions, i.e. B; =
I and subdomains overlap. The algorithm is convergent, and the larger the
overlap, the faster the method. In the evolution case, this algorithm is also
convergent, but the mode of convergence depends on the type of equation.
The starting point of our research was the example of the advection-diffusion
equation, presented in DD11, [8]. The convergence curve exhibits a linear
behavior for large time intervals, and is superlinear for small time intervals.
The behavior is similar in higher dimension, [14].

For the wave equation, due to the finite speed of propagation, the conver-

cT

gence takes place in a finite number of steps ng > %, where c is the wave

speed, and L the size of the overlap. We showed in [7] an example, with a
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finite differences discretization, which shows that the error decays very slowly
until iteration ng, and reaches 10712 at iteration ng.

The case of the Schrédinger equation is also very interesting, and has been
addressed in [11]. See also the contribution by J. Szeftel in the minisymposium
“Domain Decomposition Methods Motivated by the Physics of the Underlying
Problem” in this issue. The Dirichlet transmission creates a highly oscillatory
solution, and the convergence begins late, and this phenomenon gets worse as
the final time increases.
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Fig. 1. Schrodinger equation: error with Dirichlet transmission conditions as a

function of the iteration number for several final times.

We now describe a strategy to obtain more efficient transmission between
subdomains.

4 Optimal Transmission Conditions

Let £ denote a partial differential operator in time and space, which is elliptic
in the space variables. For a domain {2 in R", the Dirichlet-Neumann map
7o maps a function h defined on 92 x (0,7T) to the normal derivative g—z
where n is the unit exterior normal to 9f2, and u the solution of Lu = 0
in 2 x (0,7), with vanishing initial data. The importance of this map lies
in the important result concerning a domain decomposition in layers: if it is
used as transmission operator on the boundaries of the subdomains, then the
convergence is achieved in J iterations, see in [15] a formal proof for an elliptic

problem.

4.1 Example: the Advection-Diffusion Equation
We consider the operator

L=0;+(a-V)—vA+cld,
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with a = (a,b), a € R, b € R"~!. We search for the Dirichlet-Neumann map
for a half-space R* x R"~!, and denote by z the first coordinate, and y the
(n — 1)—dimensional coordinate. By Fourier transform ¢ < w,y < ¢, we see
that the Fourier transform w = Fw of any solution of Lw = 0 is solution of
the ordinary differential equation

2 A
O N R o 2)

with characteristic roots

at+/6(¢,w)

5 . 6w =a?+4v(i(w+b-C) +rC]P+e). )

T+ (C7 w) =
The complex square root in this text is always with strictly positive real part.
In order to work with at least square integrable functions in time and space,
we seek for solutions which do not increase exponentially in time. Since the
real parts of the roots, Rr4, are such that Rr, > 0 and Rr_ < 0, the Dirichlet-
Neumann map 7 for (L, +00) x R~ (resp. 7_ for (—oo, L) x R*~1) is given
by
FT(h)(C) = r=(¢,w) Fh(C),
aF\/a®+4v(d,+b-V —vA, +¢) (4)

2v '

Since the operator £ has constant coefficients, the Dirichlet-Neumann maps
do not depend on L. We consider J subdomains 2; = (a;,b;) x R"~!, with
ay = —00, by = +o00, and a; < bj_; < b; for 1 < j < J, and transmission
operators of the form

T. =

B,’j = 895 — Sij(éy, 6t)

The Fourier transform of the error e? =u— uf in each subdomain is given by
.7:6 —ake”x—!—ﬁk - 1<j<J, (5)

with 8F =0 and of = 0.

Theorem 1. With the transmission conditions Sj;—1 = 1_, 541 = T4, the
algorithm is optimal: the convergence is achieved in J iterations.

Proof. Inserting (5) in the transmission conditions, we get at each step k a
system of 2.J equations with 2.J unknowns (« ;ﬁ 5]“) In the case of the theorem,

the system reduces to off = a?;ll and gF = ﬁ . Since #} = 0 and o} = 0,
we deduce that 043] =0 and ﬁ]‘»] =0 for all j. Thus at iteration J, the solution

of the algorithm is equal to u in each subdomain.

Note that the result still holds for any partial differential equation with con-
stant coefficients, like Schrodinger equations (see [11]), or even systems, like
the shallow-water system, see [13].
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4.2 The Quasi Optimal Algorithm in One Dimension

The transparent operator is global in time and space. When used in the con-
text of absorbing boundary conditions, enormous efforts have been made for
the approximation of the Dirichlet-Neumann map by local operators, in order
to obtain sparse matrices in the actual computations (see [10] in the context
of parabolic equations). However in one dimension, we have to transmit infor-
mations on the interface over the whole time interval. Therefore we can afford
to use pseudodifferential operators in time. For the advection-diffusion equa-
tion, we find in [6] a discrete Dirichlet-Neumann map for several numerical
schemes, e.g. Euler and Crank-Nicolson. We have used this strategy for the
Schrédinger equation, and we have shown that the convergence is achieved in
very few iterations, even with non constant potential, see [11]. We intend to
explore this direction in higher dimension.

5 Optimized SWR Algorithm for the
Advection-Diffusion Equation

We now try to improve locally the transmission between the subdomains.
Therefore we restrict ourselves to the case of two subdomains, and we develop
the analysis in R™ x (0,7).

5.1 Partial Differential Transmission Conditions

In this part, we write differential transmission conditions as follows. We re-
place in r4 the square root by a polynomial of degree lower than or equal to
1, i.e. we set
L _ax@ta(ilwtb-¢)+vicP))
T 2v ’
with real parameters p and ¢ to be chosen. This defines the new transmission
operators

23 a — Pig
Biit1 =05 — # +iit1(0r +b -V —vA,),

Bi—1 =0, — R IR +2p“71
v
with real parameters p;; and g¢;; to be chosen. In the case where ¢;; = 0,
the transmission condition reduces to Robin transmission condition, which is
already used as a preconditioner for domain decomposition in the steady case.
We call it transmission condition of order 0, whereas when g¢;; # 0, we talk
about first order transmission condition.

— qii,l(at + b-V — VAy),
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5.2 Well-Posedness and Convergence of the Algorithm

We examine in details the Robin case. It was proved in [14] that in the case of
two half-spaces with only one coefficient p > 0, the boundary value problems
are well-posed in suitable Sobolev spaces, and the algorithm is convergent.
The proof relies on Lebesgue Theorem in the overlapping case. In the non
overlapping case, the proof uses energy estimates as in [5], and therefore holds
for space varying advection. We prove below that this result holds in any
reasonable geometry, as depicted in Figure 2.

Fig. 2. Decomposition in space with nonoverlapping subdomains

The operators B;; are given by

0 a-n;—pj
B‘ - _  _ J J ; 6
gl anj 2 ( )
where n; is the normal to 92;, exterior to {2;.

Theorem 2. In the nonoverlapping case, the domain decomposition algorithm
(1) with transmission conditions (6) converges for any choice of the positive
coefficients p;; with pj = pij, provided each domain is visited infinitely many
times.

Proof. In order to shorten the proof, we work here with the heat equation.

We write the equation for the error e? =u— u;“ in £2;. We multiply it by e?

and integrate by parts:

6
S L%, + e, - Z/ vt chds =0
1ev(j)

We rewrite the boundary term as

de 1 [/ ( de  pj )2 / ( de  pji )2 ]
—v —eds=— v— —=—=—¢| ds— v— + ——e| ds|,
Ty a”j 2pji Iy a”j 2 Iy a”j 2

and obtain
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56 2
k Pjil g
S e, + vk, + 3 / %[ -]

1eV(j) On,

1 ek ) 2
_ Z/ [yupﬂeﬂ ds.

We use on the right hand side the transmission condition:

86 2

k Pji i

+ + E — — = d
2dt” ”Q V||€ HQ / ]l[ 9 ej} §

1ev(j) On,
_1 2
Z/ Y [ —|—Z%e;€ ] ds
1EV() Pji nj
k—1 2
= Z / 21_[—1/83 +p§lef_1} ds.
1eviy) Y Tin “Pil ™

Summing up on all domains, we have on the left a boundary term at step k
and on the right the same term at step £ — 1. Summing up on all steps k, we
obtain

d K J ) 2
RIEIAEOR ST S0y vl B
k=0 j=1 Jl nj

k=0 j=1 Jj=11eVv(j

2
—Z / [ Bel — pjle?} ds.
p]l nl 2

J=11ev(j)

. J J .

which proves that > 7 1He’?||2Loo 0150, T QZ/ZJ 1||ek||2L2(OT @, 1s bounded.
By assumption, we have an infinite sequence e , and for every j, e tends to
0 as k tends to infinity.

There is no proof available for the overlapping domains in general geometry.
Concerning the case q # 0, there is a proof of well-posedness and convergence
for the layered case in [2]. The well-posedness in general geometry, even in the
nonoverlapping case, has not yet been addressed.

5.3 Optimization of the Convergence Factor

In order to improve the performances of the method, it is important to op-
timize the convergence between two subdomains. In this case, the notations
are much simpler, there are only two parameters p and ¢, and we write

FeH(0.¢,0) = p(¢,w, P.L)Fe(0.¢,w),
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with the convergence factor defined for a polynomial P € P,, by

P (i(w+b-¢)+v[¢]?) — 5(‘57‘*’)>2 em2EV/0(Cw),

plew, B L) = (P(i(w-i—b $ Q) +VICP) + V(¢ w)

The convergence factor has two terms: the exponential one comes from the
overlap, and kills the high frequencies in time or space, whereas the fractional
term comes from the transmission condition and tends to 1 as frequencies in
time or space become high. Since the overlap has to be small for computational
reasons, and also since it is of interest to have a nonoverlapping strategy, we
want to make the fractional part as small as possible. In a real computation,
only frequencies supported by the grid are relevant, w and ¢ live in the compact
set

K:{(W7C)7 Wm S |w| SwM? <],'m S |<]‘ SCj,M? .7: 17 ,’I’L-l}

with wy, = 7/T, wy, = 7/At, where At is the time step, and similarly ¢ ., =
©/Y;, (ju = m/Ay;, where Y is the length in the y; direction and Ay; the
mesh size. The optimization of the convergence factor is formulated as a best
approximation problem in P,, for n =0 or 1,

sup |p(C,w, Py)l= inf sup [p(¢,w,P)|. (7)
(¢ w)eEK PePy (¢ w)ek

Problem (7) has been solved in a more general setting in [2], and exact formu-
las in the one-dimensional case, together with asymptotic results, have been
given. A general result asserts that the infimum is strictly small than 1, the
problem has a unique solution, and furthermore, the solution is a real polyno-
mial, and is the solution of the best approximation problem set in the space of
real polynomials. Here we study Problem (7) for n = 0, which corresponds to
Robin transmission conditions, and for L = 0, which means without overlap.
In particular we have p* > 0. We are going now to characterize p*.

We choose new variables 7 = w + b - {, 7 = /a2 + 4vc + 4v|([?, and use
&€ = V0. With the new notations we have

— )2+ €2 — 2
Pl p=R( D)= (=2 )2

and the best approximation problem for p has the same solution as the one
for R in the subspace of R%, D = [0y, M) X [T, Tas), With 7,,, = 0. A point M
in the plane will be defined by its coordinates (7, 7) and we will call A; the
edges of D: A1 = (M, Tm)s A2 = Mary Tm)s Az = ey, Tar )y A = (Nns Tar ). We
will interchangeably use R(M,p) or R(7,n,p).

The upper bounds 7,,, 7, are inversely proportional to the time and space
steps. Depending on whether an explicit or implicit scheme is used, we can
have At of the order of Ay or Ay?, respectively. Therefore we assume here
that 7, = Cn, with 8 =1 or 2.
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Theorem 3. Forn =0 and L = 0, problem (7) has a unique solution p* > 0.
If ny, is large and T, = Cnﬁ, it is given by

p* \/(A )m E(As)\/72 4, if 3=1, or 3=2 and C < Cy,

A3)—E(Ar)
n2, + 277m§(A4) if =2 and C > Cy.

Pmof. We proceed in several steps.

Lemma 1. For any positive p, the mazimum of (1,n) — R(7,n,p) on D is
reached on one of the edges of D.

The analytic function p can reach extrema only on the boundary of the do-
main. The partial derivatives of R with respect to 7 and 7 delimit regions in
the plane, see Figure 3, from which we infer that an extremum on any segment
of the boundary, distinct from the edges, can only be a minimum.

O, R <0
O, R >0
8-R >0
9 -
p
0. R <
P
73 p n

Fig. 3. Regions delimited by the zeros of the partial derivatives of R

Lemma 2. If either n,, or 7\, is large, there exists a unique p, > 0, such that
R(A1,p.) = R(A3,ps), and it is given by

\/ E(ANTZ + Y, —E(A3) /T2 + 2,
b= £(Ay) — €(Ay) '

Further, there exists a unique pyx > 0, such that R(A1, pss) = R(A4, psex), and
it is given by

Dsx = 7772n + 2"7m§(A4)
This can be seen by writing for any points My, M5 in D,
R(My,p) = R(M,, p) = *SFa=s00 [Q(My, My) — p?]

Mo)n?—¢(My)n2
Q(Mi, My) = 26(Ma)&(My) + SGplm—£Gi.

with a positive denominator D(Mi, M), and discussing the sign of Q.
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Lemma 3. For large n,, we have:

1.IfB=1, or f =2 and C < Cy, sup R(M,p.) = R(A1,p«) = R(A3,px),
MeD

P ~ Cin/NmMar,  SUD R(M,P*)N1—4nma
MeD Dx

1/4
o _ 2(C*+1) o
C.=1ifB3=1, 0*_<1+ (02+1>> if B =2.

2.If =2 and C > Cy, sup R(M,ps) = R(A1,Dsx) = R(A4, Pix),
MeD

Dus ™~ (20)1/4\/ Nm M As4upD R(M,p,) ~1— g
€

Dx

C?+1
Cy is the only positive root of the equation —————— =
1+./(C?+1)
These results are obtained by comparing the asymptotic values of R at the
edges.

Lemma 4. The values p, and p.. in Lemma 8 are in each case a strict local
minimum for the function p— sup R(7,n,p).

(r,m)eD
Proof. For any positive p, we define R(p) = SUP (7, eD R(r,n,p), and pu(p) =

f_rggzg . We write

with Q(7,m,p, u) = 262 — 2up& — n* + p?. In the sequel, we will consider Q as
a polynomial in the independent variables 7,7, p and p. Defining . = p(p«)
we have

Q(Ahp*hu*) = Q(A%p*,/i*) = Oa

and Q(M, px, p1+) < 0 for any M in D. Now for p, to be a strict local minimum,
it is sufficient that there exists no variation (dp,dpu) with dp < 0, such that
Q(A;,ps +0p, s +6p) < 0. By the Taylor formula, it is equivalent to proving
that for j = 1 and j = 3, we can not have 0p(ps—pt.&;) —p«&§;6pn < 0 for op < 0.
From the asymptotic behavior, we see that for j = 1, it gives dp — du < 0,
and for j = 3, it gives —dp — dpu < 0, which together contradicts the fact that
op < 0. The arguments hold in all cases.

Another general result in [2] asserts that any strict local minimum is a global
minimum. Therefore p, is a global minimum, and equal to p*, which concludes
the proof of the theorem in the first case. The second proof is similar.
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5.4 Numerical Results

To show that the optimization process is indeed important, we draw in Figure
4, for eight subdomains in one dimension, the convergence rates of the algo-
rithm with Dirichlet transmission conditions compared to the same algorithm
with the new optimized transmission conditions of zeroth or first order. The
convergence curves are similar in the 2D case [14].

10°
— Dirichlet
- - Optimized 0

T 2 5. 6
1teration

Fig. 4. Convergence rates

6 Conclusion

We have presented the main features of the Optimized Schwarz Waveform
Relaxation algorithms, specifically for the advection-diffusion equation. Ex-
tension to nonlinear equations, and application to real problems in ocean
modeling or combustion or waste disposal simulations will be the next step.
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